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The thermoelectric effect of magnesium silicide is studied by using a thermodynamical method in the presence
of an electric field. The thermoelectric potential is evaluated from the partial derivative of free energy with
respect to charge in which the free energy is calculated at the B3LYP/6-31G(d,p) level of density functional
theory. This free energy is also utilized to determine the average dipole moment from which the polarizability,
R; molar polarization,Ψ; and dielectric constant can be computed. The present calculation for the dielectric
constant (∼24-20) is in very good agreement with the experimental value (20). This accurate dielectric
constant can be used to derive the relation of the thermoelectric potential with respect to temperature, from
which the thermoelectric power or the Seebeck coefficients are calculated. The present result shows good
agreement with experiment measurement for the Seebeck coefficients. In comparison, that calculation from
the energy band structure theory is far off from the experimental values.

I. Introduction

Material with thermoelectric energy conversion has attracted
a great deal of attention for its applications to temperature
measurement; cooling of laser modules; computer chip coolers;
and particularly, for the recovery of exhaust heat sources to
generate electric power and to reduce global warming due to
the greenhouse effect. For thermoelectric energy conversion to
be highly efficient, the thermoelectric conversion efficiency,
defined by a dimensionless figure of merit, ZT, which is relevant
to 10% conversion efficiency, must be greater than unity. The
figure of merit is defined by

where S is called Seebeck coefficient,σ is the electrical
conductivity,k is the thermal conductivity, andT is temperature.
The ideal thermoelectric material would have a largeS and
smallk, like an insulator, but would also have a highσ, like a
metal.

Magnesium silicide (Mg2Si), an alkali monosilicide that has
the space groupFm3m with crystal parameter 6.351, is an
inexpensive, promising, n-type semiconductor material at tem-
peratures ranging from 500 to 773 K1-6 for its narrow-band
gap of 0.78 eV16, and is notable for the abundance of its
constituent elements in the earth’s crust and its lack of toxicity.
Its density is 1.88 g/cm3.7 The Seebeck coefficient is conven-
tionally based on the calculation of the carrier motion of the
energy band, which includes two parts: diffusion thermoelectric
power and phonon drag power.8 For example, for an n-type

semiconductor, the diffusion thermoelectric power is defined
by

wherekB is the Boltzmann constant,h is the Planck constant,q
is the electron charge,mn

/ is the effective electron mass, andn
is the effective electron concentration. Accurate calculations
based on eq 1 cannot be easily performed.

The present work suggests another alternative way to study
the thermoelectric effect based on thermodynamic theory for
the systems that are in equilibrium with an electric field. The
first step is to calculate the Helmholtz free energy and dipole
moment at different electric fields; then it is possible to obtain
the polarizability, distortion polarizability, and dielectric constant
for Mg2Si. Thermodynamics can be considered as an exact
theory in which all microscopic quantities are systematically
averaged out so that it is possible to perform a more accurate
calculation. However, some of experimental data are needed:
for instance, the density of solid Mg2Si.

In Section II, the thermodynamic method in the presence of
an electric field is briefly introduced. Section III is concerned
with the thermodynamical study of the free energy, polariz-
ability, and dielectric constant for solid Mg2Si by combining
the molecular structure calculation of density functional theory.
The thermoelectric effect and calculation of the Seebeck
coefficient is presented using three different methods in Section
IV. Concluding remarks are given in Section V.

II. Thermodynamic Method

For the self-contained purpose of the present study, we briefly
review the thermodynamic method in the presence of an electric
field by using Samoluoviqi’s reference book9 and its notations.
Following the Gibbs phase rule, the equilibrium state for a one-
component homogeneous system is defined by two intensive
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quantities; for instance, temperature and pressure, temperature
and electric field (T, ε), etc. For the present study, we choose
T andε as the independent intensive quantities. Thermodynami-
cal equations are given by

and

from which the average dipole moment,µ, is defined by

whereF, G, and S stand for free energy, free enthalpy, and
entropy, respectively. All quantities, including the average dipole
momentµ, are given in atomic units (au). At a given temper-
ature, the average dipole moment in eq 4 is equal to the
polarizabilityR by unit electric field. Thus, the molar polariza-
tion can be obtained as

where polarizabilityR is the sum of the electronic polarizability,
RE; atomic polarizability,RA; and orientation polarizability,R0;

whereRD ) RE + RA is called as the distortion polarizability.
The distortion polarizability can be calculated by

whereεin is the inner electric field and given by

in which ε represents the external field,εpol is the polar electric
field, andεca is the cavity electric field. From the relation of
dipole moment with the inner electric field,εin, or approximately
with the external field,ε, distortion polarizability can be
evaluated by eq 7, and thus, the molar distortion polarization
can be obtained as

Before we go to the next section, it would be better to present
the corresponding relations of the atomic unit: length is 1 au
) 1 Bohr, charge is 1 au) 1.602 189× 10-19 C, energy is 1

au) 4.3598× 10-11 erg, electric field is 1 au) 5.142 258×
109 × 1/300 cgse/cm, and dipole moment 1 Debye) 10-18

cgse-cm.

III. Free Energy, Polarizability, and Dielectric Constant
of Mg2Si

A. The Function of Free Energy, F (au), with Electric
Field (/au) and Temperature (K). On the basis of studying
the dissociation energy of the ground state OS2 molecule at the
B3LYP/6-311G(p,d) level of density functional theory,17 we
know that the same level of quantum mechanical method can
be suitably used for the structure calculation of Mg2Si. The
detailed electronic structure calculation is presented in ref 17.
In the present work, we simply report calculation results of
electronic energy, thermodynamic energy, thermodynamic
entropy, and dipole moment for Mg2Si at various tempera-
tures: 300, 400, 500, 600, 700, and 800 K and at various electric
fields: 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 au,
respectively. The thermodynamic free energy of Mg2Si is given
as follows,

whereU is the ground state electronic energy. The results for
F are listed in Table 1. To calculate the average dipole moment,
we must fit the data in Table 1 into the certain analytical
function, and as the example, the function of free energy with
respect to the electric field for Mg2Si at 600 K is fitted as
follows:

Similarly, all fitted functions for the different temperatures are
summarized in Table 2. The present fitting functions well
represent the original data. As an example, we demonstrate it
in Figure 1 for the cases of temperature at 400, 600, and
800 K.

B. Polarizability (r) and Molar Polarization (ψ). Since we
get the analytical function of free energy with respect to the
electric field, we can use eq 4 to compute the average dipole
moment,µ. For example, from eq 6 for Mg2Si at 600 K, we
have

TABLE 1: The Free Energy, F (au), with Electric Field (au) and Temperature (K) (B3LYP/6-311G(p,d))

field

temp 0.00 0.01 0.02 0.03 0.04 0.05 0.06

300 689.655 996 2 689.676 297 5 689.714 263 6 689.770 004 5 689.843 787 8 689.934 731 1 690.042 201 0
400 689.668 265 8 689.688 612 9 689.726 649 8 689.782 651 3 689.856 490 8 689.947 452 1 690.054 682 7
500 689.681 084 9 689.701 475 1 689.739 585 3 689.795 560 7 689.869 747 0 689.960 721 4 690.067 712 1
600 689.694 345 1 68.714 779 7 689.752 962 3 689.809 053 6 689.883 442 2 689.974 431 8 690.081 182 4
700 689.707 729 5 689.728 452 3 689.766 707 4 689.822 916 7 689.897 506 0 689.988 510 7 690.095 020 1
800 689.721 911 0 689.742 441 0 689.780 766 0 689.837 092 7 689.911 885 0 690.002 903 7 690.109 245 0
dipole /debye 2.876 4 7.362 9 11.829 6 16.334 7 20.862 7 25.329 7 29.638 1

dF ) -SdT - P dε (2)

dG ) -SdT - P dε (3)

µ ) -(∂F
∂ε)T

) -(∂G
∂ε )T

(4)

ψ ) 4π
3

N0R ) 2.522*1024R (5)

R ) RD + R0 ) RE + RA + R0 (6)

µ ) RDεin ) (RE + RA)εin (7)

εin ) ε - εpol + εca (8)

ψD ) 4π
3

N0RD ) (2.522× 1024)RD (9)

TABLE 2: The Functions of Free Energy with Respect to
theElectric Field (E), Polarizability ( r) and Molar
Polarization (ψ) for Mg 2Si

T
K

the functions of free energy
with electric field

R
1024 cm3

ψ
cm3 mol-1

300 F ) -87.716ε2 - 1.1835ε - 689.66 26.217 66.117
400 F ) -87.466ε2 - 1.2048ε - 689.67 26.137 65.917
500 F ) -87.5612ε2 - 1.2016ε - 689.68 26.105 65.836
600 F ) -87.168ε2 - 1.2353ε - 689.699 26.053 65.705
700 F ) -86.838ε2 - 1.2639ε - 689.71 25.959 65.469
800 F ) -86.84ε2 - 1.2683ε - 689.72 25.961 65.473

F ) U - TS (10)

F ) -87.168ε2 - 1.2353ε - 689.699 (11)

µ ) -(∂F
∂ε)T

) 174.336ε + 1.2353.
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when ε ) 1 (au),µ ) 175.5713 Debye. If the free energy is
changed from atomic units to the cgs system, that is, ergs, and
the electric field is changed from atomic units to cgs-e, we have
µ ) (175.5713× 4.3598× 10-11)/(1.714088× 107) ) 446.57
× 10-18 cgs-cm.

Because the average dipole moment is numerically equal to
polarizabilityR at the unit electric field, therefore, polarizability
R can be calculated as

and inserting the above result into eq 5 leads to the molar
polarization,

Similarly, the polarizabilityR and molar polarizationψ of
Mg2Si at temperatures from 300 to 800 K are computed and
summarized in Table 2.

C. Distortion Polarizability and Distortion Molar Polar-
ization. In order to calculate the distortion polarizability, we
need to fit the data of the average dipole moment (Debye) with
electric field in Table 1 into an analytical function by

Figure 2 shows the fitting is very accurate, and by using eqs 7
and 12, we have the distortion polarizability.

For example, whenε ) 1 (au),

and from eq 9, distortion molar polarization is calculated as

From Table 2, the total polarizabilityR for Mg2Si at 500K is
26.105× 10-24 cm3, and from eq 13, the distortion polarizability
is RD ) 14.692 × 10-24 cm3. We can now calculate the
orientation polarizability,R0, from eq 6 as

As we know, atomic polarizability is estimated in the range
of ∼2.5-5% of the distortion polarizability,18 that is, (∼0.3673-
0.7346)× 10-24 cm3. Therefore, electronic polarizability,RE,
is given by

D. Dielectric Constant for Solid Mg2Si. Because there are
no the translational and rotational motions for solid Mg2Si, the
orientation polarizability of solid Mg2Si would be zero (R0 ≈
0), and because the atomic polarization,RA, in the molecule is
rather small, it can be reasonably assumed that in the equilibrium
of the solid,RA would be zero. Finally, the total polarizability
of solid R will be equal to the electronic polarizability,RE, that
is, R = RE ) (∼14.3247-13.9574)× 10-24 cm3 (from Section
III C). Thus, its molar polarization is given by

Figure 1. Comparison between fitted functions and numerical data for free energy with respect to the electric field for Mg2Si at temperatures of
400, 600, and 800 K.

Figure 2. Comparison between the fitted function and numerical data
for the dipole moment (Debye) with respect to the electric field (au)
for Mg2Si.

R ) (446.57× 10-18)/(5.142258× 109 × 1
300) )

26.0529× 10-24 cm3

ψ ) 4π
3

N0R ) 2.522× 1024 × 26.0529× 10-24)

65.7054 cm3/mol

µ ) -100.77ε2 + 453.38ε + 2.8491 (12)

RD ) dµ
dε

) -201.54ε + 453.38 (13)

RD ) 251.84 Debye/au) 251.84× 10-18

(cgse-cm)/1.714088× 107(cgs-cm-1)

) 14.692× 10-24cm3

ψD ) 4π
3

N0R ) 2.522× 1024 × 14.692× 10-24 )

37.054 cm3/mol

R0 ) R - RD ) (26.105- 14.692)× 10-24 cm3 )

11.4131× 10-24 cm3.

RE ) RD - RA ) [14.692- (∼0.3673-

0.7346)]10-24 cm3 ) (∼14.3247-13.9574)10-24 cm3

ψ ) 4π
3

N0R ) 2.522× 1024 R ) (∼36.13-35.20) cm3/mol
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The dielectric constant,e, for a pure compound can be
calculated from the Clausius-Mossotti formula,7

Insertingψ ) (∼36.13-35.20) cm3/mol, molecular weight M
) 76.70, andF ) 1.88 into eq 14 leads to the dielectric constant
e ) (∼24-20). This shows that the present calculation is in
very good agreement with the experimental value ofe) 20.11,12

IV. The Thermoelectric Effect and Seeback Coefficient
for Solid Mg2Si

If the energy gap between the conduction band and the
valence band is small or owing to the crystal defect, the electrons
can be excited from the valence band to the conduction band
by their thermal motion so that it leads to conductivity. The
electric potential difference,∆p, is developed as a result of the
temperature difference,∆T.13,14 This effect is expressed as

which is called the Seebeck coefficient or thermoelectric power.
The Seebeck coefficient is conventionally calculated by the
carrier motion of the energy band. In the present work, we use
a different method that is based on the idea of chemical potential
and the thermodynamic method presented in Section II. It is
well-known that the Fermi-Dirac distribution can be written
as

where

Ni represents the number of electrons in the energy levelEi

at temperatureT; EF is the Fermi level or simply the chemical

potential, µ, of a single electron.15 The electron will be
spontaneously transferred from the Fermi level region into the
lower level of the conduction band district. From thermodynamic
relations for an open system or closed system with a charge
movable in different energy levels, we have13

where∑µi dni, V dq, andσ dε are the chemical work, electric
work and surface tensor work done on this system, respectively.
If we consider electric work only,

and for free energy

where

where the third part of eq 21 that is the partial derivative of
free energy with respect to charge represents electric potential.
As a general rule, it is called the “chemical potential of charge”.
In brief, the electric potential is the free energy of unit charge
from which we can find the relation between the electric
potential and the temperature, and finally, it leads to the Seebeck
coefficient evaluated from eq 15.

Now, we use three different methods to calculate the Seebeck
coefficient. First, we use the method called molecular structure
calculation. The relations of free energyF (au) with respect to
both electric field (au) and temperature (K) for Mg2Si are listed
in Table 1, from which the free energy,F, at zero electric field
is taken, and its unit is changed from atomic units to electron
volts. By using eq 21, the free energy with unit of electron volts
is divided by unit electron charge, and we obtain the relation
of electric potential with respect to temperature. This function
relation can be fitted as follows,

Figure 3. Comparison between the fitted function and numerical data for the electric potential with respect to temperature for Mg2Si at zero
electric field.

TABLE 3: Free Energy with Respect to Temperature for Crystal Mg2Si

T/K 299.05 355.61 404.09 452.57 501.05 598.01 654.56 703.04 751.52 800.0
F/eV 430.86 431.27 431.48 431.70 431.74 431.78 431.90 431.85 431.77 431.90

ψ ) e - 1
e + 2

M
F

(14)

S) lim
∆Tf0

∆p
∆T

) dp
dT

(15)

Ni )
gi

exp(R + âE + 1)
)

gi

exp[(Ei - EF)/kT] + 1
)

gi

exp[(Ei - µ)/kT] + 1
(16)

â ) 1
kT

and R ) - µ
kT

(17)

dU ) T dS- P dV + ∑µi dni + p dq + σ dε + ...
(18)

dU ) T dS- P dV + p dq (19)

dF ) d(U - TS) ) -SdT - P dV + p dq (20)

S) -(∂F
∂T)p,q

P ) -(∂F
∂V)T,q

and p ) (∂F
∂q)T,V

(21)

p ) (6 × 10-7)T2 + 0.003T + 18 766 (22)
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and Figure 3 shows that the fitting is very good. The Seebeck
coefficient is obtained by

whenT ) 300 K, S ) 3.36 mV/K, and whenT ) 800 K, S )
3.96 mV/K. Because the above relation represents the molecule
Mg2Si at zero electric field, this should correspond to the gas
state. However, the Mg2Si material is a polar solid so that the
electric potential inside this dielectric should be that of the gas
state divided by the calculated dielectric constant of∼24-20
from the Section III D. This comes to our second method that
leads to the function of the electric potential with respect to
temperature for solid Mg2Si. For simplicity, we just divided eq
22 by eq 20, and then we have

whenT ) 300 K,S) 0.158 mV/K, and whenT ) 800 K,S)
0.198 mV/K.

To compare the above two methods, we perform the third
method, which is that the variance of the free energy with respect
to temperature is calculated by the energy band structure theory
using the “program materials studio 4.0”. The calculated results
of the free energy with respect to temperature for crystal Mg2-
Si (Fm3m-Oh

5, a ) 6.338 Å10) are given in Table 3, which is
used to calculate the polarizability and thermoelectric effects
in the following. It is well-known that the energy gap is 0.77,
0.65, and 2.1 eV for the electrical, optical, and direct measure-
ment,10 respectively. The energy gap from the present calculation
is 1.452 ev. By Table 3, the function relation of the electric
potential with respect to temperature is fitted as

whenT ) 300 K, S ) 3.6 mV/K, and whenT ) 800 K, S )
6.6 mV/K. All of the results from the above three methods are
summarized in Table 4.

Method 2 is in good agreement with the experimental value
that shows the Seebeck coefficients are 0.1-0.2 or 0.24-0.45
mv according to the ratio of Mg and Si from 300 to 800 K3

and also comparable to the reference value of 0.565 mV/K.11

Method 1 from the gas state and method 3 from the energy

band structure theory show similarity, but the two are far from
the experimental values.

V. Concluding Remarks
Thermodynamics is of sufficient generality to include force

fields, such as an electric field, etc. The key to evaluating the
Seebeck coefficients is the calculation of the electric potential,
from which we have acquired the functions of electric potential
with respect to temperature. Then, by usage of the method called
molecular structure calculation, we have obtained the average
dipole moment that is used to derive the polarizability,R, and
the molar polarization,ψ, of solid Mg2Si. Finally, it leads to
the dielectric constant. The present calculation shows that the
dielectric constant of∼24-20 is in very good agreement with
the experimental value of 20. This accurate dielectric constant
plays an essential role in our accurately computing the Seebeck
coefficients. The thermodynamic method with molecular struc-
ture calculation shows much better results than that of the energy
band structure theory using Material studio 4.0.
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