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We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge
recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials
from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent
polarization is absent, but the energy of the ion pair state changes significantly with the distance between the
ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state
energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair
state, and its energy changes little with the distance between the reactants, whereas the final state is an ion
pair state and its energy changes significantly with the mutual distance; for charge recombination reactions,
vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly
depends on the type of electron transfer.

I. Introduction
Electron transfer in polar solvents has been extensively

studied on the basis of the Marcus equation.1,2 In nonpolar
solvents, when fluorescence is quenched by electron transfer,
often an exciplex is formed, and a new emission from the
exciplex is detected.3 Although the bell shape of the energy
gap law for the back electron transfer from triplet exciplexes in
weakly polar solvents is observed,4,5 Marcus theory is originally
developed for the electron transfer in polar solvents, and it
becomes less appropriate as the static dielectric constants of
solvents decrease. In the exciplex, the donor and the acceptor
seem to be more or less in contact. However, this does not
indicate that the electron transfer in nonpolar solvents occurs
at contact distance because the ions may have been attracted to
each other by the unscreened strong Coulomb force after
electron transfer has occurred at remote distances. To avoid this
complexity, donor-acceptor pairs that are connected by semi-
flexible groups to reduce the translational motion of reactants
were also studied.6-8

Recently, the transient effect in fluorescence quenching in a
viscous nonpolar liquid paraffin was measured.9 The results
indicate the occurrence of long-range electron transfer rather
than exciplex formation. In general, the mechanism of electron
transfer depends on the free energy change. When the free
energy change is large, the long-range electron transfer occurs,
whereas exciplex formation prevails when the free energy
change is small.

Electron transfer in weakly polar solvents has been studied
theoretically by several groups.10-15 In weakly polar solvents,
one cannot describe electron transfer in terms of orientational
fluctuations of permanent dipoles, as in polar solvents. Density
fluctuations, detailed interaction between solvent and solute
molecules and their motions becomes increasingly important
for less polar solvents.11-13 Electron transfer in ideal nonpolar
solvents where the electrostatic interaction between solvents and
solutes is absent is not fully understood, although the situation

looks much simpler than electron transfer in weakly polar
solvents. In polar solvents, the reaction coordinate is given in
terms of the electrostatic potentials from solvent permanent
dipoles at solutes. In ideal nonpolar solvents, fluctuation of an
electrostatic potential from solvents is absent. However, the
energy of ion pair states changes significantly with the distance
between the ions due to the unscreened strong Coulombic
potential. The electron transfer occurs when the final state energy
coincides with the initial state energy. For charge separation,
the initial state is a neutral pair, and its energy changes little
with the distance between the reactants, but the final state is an
ion pair and its energy changes significantly with the mutual
distance; for charge recombination, vice versa. We investigate
the energy gap law of electron transfer in nonpolar solvents for
charge separation and charge recombination reactions. The
strong distance dependence of an ion pair state in a nonpolar
solvent is important for the energy coincidence of the initial
and the final states.

II. Charge Separation
The rate of electron transfer in polar solvents is controlled

by fluctuations in electrostatic potentials produced at solutes
by the surrounding polar solvent molecules.1,16However, in ideal
nonpolar solvents in which the contribution from the orienta-
tional polarization is ignored, such fluctuations are absent.
Therefore, the theory of electron transfer in such ideal nonpolar
solvents cannot be formulated in terms of fluctuations in the
electrostatic potentials from solvent molecules. For charge
separation reactions, reactants are neutral in the initial state,
and the electrostatic interaction energy between them is
neglected. The initial energy of the system may be assumed
constant,EAB, independent of the mutual distance except at short
distances, where the molecular interaction between the reactants
is important. In the final state, one of the solutes has a positive
charge,e, and the other has a negative charge,-e. The energy
of the final state is given by
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where IP and EA stand for the ionization potential of the donor
and the electron affinity of the accepter molecules, respectively.
The fourth term on the right-hand side stands for the solvation
energy of the ion pair due to the electronic polarization, where
e is the electronic charge,εop is the optical dielectric constant,
r is the interionic distance, anda andb are the radii of the ions.
-e2/r is the Coulomb attractive energy between the ion pair.
The final state energy fluctuates with time as the distance
between the reactants changes. Let∆E(r) denote the energy gap
between the two states; namely,∆E(r) ≡ EA+B-(r) - EAB. The
electron transfer occurs when the final state energy coincides
with the initial state energy. The distance,R, at which energy
coincidence occurs is given by

where∆E∞ is the energy gap between the two states at infinity
and given by

In polar solvents, the solvent coordinate is usually taken as a
reaction coordinate. However, it has already been pointed out
that the donor-acceptor distance is also an important reaction
coordinate.17,18 In nonpolar solvents, the donor-acceptor sepa-
ration is the most important reaction coordinate because in this
case, the solvent coordinate is absent. The transition probability
at the intersectionR is given according to the Landau-Zener
theory by19

whereJ(R) is the interaction energy at the intersectionR. This
energy is often called the transfer integral.V is the velocity of
relative motion atR. Let æ(r) denote the distribution of acceptors
around a donor. Then, the frequency that the system crosses
the intersection point is given byæ(R)V. Since the electron-
transfer rate is equal to the frequency at which the system crosses
the intersection point multiplied by the transition probability, it
is given by16

whereu(V) is the distribution function ofV. For nonadiabatic
reactions, the transfer integral is small, and eq 4 can be
approximated by

Under this approximation, the rate is expressed as

where r0 is the contact distance of solutes. The distance
dependence of the transfer integral is approximated as an
exponentially decreasing function if the electron transfer occurs
by tunneling,

whereâ is the attenuation coefficient. There are two possibilities
for electronic interaction between donor and acceptor. They may
interact directly or through intervening solvents. In this paper,
we do not analyze this problem. We just assume the value ofâ
) 1 (Å-1). By substituting eq 8 into eq 7, we obtain

A. Kinetic Control Case. If the translational diffusion of
donors and acceptors is sufficiently fast compared with electron
transfer atR, the distributionæ(r) of acceptors around a donor
remains an equilibrium distribution and given by

This case is referred to as the kinetic control case. Substituting
eq 10 in eq 9, the second-order electron-transfer rate is given
by

In the above treatment, the intramolecular vibration is not
included. In the presence of intramolecular vibration, the electron
transfer is accompanied by the emission or absorption of
vibrational quanta. We generalize eq 9 by taking into account
vibrational mode. For simplicity, we include only one vibrational
mode with frequencyν.

The theory for taking into account the intramolecular vibration
is well developed.20,21The energy coincidence is now accounted
for by including emission or absorption of quanta (see Figure
1). The result is given by

whereimin is the minimum integer greater than-∆E∞/(hν), imax

is the maximum integer less than or equal to [-∆E∞ +
e2/(εopr0)]/(hν), and

I|i|(z) is the modified Bessel function of the first kind,22 s is the
Debye-Waller factor with a coupling constantΛ of the Huang-
Rhys factor, and the average number of phonons,n,

where the vibration reorganization energy is denoted byλ.
When the vibrational quantum is much larger than thermal

energy, the electron transfer occurs from the lowest vibrational
level, and eq 12 reduces to
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where max(x, y) denotes the maximum of two values,x andy.
The summation gives nonzero values only whenimax g 0, which
comes from the condition on the free energy difference,∆E∞
e e2/(εopr0).

In the kinetic control case, the second-order electron-transfer
rate constant is given by

with Fi andRi given by eqs 13 and 14, respectively. When the
tunneling occurs from the lowest vibrational state, the result is
given by

with the sameRi given by eq 14.
In Figure 2, we show the energy gap law of the rates in the

kinetic control case. Here,εop ) 2, â ) 1 (Å-1), J0 ) 100 (cm-1)
and r0 ) 6 (Å). In the presence of vibrational mode, we setλ
) 0.3 (eV),hν ) 1500 (cm-1), kBT ) 0.025 (eV). In the case
of no vibrational mode, the rate is given by eq 11, which is
shown in Figure 2. Equation 11 indicates that the rate increases
with increasingE∞ up to∆E∞ ) âe2/(4εop) and then decreases
according to 1/∆E∞

4. Electron transfer does not occur for∆E∞
> e2/(εopr0). If the maximum position,∆E∞ ) âe2/(4εop) is
smaller than e2/(εopr0); namely, if r0 < 4/â, the rate
has a maximum at∆E∞ ) âe2/(4εop). However, for the realistic
values ofâ ∼ 1[1/Å] andr0 ) 6 Å, this condition is not satisfied,
and the rate does not have a maximum, as shown in Figure 2.

In the presence of vibrational mode, electron-transfer takes
place at various positions,Ri, defined by eq 14. Ifhν is much
larger as compared with thermal energy, electron transfer occurs
from the lowest vibrational state. In this case, eq 18 is simplified
to eq 19. The result of eq 19 practically coincides with that of
eq 18 for∆E∞ e e2/(εopr0) (not shown).

In the presence of vibrational mode, if electron transfer occurs
to vibrationally excited states, the energy coincidence between
the initial and final states occurs at shorter distances as com-
pared with the case of the vibrationally ground state. This
increases the transfer integral and, therefore, the rate constant.
Although the values of the Franck-Condon factor have also to
be considered in the presence of the vibrational mode, inclu-
sion of the vibrational mode in general increases the rate
constant.

Although the result of eq 19 is zero forE∞ > e2/(εopr0), the
result of eq 18 is not zero forE∞ > e2/(εopr0). This is because
in the model on which eq 18 is based, vibrationally excited states
are also populated in the initial state, and electron transfer
from these states is energetically possible, even forE∞ > e2/
(εopr0).

So far, intramolecular vibration is assumed to be high. When
intramolecular vibration is small,|∆E∞| . hν andλ . |∆E∞|
sinh[hν/(2kBT)], the result is approximated by

Figure 1. The energy of the final state and the initial state for the
charge separation reaction against the distance between the reactants,
where∆E∞ ) 0.5 (eV). The other values of the parameters are the
same as those of Figure 2. The dashed line represents the initial state.
The solid lines represent the final states. The solid lines from bottom
to top represent the ground state and first, second, and third excited
states of the vibrational mode, respectively.

Figure 2. Second-order rates of charge separation reactions as functions
of the energy difference in the kinetic control case. The dashed line
indicates the rate in the presence of a high frequency intramolecular
vibrational mode, eq 18. The solid line indicates the rate in the case of
no vibrational mode, eq 11.
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B. Diffusion-Mediated Case.If the translational diffusion
of donors and acceptors is not sufficiently fast as compared with
electron transfer, the distributionæ(r) of acceptors around a
donor is not an equilibrium distribution. In this case, if we denote
æ(r) ) 4πr2f(r), f(r) satisfies23

whereD is the sum of the diffusion coefficients of the donor and
the acceptor. The boundary conditions are given by∂f(r)/(∂r)|r0

) 0 andf(∞) ) 1. This case is referred to as the diffusion-medi-
ated case. The ratek(∆E∞) is expressed in terms of the Green’s
function of the diffusion operator in eq 21; namely,g(r, r′) )
1/(4πDr>), wherer> ) r for r > r′ and r> ) r′ for r e r′.

In the absence of vibrational mode, the sink term is given by

The steady-state rate constant of diffusion-mediated electron
transfer is obtained as

wherekeq(∆E∞) is given by eq 11 andkD(∆E∞) ) 4πDR is
expressed as

In the presence of the intramolecular vibrational mode, the
sink term is given by

The steady-state, diffusion-mediated rate is expressed as24-26

Here,φ(∆E∞) andΓ(∆E∞) are the vector and the matrix with
the components

for imin e i,j e imax andæeq(r) ) 4πr2. IT is the transpose of the
unit vector of the same dimension as that ofφ(∆E∞), andE is
the unit matrix with the same dimension as that ofΓ(∆E∞). On
the other hand, the result of Pade´ approximation is given by27,28

wherekeq(∆E∞) is given by eq 18 and

In Figure 3, we show the steady-state rate constant of
diffusion-mediated charge separation. We assume the diffusion
coefficient ofD ) 10-5[cm2/s]. The other parameters are the
same as those in Figure 2. In the case of no vibrational mode,
the rate is given by eq 23. In the presence of intramolecular
vibration, the rate is given by eq 25. The exact result in the
presence of the vibrational mode is also compared with that by
the Pade´ approximation. In the Pade´ approximation, the cor-
relation among sinks is not fully taken into account. The slight
deviation of the result of Pade´ approximation from the exact
result is due to the correlation among reactive sinks at various
distances of reactants. The correlation among sinks at various
distances is a signature of the long-range nature of electron
transfer.

III. Charge Recombination

A. Kinetic Control Case. For charge recombination reac-
tions, in the initial state, one of the solutes has a positive charge,
e, and the other has a negative charge,-e, and the energy of
the system can be expressed by eq 1. In the final state, the energy
of the system is constant, independent of the mutual distance.
The initial state energy fluctuates with time as the distance
between the reactants changes. The electron transfer occurs when
the initial state energy coincides with the final state energy (see
Figure 4). The energy gap between the two states is defined as
∆E(r) ≡ EAB - EA+B-(r). In the case of no vibrational mode,
the distance at which energy coincidence occurs is given by

where the energy gap∆E∞ at infinity is expressed as

Figure 3. Second-order rates of diffusion-mediated charge separation
as functions of the energy difference. The dashed line indicates the
rate in the presence of a high frequency intramolecular vibration, eq
26. The thick, solid line indicates the rate in the absence of intramo-
lecular vibration, eq 23. The thin solid line indicates the Pade´
approximation for the diffusion-mediated case, eq 29.

D∇2f(r) - k(r, ∆E∞)f(r) ) 0 (21)

k(r, ∆E∞) ) 2π
p

J0
2 exp[-â(r - r0)] δ(∆E∞ - e2

εopr) (22)

k(∆E∞) )

{1/[1/keq(∆E∞) + 1/kD(∆E∞)] for 0 < ∆E∞ e e2/(εopr0)
0 for ∆E∞ e 0 and

e2/(εopr0) < ∆E∞

(23)

k(∆E∞) ) { 4πe2D
εop∆E∞

for 0 < ∆E∞ e e2/(εopr0)

0 for ∆E∞ e 0 ande2/(εopr0) < ∆E∞

(24)

k(r, ∆E∞) )

2π

p
J0

2 exp[-â(r - r0)] ∑
igimin

ieimax

Fi δ(ihν + ∆E∞ -
e2

εopr
) (25)

k2(∆E∞) ) IT(E + Γ(∆E∞))-1
φ(∆E∞) (26)

φi(∆E∞) ) 2π
p

J0
2 exp[-â(Ri - r0)]Fiæeq(Ri)

Ri
2
εop

e2
(27)

Γi,j(∆E∞) )
8π2

εop

e2p
J0

2 exp[-â(Ri - r0)]FiRi
4g(Ri, Rj) (28)

kpd(∆E∞) ) 1/[1/keq(∆E∞) + 1/kDpd(∆E∞)] (29)

kDpd(∆E∞) ) keq
2 (∆E∞)/ ∑

i,jgimin

i,jeimax 8π2
εop

e2p
J0

2

exp[-â(Ri - r0)]FiRi
4g(Ri, Rj)φj(∆E∞) (30)

R ) - e2

εop∆E∞
(31)

9556 J. Phys. Chem. A, Vol. 111, No. 38, 2007 Tachiya and Seki



Note that the sign is different between eqs 2 and 31 and between
eqs 3 and 32. In the presence of a vibrational mode, the energy
coincidence occurs at

In the case of no vibrational mode, the rate is given by eq 9,
whereas in the presence of a vibrational mode, it is given by eq
12, which reduces to eq 17 when the vibrational quantum is
much larger than thermal energy, and so the electron transfer
occurs from the lowest vibrational level. Note, however, that
the distributionæ(r) of acceptors around a donor in charge
recombination is different from that in charge separation.

In the charge recombination, the equilibrium distribution of
acceptors around a donor is given by

whererc is the Onsager distance defined by28

In the case of no vibrational mode the rate is given by

In the presence of a vibrational mode, the rate is given by

where imin is the minimum integer greater than or equal to
[-∆E∞ - e2/(εopr0)]/(hν), imax is the maximum integer less than
-∆E∞/(hν) andRi given by eq 33. When the tunneling occurs
from the lowest vibrational state, the rate is given by

In Figure 5, we present results forεop ) 2, J0 ) 100 (cm-1),
â ) 1 (Å-1), λ ) 0.3 (eV),hν ) 1500 (cm-1), kBT ) 0.025
(eV), andr0 ) 6 (Å). In the case of no vibrational mode, the
electron transfer occurs in the range-e2/(εopr0) e ∆E∞ < 0. In
the presence of vibrational mode, electron transfer to the
vibrational excited states is possible even for∆E∞ < -e2/(εopr0).
Because of large Onsager radiusrc ) 288 (Å) for εop ) 2, the
factor in the equilibrium distribution, exp(rc/r) becomes 7×

1020 at the contact distance. Roughly speaking, the concentration
of acceptors at the contact distance is 7× 1020 times larger as
compared to that at infinity. The second-order rate is usually
defined in reference to the concentration at infinity. This is the
reason for the high values of the rates. If we define the rate in
reference to the concentration at the distance at which electron
transfer actually occurs, the values in Figure 5 should be divided
by the factor 7× 1020. According to Figure 5, the rate in the
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Figure 4. The energy of the final state and the initial state for the
charge recombination reaction against the distance between the
reactants, where∆E∞ ) -1 (eV). The other values of the parameters
are the same as those of Figure 5. The dashed line represents the initial
state. The solid lines represent the final states. The solid lines from
bottom to top represent the ground state and first, second, and third
excited states of the vibrational mode, respectively.

Figure 5. Second-order rates of charge recombination reactions as
functions of the energy difference in the kinetic control case. The dashed
line indicates the rate in the presence of a high frequency intramolecular
vibration, eq 37. The solid line indicates the rate in the case of no
vibrational mode, eq 36.
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case of no vibrational mode is zero for∆E∞ < -e2/(εopr0). The
reason is as follows: The distance at which the energy
coincidence occurs decreases with decreasing∆E∞. For ∆E∞
< -e2/(εopr0), this distance becomes smaller thanr0. In the
presence of a vibrational mode, the rate is not zero, even for
∆E∞ < -e2/(εopr0). This is because if electron transfer occurs
to vibrationally excited states of the final state, the distance at
which the energy coincidence occurs increases as compared to
electron transfer to the vibrational ground state of the final state
and becomes larger than the contact distance. If the frequency
of vibrational mode is high, this distance change is large. In
charge recombination, the distributionæeq(r) is very high near
the contact distance. Therefore, even if electron transfer occurs
to a highly vibrationally excited-state of the final state, the rate
can be very high, as shown in Figure 5, if the energy coincidence
occurs near the contact distance.

In the presence of low-frequency vibration, the rate is given
by

whereæ(r) is given byæeq(r) of eq 34.
B. Diffusion-Mediated Case. In the diffusion-mediated

electron transfer, the distribution 4πr2f(r) of acceptors around
a donor satisfies

whereD is the sum of the diffusion coefficients of the donor
and the acceptor. The boundary conditions are given by [∂f(r)/
∂r - (∇rc/r)f(r)]|ro ) 0 and f(∞) ) 1. The steady-state rate
k(∆E∞) is expressed in terms of the Green’s function of the
diffusion operator in eq 40; namely,29

wherer> ) r for r > r′ and r> ) r′ for r e r′.
In the absence of a vibrational mode, the sink term is given

by

The diffusion-mediated reaction rate in the absence of intramo-
lecular vibration is given by eq 23, wherekeq(∆E∞) is given by
eq 36 andkD(∆E∞) is given by30

In the presence of an intramolecular vibrational mode, the
sink term is given by

In the presence of a vibrational mode, the rate is given by eq
26 with the same vector and matrix as eqs 27 and 28. The result
of Padéapproximation is given by eq 29, withkeq(∆E∞) given
by eq 36. In these equations, the distribution in charge
recombination, eq 34, has to be used foræeq(r) instead of that
in charge separation.

In Figure 6, we show the steady-state rate constant of
diffusion-mediated charge recombination forD ) 10-5[cm2/s].
Due to the large Onsager radius, eq 43 is well approximated as
kD ) 4πDrc ) 2.2 × 1011[M-1 s-1], which is independent of
∆E∞. Therefore, whenever the rates are larger thankD(∆E∞),
they become independent of∆E∞. The large Onsager radius
also implies that the distribution of acceptors around a donor is
very high at the contact distance. This indicates that electron
transfer proceeds effectively at or near the contact distance,
although it is possible at several distances if a vibrational mode
is included. Accordingly, the correlation among sinks far away
from the contact is negligibly small. This is the reason the result
of Padéapproximation coincides with that of the exact solution
(not shown). In the Pade´ approximation, correlation among sinks
is not fully taken into account. However, in the present case, it
gives a very accurate result since the correlation among sinks
is small.

IV. Summary and Conclusions

We have studied electron-transfer reactions in ideal nonpolar
solvents in which permanent dipoles and higher multipoles are
absent. In nonpolar solvents, the energy of the ion pair state
changes significantly with the distance between the ions.
Accordingly, significant energy fluctuation is induced when the
distance between the reactants fluctuates. Electron transfer
occurs when the final state energy coincides with the initial state
energy. In charge separation reactions, the final state is an ion
pair state, and its energy fluctuates significantly when the

Figure 6. Second-order rates of diffusion-mediated charge recombina-
tion as functions of the energy difference. The dashed line indicates
the rates in the presence of a high frequency intramolecular vibration,
eq 26, whereæeq(r) is given by eq 34. The solid line indicates the rate
in the case of no vibrational mode, eq 23, wherekeq(∆E∞) is given by
eq 36 andkD(∆E∞) is given by eq 43.
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distance between the reactants fluctuates. In charge recombina-
tion reactions, the initial state is an ion pair state, and its energy
changes significantly with the distance. In both cases, the energy
coincidence between the initial and final states is induced by
the change in the distance between the reactants. The distance
at which the energy coincidence occurs depends on the energy
gap,∆E∞, between the initial and final states at infinity.

In charge separation reactions, the energy coincidence occurs
only for 0 < ∆E∞ e e2/(εopr0) in the absence of a vibrational
mode. Outside this energy gap region, electron transfer does
not occur. For∆E∞ e 0, the energy coincidence is energetically
not possible in the absence of a vibrational mode. However, if
electron transfer occurs to vibrationally excited states of the
final state, the energy coincidence becomes possible. Therefore,
in the presence of a vibrational mode, electron transfer can occur
even for∆E∞ e 0. For∆E∞ > e2/(εopr0), the energy coincidence
occurs at distances smaller than the contact distance,r0.
However, if the initial state is vibrationally excited, the distance
at which the energy coincidence occurs increases and becomes
larger thanr0. Therefore, in the presence of a vibrational mode,
electron transfer can occur even for∆E∞ > e2/(εopr0). These
effects of the vibrational mode are clearly shown in Figure 2,
which also shows that the full width at a height of 10-6 times
the maximum of the energy gap law in the presence of a
vibrational mode is a few times larger than that in the case of
no vibrational mode.

In charge recombination reactions, the energy coincidence
occurs only for-e2/(εopr0) e ∆E∞ < 0 in the absence of a
vibrational mode. For∆E∞ < -e2/(εopr0), the energy coincidence
occurs at distances smaller than the contact distance,r0.
However, if electron transfer occurs to vibrationally excited
states of the final state, the distance at which the energy
coincidence occurs increases and becomes larger thanr0. For
∆E∞ g 0, the energy coincidence is energetically not possible
in the absence of a vibrational mode. However, if the initial
state is vibrationally excited, the energy coincidence becomes
possible. Therefore, in the presence of a vibrational mode,
electron transfer can occur even for∆E∞ < -e2/(εopr0) or ∆E∞
g 0, as shown clearly in Figure 5, which also shows that the
full width at a height of 10-6 times the maximum of the energy
gap law in the presence of a vibrational mode is several times
larger than that in the case of no vibrational mode. The second-
order charge recombination rate constant in Figure 5 is
abnormally high. The reason is explained in the following
way: Because of the large Onsager distance, the concentration
of acceptors at the contact distance in the neighborhood of which
electron-transfer effectively occurs is orders of magnitude higher
that that at infinity. However, the second-order rate constant is
usually defined in reference to the concentration at infinity. This
is the reason the charge recombination rate constant in Figure
5 is abnormally high. If we define the second-order rate constant
in reference to the concentration at the contact distance, the
magnitude of the rate constant is not abnormal.

We have also calculated the diffusion-mediated rate constants
of charge separation and charge recombination reaction (Figures
3 and 6). In the presence of a vibrational mode, the diffusion-
controlled plateau of the charge separation reaction extends over
a range of a couple of electron volts, whereas that of charge
recombination reactions extends over a range of several electron
volts.

There are few experimental data on electron-transfer reactions
in nonpolar solvents that can be compared with our theory. At

present, our work is conceptually important as the basic theory
of electron-transfer reactions in nonpolar solvents. In our theory,
the donor-acceptor distance plays the role of the reaction
coordinate, in contrast with Marcus theory, in which the solvent
polarization is taken as the reaction coordinate. We hope that
our theory will stimulate experimental work on electron-transfer
reactions in nonpolar solvents and help to deepen our under-
standing of the problem.
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