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Very recently, the effects of internal molecular noise in mesoscopic chemical reaction systems have gained
growing attention. Using a mesoscopic stochastic model, the effect of internal noise for rate oscillation during
CO oxidation on Pt(110) surface is studied analytically. In a parameter region outside but close to the
supercritical Hopf bifurcation, a stochastic normal form is obtained from the chemical Langevin equation.
By stochastic averaging procedure, the system is simplified and solvable. Noise-induced oscillation and internal
noise coherent resonance (which is related to an optimal system size), observed from simulations, are well
reproduced by the theory. The theoretical analysis helps to clearly figure out when and how the internal noise

affects the system’s oscillating dynamics.

1. Introduction Hopf bifurcation (HB), we believed that some common features
of HB must be relevant. According to HB theory, the system’s

nolr:]li;ZZrlzststte\an?siz(i/aede;i’nteh derﬁjgﬁt;;gr']\:g rzo'll?tfec\)/\f/erl]lc-)lzi\/l\?n dynamics near the bifurcation point can be reduced to a normal
Y g : form equation governing the evolution of a complex magnitude

phenomenon, stochastic resonance (SR), shows that there exists . : . . .
a “resonant” noise level where the response of a bistable systemOn t.h € two-d_|men5|ona| center mamfpld as_souated with the_ two
to a feeble external periodic signal is maximally ordered. Since conjugate eigenvalues of the ‘]aC.Ob' matrix qf the ve_ctor field.
it was put forward in the early 1980sSR has been studied in Therefore, we start from the c_;hem|cal _Lang_evm equation (CLE)
a variety of physicat, chemicaf and biological® systems. currently proved to be valid bY Glllesp!e and o'btaln the
Recently, many SR-like behaviors have been reported in small-Stochastic normal form. After a "stochastic averaging proce-
scale chemical or biological reaction systems, where the numberdure,” @ simplified stochastic normal form was finally obtained
of reactant molecules is often low and the internal noise, oM which analytical expressions for the probability distribution
resulting from stochasticity of chemical reaction events, becomes function of the oscillation amplitude, the autocorrelation function
considerable, and plays important roles. Specifically, for me- @nd correlation time, and the signal-to-noise ratio (SNR) of the
SOSCOpiC chemical reaction systems with Osci”ating dynamiCS, stochastic oscillation were all obtained. The theoretical results
internal noise can induce stochastic oscillations in parametershowed rather good agreement with the numerical simulation.
regions where a corresponding macroscopic system does not In the present paper, we will use the above analytical method
show oscillation, and the noise-induced oscillation (NIO) shows to study the effect of internal noise in a surface catalytic system.
the best performance at an optimal internal noise level. The catalytic oxidation of carbon monoxide (CO) has attracted
Compared to the original SR behavior in bistable systems, for a |ot of attention for more than two decades, due not only to its
this phenomenon, which is often called internal noise coherent application, but also to its theoretical significance. At low
resonance (INCRj) the noise is internal, which is inherent in pressures and typical temperatures, the surface can be regarded
mesoscopic chemical systems; the system’s dynamics is oscil-as |ocally well mixed, and simple mean field models in the form
latory, and the external signal is absent. Because the magnitudeys geterministic reactiondiffusion equations have been very
of the internal noise is generally inversely proportional to the gccessful to reproduce many experimental observations. How-
system size, INCR also implies the existence of an optimal gyer \when looking at very small length scales, internal noises
fsystedmf size. So far, m?qy behawt;rs of théi,typehhavelbeenbecome crucial and must be considered. In heterogeneous
rglljante,d Oggrgs(teir%]l,cﬁ%Ilgi?caa(izlliuanr;'-%ggﬁll;% Ergsst:)ngé,csjr?gg catalysis, sufficiently small systems to be strongly influenced
catalytic reactions on single crystals or nanopartiéle¥ etc. t?y intemal noise are provided by the facets of a field-emitter

. ’ . 1ip,2° by nanostructured composite surfaéeand by the small
However, most of these studies are only based on numerical .

metal particles of a supported catalystAlso, when the

simulations, and few analytical works were reported. . . .
In a recent paper. we have performed an analviical stud ofpressures are increased the size of a locally well-mixed cell
Paper, w Ve p i Uay Of\yould decrease to a small scale where a mean-field type of

the NIS and INCR behavior in the conceptual Brusselator reaction-diffusion equations becomes less accurate and internal
model!® Observing the fact that many of the NIO and INCR . : . .
noises becomes important. For example, internal noise can

behaviors were found in a parameter region close to supercritical. . ) . .
P 9 P induce transitions between the active and inactive branch of
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TABLE 1: Reaction Steps and Corresponding Transition Rates Involved in the Model

process descriptions transition rates
Neo™ Nco+ 1 CO adsorption a; = Npcokcosco(l — W)
No— No + 2 O, adsorption a, = 1/2NpokoSco
[so™%(1 — w) + soPWw](1 — u)%(1 — v)?
Nco— Neo — 1 CO desorption as = N[K22(1 — w) + k2wlu
Nco— Nco— 1 reaction as = Nkeuv
No_’ No -1
Niyx1— N1+ 1 (1 X 2) to (1 X 1) as = Nklx]_(l — W) X flxz(U,W)
with f.1(u, W) = (1 — e)U* + ew?
Nix1— N1 — 1 (1 X 1) to (1 X 2) as = Nkp,ooW x flxz(U,W)

with fro(uw) = (1 — €)(1 — u)* + (1 — w)*

discrepancy between the experimental observations and theorysites in a nonreconstructed £11) phase, respectively. All these

in the study of spatiotemporal self-organization in catalytic variables are stochastic, and the reaction steps leading to their
oxidation of hydrogen on Pt(11%jNoteworthy, Mikhailov and changes are listed in Table 1. Note that the transition i&tes
co-workers have developed Langevin type reactidiffusion 1...6 are all proportional to the system sipé and we have
equations to successfully describe the formation of “nonequi- introduced the concentrations= Nco/N, v = No/N, andw =
librium nanostructures” in surface reaction systems by taking Ny,.1/N. One may turn to ref 28 for details of the parameter
into account chemical reaction and diffusion as well as lateral description and values.

physical interactions! Herein, we will mainly focus on the From the processes in the above table, the chemical master
effect of internal noise to rate oscillation during CO oxidation equation for this system can be readily written down. Although
on P(110) single-crystal surface. Our study is mainly analytical, the exact simulation algorithm that mimics the reaction dynamics
and numerical simulations are also performed to compare with by randomly determining what the next reaction is and when
the theory. will it happen was proposed by Gillespie in 197t is too

The motivation of this research is as _folloyvs. First, from this time consuming when the system size is large. To overcome
theoretical work one could get more insight into the mechanism .« difficulty, one may use Langevin type equations that

of the effects of internal noise in surface catalytic systems and jaqcribe the “Brownian motion” of the macroscopic concentra-

help one to figure out when the internal noise is critical and i, yariable under the influence of microscopic stochastic

hOV¥ its effects can b§| codntr(_)lled ;axternlally. This WOU'% he'pdinteractions3.0 Recently, Gillespie stated that the CLE is a rather
us for more reasonable design of catalyst reactions. Secon good approximation if a “macroinfinitesimal” time scale exists

tEi;e surlfatce catgllytlc lreactlorl ,:S fml#:h rgore cotmrzlei(hthanl'gle in the dynamics! This condition may be satisfied if the total
frusse a ori an Iwe atio (\:/ivafll_ho ur derl ergo?r? rate ble Valldlty humber of reactant molecules is not too small. In our previous
of our analytical method. The model an € problem are o, jiest632we have shown that it is convenient to use CLE to

ggi:;isgdcé?nss:i:ggr?si’et\vxze%etrﬁgtmhegur;ndagljﬁ?elri(s:;fcrjgsgllt Sstudy the influence of internal noise in mesoscopic reaction
;» comparisf A X . - systems, at least qualitatively. According to Gillespie, the CLE
are present in Section 4, and we end by discussions in Sectio

nfor the current model reads

5.
2. Model Description % = % [(a,—a;—a,) + @ E,(t) — \/53 Eq(t) — \/54 E£,(0]
The model we use in the present paper was developed to q 1
describe the temporal dynamics of catalytic oxidation of CO V= 223, — a,) + 2/a, E(1) — JaE(t
on low-index Pt(110) single-crystal surfac&g his system has d N [(2a, —a,) \/_2 A1) \/_4 4]
been extensively studied and the reaction was found to follow dw 1
a Langmuir-Hinshelwood mechanism. N [(a5 — ag) + \/a_s Es(t) — \/a_ﬁ 0] 1)
CO+*—CO,y . . .
whereé; - 1, dt) are Gaussian white noises wiik(t)(= 0

0, + 2* — 20, and&;()&(t) = 0;0(t - t'). The items with(t) give the internal
—_— * TP LY,, THTHVID GLEIL UV MR LAUe™ = 1,.,
COuH Opg CO, +2 o, the internal noise items can be ignored and the system’s

. o . dynamics is described by the deterministic equation
Here, a vacant adsorption site is denoted by the asterisk (*), y y q

and an adsorbed species by the subscript “ad”. To account for 1 do

the rate oscillation, the adsorbate-induced phase transition 1 GoN (g —a;—a), i % (2a, — &),

2 <1 x 1 for Pt (110) surface must be taken into account to

address the influence of the surface structure on the reactivity. aw _ l(a,5 —ag (2)
We focus on a small “cell” on the surface containify d N

adsorption sites inside which the reaction is homogeneous. For

instance, the small region of a field-emitter tip is about>20 As shown in Figure 2 of ref 28, the deterministic system

200 A2 and contains 10surface sited® As stated above, the  shows very abundant bifurcation features in the control param-
reactions inside this small space are stochastic, and one shoul@ter space opco andpo,. For example, if we fixpo, = 9.6 x

use mesoscopic stochastic models to describe the dynamics. Thd0® mbar, T = 520 K, and chooseco as the only control
state of the system is denoted by a vec{gft) = [Nco(t), No- parameter, the system shows HB and excitability, which leads
(1), N1x1(t)]T, whereNco, No, andNy,; denote the number of  to an interesting phenomenon called Canard explo%ioit.In
adsorbed CO molecules, adsorbed oxygen atoms, and adsorptioa recent paper, we have investigated the effects of internal noise
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0.7 whereC; andC; are constants determined by the nonlinear terms
in Fizl,z;{{x;}).

08 - Here are some details associated with € Bor a given

05 Pco, the fixed pointxs = (us, vs, Ws) Of €q 2, eigenvaluesi{ =

o * iw, A3) and the corresponding eigenvectaus,(us) of the
Jacobian matrixJ); can be calculated. Via normalization, we
can set the first nonzero component wf to 1. Write the
eigenvectors as+ = {1,a + ib, c £ id}, uz3 = {e f, g}, the
transformation matrixi’ has the form{ (1, 0,¢€), (a, —b ,f), (c,
—d, g)} that meets the condition thalT—! = {(a,, —w, 0),
(w, a, 0), (0, 0,43)}. Perform the change of variablgs= xs +
Ty, wherey = (y1, Y2, Y3) is a new state vector, and the complex
amplitude isZ = y; + iy,. The coefficientd;, and ¥y, in eq 4
are obtained via (W), = (T~)i,; C; and C; are calculated

04

03

02

CO concentration u

0.1

00 numerically, and the result 8, = —5.27897,C; = 3.86874 at
| 1 1 1 1 H
0.85 0.90 095 1.00 1.05 1.10 1.15 Pcor ”
" — . . I
P, (10 mbar) By writing Z re'’, the time evolution of oscillation

amplituder and phasé can be obtained. In the vicinity of the
supercritical HB [o| < 1), the evolution of is slow and that
of 6 is much faster. This time-scale separation makes it possible

for this parameter values numerically, and a kind of system size for the. use of stochastic averaging procedﬁrq{hich can
biresonance was fourld.The double peaks in the SNR of the ~2PProximate the system as a Markov processes in the long time
internal NIO were shown to be relevant to the Canard 'IMmit. Consequently, the following simplified Ito stochastic
phenomenon. Because of the existence of Canard explosion, glifferential equations are obtained:

theoretical analysis was hard to be made. In the present paper,

Figure 1. Bifurcation diagram for the deterministic system (eq 2),
HB stands for the supercritical HB pto = 0.95022x 107> mbar.

we will mainly focus on the effect of noise near the HB. For dr 3 6_2) 5_2

simplicity, we fix po, = 2.0 x 10°5 mbar, T = 520 K, and at (‘” RACLNP T mgr(t) (52)
choosepco as the control parameter such that the HB is not )

accompanied by the Canard phenomenon. The bifurcation do _ 2 €

diagram of the deterministic system is shown in Figure 1, where dt (@+Cr)+ rN Eo(0) (5b)

a supercritical HB locates @t = 0.95022x 1075 mbar. Our

analysis is focused on the parameter region outside but Closewheregr

to the supercritical HB.

3. Theoretical Analysis

For convenience, we can write eq 1 in a more compact form:

ax(0)

at

6 1

6
= pZ‘ Vipap({xi}) + ﬁ pZ‘ Vip ap({ x}) gp(t)
1 6
= F({x}) + f Z‘ i,/ a,({%}) &) 3)

N *

where & = u, X2 = v, X3 = W). ¥j, are the stoichiometric
coefficients and in this system, =(10—-1-100),v>=(0
20-100), andv3=(0 00 0 1—-1). According to the Hopf
theorem?® the Jacobi matrixJ); = oFi ({X})/0x has a pair of
conjugate eigenvalueb. = a + iw for pco = pgo, with o <
0( > 0) for pco < P (> Pag). Then we carefully change the
control parameter in this region, calculate the fixed pai=
(us, vs, Wg) and the eigenvalues. = o & iw of the Jacobian
matrix. The HB can be exactly located wherbypasses zero.

NIO and coherent resonance are expected to happen to the left

side ofpgo. As already stated, the dynamics near the HB can
be described by a “normal form” equation on the center
manifold 3¢ Starting from the CLE (eq 3), a stochastic normal
form equation can be obtained as the following:

dz

. . 1 .
G = @Tio)Z+(C + iC)|Z1°Z + = > o, +

i7,,) V/a, E,(1) (4)

and&y are two “new” Gaussian white noises. Generally,
the reaction ratea, can be expanded in the series in the form
3 = Y—o aﬁ,k') (r co)X (r sin ). For small noise level?2 <«
1, and it is a good approximation to neglect the terms With
| =2. We havee? = 5 (¥, + 73)a2.

Note that even in the region subthreshold to the HB wiere
< 0 and the deterministic system (eq 2) does not show
oscillation, one still can find nonzero solutions fer + C,r3

+ €%2Nr = 0 in eq 5a, which igs = [(/a®—2C,€%N + o)/

( —2C)}]¥2 Later, it will be shown that it corresponds to the
most probable value of the amplitude of the NIO. In addition
to a finite system siz#l, a nonzera|"” is also necessary fog

to have a nonzero value. The latter is always true for chemical
reactions with nonzero steady-state concentratigns

In the literature, one often used the effective SNR to
characterized the performance of the NR®ecause the variable
r is fully separated fron9 in eqs 5a and 5b, an analytical
expression for the SNR is available (see ref 19 for details). In
this system, the stationary probability distribution functiom of
and auto-correlation function (ACF) for césare given by

2 4
2ur+Cr

pd) = Cyr exr{ 2N (62)

C)(v)= M\o [¢osO(t) cosO(t+7) = % cos,7) exp(—1/ty)
(6b)

Here, G is a normalization constant. It is easy to check that
ps(r) has a single maximum at= rg, hence in the stationary
state, the system will most likely stay around this limit cycle
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Figure 2. (a) Stationary distribution af(t) obtained from simulation (symbols) and theoretical eq 6a (liresy. —0.00056, log K) = 5,6,7. (b)
Dependence of most probabable values(tfon the system sizBl from numerical calculations (circles) and analytical results (lines).
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Figure 3. (a) A typical autocorrelation function obtained from the theoretical eq 6b (thin solid line) and numerical calculations (dashed line). Thick
solid line is a fit using an exponential decay from which we can calculate approximately the autocorrelatianime.01424N = 1. (b) The
autocorrelation time. obtained from numerical fitting and the theoretical equatiprs 2rN/e?, a. = —0.01424.

with amplituders. The ACFCy(7) is a typical damped oscillation ~ some optimal system si2¢ the “tradeoff” between the strength

with frequencyw; = wo + Cir& and correlation time and regularity of the NIO gives a maximal SNR, and indicates
the occurrence of “system size resonance”, also known as
7, = 2r 2N/ (7 “internal noise coherent resonance” (INCR). One should note
that INCR here does not correspond to maximum “temporal
To a first-order approximation, we can simply multipBy(z) coherence” of the NIO, that is, the correlation timeshows no

by rs? to get the correlation functio@(r) of the state variable maximum. The maximum in SNR just reflects a NIO with
y1~ 1 cos6. The corresponding power spectrum density (PSD) intermediate amplitude and temporal coherence, as also pointed

of y; can then be calculated as the following: out by Ushakov et &
) By d(SNR)BN = 0, the optimal size reads
- 4 rSe
PSDw)=2 [, Cr)e “"dr~ ———— (8) A2
‘/(; 1+ (w— (1)1)21702 N = Cie (10)
opt 4(12
Clearly, the PSD has a peak @t= w;, whose heighH and
half-height widthAw areH = réz,, Aw = 1/z. respectively. Equations 6-10 give the main analytical results.
The SNR, defined as the peak height divided by the half wigith,
reads 4. Comparison with Simulation
SNR= H/Aw = (r,)? = 4r SNZe* 9) To check the validity of the above analysis, we have

performed numerical simulations of eq 1 with a time step 0.001.
It can be checked that (zc) increases (decreases) monotoni- 11Me seriesu(t), »(t), andw(t) were used to calculatt) and

cally when the system siZ¢ is reduced, that is, the oscillation  6(t) via eqs 5a and 5b, andt) = «/ylz(t) + y22(t), coso(t) =
becomes stronger and more irregular. One may expect that fory,(t)/r(t). Probability distribution of (t) is calculated over a long
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Figure 4. Dependence of the effective SNR on the system KiZeom (a) numerical calculations and (b) analytical results (eq 9).

enough time period. In Figure 2a, the comparison of the reactions in nanosysterd$the study of the effect of internal
stationary distribution of(t) between the theory and numerical
simulation forpco = 9.5 x 1076 mbar @ = —0.00056) is

see Figure 2b.

The comparison between the ACF of a#($) obtained from

simulation and eq 6b fopco = 9.45 x 107® mbar @ =

is shown in Figure 3b. Again, the numerical results fit)

show good agreement with the analytical results.

means more temporal “regularity”. But in this system, the NIO ,

noise is thus an intriguing topic. Although experiments and
simulations can provide “first-handed” information, theoretical
shown. Excellent agreements are observed. With the increaseworks are also important, which can help to better understand
of N (thus the internal noise level decreases), the distribution current experimental observation, and in addition have the ability
becomes wider, and the amplitude of the NIO becomes smaller;of prediction, which may help the design of new cataly$ts.
The present work is moving forward toward this direction.

In a recent paper, theoretical analysis was performed to study

the effect of internal noise on the bistability behavior in a CO
—0.01424) is shown in Figure 3a, and they also show very good oxidation system? In our present work, we focus on NIO and
agreement. By fitting the peaks in the ACF, one can numerically coherent resonance phenomenon. Equation$06give clear
obtain the correlation time; as a function of system size, which

expressions for the quantities of interest, from which one can

figure out when and how the internal noise matters without time-

consuming simulations. For instance, eq 7 gives the relationship
Itis known that one often use the correlation time to measure of the correlation time with the system sikeand the reaction

the coherence of oscillation. A longer correlation time often details (viae?). And from the expression of2 = Zp(V1p2+

»»7) @292, an important factor besides the system izbat

does not show a maximal regularity at an intermediate noise gnters the formula of, 7, and SNR, we know that different

level. As shown in Figures 2 and 3, on decreasing the system
sizeN (thus the internal noise level increases) the amplitude of
the NIO becomes larger and the correlation time smaller. It is
to say that the large noise makes the NIO irregular but strong
and small noise makes it regular but weak. The tradeoff between
these two leads to the maximum of the SNR, according to eq

9. We depict the dependence of SNR Mrin Figure 4, panel

a (simulation) and panel b (theory), where good qualitative
agreements are apparent; INCR appears, and the optimal siz
Noptand the maximal SNR both become larger when the distance
from the HB decreases. Because correct numerical estimation

reactions have different “weightsi(,* + v, %) al**/2, associ-
ated with its reaction rata, and stoichiometric coefficients,.
Hence, we can figure out how each reaction contributes to the
effect of internal noise and how one might control them.
Although the analysis in the present work sheds some new
light into the effects of internal fluctuations in surface catalytic

reactions, its application is limited by the validity of the CLE

éeq 1). Strictly speaking, the CLE is valid only when the surface
area considered is well mixed, such that the reaction inside the
region is homogeneous. For CO oxidation on an extended single-

of the PSD and henceforth SNR of the noisy data is difficult crystal catalytic surface, such a well-mixed area is determined

there are still discrepancies in regard to the exact location of

the optimal system sizbly, and the maximal value of SNR

(note that the absolute values of the SNR do not make sens
because the SNR are in arbitrary units). However, the main
features observed in the numerical experiments have been wel

reproduced by the theory.

5. Discussions and Conclusions

by the diffusion length of CO on the surface. At low pressures
where diffusion of CO on the surface is fast, the well-mixed
eapproximation is good and CLE does work. At high pressures,
however, the diffusion length is small and one may need to
further consider “diffusion-coupled” subdomains, inside which

the reactions are well-mixed, but concentration gradients exist
between neighboring subdomains. Very recently, Pineda et al.
have introduced a reactietiffusion master equation to study
the fluctuation-induced phase transition for CO oxidation system
Rate oscillations have been observed in many surface reactiorat high pressure¥. A similar master equation approach,

systems. Different waveforms of oscillations may be relevant considering adsorption, diffusion and reaction as stochastic
to different reaction activity, selectivity, and rate. Understanding birth—death processes, was also used to show that oscillations
the mechanism of oscillations and how it is affected by can be generated by stochastic ignitions of fronts and pulses in
environmental or internal noises is thus of both practical and excitable or bistable regiort8 Our current analysis only applies
theoretical importance. Due to the growing interest in catalytic to a single domain, and it is interesting to take diffusion into
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account to further investigate the role of internal fluctuations
during the formation of spatiotemporal structures in the oscil-

latory region. Please note that there are other situations under

which the current analysis is applicable, for instance, for
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