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Polar graphs for differential cross section (dcs) called spatial dcs maps are presented as graphical representation
of the angular distribution of vibrationally inelastic electron scattering by polyatomic molecules. The objective

of this paper is to show that an intuitive understanding of the principal features of these graphs can be obtained
from a simple analysis of the normal modes of vibration of the target molecule and plane-wave functions
representing the scattering electron. The procedure is illustrated ontAedHCH, molecules.

1. Introduction and we illustrate the procedure on End CH,. Since the full
static exchange calculations are already known to agree with
experimental data for energies higher than about 8 eV (see, for
example, refs 10,12), we do not need to address a comparison
with experiment here. It is conceivable that the simple analysis

. T N S devised here might provide useful predictions for larger
predict angular distributions of vibrational excitation of mol- molecules as well, and we intend to examine this possibility
ecules by electron impact, attention has been focused on resonan|sewhere. '

scattering, as illustrated by more recent applications (see, for For infrared (IR)-active modes, a simple rule is available

example, refs 79) and by a recent comprehensive reviéw. according to which forward scattering dominatésHere,

In this paper, we concentrate on nonresonant scattering. More, e treat IR-inactive modes, that is, modes with a zero derivative

precisely, Sif‘c? resonant and nonresonant scattering cannot b%f the dipole moment with respect to the normal coordinate.
rigorously distinguished, we deal with electron scattering at

energies that do not correspond to shape resonances. In ous Theory

application of the static exchange approximation taHd HO o ) ] )

moleculesi! lacking explicit interaction with resonant states,  2.1. Spatial Differential Cross Section MapsFor graphical

the resonances are still reproduced to some extent, though, if€Presentation of the angular distribution of vibrationally

the calculated energy dependence of the integral vibrational crosgnelastic electron scattering, we use graphs called spatial

section, the maxima corresponding to resonances are underesdifferential cross section (dcs) maps. These are three-dimen-

timated and shifted to higher energies. Hence, it seems to usSional polar plots of differential cross sections. Thevector

that a theory based on Symmetry arguments for nonresonan[for the |nCOm|ng electron is fixed along a selected Slgn|f|cant

scattering can be a good starting point for a future develop- direction in the molepul_ar framework, for example, parallel or

ment of a unified theory for both resonant and nonresonant Perpendicular to a principal molecular axis or parallel to a bond.

scattering. The objective of this paper is to demonstrate how The value of the differential cross section is plotted along the

the principal features of the angular distribution of vibrationally direction of thek vector, which describes the direction of the

inelastic scattering can be deduced from simple consideration0utgoing electron. The spatial dcs maps are constructed using

of symmetry and the form of normal modes without reference the formula

to the full complexity of the quantitative tools of scattering N N

theory. D; = Z % A Vi (Ki) Vi (Ki) (1)
Thus, we are not trying to devise an approximate method for m

the calculation of the angular dependence of vibrationally which represents a transformation of the dcs from the plane-
inelastic scattering cross sections that would replace the full-\y4ye pasis to the basis of spherical harmonics. The differential
blown complex static exchange ab initio calculation. Rather, g sectioD; is defined as the probability for the electron

we are reporting that it is possible to understand qualitatively gcatteringk; — k;. The coefficientsm w can be derived from
and in simple intuitive terms the results of such computations, gq 1 as
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counterpart to the title of F. H. Read's pioneering paper
“Angular Distributions for Resonant Scattering of Electrons by
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Figure 1. Maps of derivative of the electrostatic potential of with respect to the normal coordinate in g plane (top) and of Chiwith respect

to the symmetric stretching normal coordinate in the H{@)-H(4) plane (bottom). The maps on the left were calculated rigorously, and those on

the right were simulated by means of eq 6. Red and yellow mark regions of positive values, and blue regions mark those with negative values. The
step in contours is 0.1.

quadrature yields the differential cross section for a definite interaction potentidl and construct;o from the static potential
number of pairs ok; andk; vectors as given by the angular Us alone.Us can be easily obtained from standard quantum
quadraturé! These are used for obtainimgm m coefficients chemical software. Commonly used programs such as Gauss-
from eq 2. Once thé\nw values are available, the dcs can ian'* or Hondd® have an option that permits a calculation of
be evaluated for any pair df; and k, by means of eq 1. electrostatic potential maps. By calculating electrostatic potential
As is apparent from figures in the next sections, the spatial dcs maps at geometries displaced yAg; and—Aq; along theith
maps exhibit distinct anisotropy. We will show that the main vibrational coordinate, we can obtain the numerical derivative
features of spatial dcs maps can be estimated without scatteringAUJ/Ag;, which when multiplied by a factor of 4/2 can be
calculations and evaluation &§mw coefficients by means of  taken as an approximation to tfig, interaction potential. The
simple considerations based on symmetry arguments alone. yse of maps so obtained will be explained below.

2.2. Approximate T10 Maps. As with transition moments in In fact, for the purpose of symmetry considerations, the
photon spectroscopy, we require that the integrand of the Ayyag maps need not be calculated. The patterdld§ag

' —2n2 — ibrati : . ) X
amplitude —27°<y1ka[T|yoko> for the 1 -— O vibrational (see Figure 1) looks like a set of oppositely charged circles. On
excitation be totally symmetric. In the two-channel approxima- o5.h atom, the line connecting their cent@rs oriented along

tion, the T operator is givelt by the Lippmann-Schwinger i, girection of motion followed by that atom during a

equation as displacement of molecular geometry along the respective normal
coordinate. Hence, the symmetry behavior of Thginteraction

T,o=U,;+ U, Gy Tpo + U;,G, T
10 710 ° F1070700 1 11T 0 potential can be visualized as

®3)
(4)

where the subscripts 10 and 00 refer to the transitiors Q
and 0— 0O, respectively. Since the Green’s functioBs and
G; are totally symmetric, the symmetry of thigo operator
is determined by the symmetry dfl;o. If the harmonic
approximation is adoptedl;o for the ith normal mode can be
takert! as the derivative of the electreimolecule interaction
potential with respect to théh dimensionless normal coordinate

Too= Ugo + UgeGoToo + UgiGi Thg N

T~ z [s(try) + s(=r))] (6)

wheres are charged spheres with a radius of@.@entered at
points C; +0.7Q; and C; — 0.7Q;. Hereafter,Q, are normal
coordinates normalized to unity (in au), wherepare dimen-
sionless normal coordinates. The adjustable parameter of 0.7
fits best to thedU4/dg; maps of B and CH,. Comparison of the
U, = (1/2) dUldg; 5) true and simulatedUs/dg; maps in Figure 1 shows that simulated
maps can be used as a simple tool for symmetry considerations.
Hence, the symmetry ofyo is the same as that aj. For In this paper, however, we us8UdJdg maps calculated
qualitative estimates, we may neglect the exchange term in therigorously.
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1.0 — — TABLE 1: Real Spherical Functions
0.8- __symmetry
Yim Yim Yim
0.6 (6=0°, (6 =90, (6 = 180,
Dan Tq ¢ =0 ¢ =0 =0
- 044 Yoo Ay As 0.2821 0.2821 0.2821
x Yo Aw To 0.4886 0 —0.4886
= 024 ¥, B T 0 —0.4886 0
Y,, B T 0 0 0
0.0+ Y20 Axg E 0.6308 -0.3154 0.6308
Y, E T 0 0 0
-0.2+ Y, E T 0 0 0
. — 1 . Y, By E 0 0.5463 0
0 2 4 6 8 10 2 By T 0 0 0
Yo Ay T2 0.7464 0 —0.7464
Y, Eu T.+T. 0 0.4570 0
Y, & T+ T, 0 0 0
Y, Ba T 0 0 0
Y;, Bu A 0 0 0
Y, E Ti+T. O —0.5900 0
Y;; E T+ T2 0 0 0
E and to express the plane-wave function as
= )
elk-r —
oo m=l
.. N QN
47 Z |J|(kr) ZO [Yfm(l?r1§0r)Yfm(k) + Ylsm(l?w(pr)Ylsm(k)] (10)
= m=

0 2 4 6 8 10 Tables with symmetries of spherical harmonigs, Y, and
Y;, can be found in the literatuf§. Hence, the integral
<ka|T10lki> is nonvanishing on symmetry grounds if the
irreducible representatioli(q;) is contained in the product
I'Mejzme) x T'(Miajim) of any pair of components of plane-
waves|k;> and|k;>. By means of partial-wave expansion of
k> and |k;> plane-wave functions, we can express fhe
matrix element as follows

&, | Tyolk, D=

ZOWZMZD Z (Coaresam Yizme(k2) Yima(Ky) +

CIZmZIlml I2mZ(k2)Yslm1(k1) + I2mZI1ml |2rT12(k2)YC1ml(k1) +
0 2 a4 6 8 10 Crazitmt Yooma(K2) Yo (K91 (1)

r,a.u. where the complex coefficien® are
Figure 2. Spherical Bessel functiorjsfor the electron energies of 6
(top), 10 (center), and 20 eV (bottom).

J(kn)

CI 2m2Jim1 —

Assignment of symmetries to plane-wave functions requires 1671 i Gl(Kol) Yoo (@) T10l Yiima (9r:@)i 1 (ki) O (12)
their partial-wave expansion, used already in the very first g .
attempts to explain angular distributions for the vibrational “12m2jimi —
excitation of molecules by electron impa¢The formula for 16771 1 Gl (Ko ) Yoo 000 ) Tyl Yot (9@, (KyT) O (13)
the partial-wave expansion is «
Comjam =

iz KDY B NnPepd (@) L) T Thor) Yiora(9:00) T iz (9 iia(kir) D (14)

Ss —
12m2,|1m1

For symmetry considerations, it is convenient to use real 20127111
spherical harmonics defined as 167°() i Glo(Ke) Yoo (01,20 | Taol Yima (90:@1)i12 (ke ) O (15)
1 NonvanishingC coefficients are only those for which the
Y,Cm =—Mn,tY_y ifm=0 Y,C0 =Y (8) productYome* Yiim: has a component of the same symmetry as
"oV ’ that of the vibrational coordinateg. We can also exclude
additionalC coefficients from the inspection of spherical Bessel
—|i (Yl,m — YI,—m) ifm=0 Y|SO =0 (9) functionsj; and the shapes ofi, functions. This will be done

Ys =
h V2 in the following paragraphs.
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Figure 3. Maps ofjo* Yoo'jo* Yoo (left) andji-Yio'j1+ Y10 (right) for energies of 6 (top), 10 (center), and 20 eV (bottom). The maps are contoured with
steps of 0.005. The contours with the highest values are at 0.075 (left) and 0.045 (right). The maps are invariant with respect to rotation around the
z axis.

2.3. Spherical Bessel Functionsin Figure 2, we display a sufficient condition for making this coefficient contribute.
spherical Bessel functiorjs—j,4 for electron energies of 6, 10,  Also, the value oMlml(Rl) in eq 11 for the incoming electron
and 20 eV. As will be shown in the figures below, the derivative must be nonzero. Th€y1m coefficients contribute to isotropic
of the interaction potentiadU/dq;, and therefore also th& scattering because th&o function (contributing tdk,) has no
interaction potential, decay outside of the electronic cloud of angular dependence. Because of the very anisotropic angular
the molecule. Hence, if the integral in eq 11 is to have a distribution observed in spatial dcs maps, we may assume that
significant value, the Bessel functions andj; need to have contributions fromCooj1m Will be small. The properties of real
an appreciable value just in the region where the electronic spherical function&,, andY;,, used in this paper are listed in
density is high. Figure 2 shows that this is satisfied only for Table 1.
the lowest values of. 2.5. Maps for Products of Spherical FunctionsValues of

2.4. Shapes of Spherical FunctionsSince theY)ap functions coefficientsC in eqs 12-15 can only be large if the symmetry
in egs 12115 determing the direction of the outgoing electron of the productjio: Yizme*ji1* Yizm: conforms to the symmetry of
(seeYpp(ka) and Yy, ,(Kz) in eq 11), it is useful to recall the  Tio. This can be checked quickly by comparing the map of
shapes off|, functions. For example, ¥i2nz is Yio, Yz0, OF Y3g, jizYizmesjii-Yizma With the map ofTyo. As a substitute, the latter
the favored direction for the outgoing electron is along the can be represented by the map of the derivative of the
axis. However, a nonzero value o, 1m coefficient is not electrostatic potential, calculated or guessed from the geo-
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Figure 4. Maps ofj*Y; j1-Y;, for energies of 6 (top), 10 (center), and 20 eV (bottom). The maps are plotted in plaaesisx (¢ = 0°, left)

and H(2-C—H(1) (p = —45°, right). The same maps are obtained jie¥;,-j:-Y;, for energies of 6 (top), 10 (center), and 20 eV (bottom) when
plotted in planes versusy (¢ = 90°, left) and H(2)-C—H(1) (p = —45, right).

metrical representation of the normal mode alone, as notedwe present an example of an “allowed” and “forbidden”
above. The maps df2 Yiome*jii*Yiim are general and can be  contribution. Obviously, in general, the situation is not as ideal
precalculated and used for any molecular target. Contour graphsas that in Figure 6, but at least with small symmetric molecules,

for productsjiz* Yizmejia Yizma With | < 1 are plotted in Figures  a determination of allowed contributions is feasible.
3—5. Some other relevant products are available in the Sup-

porting Information (Figures S1S18). Compared to the energy
of the incoming electron (6, 10, or 20 eV), the vibrational
excitation energy is small, and we can assume khat ko.
Therefore, the twqy(kr) andjj;(kr) functions were evaluated b " ‘
for the same value df. of the Tio maps. Then, we eliminat¥m, functions for which
2.6. Symmetry Considerations.As with the “allowed” the Yin(k1) values are zero. The success of this procedure
transitions in photon spectroscopy, we require that the productdepends on the selection pf-Yizme*jiz*Yizma maps that match
ko T10-ks must contain a component which represents a totally the dUg/dq; best. This permits us to truncate the expansion in
symmetric integrand. It is therefore necessary to find a map of eq 11 to a few terms and to predict the preferential angular
jiz*Yizme*jiz*Yizma Which matches th@Uddg map In Figure 6, distribution for a particular vibrational mode.

In the next section, we will show the procedure for selecting
the most relevant allowed contributions on the examples,of H
and CH, molecules. We will proceed according to the following
scheme. First, we will plot theUg/ag maps as an approximation
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Figure 5. Maps ofji-Y5;+j1* Y10 for energies of 6 (top), 10 (center), and 20 eV bottom). The maps are plotted in plasesusx (¢ = 0°, left)
and H(2-C—H(1) (p = —45°, right). Yellow and red mark regions of positive values, and blue regions are of negative values. The maps are

contoured with steps of 0.005. The same maps are obtainge ¥[j:- Y10 when plotted in planeg versusy (¢ = 90°, left) and that withp =
—45° (right).

3. Spatial DCS Maps for the H, Molecule 3.3. Nonvanishing Y\, Values for Fixed k; Vectors.
Consider separately the case lof parallel to the molecular
axisz andk; perpendicular ta@. For the orientatiork, parallel
to z, only Yoo, Yio, and Yz have nonzero values. In the
case ofky perpendicular t@ in the oy, plane, the nonvanish-
ing Yizm functions withl < 2 in eq 11 areYpo, Y5;, Yao, and

In Figure 7, we present spatial dcs maps for incident electron
energies of 6, 10, and 20 eV, obtained by rigorous solution of
the Lippmanna-Schwinger equation in the static exchange
approximation (eqs -14).

3.1. Approximate T1p Map. We start the analysis of the
angular distribution by plotting the derivative of the static Y22
potential,dU¢/dq, with respect to the normal coordinate. It may ~ 3.4. Truncated Expansion of<kp|aU/agi|ki> and Prefer-
be assumed that the plot fdko would have similar features. ~ ential Angular Distribution. Next, we examine which products

The shape of the plot (Figure 8) indicates whighand Y of spherical functions have the same symmetry as the normal
functions in eqgs 1215 are optima| for h|gh values of the mode. For SImplICIty, we reduce the three-dimensional dcs map
coefficientsCiamp 1m. to a two-dimensional plot in they, plane, and we consider the

3.2. Selection of Bessel Function&igure 8 shows that the ~ Dan point group. Hence, the product of the two spherical
absolute value 0§U4dq is highest close to the positions of the ~ functions must also have;@symmetry. This condition is
nuclei. From Figure 2, it is seen that only thg ji, and j» satisfied for Yz0Yoo and all diagonal product¥j,-Yy, and
functions have appreciable values in this region. Hence, the Y;,-Y;,. From Figures 35 and StS18 (in the Supporting
summation in eq 11 can be limited ko< 2. Information), it is seen that plots foYio Y10, followed by
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Figure 6. T map of H approximated by the derivative of the
electrostatic potential with respect to the vibrational stretching coor-

dinate (top). Thgi-Y5;+j1* Y10 map (center) does not match this map,
and its contribution to the total amplitude vanishes. TR¥0j1* Y10
map (bottom) is oriented along tlzexis similar to theT:o map, which
suggests that the favored orientationkofindk, are along the axis
(forward and backward scattering fr parallel to thez axis).

Yoo Yoo @nd Yoo Y20, match the map obU4adq best. Consider
therefore the amplitude in the following form
|:R2|T10| le% CS%,OOYOO(IQZ)YOO(Rl) +

C20,20720(K2) Yao(K1) + Cig 10¥10(K2) Yio(Ky) (16)

Carsky et al.

Consider first the case &f; parallel to the molecular axis
For this orientation, onlyoo, Y10, andYzo have nonzero values.
Yio(K2) and Yao(ko) orient k, along thez axis, thoughYsg has
also a small lobe perpendicularzdNevertheless, we can expect
that the shape of the plot in the spatial dcs map is determined
by the Cy0.10 contribution. Next, we calculate the weights of
contributions by evaluation of spherical harmonics (from Table
1) in eq 16. Weights o¥(ky)-Y(k,) favor the location ok, in
the+z and—z directions. Notice that the graphs for 6, 10, and
20 eV in Figure 7 are not plotted on the same scale. As the
energy of the scattering electron is increased, the overlap of
j1-Yiorj1- Y10 With 0U4/aq drops, and the differential cross section
decreases. Fdt, (0 = 90°) perpendicular tk, (6 = 0°), we
have Yio(kz) = 0, and the main contribution given 910,10
vanishesCyg goandCyo 20contributions are again small because
Y20 is primarily oriented along the axis and has only a small
lobe perpendicular to the direction. Also, Cyo 0 is small
becauseCyp 00 & Coo20 as already noted. Moreover, the two
contributions tend to cancel becadge(kz)- Yoo(k1) = —0.0890
and Yoo(k2)+Yao(k1) = 0.1779. Compared to the forward and
backward scattering, the scattering perpendicular to the molec-
ular axis can be expected to be small, and this agrees with the
calculated spatial dcs maps (Figure 7).

In the case ok perpendicular to the molecular axdsn the
oxz plane, the nonvanishingm functions withl < 2 in eq 11
are Yoo, Y5y, Y20, and Y5, The map forYs,Y;, in Figure S11
indicates that this contribution can be disregarded. It may be
assumed that the amplitude can be approximated as

|:k2|T10|k1D% COO,OOYOO(RZ)YOO(ﬁl) +
Ci(i,llY:ctl(kz)Y‘l:l(kl) + CZO,ZOYZO(kz)YZO(kl) (17)

All three terms in eq 17 give rise only to weak scattering
oriented along the axis, in accordance with the spatial dcs
map in Figure 7. Preference for forward over backward
scattering is due to a partial cancellation of the three terms in
eq 17, but this cannot be determined from symmetry alone.

4. Spatial DCS Maps for the CH, Molecule

With the methane molecule, two normal modes are IR active
and two are IR inactive. According to the spectroscopic
convention, the symmetric stretch is designatedradt is of
a symmetry, and the normal coordinate is

Q=12(,+r,+ry3+r, (18)
The bending mode of e symmetry is designateaagnd the
normal coordinate is

Qu.= (UN/12)(201;, — Oly3— Oty + 2003, — 0y — 0yy) (193)
Qop = 1/2(0p3— Q3+ 04— 0pg) (19b)

The meaning of indices-14 is defined in Figure 9. The spatial
dcs maps for coordinated; and Qz, and electron energies of

All three products have the right symmetry. Some products of 6, 10, and 20 eV are presented in Figure 10 Kgroriented

Yi., Y3, and alsoYaq, Yg;, Y35, Yss andYs; can conform by
symmetry, but their contributions will be small because of the
size mismatch.Coo,00 and Cop 20 represent theYyo isotropic
contribution tok, and can be therefore expected to be small.

along the direction of the €H(1) bond and in Figures 11 and
12 for the positive direction along theaxis. Thek, vector is
chosen to lie in the planes defined by atoms H(1), C, and H(2)
(2 = 135) and H(3), C, and H(4)¢, = 45°).

Compared to the energy of the incoming electron (6, 10, or 20  4.1. Approximate Tio Maps. We start the analysis of the

eV), the vibrational excitation energy is small, and we can
assume thal; ~ k, and, consequenthyCzo .00~ Coo,20and, in
general Ciamz 1m1 = Ciamjzme.

angular distribution by inspection of the maps of the derivative
of the static potentiaQU4dq, with respect to normal coordinates.
Figure 13 shows that the derivative is highest close to positions



Inelastic Nonresonant Scattering of Electrons J. Phys. Chem. A, Vol. 111, No. 49, 20012223

0.6 0.03
0.4: 300 /7 0.02:
0.2—‘ 0.014
0.0470 0.00
0.2: 0.014
04 M0 0,021
0.6 0.03

0.03
0.02-‘
0.01:
0.00+
0.01—-

0.02-

0.03-

0.10- 0.02-
005 30 0.01-
0.00-70 0.00-
0.059 zin¥ 0.014
0.10- 0.02-

Figure 7. Spatial dcs maps for the Hnolecule for the incident electron energy of 6 (top), 10 (center), and 20 eV (bottom);TVector is
parallel (left) or perpendicular (right) to the principal molecular axis. Note that maps are plotted on different scales.nidieddle is oriented
along the axis 618C°.
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Figure 9. Tetrahedral structure of CHn the coordinate system.

X, a.u.

Figure 8. Map of the derivative of the electrostatic potential of H
with respect to the normal coordinate in thg, plane. Nuclei are
positioned az = +0.715 au. The map is contoured with a step of 0.1 ) . ] o )

appreciable values in the region where the derivative of the static
of hydrogen atoms, that is, about 2 au from the origin of the Potential is large. The limitation tb< 2 in eqs 12-15 is only
coordinate system along the-&i bonds, and that it can be taken justified for 6 and 10 eV.

as vanishingly small for > 4 au. 4.3. NonvanishingYy, Values for the Fixed k; Vectors. If
4.2. Selection of Bessel Functionsln contrast to the  we choosek; to be oriented along the CH(1) bond € 125
hydrogen molecule, plots of Bessel functions in Figure 2 indicate and ¢ = —45°), Y2, Y5, andYs, have zeroY(ki) values and

that in addition tojo, j1, andj,, the functionjs may also have can be dropped from further consideration. If we chdos&
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Figure 10. Spatial dcs maps for the symmetric CH stretch (left) and the bending e mode (rightyiar@Hncident electron energies of 6 (top),
10 (center), and 20 eV (bottom). Tle vector is parallel to the CH(1) bond = 125°), andk; lies in the H(2)-C—H(1) plane.

be oriented along theaxis, the only nonzerd/(kj) values are
Yoo, YlO. Y20, and Y30.

4.4. Truncated Expansion of<kj|oU/aqilk;> and Prefer-
ential Angular Distribution. The symmetry of the symmetric
stretching moder; is &, which means that allowed pairs of
spherical functions in eq 11 must be of A A1, E x E, T1 x
Ty, or To x T2 symmetry. We determine next, by inspection of
Figures 3-5 and S1-S18 in the Supporting Information, which
pair of contributionsj;2*Yizm*ji1*Yizma conform to theaUd/dq;
maps best. This is straightforward for energies of 6 and 10 eV.
As noted above, we can limit ourselveslte 2 in this case,
and we find that the optimum fit is provided by theYs,:j2:
Y1 j2-Yoriar Yar, andjzrYs,tj2+ Y5, terms (Figures S5 and S11).
Note thatj,Y5,+j2* Y5, conforms to thedUg/dq map at positions
of all four hydrogen atoms, where@gYj;+j1-Y;; or jor Va1
Y;,, for example, do not. This reduces eq 11 to

|:k2|-|—10| klm C(Z:(;.,ZlY;l(lQZ)Y(Z:I(k\l) +
Co121 Yar(Ko) Yau(Ky) + C35 2 Yoo(k,) Yao(ky) (20)

If we choosek; to be oriented along the CH(1) bond akgl
to lie in the H(2»C—H(1) plane, all three products

Y51(K2) Yo (K1), Yo,(K2)Y5,(k1), andYs,(ko)Y3,(k1) are zero for

=0, 90, 180, and 270 Their sum is+0.363 x 0.364 forf =

55, 235, and 305and 3x 0.363 x 0.364 for§ = 125°. This

is in qualitative agreement with the spatial dcs maps presented
in Figure 10. When the energy of the incident electron is 20
eV, the situation is more complicated. The highest values of
dU4J0q; are localized at the positions of the hydrogen atoms
(corners of thexyzcube; see Figure 13). As Figure 2 shows, at

r equal to the CH bond length (2.25 au), the Bessel function
ja(kr) also has to be taken into account. ActuallyY3,js Yz,
(Figure S18) gives the largest contribution and must be added
to the three terms in eq 20. Also, the proddgi(k,) Y5, (k1) is

zero forf = 0, 90, 180, and 27Q which explains why the map

for 20 eV in Figure 10 does not show any contribution at these
scattering angles. However, the observed preference of backward
scattering over the forward scattering cannot be explained by
this simple approach. Some conclusions can be drawn from eq
20 itself. If we also add/,(k,)Y5,(k1) to the right-hand side of

eq 20,k; is represented by a combination 6f,(k2), Y3,(K),,
Y5,(ko), and Y5, (kz), that is, byxz, yz, yx, and xyztype
functions. This means that preferential directions for the
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Figure 11. Spatial dcs maps for the symmetric CH stretch in,@Hd incident electron energies of 6 (top), 10 (center), and 20 eV (bottom). The
k, vector is parallel to the axis, andk; lies in the H(2}-C—H(1) (left) and H(3)-C—H(4) (right) planes.

outgoing electron are along the-€l bonds, not along directions
bisecting the valence anglestC—H.

If we choosek; to be oriented along theaxis, the situation
is different. Now, Yoo, Y10, Y20, and Yo are the onlyY(k;)
functions that are significant. This excludes the four main
contributionsYs,(Ko) Y5,(k1), Y5,(k2)Y54(K1), Y,(k2) Y35(k1), and

and assume accordingly that the plane-wave fundgaran be
represented as a linear combination¥§f, Yio, Y3, and Yao.

Y10 and Yo arez andz? functions, respectively, and they direct
the outgoing electron along theeaxis (forward and backward).
Y3, and Y5, are xyz and xy-type functions, respectively, and
together, they orient the outgoing electron into the “wings” of

Y;,(k2)Ya,(k1) noted above. Scattering is therefore much weaker plots in Figure 11. If those maps are plottedzagersusx and
(Figure 11) than it was when the incident electron approached Z versusy plots, the maps lose their “wings”, and only forward

the molecule along the €H(1) bond. The only symmetry-
allowed contributionsY3;,-Yi10 are YorYoo (A1 x Au),
Ya0rY20 (E x E), and all contribution&/3} »* Y10 and Y35+ Yao

of the T, x T, symmetry (See Table 1). Again, the inspection
of Figures 3-5 and StS18 can reduce this list. As a matter
of fact, no ideal fit todUgday is found. Y3,(kz) Yoo(ks) (Figure
S16) seems to conform best, followed WYyy(k2) Y1o(k1) (Figure

3) and Yag(ko)Y3,(k1) (Figure S14), and to a lesser extent to
Yao(K2) Y20(k1) (Figure S2). Hence, we express eq 11 in the form

|RZH—ZI.O' klm C;Z,OOY?’,Z(RZ)YOO(RD + ClO,lOYlO(IQZ)YlO(Rl) +
22,30 Yoo(K2) Yao(K1) + Ca0,20¥20(K2) Yao(Ks) (21)

and backward scattering is observed becafseand Y3, are
zero in these planes. In contrast to the preceding cadq of
parallel to the G-H(1) bond, the outgoing electron avoids the
hydrogen atoms.

Consider now the bending mode Its symmetry is e, which
means that allowed pairs of spherical functions in eq 11 must
be of Ay x E, Ty x Ty, Ty x Ty, or T, x T2 symmetry. The list
of allowed terms can be reduced by inspection of FigureS 3
and S1}S18, which suggest that for low energies (6 and 10
eV), the best fit for the)Ug/dq, map (Figure 13) is provided by
Y5, Yoo Yo Yoy, Y5,2Y5,, and to a lesser extent b3, Yio and
Yi0Y3, terms. This means that, as with the symmetric stretch,
the T10 element can be approximated by eq 20. We limit
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Figure 12. Spatial dcs maps for the e bending mode of,GAd incident electron energies of 6 (top), 10 (center), and 20 eV (bottom)kiThe
vector is parallel to the axis, andk; lies in the H(2-C—H(1) (left) and H(3)-C—H(4) (right) planes. Note that the maps are on different scales.

ourselves to the case & lying in the H(2-C—H(1) plane.
Figure S11 shows that thig-Y3,.j2'Y5, density is higher in
the region wher&Ud4dq; is negative than in the region where
dUddqp is positive (Figure 13). In contrasfy Y5, j>*Ys, and
j2rY51j2 Y5, densities (Figure S5) are higher in the region
where dU4dq, is positive than they are in the region where
dU4d0 is negative. Therefore, we may conclude t63} ,, is

of the opposite sign tha@3; ,; andC3; ,,. From egs 13 and 14,
it may be concluded (from the imaginary factor) tlﬁé@ﬂ%
—C55 10 Consider two orientations df;. For k; parallel to the
CH(1) bond, Yig(k1) = —0.282, Y5,(k1) = 0.364, Y5,(k) =
—0.364, andez(IZl) = —0.364. This permits us to estimate
relative ratios of differential cross sections for four preferential
directions of k,. For forward scattering & = 125),

Y5 (ko)Yio(ki)) = (—0.364) x (—0.282) = 0.103 and
Yio(Ko) Y5(K1) = (—0.282) x (—0.364)= 0.103. Thus, the two
contributions tend to cancel (becau€§y,, ~ —C3;,, as
noted above). AlsoY;,Ys; and Y3,Y5;, tend to cancel the
Y5,Y5, contribution becaus¥s,(k,)Y5,(k1) = 0.364x 0.364=
0.135, Y5,(k2)Y5,(k1) = (—0.364) x (—0.364) = 0.135, and
Y5,(k2)Ys,(k1) = (—0.364) x (—0.364)= 0.135. This partial

cancellation occurs because the signGj} ,, is opposite of
those ofC5; ,; and C3; ,,. The same cancellation occurs with
backward scattering. In contrast,t= 55 and 235, the three
contributions are of the same sign, giving rise to two lobes
observed in spatial dcs maps (Figure 10). For the energy of
20 eV, the situation is more complicated. For this energy, the
Bessel functiorjz (Figure 2) has an appreciable value in the
region of highaU4Jdq, density (Figure 13), and contributions
with | = 3 cannot be excluded a priori. Actually, Figure S13
shows that the terl’Tj3°Ys32'j2’Y20 conforms ideally to the
0UJ0q, density, and therefore, it also should be taken into
account. Assuming; to be parallel to the CH(1) bondfoo(k1)

= 0.000 anngz(Rl) = 0.556. Hence, we are only left with the
YZO(RZ)Ygz(Rl) term. Its value is largest in thé-z and —z
directions, giving rise to two additional lobes in the spatial dcs
map for this energy (Figure 10).

If k1 is parallel to thez axis, the nonvanishing components
of k; are only Yoo, Y10, Y20, andYsp, and the main terms from
the last paragraphy;, Y5, Ys;°Ys;, andYs;Y;,, cannot con-
tribute. Differential cross sections for this orientationkgfare
therefore considerably smaller (compare scales of Figures 10
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Figure 13. Maps of the derivative of the electrostatic potential of Giith respect to the symmetric stretching (top) and bending 2a (bottom)
normal coordinates. The plots are in the H{&—H(1) (left) and H(3)-C—H(4) (right) planes, and the center of mass izat 0. The step in
contours is 0.1.

and 12) and do not show much anisotropy. The difference of distribution agrees with the calculated spatial dcs maps. It has
the spatial dcs maps for the energy of 20 eV from those for 6 not been our primary objective to develop an approximate
and 10 eV can be explained by the contribution of terms with method of calculation of vibrationally inelastic vibrational cross

| = 3. A distinct contribution is due to thg-Ysojs-Yso term sections but, rather, to obtain intuitive understanding of the

(Figure S13), which gives rise to forward scattering. results of the ab initio method. Still, it is conceivable that the
simple procedure could be used to make qualitative predictions

5. Conclusions for larger molecules, including those for which a full ab initio

treatment may be presently prohibitively expensive. Itis unclear

We have found that it is possible to understand the results of whether the number of required Bessel functions (Figure 2)
ab initio computations of the angular distribution of vibrationally - would then not become excessive, even for localized vibrations,
inelastic nonresonant scattering qualitatively in relatively simple and we intend to examine these issues next.
terms. If the form of the vibrational normal modes is known,
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