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Very recently, the effects of internal molecular noise in mesoscopic chemical reaction systems have gained
growing attention. Using a mesoscopic stochastic model, the effect of internal noise for rate oscillation during
CO oxidation on Pt(110) surface is studied analytically. In a parameter region outside but close to the
supercritical Hopf bifurcation, a stochastic normal form is obtained from the chemical Langevin equation.
By stochastic averaging procedure, the system is simplified and solvable. Noise-induced oscillation and internal
noise coherent resonance (which is related to an optimal system size), observed from simulations, are well
reproduced by the theory. The theoretical analysis helps to clearly figure out when and how the internal noise
affects the system’s oscillating dynamics.

1. Introduction

In the last two decades, the constructive roles of noise in
nonlinear systems have gained much attention. The well-known
phenomenon, stochastic resonance (SR), shows that there exists
a “resonant” noise level where the response of a bistable system
to a feeble external periodic signal is maximally ordered. Since
it was put forward in the early 1980s,1 SR has been studied in
a variety of physical,2 chemical,3 and biological4-8 systems.
Recently, many SR-like behaviors have been reported in small-
scale chemical or biological reaction systems, where the number
of reactant molecules is often low and the internal noise,
resulting from stochasticity of chemical reaction events, becomes
considerable, and plays important roles. Specifically, for me-
soscopic chemical reaction systems with oscillating dynamics,
internal noise can induce stochastic oscillations in parameter
regions where a corresponding macroscopic system does not
show oscillation, and the noise-induced oscillation (NIO) shows
the best performance at an optimal internal noise level.
Compared to the original SR behavior in bistable systems, for
this phenomenon, which is often called internal noise coherent
resonance (INCR),9 the noise is internal, which is inherent in
mesoscopic chemical systems; the system’s dynamics is oscil-
latory, and the external signal is absent. Because the magnitude
of the internal noise is generally inversely proportional to the
system size, INCR also implies the existence of an optimal
system size. So far, many behaviors of this type have been
found, for instance, in calcium-signaling process,10 ion-channel-
related process,11-15 circadian oscillation systems,16 surface
catalytic reactions on single crystals or nanoparticles,17-18 etc.
However, most of these studies are only based on numerical
simulations, and few analytical works were reported.

In a recent paper, we have performed an analytical study of
the NIO and INCR behavior in the conceptual Brusselator
model.19 Observing the fact that many of the NIO and INCR
behaviors were found in a parameter region close to supercritical

Hopf bifurcation (HB), we believed that some common features
of HB must be relevant. According to HB theory, the system’s
dynamics near the bifurcation point can be reduced to a normal
form equation governing the evolution of a complex magnitude
on the two-dimensional center manifold associated with the two
conjugate eigenvalues of the Jacobi matrix of the vector field.
Therefore, we start from the chemical Langevin equation (CLE)
currently proved to be valid by Gillespie and obtain the
stochastic normal form. After a “stochastic averaging proce-
dure,” a simplified stochastic normal form was finally obtained
from which analytical expressions for the probability distribution
function of the oscillation amplitude, the autocorrelation function
and correlation time, and the signal-to-noise ratio (SNR) of the
stochastic oscillation were all obtained. The theoretical results
showed rather good agreement with the numerical simulation.

In the present paper, we will use the above analytical method
to study the effect of internal noise in a surface catalytic system.
The catalytic oxidation of carbon monoxide (CO) has attracted
a lot of attention for more than two decades, due not only to its
application, but also to its theoretical significance. At low
pressures and typical temperatures, the surface can be regarded
as locally well mixed, and simple mean field models in the form
of deterministic reaction-diffusion equations have been very
successful to reproduce many experimental observations. How-
ever, when looking at very small length scales, internal noises
become crucial and must be considered. In heterogeneous
catalysis, sufficiently small systems to be strongly influenced
by internal noise are provided by the facets of a field-emitter
tip,20 by nanostructured composite surfaces,21 and by the small
metal particles of a supported catalyst.22 Also, when the
pressures are increased the size of a locally well-mixed cell
would decrease to a small scale where a mean-field type of
reaction-diffusion equations becomes less accurate and internal
noises becomes important. For example, internal noise can
induce transitions between the active and inactive branch of
the reaction for catalytic CO oxidation on a Pt tip,23 can lead to
the large difference between the oscillations observed on 4 and
10 nm Pd particles,22,24,25and may be responsible for the bid
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discrepancy between the experimental observations and theory
in the study of spatiotemporal self-organization in catalytic
oxidation of hydrogen on Pt(111).26 Noteworthy, Mikhailov and
co-workers have developed Langevin type reaction-diffusion
equations to successfully describe the formation of “nonequi-
librium nanostructures” in surface reaction systems by taking
into account chemical reaction and diffusion as well as lateral
physical interactions.27 Herein, we will mainly focus on the
effect of internal noise to rate oscillation during CO oxidation
on Pt(110) single-crystal surface. Our study is mainly analytical,
and numerical simulations are also performed to compare with
the theory.

The motivation of this research is as follows. First, from this
theoretical work one could get more insight into the mechanism
of the effects of internal noise in surface catalytic systems and
help one to figure out when the internal noise is critical and
how its effects can be controlled externally. This would help
us for more reasonable design of catalyst reactions. Second,
the surface catalytic reaction is much more complex than the
Brusselator, and we also want to further demonstrate the validity
of our analytical method. The model and the problem are
addressed in Section 2, we perform our analytical study in
Section 3, comparisons between the theory and numerical results
are present in Section 4, and we end by discussions in Section
5.

2. Model Description

The model we use in the present paper was developed to
describe the temporal dynamics of catalytic oxidation of CO
on low-index Pt(110) single-crystal surfaces.28 This system has
been extensively studied and the reaction was found to follow
a Langmuir-Hinshelwood mechanism.

Here, a vacant adsorption site is denoted by the asterisk (*),
and an adsorbed species by the subscript “ad”. To account for
the rate oscillation, the adsorbate-induced phase transition 1×
2 S 1 × 1 for Pt (110) surface must be taken into account to
address the influence of the surface structure on the reactivity.
We focus on a small “cell” on the surface containingN
adsorption sites inside which the reaction is homogeneous. For
instance, the small region of a field-emitter tip is about 20×
200 Å2 and contains 106 surface sites.23 As stated above, the
reactions inside this small space are stochastic, and one should
use mesoscopic stochastic models to describe the dynamics. The
state of the system is denoted by a vectorXN(t) ) [NCO(t), NO-
(t), N1×1(t)]T, whereNCO, NO, andN1×1 denote the number of
adsorbed CO molecules, adsorbed oxygen atoms, and adsorption

sites in a nonreconstructed (1× 1) phase, respectively. All these
variables are stochastic, and the reaction steps leading to their
changes are listed in Table 1. Note that the transition ratesai )
1,...,6 are all proportional to the system sizeN, and we have
introduced the concentrationsu ) NCO/N, V ) NO/N, andw )
N1×1/N. One may turn to ref 28 for details of the parameter
description and values.

From the processes in the above table, the chemical master
equation for this system can be readily written down. Although
the exact simulation algorithm that mimics the reaction dynamics
by randomly determining what the next reaction is and when
will it happen was proposed by Gillespie in 1977,29 it is too
time consuming when the system size is large. To overcome
this difficulty, one may use Langevin type equations that
describe the “Brownian motion” of the macroscopic concentra-
tion variable under the influence of microscopic stochastic
interactions.30 Recently, Gillespie stated that the CLE is a rather
good approximation if a “macroinfinitesimal” time scale exists
in the dynamics.31 This condition may be satisfied if the total
number of reactant molecules is not too small. In our previous
studies,16,32we have shown that it is convenient to use CLE to
study the influence of internal noise in mesoscopic reaction
systems, at least qualitatively. According to Gillespie, the CLE
for the current model reads

whereêi ) 1,...,6(t) are Gaussian white noises with〈êi(t)〉 ) 0
and〈êi(t)êj(t′)〉 ) δijδ(t - t′). The items withêi(t) give the internal
noises, which scale as 1/xN becauseai ) 1,...,6∝ N. WhenN f
∞, the internal noise items can be ignored and the system’s
dynamics is described by the deterministic equation

As shown in Figure 2 of ref 28, the deterministic system
shows very abundant bifurcation features in the control param-
eter space ofpCO andpO2. For example, if we fixpO2 ) 9.6 ×
10-5 mbar, T ) 520 K, and choosepCO as the only control
parameter, the system shows HB and excitability, which leads
to an interesting phenomenon called Canard explosion.33-35 In
a recent paper, we have investigated the effects of internal noise

TABLE 1: Reaction Steps and Corresponding Transition Rates Involved in the Model

process descriptions transition rates

NCO f NCO + 1 CO adsorption a1 ) NpCOκCOsCO(1 - uê)
NO f NO + 2 O2 adsorption a2 ) 1/2NpO2κOsCO

[sO
1×2(1 - w) + sO

1×1w](1 - u)2(1 - V)2

NCOf NCO - 1 CO desorption a3 ) N[kdes
1×2(1 - w) + kdes

1×1w]u
NCOf NCO - 1
NO f NO - 1

reaction a4 ) NkreuV

N1×1 f N1×1 + 1 (1× 2) to (1× 1) a5 ) Nk1×1(1 - w) × f1×2(u,w)
with f1×1(u, w) ) (1 - ε)uλ + εwλ

N1×1 f N1×1 - 1 (1× 1) to (1× 2) a6 ) Nk1×2w × f1×2(u,w)
with f1×2(u,w) ) (1 - ε)(1 - u)λ + ε(1 - w)λ

CO + * fCOad

O2 + 2* f 2Oad

COad + Oadf CO2 + 2*

du
dt

) 1
N

[(a1 - a3 - a4) + xa1 ê1(t) - xa3 ê3(t) - xa4 ê4(t)]

dV
dt

) 1
N

[(2a2 - a4) + 2xa2 ê2(t) - xa4ê4(t)]

dw
dt

) 1
N

[(a5 - a6) + xa5 ê5(t) - xa6 ê6(t)] (1)

du
dt

) 1
N

(a1 - a3 - a4),
dV
dt

) 1
N

(2a2 - a4),

dw
dt

) 1
N

(a5 - a6) (2)
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for this parameter values numerically, and a kind of system size
biresonance was found.18 The double peaks in the SNR of the
internal NIO were shown to be relevant to the Canard
phenomenon. Because of the existence of Canard explosion, a
theoretical analysis was hard to be made. In the present paper,
we will mainly focus on the effect of noise near the HB. For
simplicity, we fix pO2 ) 2.0 × 10-5 mbar, T ) 520 K, and
choosepCO as the control parameter such that the HB is not
accompanied by the Canard phenomenon. The bifurcation
diagram of the deterministic system is shown in Figure 1, where
a supercritical HB locates atpCO

H ) 0.95022× 10-5 mbar. Our
analysis is focused on the parameter region outside but close
to the supercritical HB.

3. Theoretical Analysis

For convenience, we can write eq 1 in a more compact form:

where (x1 ) u, x2 ) V, x3 ) w). νiF are the stoichiometric
coefficients and in this systemν1F ) (1 0 -1 -1 0 0 ),ν2 ) (0
2 0 -1 0 0), andν3 ) (0 0 0 0 1-1). According to the Hopf
theorem,36 the Jacobi matrix (J)ij ) δFi ({xi})/δxj has a pair of
conjugate eigenvaluesλ( ) R ( iω for pCO = pCO

H , with R <
0( > 0) for pCO < pCO

H ( > pCO
H ). Then we carefully change the

control parameter in this region, calculate the fixed pointxs )
(us, Vs, ws) and the eigenvaluesλ( ) R ( iω of the Jacobian
matrix. The HB can be exactly located whenR bypasses zero.
NIO and coherent resonance are expected to happen to the left
side ofpCO

H . As already stated, the dynamics near the HB can
be described by a “normal form” equation on the center
manifold.36 Starting from the CLE (eq 3), a stochastic normal
form equation can be obtained as the following:

whereCr andCi are constants determined by the nonlinear terms
in Fi)1,2,3({xi}).

Here are some details associated with eq 4.36 For a given
pCO, the fixed pointxs ) (us, Vs, ws) of eq 2, eigenvalues (λ( )
R ( iω, λ3) and the corresponding eigenvectors (u(, u3) of the
Jacobian matrix (J)ij can be calculated. Via normalization, we
can set the first nonzero component ofu+ to 1. Write the
eigenvectors asu( ) {1, a ( ib, c ( id}, u3 ) {e, f, g}, the
transformation matrixT has the form{(1, 0, e), (a, -b ,f), (c,
-d, g)} that meets the condition thatTJT-1 ) {(R, -ω, 0),
(ω, R, 0), (0, 0,λ3)}. Perform the change of variablesx ) xs +
Ty, wherey ) (y1, y2, y3) is a new state vector, and the complex
amplitude isZ ) y1 + iy2. The coefficientsν̃1F andν̃2F in eq 4
are obtained via (Tν̃)iF ) (T-1ν)iF; Cr and Ci are calculated
numerically, and the result isCr ) -5.27897,Ci ) 3.86874 at
pCO

H .
By writing Z ) reiθ, the time evolution of oscillation

amplituder and phaseθ can be obtained. In the vicinity of the
supercritical HB (|R| , 1), the evolution ofr is slow and that
of θ is much faster. This time-scale separation makes it possible
for the use of stochastic averaging procedure,37 which can
approximate the system as a Markov processes in the long time
limit. Consequently, the following simplified Ito stochastic
differential equations are obtained:

whereêr andêθ are two “new” Gaussian white noises. Generally,
the reaction ratesaF can be expanded in the series in the form
aF ) ∑k+l)0

n aF
(kl) (r cosθ)k (r sin θ)l. For small noise level,r2 ,

1, and it is a good approximation to neglect the terms withk +
l g2. We haveε2 ) ∑ F(ṽ1F

2 + ṽ2F
2 )aF

(00)/2.
Note that even in the region subthreshold to the HB whereµ

< 0 and the deterministic system (eq 2) does not show
oscillation, one still can find nonzero solutions forRr + Crr3

+ ε2/2Nr ) 0 in eq 5a, which isrs ) [(xR2-2Crε
2/N + R)/

( -2Cr)}]1/2. Later, it will be shown that it corresponds to the
most probable value of the amplitude of the NIO. In addition
to a finite system sizeN, a nonzeroaF

(00) is also necessary forrs

to have a nonzero value. The latter is always true for chemical
reactions with nonzero steady-state concentrationsxs.

In the literature, one often used the effective SNR to
characterized the performance of the NIO.32 Because the variable
r is fully separated fromθ in eqs 5a and 5b, an analytical
expression for the SNR is available (see ref 19 for details). In
this system, the stationary probability distribution function ofr
and auto-correlation function (ACF) for cosθ are given by

Here, C0 is a normalization constant. It is easy to check that
ps(r) has a single maximum atr ) rs; hence in the stationary
state, the system will most likely stay around this limit cycle

Figure 1. Bifurcation diagram for the deterministic system (eq 2),
HB stands for the supercritical HB atpCO ) 0.95022× 10-5 mbar.

dxi(t)

dt
) ∑

F)1

6

νiFaF({xi}) +
1

xN
∑
F)1

6

νiFxaF({xi}) êF(t)

≡ Fi({xi}) +
1

xN
∑
F)1

6

νiF xaF({xi}) êF(t) (3)

dZ
dt

) (R + iω)Z + (Cr + iCi)|Z|2Z + 1

xV
∑ F(ν̃1F +

iν̃2F) xaF êF(t) (4)

dr
dt

) (Rr + Crr
3 + ε

2

2Nr) + ε
2

xN
êr(t) (5a)

dθ
dt

) (ω + Cir
2) + ε

2

rxN
êθ(t) (5b)

Fs(r) ) C0r exp(2µr2 + Crr
4

2(ε2/N) ) (6a)

Cθ(τ) ) lim
tf∞

〈cosθ(t) cosθ(t+τ)〉 ) 1
2

cos(ω1τ) exp(-τ/τc)
(6b)
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with amplituders. The ACFCθ(τ) is a typical damped oscillation
with frequencyω1 ) ω0 + Cirs

2 and correlation time

To a first-order approximation, we can simply multiplyCθ(τ)
by rs

2 to get the correlation functionC(τ) of the state variable
y1 ≈ r cosθ. The corresponding power spectrum density (PSD)
of y1 can then be calculated as the following:

Clearly, the PSD has a peak atω ) ω1, whose heightH and
half-height width∆ω areH ) rs

2τc, ∆ω ) 1/τc respectively.
The SNR, defined as the peak height divided by the half width,32

reads

It can be checked thatrs (τc) increases (decreases) monotoni-
cally when the system sizeN is reduced, that is, the oscillation
becomes stronger and more irregular. One may expect that for

some optimal system sizeN, the “tradeoff” between the strength
and regularity of the NIO gives a maximal SNR, and indicates
the occurrence of “system size resonance”, also known as
“internal noise coherent resonance” (INCR). One should note
that INCR here does not correspond to maximum “temporal
coherence” of the NIO, that is, the correlation timeτc shows no
maximum. The maximum in SNR just reflects a NIO with
intermediate amplitude and temporal coherence, as also pointed
out by Ushakov et al.38

By ∂(SNR)/∂N ) 0, the optimal size reads

Equations 6-10 give the main analytical results.

4. Comparison with Simulation

To check the validity of the above analysis, we have
performed numerical simulations of eq 1 with a time step 0.001.
Time seriesu(t), V(t), andw(t) were used to calculater(t) and

θ(t) via eqs 5a and 5b, andr(t) ) xy1
2(t) + y2

2(t), cosθ(t) )
y1(t)/r(t). Probability distribution ofr(t) is calculated over a long

Figure 2. (a) Stationary distribution ofr(t) obtained from simulation (symbols) and theoretical eq 6a (lines).R ) -0.00056, log (N) ) 5,6,7. (b)
Dependence of most probabable values ofr(t) on the system sizeN from numerical calculations (circles) and analytical results (lines).

Figure 3. (a) A typical autocorrelation function obtained from the theoretical eq 6b (thin solid line) and numerical calculations (dashed line). Thick
solid line is a fit using an exponential decay from which we can calculate approximately the autocorrelation time.R ) -0.01424,N ) 105. (b) The
autocorrelation timeτc obtained from numerical fitting and the theoretical equationτc ) 2rs

2N/ε2, R ) -0.01424.

τc ) 2rs
2N/ε2 (7)

PSD(ω) ) 2∫0

∞
C(τ)e-iωτ dτ ≈ rs

2τc

1 + (ω - ω1)
2τc

2
(8)

SNR) H/∆ω ) (rsτc)
2 ) 4rs

6N2/ε4 (9)

Nopt )
-Crε

2

4R2
(10)
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enough time period. In Figure 2a, the comparison of the
stationary distribution ofr(t) between the theory and numerical
simulation for pCO ) 9.5 × 10-6 mbar (R ) -0.00056) is
shown. Excellent agreements are observed. With the increase
of N (thus the internal noise level decreases), the distribution
becomes wider, and the amplitude of the NIO becomes smaller;
see Figure 2b.

The comparison between the ACF of cosθ(t) obtained from
simulation and eq 6b forpCO ) 9.45 × 10-6 mbar (R )
-0.01424) is shown in Figure 3a, and they also show very good
agreement. By fitting the peaks in the ACF, one can numerically
obtain the correlation timeτc as a function of system size, which
is shown in Figure 3b. Again, the numerical results forθ(t)
show good agreement with the analytical results.

It is known that one often use the correlation time to measure
the coherence of oscillation. A longer correlation time often
means more temporal “regularity”. But in this system, the NIO
does not show a maximal regularity at an intermediate noise
level. As shown in Figures 2 and 3, on decreasing the system
sizeN (thus the internal noise level increases) the amplitude of
the NIO becomes larger and the correlation time smaller. It is
to say that the large noise makes the NIO irregular but strong
and small noise makes it regular but weak. The tradeoff between
these two leads to the maximum of the SNR, according to eq
9. We depict the dependence of SNR onN in Figure 4, panel
a (simulation) and panel b (theory), where good qualitative
agreements are apparent; INCR appears, and the optimal size
Nopt and the maximal SNR both become larger when the distance
from the HB decreases. Because correct numerical estimation
of the PSD and henceforth SNR of the noisy data is difficult,
there are still discrepancies in regard to the exact location of
the optimal system sizeNopt and the maximal value of SNR
(note that the absolute values of the SNR do not make sense
because the SNR are in arbitrary units). However, the main
features observed in the numerical experiments have been well
reproduced by the theory.

5. Discussions and Conclusions

Rate oscillations have been observed in many surface reaction
systems. Different waveforms of oscillations may be relevant
to different reaction activity, selectivity, and rate. Understanding
the mechanism of oscillations and how it is affected by
environmental or internal noises is thus of both practical and
theoretical importance. Due to the growing interest in catalytic

reactions in nanosystems,39 the study of the effect of internal
noise is thus an intriguing topic. Although experiments and
simulations can provide “first-handed” information, theoretical
works are also important, which can help to better understand
current experimental observation, and in addition have the ability
of prediction, which may help the design of new catalysts.40

The present work is moving forward toward this direction.
In a recent paper, theoretical analysis was performed to study

the effect of internal noise on the bistability behavior in a CO
oxidation system.40 In our present work, we focus on NIO and
coherent resonance phenomenon. Equations 6-10 give clear
expressions for the quantities of interest, from which one can
figure out when and how the internal noise matters without time-
consuming simulations. For instance, eq 7 gives the relationship
of the correlation time with the system sizeN and the reaction
details (viaε2). And from the expression ofε2 ) ∑F(ν1F

2 +
ν2F

2) aF
(00)/2, an important factor besides the system sizeN that

enters the formula ofrs, τc, and SNR, we know that different
reactions have different “weights” (ν1F

2 + ν2F
2) aF

(00)/2, associ-
ated with its reaction rateaF and stoichiometric coefficients (ν)iF.
Hence, we can figure out how each reaction contributes to the
effect of internal noise and how one might control them.

Although the analysis in the present work sheds some new
light into the effects of internal fluctuations in surface catalytic
reactions, its application is limited by the validity of the CLE
(eq 1). Strictly speaking, the CLE is valid only when the surface
area considered is well mixed, such that the reaction inside the
region is homogeneous. For CO oxidation on an extended single-
crystal catalytic surface, such a well-mixed area is determined
by the diffusion length of CO on the surface. At low pressures
where diffusion of CO on the surface is fast, the well-mixed
approximation is good and CLE does work. At high pressures,
however, the diffusion length is small and one may need to
further consider “diffusion-coupled” subdomains, inside which
the reactions are well-mixed, but concentration gradients exist
between neighboring subdomains. Very recently, Pineda et al.
have introduced a reaction-diffusion master equation to study
the fluctuation-induced phase transition for CO oxidation system
at high pressures.41 A similar master equation approach,
considering adsorption, diffusion and reaction as stochastic
birth-death processes, was also used to show that oscillations
can be generated by stochastic ignitions of fronts and pulses in
excitable or bistable regions.42 Our current analysis only applies
to a single domain, and it is interesting to take diffusion into

Figure 4. Dependence of the effective SNR on the system sizeN from (a) numerical calculations and (b) analytical results (eq 9).
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account to further investigate the role of internal fluctuations
during the formation of spatiotemporal structures in the oscil-
latory region. Please note that there are other situations under
which the current analysis is applicable, for instance, for
reactions at low pressure on small areas such as the surface of
a nanoparticle or a Pt field emitter tip.

In conclusion, using a mesoscopic stochastic model for CO
oxidation on the platinum surface system, the effect of internal
noise for this mesoscopic chemical oscillator is studied analyti-
cally in the parameter region outside but close to the supercritical
HB. By normal form calculation and stochastic averaging
procedure, we have analytically studied the NIO and INCR
phenomenon. Our theoretical analysis reproduces the numerical
results very well. Because internal noises are inevitable in a
real system and the occurrence of NIO and stochastic resonance
indicates that internal noise can play some nontrivial, construc-
tive roles in the dynamics of heterogeneous catalysis, the present
work may also help narrow the gap between experiments and
theoretical study of surface catalytic reactions. We hope our
analysis could find some interesting application for catalytic
reaction and can also open more perspectives in the study of
internal noise in nanoscale catalytic systems.
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