Angular Distributions for Vibrationally Inelastic Nonresonant Scattering of Electrons by Molecules ${ }^{\dagger}$

Petr Čársky, ${ }^{*, *}$ Roman Čurík, ${ }^{\ddagger}$ Barbara Pezler, ${ }^{\ddagger, \delta}$ and Josef Michl ${ }^{\ddagger, \%}$
J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic, Faculty of Science, University of Podlesie, ul. 3. Mája 54, 08-110 Siedlce, Poland, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215

Received: May 23, 2007; In Final Form: August 6, 2007

Abstract

Polar graphs for differential cross section (dcs) called spatial dcs maps are presented as graphical representation of the angular distribution of vibrationally inelastic electron scattering by polyatomic molecules. The objective of this paper is to show that an intuitive understanding of the principal features of these graphs can be obtained from a simple analysis of the normal modes of vibration of the target molecule and plane-wave functions representing the scattering electron. The procedure is illustrated on the H_{2} and CH_{4} molecules.

1. Introduction

The title of this paper has been intentionally selected as a counterpart to the title of F. H. Read's pioneering paper ${ }^{1}$ "Angular Distributions for Resonant Scattering of Electrons by Molecules". Indeed, since the early attempts ${ }^{2-6}$ to explain and predict angular distributions of vibrational excitation of molecules by electron impact, attention has been focused on resonant scattering, as illustrated by more recent applications (see, for example, refs $7-9$) and by a recent comprehensive review. ${ }^{10}$ In this paper, we concentrate on nonresonant scattering. More precisely, since resonant and nonresonant scattering cannot be rigorously distinguished, we deal with electron scattering at energies that do not correspond to shape resonances. In our application of the static exchange approximation to H_{2} and $\mathrm{H}_{2} \mathrm{O}$ molecules, ${ }^{11}$ lacking explicit interaction with resonant states, the resonances are still reproduced to some extent, though, in the calculated energy dependence of the integral vibrational cross section, the maxima corresponding to resonances are underestimated and shifted to higher energies. Hence, it seems to us that a theory based on symmetry arguments for nonresonant scattering can be a good starting point for a future development of a unified theory for both resonant and nonresonant scattering. The objective of this paper is to demonstrate how the principal features of the angular distribution of vibrationally inelastic scattering can be deduced from simple consideration of symmetry and the form of normal modes without reference to the full complexity of the quantitative tools of scattering theory.

Thus, we are not trying to devise an approximate method for the calculation of the angular dependence of vibrationally inelastic scattering cross sections that would replace the fullblown complex static exchange ab initio calculation. Rather, we are reporting that it is possible to understand qualitatively and in simple intuitive terms the results of such computations,

[^0]and we illustrate the procedure on H_{2} and CH_{4}. Since the full static exchange calculations are already known to agree with experimental data for energies higher than about 8 eV (see, for example, refs 10,12), we do not need to address a comparison with experiment here. It is conceivable that the simple analysis devised here might provide useful predictions for larger molecules as well, and we intend to examine this possibility elsewhere.
For infrared (IR)-active modes, a simple rule is available according to which forward scattering dominates. ${ }^{13}$ Here, we treat IR-inactive modes, that is, modes with a zero derivative of the dipole moment with respect to the normal coordinate.

2. Theory

2.1. Spatial Differential Cross Section Maps. For graphical representation of the angular distribution of vibrationally inelastic electron scattering, we use graphs called spatial differential cross section (dcs) maps. These are three-dimensional polar plots of differential cross sections. The \mathbf{k}_{1} vector for the incoming electron is fixed along a selected significant direction in the molecular framework, for example, parallel or perpendicular to a principal molecular axis or parallel to a bond. The value of the differential cross section is plotted along the direction of the \mathbf{k}_{2} vector, which describes the direction of the outgoing electron. The spatial dcs maps are constructed using the formula

$$
\begin{equation*}
D_{j i}=\sum_{l m} \sum_{l m^{\prime}} A_{l m, l^{\prime} m^{\prime}} Y_{l m}^{*}\left(\hat{\mathbf{k}}_{j}\right) Y_{l m^{\prime}}\left(\hat{\mathbf{k}}_{i}\right) \tag{1}
\end{equation*}
$$

which represents a transformation of the dcs from the planewave basis to the basis of spherical harmonics. The differential cross section $D_{j i}$ is defined as the probability for the electron scattering $\mathbf{k}_{i} \rightarrow \mathbf{k}_{j}$. The coefficients $A_{l m, l^{\prime} m^{\prime}}$ can be derived from eq 1 as

$$
\begin{equation*}
A_{l m, l^{\prime} m^{\prime}}=\sum_{j} \sum_{i} w_{j} w_{i} Y_{l m}\left(\hat{\mathbf{k}}_{j}\right) Y_{l^{\prime} m^{\prime}}^{*}\left(\hat{\mathbf{k}}_{i}\right) D_{j i} \tag{2}
\end{equation*}
$$

where w_{i} and w_{j} are weights in the angular quadrature. Solution of the Lippmann-Schwinger equation by numerical

Figure 1. Maps of derivative of the electrostatic potential of H_{2} with respect to the normal coordinate in the $\sigma_{x z}$ plane (top) and of CH_{4} with respect to the symmetric stretching normal coordinate in the $\mathrm{H}(3)-\mathrm{C}-\mathrm{H}(4)$ plane (bottom). The maps on the left were calculated rigorously, and those on the right were simulated by means of eq 6 . Red and yellow mark regions of positive values, and blue regions mark those with negative values. The step in contours is 0.1 .
quadrature yields the differential cross section for a definite number of pairs of \mathbf{k}_{1} and \mathbf{k}_{2} vectors as given by the angular quadrature. ${ }^{11}$ These are used for obtaining $A_{l m, l^{\prime} m^{\prime}}$ coefficients from eq 2 . Once the $A_{l m, l^{\prime} m^{\prime}}$ values are available, the dcs can be evaluated for any pair of \mathbf{k}_{1} and \mathbf{k}_{2} by means of eq 1 . As is apparent from figures in the next sections, the spatial dcs maps exhibit distinct anisotropy. We will show that the main features of spatial dcs maps can be estimated without scattering calculations and evaluation of $A_{l m, l^{\prime} m^{\prime}}$ coefficients by means of simple considerations based on symmetry arguments alone.
2.2. Approximate \boldsymbol{T}_{10} Maps. As with transition moments in photon spectroscopy, we require that the integrand of the amplitude $-2 \pi^{2}<\chi_{1} k_{1}|T| \chi_{0} k_{0}>$ for the $1 \leftarrow 0$ vibrational excitation be totally symmetric. In the two-channel approximation, the T operator is given ${ }^{11}$ by the Lippmann-Schwinger equation as

$$
\begin{align*}
& T_{10}=U_{10}+U_{10} G_{0} T_{00}+U_{11} G_{1} T_{10} \tag{3}\\
& T_{00}=U_{00}+U_{00} G_{0} T_{00}+U_{01} G_{1} T_{10} \tag{4}
\end{align*}
$$

where the subscripts 10 and 00 refer to the transitions $1 \leftarrow 0$ and $0 \leftarrow 0$, respectively. Since the Green's functions G_{0} and G_{1} are totally symmetric, the symmetry of the T_{10} operator is determined by the symmetry of U_{10}. If the harmonic approximation is adopted, U_{10} for the i th normal mode can be taken ${ }^{11}$ as the derivative of the electron-molecule interaction potential with respect to the i th dimensionless normal coordinate

$$
\begin{equation*}
U_{10}=(1 / \sqrt{ } 2) \partial U / \partial q_{i} \tag{5}
\end{equation*}
$$

Hence, the symmetry of T_{10} is the same as that of q_{i}. For qualitative estimates, we may neglect the exchange term in the
interaction potential U and construct U_{10} from the static potential U_{s} alone. U_{s} can be easily obtained from standard quantum chemical software. Commonly used programs such as Gaussian ${ }^{14}$ or Hondo ${ }^{15}$ have an option that permits a calculation of electrostatic potential maps. By calculating electrostatic potential maps at geometries displaced by $+\Delta q_{i}$ and $-\Delta q_{i}$ along the i th vibrational coordinate, we can obtain the numerical derivative $\Delta U_{\mathrm{s}} / \Delta q_{i}$, which when multiplied by a factor of $1 / \sqrt{ } 2$ can be taken as an approximation to the T_{10} interaction potential. The use of maps so obtained will be explained below.

In fact, for the purpose of symmetry considerations, the $\Delta U_{\mathrm{s}} / \Delta q_{i}$ maps need not be calculated. The pattern of $\partial U_{\mathrm{s}} / \partial q_{i}$ (see Figure 1) looks like a set of oppositely charged circles. On each atom, the line connecting their centers $\mathbf{C}_{\mathbf{i}}$ is oriented along the direction of motion followed by that atom during a displacement of molecular geometry along the respective normal coordinate. Hence, the symmetry behavior of the T_{10} interaction potential can be visualized as

$$
\begin{equation*}
T_{10} \approx \sum_{i}^{3 N}\left[s_{i}\left(+\mathbf{r}_{i}\right)+s_{i}\left(-\mathbf{r}_{i}\right)\right] \tag{6}
\end{equation*}
$$

where s_{i} are charged spheres with a radius of $0.7 Q_{i}$ centered at points $\mathbf{C}_{\mathbf{i}}+0.7 \mathbf{Q}_{\mathbf{i}}$ and $\mathbf{C}_{\mathbf{i}}-0.7 \mathbf{Q}_{\mathbf{i}}$. Hereafter, Q_{i} are normal coordinates normalized to unity (in au), whereas q_{i} are dimensionless normal coordinates. The adjustable parameter of 0.7 fits best to the $\partial U_{\mathrm{s}} / \partial q_{i}$ maps of H_{2} and CH_{4}. Comparison of the true and simulated $\partial U_{\mathrm{s}} / \partial q_{i}$ maps in Figure 1 shows that simulated maps can be used as a simple tool for symmetry considerations. In this paper, however, we use $\partial U_{s} / \partial q_{i}$ maps calculated rigorously.

Figure 2. Spherical Bessel functions j_{1} for the electron energies of 6 (top), 10 (center), and 20 eV (bottom).

Assignment of symmetries to plane-wave functions requires their partial-wave expansion, used already in the very first attempts to explain angular distributions for the vibrational excitation of molecules by electron impact. ${ }^{1,4}$ The formula for the partial-wave expansion is

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{m=l} i_{l}^{l} j_{l}(k r) Y_{l m}^{*}\left(\vartheta_{r}, \varphi_{r}\right) Y_{l m}\left(\vartheta_{k}, \varphi_{k}\right) \tag{7}
\end{equation*}
$$

For symmetry considerations, it is convenient to use real spherical harmonics defined as

$$
\begin{gather*}
Y_{l, m}^{\mathrm{c}}=\frac{1}{\sqrt{2}}\left(Y_{l, m}+Y_{l,-m}\right) \quad \text { if } m=0 \quad Y_{l 0}^{\mathrm{c}}=Y_{l 0} \tag{8}\\
Y_{l, m}^{\varsigma}=-\mathrm{i} \frac{1}{\sqrt{2}}\left(Y_{l, m}-Y_{l,-m}\right) \quad \text { if } m=0 \quad Y_{l 0}^{\varsigma}=0 \tag{9}
\end{gather*}
$$

TABLE 1: Real Spherical Functions

	symmetry		$\begin{gathered} Y_{l m} \\ \left(\theta=0^{\circ},\right. \\ \left.\varphi=0^{\circ}\right) \end{gathered}$	$\begin{gathered} Y_{l m} \\ \left(\theta=90^{\circ},\right. \\ \left.\varphi=0^{\circ}\right) \\ \hline \end{gathered}$	$\begin{gathered} Y_{l m} \\ \left(\theta=180^{\circ},\right. \\ \left.\varphi=0^{\circ}\right) \\ \hline \end{gathered}$
	$D_{4}{ }^{\text {b }}$	T_{d}			
Y_{00}	$\mathrm{A}_{1 \mathrm{~g}}$	A_{1}	0.2821	0.2821	0.2821
Y_{10}	$\mathrm{A}_{2 \mathrm{u}}$	T_{2}	0.4886	0	-0.4886
$Y_{11}^{\text {c }}$	E_{u}	T_{2}	0	-0.4886	0
Y_{11}^{s}	E_{u}	T_{2}	0	0	0
Y_{20}	$\mathrm{A}_{1 \mathrm{~g}}$	E	0.6308	-0.3154	0.6308
Y_{21}^{c}	E_{g}	T_{2}	0	0	0
Y_{21}^{8}	Eg_{g}	T_{2}	0	0	0
r_{22}	$\mathrm{B}_{1 \mathrm{~g}}$	E	0	0.5463	0
$Y_{22}^{\text {2 }}$	$\mathrm{B}_{2 \mathrm{~g}}$	T_{2}	0	0	0
Y_{30}	$\mathrm{A}_{2 \mathrm{u}}$	T_{2}	0.7464	0	-0.7464
$Y_{31}^{\text {c }}$	E_{u}	$\mathrm{T}_{1}+\mathrm{T}_{2}$	0	0.4570	0
Y_{31}^{s}	E_{u}	$\mathrm{T}_{1}+\mathrm{T}_{2}$	0	0	0
Y_{32}^{c}	$\mathrm{B}_{2 \mathrm{u}}$	T_{1}	0	0	0
Y_{32}^{5}	$\mathrm{B}_{1 \mathrm{u}}$	A_{1}	0	0	0
r_{33}^{c}	E_{u}	$\mathrm{T}_{1}+\mathrm{T}_{2}$	0	-0.5900	0
Y_{33}^{3}	E_{u}	$\mathrm{T}_{1}+\mathrm{T}_{2}$	0	0	0

and to express the plane-wave function as

$$
\begin{align*}
& \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}}= \\
& 4 \pi \sum_{l=0}^{\infty} i^{l} j_{l}(k r) \sum_{m=0}^{m=l}\left[Y_{l m}^{\mathrm{c}}\left(\vartheta_{r}, \varphi_{r}\right) Y_{l m}^{\mathrm{c}}(\hat{\mathbf{k}})+Y_{l m}^{\mathrm{s}}\left(\vartheta_{r}, \varphi_{r}\right) Y_{l m}^{\mathrm{s}}(\hat{\mathbf{k}})\right] \tag{10}
\end{align*}
$$

Tables with symmetries of spherical harmonics $Y_{l 0}, Y_{l m}^{\mathrm{c}}$, and $Y_{l m}^{\triangleleft}$ can be found in the literature. ${ }^{16}$ Hence, the integral $<k_{2}\left|T_{10}\right| k_{1}>$ is nonvanishing on symmetry grounds if the irreducible representation $\Gamma\left(q_{i}\right)$ is contained in the product $\Gamma\left(Y_{k 2, l 2 m 2}\right) \times \Gamma\left(Y_{k 1, l 1 m 1}\right)$ of any pair of components of planewaves $\mid k_{2}>$ and $\left|k_{1}\right\rangle$. By means of partial-wave expansion of $\mid k_{2}>$ and $\mid k_{1}>$ plane-wave functions, we can express the T_{10} matrix element as follows

$$
\begin{align*}
& \left\langle k_{2}\right| T_{10}\left|k_{1}\right\rangle= \\
& \sum_{l 2=0} \sum_{m 2=0}^{l 2} \sum_{l=0} \sum_{m 1=0}^{l 1}\left[C_{l 2 m 2, l 1 m 1}^{\mathrm{cc}} Y_{l 2 m 2}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{2}\right) Y_{l 1 m 1}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{1}\right)+\right. \\
& C_{l 2 m 2, l 1 m 1}^{\mathrm{cs}} Y_{l 2 m 2}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{2}\right) Y_{l 1 m 1}^{\mathrm{s}}\left(\hat{\mathbf{k}}_{1}\right)+C_{l 2 m 2, l 1 m 1}^{\mathrm{sc}} Y_{l 2 m 2}^{\mathrm{s}}\left(\hat{\mathbf{k}}_{2}\right) Y_{l 1 m 1}^{c}\left(\hat{\mathbf{k}}_{1}\right)+ \\
& \left.C_{l 2 m 2, l 1 m 1}^{\mathrm{ss}} Y_{l 2 m 2}^{\mathrm{s}}\left(\hat{\mathbf{k}}_{2}\right) Y_{l 1 m 1}^{\mathrm{s}}\left(\hat{\mathbf{k}}_{1}\right)\right](11) \tag{11}
\end{align*}
$$

where the complex coefficients C are

$$
\begin{align*}
& C_{l 2 m 2, l 1 m 1}^{\mathrm{cc}}= \\
& 16 \pi^{2}\left(\mathrm{i}^{l 2}\right)^{*} \mathrm{i}^{l 1}\left\langle j_{l 2}\left(k_{2} r\right) Y_{l 2 m 2}^{\mathrm{c}}\left(\vartheta_{r}, \varphi_{r}\right)\right| T_{10}\left|Y_{l 1 m 1}^{\mathrm{c}}\left(\vartheta_{r}, \varphi_{r}\right) j_{l 1}\left(k_{1} r\right)\right\rangle \tag{12}\\
& C_{l 2 m 2, l 1 m 1}^{\mathrm{cs}}= \\
& 16 \pi^{2}\left(\mathrm{i}^{l 2}\right)^{*} \mathrm{i}^{l 1}\left\langle j_{l 2}\left(k_{2} r\right) Y_{l 2 m 2}^{\mathrm{c}}\left(\vartheta_{r}, \varphi_{r}\right)\right| T_{10}\left|Y_{l 1 m 1}^{\mathrm{s}}\left(\vartheta_{r}, \varphi_{r}\right) j_{l 1}\left(k_{1} r\right)\right\rangle \tag{13}\\
& C_{l 2 m 2, l 1 m 1}^{\mathrm{sc}}= \\
& 16 \pi^{2}\left(\mathrm{i}^{l 2}\right)^{*} \mathrm{i}^{l 1}\left\langle j_{l 2}\left(k_{2} r\right) Y_{l 2 m 2}^{\mathrm{s}}\left(\vartheta_{r}, \varphi_{r}\right)\right| T_{10}\left|Y_{l 1 m 1}^{\mathrm{c}}\left(\vartheta_{r}, \varphi_{r}\right) j_{l 1}\left(k_{1} r\right)\right\rangle \tag{14}\\
& C_{l 2 m 2, l 1 m 1}^{\mathrm{ss}}= \\
& 16 \pi^{2}\left(\mathrm{i}^{l 2}\right)^{*} \mathrm{i}^{l 1}\left\langle j_{l 2}\left(k_{2} r\right) Y_{l 2 m 2}^{\mathrm{s}}\left(\vartheta_{r}, \varphi_{r}\right)\right| T_{10}\left|Y_{l 1 m 1}^{\mathrm{s}}\left(\vartheta_{r}, \varphi_{r}\right) j_{l 1}\left(k_{1} r\right)\right\rangle \tag{15}
\end{align*}
$$

Nonvanishing C coefficients are only those for which the product $Y_{l 2 m 2} \cdot Y_{l 1 m 1}$ has a component of the same symmetry as that of the vibrational coordinate q_{i}. We can also exclude additional C coefficients from the inspection of spherical Bessel functions j_{l} and the shapes of $Y_{l m}$ functions. This will be done in the following paragraphs.

Figure 3. Maps of $j_{0} \cdot Y_{00} \cdot j_{0} \cdot Y_{00}$ (left) and $j_{1} \cdot Y_{10} \cdot j_{1} \cdot Y_{10}$ (right) for energies of 6 (top), 10 (center), and 20 eV (bottom). The maps are contoured with steps of 0.005 . The contours with the highest values are at 0.075 (left) and 0.045 (right). The maps are invariant with respect to rotation around the z axis.
2.3. Spherical Bessel Functions. In Figure 2, we display spherical Bessel functions $j_{0}-j_{4}$ for electron energies of 6,10 , and 20 eV . As will be shown in the figures below, the derivative of the interaction potential $\partial U / \partial q_{i}$, and therefore also the T_{10} interaction potential, decay outside of the electronic cloud of the molecule. Hence, if the integral in eq 11 is to have a significant value, the Bessel functions $j_{l 1}$ and $j_{l 2}$ need to have an appreciable value just in the region where the electronic density is high. Figure 2 shows that this is satisfied only for the lowest values of l.
2.4. Shapes of Spherical Functions. Since the $Y_{12 m 2}$ functions in eqs $12-15$ determine the direction of the outgoing electron (see $Y_{l 2 m 2}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{2}\right)$ and $Y_{l 2 m 2}^{\mathrm{s}}\left(\hat{\mathbf{k}}_{2}\right)$ in eq 11), it is useful to recall the shapes of $Y_{l m}$ functions. For example, if $Y_{l 2 m 2}$ is Y_{10}, Y_{20}, or Y_{30}, the favored direction for the outgoing electron is along the z axis. However, a nonzero value of a $C_{12 m 2, l 1 m 1}$ coefficient is not
a sufficient condition for making this coefficient contribute. Also, the value of $Y_{l 1 m 1}\left(\hat{\mathbf{k}}_{1}\right)$ in eq 11 for the incoming electron must be nonzero. The $C_{00,11 m 1}$ coefficients contribute to isotropic scattering because the Y_{00} function (contributing to k_{2}) has no angular dependence. Because of the very anisotropic angular distribution observed in spatial dcs maps, we may assume that contributions from $C_{00,11 \mathrm{~m} 1}$ will be small. The properties of real spherical functions $Y_{l m}^{\mathrm{c}}$ and $Y_{l m}^{\mathrm{s}}$ used in this paper are listed in Table 1.
2.5. Maps for Products of Spherical Functions. Values of coefficients C in eqs 12-15 can only be large if the symmetry of the product $j_{l 2} \cdot Y_{l 2 m 2} \cdot j_{l 1} \cdot Y_{l 1 m 1}$ conforms to the symmetry of T_{10}. This can be checked quickly by comparing the map of $j_{l 2} \cdot Y_{l 2 m 2} \cdot j_{l 1} \cdot Y_{l 1 m 1}$ with the map of T_{10}. As a substitute, the latter can be represented by the map of the derivative of the electrostatic potential, calculated or guessed from the geo-

Figure 4. Maps of $j_{1} \cdot Y_{11}^{\mathrm{c}} \cdot j_{1} \cdot Y_{11}^{\mathrm{c}}$ for energies of 6 (top), 10 (center), and 20 eV (bottom). The maps are plotted in planes z versus x ($\varphi=0^{\circ}$, left) and $\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(1)\left(\varphi=-45^{\circ}\right.$, right). The same maps are obtained for $j_{1} \cdot Y_{11}^{f} \cdot j_{1} \cdot Y_{11}^{s}$ for energies of 6 (top), 10 (center), and 20 eV (bottom) when plotted in planes z versus $y\left(\varphi=90^{\circ}\right.$, left $)$ and $\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(1)(\varphi=-45$, right $)$.
metrical representation of the normal mode alone, as noted above. The maps of $j_{l 2} \cdot Y_{l 2 m 2} \cdot{ }_{j l 1} \cdot Y_{l 1 m 1}$ are general and can be precalculated and used for any molecular target. Contour graphs for products $j_{l 2} \cdot Y_{l 2 m 2} \cdot j_{l 1} \cdot Y_{l 1 m 1}$ with $l \leq 1$ are plotted in Figures 3-5. Some other relevant products are available in the Supporting Information (Figures $\mathrm{S} 1-\mathrm{S} 18$). Compared to the energy of the incoming electron (6,10 , or 20 eV), the vibrational excitation energy is small, and we can assume that $k_{1} \approx k_{2}$. Therefore, the two $j_{12}(k r)$ and $j_{l 1}(k r)$ functions were evaluated for the same value of k.
2.6. Symmetry Considerations. As with the "allowed" transitions in photon spectroscopy, we require that the product $k_{2} \cdot T_{10} \cdot k_{1}$ must contain a component which represents a totally symmetric integrand. It is therefore necessary to find a map of $j_{l 2} \cdot Y_{l 2 m 2} \cdot j_{l 1} \cdot Y_{l 1 m 1}$ which matches the $\partial U_{\mathrm{s}} / \partial q_{i}$ map. In Figure 6 ,
we present an example of an "allowed" and "forbidden" contribution. Obviously, in general, the situation is not as ideal as that in Figure 6, but at least with small symmetric molecules, a determination of allowed contributions is feasible.

In the next section, we will show the procedure for selecting the most relevant allowed contributions on the examples of H_{2} and CH_{4} molecules. We will proceed according to the following scheme. First, we will plot the $\partial U_{\mathrm{s}} / \partial q_{i}$ maps as an approximation of the T_{10} maps. Then, we eliminate $Y_{l m}$ functions for which the $Y_{l m}\left(\hat{\mathbf{k}}_{1}\right)$ values are zero. The success of this procedure depends on the selection of $j_{12} \cdot Y_{l 2 m 2} \cdot j_{l 1} \cdot Y_{l 1 m 1}$ maps that match the $\partial U_{\mathrm{s}} / \partial q_{i}$ best. This permits us to truncate the expansion in eq 11 to a few terms and to predict the preferential angular distribution for a particular vibrational mode.

x, a.u.

$\left(x^{2}+y^{2}\right)^{1 / 2}$, a.u.; $\quad x=-y$

$$
\left(x^{2}+y^{2}\right)^{1 / 2}, \text { a.u.; } x=-y
$$

Figure 5. Maps of $j_{1} \cdot Y_{11}^{\mathrm{c}} \cdot j_{1} \cdot Y_{10}$ for energies of 6 (top), 10 (center), and 20 eV bottom). The maps are plotted in planes z versus $x\left(\varphi=0^{\circ}\right.$, left) and $\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(1)\left(\varphi=-45^{\circ}\right.$, right). Yellow and red mark regions of positive values, and blue regions are of negative values. The maps are contoured with steps of 0.005 . The same maps are obtained for $j_{1} \cdot Y_{11}^{\gtrdot} \cdot j_{1} \cdot Y_{10}$ when plotted in planes z versus $y\left(\varphi=90^{\circ}\right.$, left) and that with $\varphi=$ -45° (right).

3. Spatial DCS Maps for the $\mathbf{H}_{\mathbf{2}}$ Molecule

In Figure 7, we present spatial dcs maps for incident electron energies of 6,10 , and 20 eV , obtained by rigorous solution of the Lippmann-Schwinger equation in the static exchange approximation (eqs $1-4$).
3.1. Approximate $\boldsymbol{T}_{\mathbf{1 0}}$ Map. We start the analysis of the angular distribution by plotting the derivative of the static potential, $\partial U_{s} / \partial q$, with respect to the normal coordinate. It may be assumed that the plot for T_{10} would have similar features. The shape of the plot (Figure 8) indicates which j_{l} and $Y_{l m}$ functions in eqs 12-15 are optimal for high values of the coefficients $C_{l 2 m 2, l 1 m 1}$.
3.2. Selection of Bessel Functions. Figure 8 shows that the absolute value of $\partial U_{s} / \partial q$ is highest close to the positions of the nuclei. From Figure 2, it is seen that only the j_{0}, j_{1}, and j_{2} functions have appreciable values in this region. Hence, the summation in eq 11 can be limited to $l \leq 2$.
3.3. Nonvanishing $\boldsymbol{Y}_{l m}$ Values for Fixed $\mathbf{k}_{\mathbf{1}}$ Vectors. Consider separately the case of \mathbf{k}_{1} parallel to the molecular axis z and \mathbf{k}_{1} perpendicular to z. For the orientation \mathbf{k}_{1} parallel to z, only Y_{00}, Y_{10}, and Y_{20} have nonzero values. In the case of \mathbf{k}_{1} perpendicular to z in the $\sigma_{x z}$ plane, the nonvanishing $Y_{l 1 m 1}$ functions with $l \leq 2$ in eq 11 are $Y_{00}, Y_{11}^{\mathrm{c}}, Y_{20}$, and Y_{22}^{c}.
3.4. Truncated Expansion of $<\boldsymbol{k}_{2}\left|\partial U / \partial q_{i}\right| \boldsymbol{k}_{1}>$ and Preferential Angular Distribution. Next, we examine which products of spherical functions have the same symmetry as the normal mode. For simplicity, we reduce the three-dimensional dcs map to a two-dimensional plot in the $\sigma_{x z}$ plane, and we consider the $D_{4 h}$ point group. Hence, the product of the two spherical functions must also have $\mathrm{a}_{1 \mathrm{~g}}$ symmetry. This condition is satisfied for $Y_{20} \cdot Y_{00}$ and all diagonal products $Y_{l m}^{\mathrm{c}} \cdot Y_{l m}^{\mathrm{c}}$ and $Y_{l m}^{\varsigma} \cdot Y_{l m}^{¢}$. From Figures 3-5 and S1-S18 (in the Supporting Information), it is seen that plots for $Y_{10} \cdot Y_{10}$, followed by

Figure 6. T_{10} map of H_{2} approximated by the derivative of the electrostatic potential with respect to the vibrational stretching coordinate (top). The $j_{1} \cdot Y_{11}^{\mathrm{c}} \cdot \dot{j}_{1} \cdot Y_{10}$ map (center) does not match this map, and its contribution to the total amplitude vanishes. The $j_{1} \cdot Y_{10} \cdot j_{1} \cdot Y_{10}$ map (bottom) is oriented along the z axis similar to the T_{10} map, which suggests that the favored orientations of \mathbf{k}_{1} and \mathbf{k}_{2} are along the z axis (forward and backward scattering for \mathbf{k}_{1} parallel to the z axis).
$Y_{00} \cdot Y_{00}$ and $Y_{20} \cdot Y_{20}$, match the map of $\partial U_{\mathrm{s}} / \partial q$ best. Consider therefore the amplitude in the following form

$$
\begin{align*}
\left\langle k_{2}\right| T_{10}\left|k_{1}\right\rangle \approx & C_{00,00}^{\mathrm{cc}} Y_{00}\left(\hat{\mathbf{k}}_{2}\right) Y_{00}\left(\hat{\mathbf{k}}_{1}\right)+ \\
& C_{20,20}^{\mathrm{cc}} Y_{20}\left(\hat{\mathbf{k}}_{2}\right) Y_{20}\left(\hat{\mathbf{k}}_{1}\right)+C_{10,10}^{\mathrm{cc}} Y_{10}\left(\hat{\mathbf{k}}_{2}\right) Y_{10}\left(\hat{\mathbf{k}}_{1}\right) \tag{16}
\end{align*}
$$

All three products have the right symmetry. Some products of $Y_{11}^{\mathrm{c}}, Y_{11}^{\mathrm{s}}$, and also $Y_{30}, Y_{31}^{\mathrm{c}}, Y_{31}^{\varsigma}, Y_{33}^{\mathrm{c}}$, and Y_{33}^{ς} can conform by symmetry, but their contributions will be small because of the size mismatch. $C_{00,00}$ and $C_{00,20}$ represent the Y_{00} isotropic contribution to k_{2} and can be therefore expected to be small. Compared to the energy of the incoming electron (6,10 , or 20 eV), the vibrational excitation energy is small, and we can assume that $k_{1} \approx \mathrm{k}_{2}$ and, consequently, $C_{20,00} \approx C_{00,20}$ and, in general, $C_{l 2 m 2, l 1 m 1} \approx C_{l 1 m 1, l 2 m 2}$.

Consider first the case of \mathbf{k}_{1} parallel to the molecular axis z. For this orientation, only Y_{00}, Y_{10}, and Y_{20} have nonzero values. $Y_{10}\left(\hat{\mathbf{k}}_{2}\right)$ and $Y_{20}\left(\hat{\mathbf{k}}_{2}\right)$ orient \mathbf{k}_{2} along the z axis, though Y_{20} has also a small lobe perpendicular to z. Nevertheless, we can expect that the shape of the plot in the spatial dcs map is determined by the $C_{10,10}$ contribution. Next, we calculate the weights of contributions by evaluation of spherical harmonics (from Table 1) in eq 16. Weights of $Y\left(\hat{\mathbf{k}}_{2}\right) \cdot Y\left(\hat{\mathbf{k}}_{1}\right)$ favor the location of \mathbf{k}_{2} in the $+z$ and $-z$ directions. Notice that the graphs for 6,10 , and 20 eV in Figure 7 are not plotted on the same scale. As the energy of the scattering electron is increased, the overlap of $j_{1} \cdot Y_{10}{ }^{\circ} \cdot j_{1} \cdot Y_{10}$ with $\partial U_{s} / \partial q$ drops, and the differential cross section decreases. For $\mathbf{k}_{2}\left(\theta=90^{\circ}\right)$ perpendicular to $\mathbf{k}_{1}\left(\theta=0^{\circ}\right)$, we have $Y_{10}\left(\hat{\mathbf{k}}_{2}\right)=0$, and the main contribution given by $C_{10,10}$ vanishes. $C_{20,00}$ and $C_{20,20}$ contributions are again small because Y_{20} is primarily oriented along the z axis and has only a small lobe perpendicular to the z direction. Also, $C_{00,20}$ is small because $C_{20,00} \approx C_{00,20}$, as already noted. Moreover, the two contributions tend to cancel because $Y_{20}\left(\hat{\mathbf{k}}_{2}\right) \cdot Y_{00}\left(\hat{\mathbf{k}}_{1}\right)=-0.0890$ and $Y_{00}\left(\hat{\mathbf{k}}_{2}\right) \cdot Y_{20}\left(\hat{\mathbf{k}}_{1}\right)=0.1779$. Compared to the forward and backward scattering, the scattering perpendicular to the molecular axis can be expected to be small, and this agrees with the calculated spatial dcs maps (Figure 7).

In the case of \mathbf{k}_{1} perpendicular to the molecular axis z in the $\sigma_{x z}$ plane, the nonvanishing $Y_{l 1 m 1}$ functions with $l \leq 2$ in eq 11 are $Y_{00}, Y_{11}^{\mathrm{c}}, Y_{20}$, and Y_{22}^{c}. The map for $Y_{22}^{\mathrm{c}} \cdot Y_{22}^{\mathrm{c}}$ in Figure S11 indicates that this contribution can be disregarded. It may be assumed that the amplitude can be approximated as

$$
\begin{align*}
\left\langle k_{2}\right| T_{10}\left|k_{1}\right\rangle & \approx C_{00,00} Y_{00}\left(\hat{\mathbf{k}}_{2}\right) Y_{00}\left(\hat{\mathbf{k}}_{1}\right)+ \\
& C_{11,11}^{\mathrm{cc}} Y_{11}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{2}\right) Y_{11}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{1}\right)+C_{20,20} Y_{20}\left(\hat{\mathbf{k}}_{2}\right) Y_{20}\left(\hat{\mathbf{k}}_{1}\right) \tag{17}
\end{align*}
$$

All three terms in eq 17 give rise only to weak scattering oriented along the x axis, in accordance with the spatial dcs map in Figure 7. Preference for forward over backward scattering is due to a partial cancellation of the three terms in eq 17, but this cannot be determined from symmetry alone.

4. Spatial DCS Maps for the $\mathbf{C H}_{\mathbf{4}}$ Molecule

With the methane molecule, two normal modes are IR active and two are IR inactive. According to the spectroscopic convention, the symmetric stretch is designated as ν_{1}. It is of a_{1} symmetry, and the normal coordinate is

$$
\begin{equation*}
Q_{1}=1 / 2\left(r_{1}+r_{2}+r_{3}+r_{4}\right) \tag{18}
\end{equation*}
$$

The bending mode of e symmetry is designated as ν_{2}, and the normal coordinate is

$$
\begin{gather*}
Q_{2 \mathrm{a}}=(1 / \sqrt{ } 12)\left(2 \alpha_{12}-\alpha_{13}-\alpha_{23}+2 \alpha_{34}-\alpha_{14}-\alpha_{24}\right) \tag{19a}\\
Q_{2 \mathrm{~b}}=1 / 2\left(\alpha_{23}-\alpha_{13}+\alpha_{14}-\alpha_{24}\right) \tag{19b}
\end{gather*}
$$

The meaning of indices $1-4$ is defined in Figure 9. The spatial dcs maps for coordinates Q_{1} and $Q_{2 \mathrm{a}}$ and electron energies of 6,10 , and 20 eV are presented in Figure 10 for \mathbf{k}_{1} oriented along the direction of the $\mathrm{C}-\mathrm{H}(1)$ bond and in Figures 11 and 12 for the positive direction along the z axis. The \mathbf{k}_{2} vector is chosen to lie in the planes defined by atoms $\mathrm{H}(1), \mathrm{C}$, and $\mathrm{H}(2)$ $\left(\varphi_{2}=135^{\circ}\right)$ and $\mathrm{H}(3), \mathrm{C}$, and $\mathrm{H}(4)\left(\varphi_{2}=45^{\circ}\right)$.
4.1. Approximate $\boldsymbol{T}_{\mathbf{1 0}}$ Maps. We start the analysis of the angular distribution by inspection of the maps of the derivative of the static potential, $\partial U_{\mathrm{s}} / \partial q$, with respect to normal coordinates. Figure 13 shows that the derivative is highest close to positions

Figure 7. Spatial dcs maps for the H_{2} molecule for the incident electron energy of 6 (top), 10 (center), and 20 eV (bottom). The \mathbf{k}_{1} vector is parallel (left) or perpendicular (right) to the principal molecular axis. Note that maps are plotted on different scales. The H_{2} molecule is oriented along the axis $0-180^{\circ}$.

Figure 8. Map of the derivative of the electrostatic potential of H_{2} with respect to the normal coordinate in the $\sigma_{x z}$ plane. Nuclei are positioned at $z= \pm 0.715 \mathrm{au}$. The map is contoured with a step of 0.1
of hydrogen atoms, that is, about 2 au from the origin of the coordinate system along the $\mathrm{C}-\mathrm{H}$ bonds, and that it can be taken as vanishingly small for $r>4$ au.
4.2. Selection of Bessel Functions. In contrast to the hydrogen molecule, plots of Bessel functions in Figure 2 indicate that in addition to j_{0}, j_{1}, and j_{2}, the function j_{3} may also have

Figure 9. Tetrahedral structure of CH_{4} in the coordinate system.
appreciable values in the region where the derivative of the static potential is large. The limitation to $l \leq 2$ in eqs $12-15$ is only justified for 6 and 10 eV .
4.3. Nonvanishing $\boldsymbol{Y}_{l m}$ Values for the Fixed \mathbf{k}_{1} Vectors. If we choose \mathbf{k}_{1} to be oriented along the $\mathrm{CH}(1)$ bond $(\theta=125$ and $\left.\varphi=-45^{\circ}\right), Y_{20}, Y_{22}^{\mathrm{c}}$, and Y_{32}^{c} have zero $Y\left(\hat{\mathbf{k}}_{1}\right)$ values and can be dropped from further consideration. If we choose \mathbf{k}_{1} to

Figure 10. Spatial dcs maps for the symmetric CH stretch (left) and the bending e mode (right) in CH_{4} and incident electron energies of 6 (top), 10 (center), and 20 eV (bottom). The \mathbf{k}_{1} vector is parallel to the $\mathrm{CH}(1)$ bond $\left(\theta=125^{\circ}\right)$, and \mathbf{k}_{2} lies in the $\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(1)$ plane.
be oriented along the z axis, the only nonzero $Y\left(\hat{\mathbf{k}}_{1}\right)$ values are Y_{00}, Y_{10}, Y_{20}, and Y_{30}.
4.4. Truncated Expansion of $<\boldsymbol{k}_{2}\left|\partial U / \partial q_{i}\right| \boldsymbol{k}_{1}>$ and Preferential Angular Distribution. The symmetry of the symmetric stretching mode ν_{1} is a_{1}, which means that allowed pairs of spherical functions in eq 11 must be of $\mathrm{A}_{1} \times \mathrm{A}_{1}, \mathrm{E} \times \mathrm{E}, \mathrm{T}_{1} \times$ T_{1}, or $\mathrm{T}_{2} \times \mathrm{T}_{2}$ symmetry. We determine next, by inspection of Figures 3-5 and S1-S18 in the Supporting Information, which pair of contributions $j_{l 2} \cdot Y_{l 2 m 2} \cdot j_{l 1} \cdot Y_{l 1 m 1}$ conform to the $\partial U_{\mathrm{s}} / \partial q_{1}$ maps best. This is straightforward for energies of 6 and 10 eV . As noted above, we can limit ourselves to $l \leq 2$ in this case, and we find that the optimum fit is provided by the $j_{2} \cdot Y_{21}^{\mathrm{c}} \cdot j_{2} \cdot$ $Y_{21}^{\mathrm{c}}, j_{2} \cdot Y_{21}^{s} \cdot j_{2} \cdot Y_{21}^{s}$, and $j_{2} \cdot Y_{22}^{s} \cdot j_{2} \cdot Y_{22}^{\varsigma}$ terms (Figures S5 and S11). Note that $j_{2} \cdot Y_{22}^{\delta} \cdot j_{2} \cdot Y_{22}^{\mathrm{s}}$ conforms to the $\partial U_{\mathrm{s}} / \partial q$ map at positions of all four hydrogen atoms, whereas $j_{1} \cdot Y_{11}^{\mathrm{s}} \cdot j_{1} \cdot Y_{11}^{\mathrm{c}}$ or $j_{2} \cdot Y_{21}^{\mathrm{s}} \cdot j_{1} \cdot$ Y_{11}^{c}, for example, do not. This reduces eq 11 to

$$
\begin{align*}
\left\langle k_{2}\right| T_{10}\left|k_{1}\right\rangle & \approx C_{21,21}^{\mathrm{cc}} Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{2}\right) Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{1}\right)+ \\
& C_{21,21}^{\mathrm{ss}} Y_{21}^{\mathrm{s}}\left(\hat{\mathbf{k}}_{2}\right) Y_{21}^{\mathrm{s}}\left(\hat{\mathbf{k}}_{1}\right)+C_{22,22}^{\mathrm{ss}} Y_{22}^{\mathrm{s}}\left(\hat{\mathbf{k}}_{2}\right) Y_{22}^{\mathrm{s}}\left(\hat{\mathbf{k}}_{1}\right) \tag{20}
\end{align*}
$$

If we choose \mathbf{k}_{1} to be oriented along the $\mathrm{CH}(1)$ bond and \mathbf{k}_{2} to lie in the $\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(1)$ plane, all three products
$Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{2}\right) Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{1}\right), Y_{21}^{\varsigma}\left(\hat{\mathbf{k}}_{2}\right) Y_{21}^{s}\left(\hat{\mathbf{k}}_{1}\right)$, and $Y_{22}^{s}\left(\hat{\mathbf{k}}_{2}\right) Y_{22}^{\varsigma}\left(\hat{\mathbf{k}}_{1}\right)$ are zero for θ $=0,90,180$, and 270°. Their sum is $\pm 0.363 \times 0.364$ for $\theta=$ 55,235 , and 305° and $3 \times 0.363 \times 0.364$ for $\theta=125^{\circ}$. This is in qualitative agreement with the spatial dcs maps presented in Figure 10. When the energy of the incident electron is 20 eV , the situation is more complicated. The highest values of $\partial U_{\mathrm{s}} / \partial q_{1}$ are localized at the positions of the hydrogen atoms (corners of the $x y z$ cube; see Figure 13). As Figure 2 shows, at r equal to the CH bond length (2.25 au), the Bessel function $j_{3}(k r)$ also has to be taken into account. Actually, $j_{3} \cdot Y_{32}^{\varsigma} \cdot j_{3} \cdot Y_{32}^{\wp}$ (Figure S 18) gives the largest contribution and must be added to the three terms in eq 20 . Also, the product $Y_{32}^{s}\left(\hat{\mathbf{k}}_{2}\right) Y_{32}^{8}\left(\hat{\mathbf{k}}_{1}\right)$ is zero for $\theta=0,90,180$, and 270°, which explains why the map for 20 eV in Figure 10 does not show any contribution at these scattering angles. However, the observed preference of backward scattering over the forward scattering cannot be explained by this simple approach. Some conclusions can be drawn from eq 20 itself. If we also add $Y_{32}^{8}\left(\hat{\mathbf{k}}_{2}\right) Y_{32}^{\gtrdot}\left(\hat{\mathbf{k}}_{1}\right)$ to the right-hand side of eq $20, k_{2}$ is represented by a combination of $Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{2}\right), Y_{21}^{s}(\hat{\mathrm{k}})_{2}$, $Y_{22}^{\gtrdot}\left(\hat{\mathbf{k}}_{2}\right)$, and $Y_{32}^{\gtrdot}\left(\hat{\mathbf{k}}_{2}\right)$, that is, by $x z-, y z-, y x$-, and $x y z$-type functions. This means that preferential directions for the

Figure 11. Spatial dcs maps for the symmetric CH stretch in CH_{4} and incident electron energies of 6 (top), 10 (center), and 20 eV (bottom). The \mathbf{k}_{1} vector is parallel to the z axis, and \mathbf{k}_{2} lies in the $\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(1)$ (left) and $\mathrm{H}(3)-\mathrm{C}-\mathrm{H}(4)$ (right) planes.
outgoing electron are along the $\mathrm{C}-\mathrm{H}$ bonds, not along directions bisecting the valence angles $\mathrm{H}-\mathrm{C}-\mathrm{H}$.

If we choose \mathbf{k}_{1} to be oriented along the z axis, the situation is different. Now, Y_{00}, Y_{10}, Y_{20}, and Y_{30} are the only $Y\left(\hat{\mathbf{k}}_{1}\right)$ functions that are significant. This excludes the four main contributions $Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{2}\right) Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{1}\right), Y_{21}^{\gtrdot}\left(\hat{\mathbf{k}}_{2}\right) Y_{21}^{\triangleleft}\left(\hat{\mathbf{k}}_{1}\right), Y_{22}^{\diamond}\left(\hat{\mathbf{k}}_{2}\right) Y_{22}^{\gtrdot}\left(\hat{\mathbf{k}}_{1}\right)$, and $Y_{32}^{\diamond}\left(\hat{\mathbf{k}}_{2}\right) Y_{32}^{2}\left(\hat{\mathbf{k}}_{1}\right)$ noted above. Scattering is therefore much weaker (Figure 11) than it was when the incident electron approached the molecule along the $\mathrm{C}-\mathrm{H}(1)$ bond. The only symmetryallowed contributions $Y_{l 2, m 2}^{\mathrm{c}, \mathrm{s}} \cdot Y_{l 1,0}$ are $Y_{00} \cdot Y_{00}\left(\mathrm{~A}_{1} \times \mathrm{A}_{1}\right)$, $Y_{20} \cdot Y_{20}(\mathrm{E} \times \mathrm{E})$, and all contributions $Y_{l 2, m 2}^{\mathrm{c}, \mathrm{s}} \cdot Y_{10}$ and $Y_{l 2, m 2}^{\mathrm{c}, \mathrm{s}} \cdot Y_{30}$ of the $\mathrm{T}_{2} \times \mathrm{T}_{2}$ symmetry (See Table 1). Again, the inspection of Figures $3-5$ and $\mathrm{S} 1-\mathrm{S} 18$ can reduce this list. As a matter of fact, no ideal fit to $\partial U_{\mathrm{s}} / \partial q_{1}$ is found. $Y_{32}^{\diamond}\left(\hat{\mathbf{k}}_{2}\right) Y_{00}\left(\hat{\mathbf{k}}_{1}\right)$ (Figure S16) seems to conform best, followed by $Y_{10}\left(\hat{\mathbf{k}}_{2}\right) Y_{10}\left(\hat{\mathbf{k}}_{1}\right)$ (Figure 3) and $Y_{30}\left(\hat{\mathbf{k}}_{2}\right) Y_{22}^{\diamond}\left(\hat{\mathbf{k}}_{1}\right)$ (Figure S14), and to a lesser extent to $Y_{20}\left(\hat{\mathbf{k}}_{2}\right) Y_{20}\left(\hat{\mathbf{k}}_{1}\right)$ (Figure S 2). Hence, we express eq 11 in the form

$$
\begin{aligned}
\left\langle k_{2}\right| T_{10}\left|k_{1}\right\rangle & \approx C_{32,00}^{s c} Y_{32}^{s}\left(\hat{\mathbf{k}}_{2}\right) Y_{00}\left(\hat{\mathbf{k}}_{1}\right)+C_{10,10} Y_{10}\left(\hat{\mathbf{k}}_{2}\right) Y_{10}\left(\hat{\mathbf{k}}_{1}\right)+ \\
& C_{22,30}^{s} Y_{22}^{s}\left(\hat{\mathbf{k}}_{2}\right) Y_{30}\left(\hat{\mathbf{k}}_{1}\right)+C_{20,20} Y_{20}\left(\hat{\mathbf{k}}_{2}\right) Y_{20}\left(\hat{\mathbf{k}}_{1}\right)
\end{aligned}
$$

and assume accordingly that the plane-wave function k_{2} can be represented as a linear combination of $Y_{32}^{\diamond}, Y_{10}, Y_{22}^{\diamond}$, and Y_{20}. Y_{10} and Y_{20} are z and z^{2} functions, respectively, and they direct the outgoing electron along the z axis (forward and backward). Y_{32}^{\lessgtr} and Y_{22}^{ς} are xyz- and $x y$-type functions, respectively, and together, they orient the outgoing electron into the "wings" of plots in Figure 11. If those maps are plotted as z versus x and z versus y plots, the maps lose their "wings", and only forward and backward scattering is observed because Y_{32}^{\gtrdot} and Y_{22}^{\gtrdot} are zero in these planes. In contrast to the preceding case of \mathbf{k}_{1} parallel to the $\mathrm{C}-\mathrm{H}(1)$ bond, the outgoing electron avoids the hydrogen atoms.

Consider now the bending mode v_{2}. Its symmetry is e, which means that allowed pairs of spherical functions in eq 11 must be of $A_{1} \times E, T_{1} \times T_{1}, T_{1} \times T_{2}$, or $T_{2} \times T_{2}$ symmetry. The list of allowed terms can be reduced by inspection of Figures 3-5 and S1-S18, which suggest that for low energies (6 and 10 eV), the best fit for the $\partial U_{\mathrm{s}} / \partial q_{2}$ map (Figure 13) is provided by $Y_{22}^{\mathrm{s}} \cdot Y_{22}^{\mathrm{s}}, Y_{21}^{\mathrm{c}} \cdot Y_{21}^{\mathrm{c}}, Y_{21}^{\mathrm{s}} \cdot Y_{21}^{\mathrm{s}}$, and to a lesser extent by $Y_{22}^{\mathrm{s}} \cdot Y_{10}$ and $Y_{10} \cdot Y_{22}^{\wp}$ terms. This means that, as with the symmetric stretch, the T_{10} element can be approximated by eq 20 . We limit

Figure 12. Spatial dcs maps for the e bending mode of CH_{4} and incident electron energies of 6 (top), 10 (center), and 20 eV (bottom). The \mathbf{k}_{1} vector is parallel to the z axis, and \mathbf{k}_{2} lies in the $\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(1)$ (left) and $\mathrm{H}(3)-\mathrm{C}-\mathrm{H}(4)$ (right) planes. Note that the maps are on different scales.
ourselves to the case of \mathbf{k}_{2} lying in the $\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(1)$ plane. Figure S 11 shows that the $j_{2} \cdot Y_{22}^{\wp} \cdot j_{2} \cdot Y_{22}^{\wp}$ density is higher in the region where $\partial U_{\mathrm{s}} / \partial q_{2}$ is negative than in the region where $\partial U_{\mathrm{s}} / \partial q_{2}$ is positive (Figure 13). In contrast, $j_{2} \cdot Y_{21}^{\mathrm{c}} \cdot \dot{j}_{2} \cdot Y_{21}^{\mathrm{c}}$ and $j_{2} \cdot Y_{21}^{\diamond} \cdot j_{2} \cdot Y_{21}^{s}$ densities (Figure S5) are higher in the region where $\partial U_{\mathrm{s}} / \partial q_{2}$ is positive than they are in the region where $\partial U_{\mathrm{s}} / \partial q_{2}$ is negative. Therefore, we may conclude that $C_{22,22}^{\mathrm{ss}}$ is of the opposite sign than $C_{21,21}^{\mathrm{cc}}$ and $C_{21,21}^{\mathrm{ss}}$. From eqs 13 and 14 , it may be concluded (from the imaginary factor) that $C_{10,22}^{\mathrm{cs}} \approx$ $-C_{22,10}^{\mathrm{sc}}$. Consider two orientations of \mathbf{k}_{1}. For \mathbf{k}_{1} parallel to the $\mathrm{CH}(1)$ bond, $Y_{10}\left(\hat{\mathbf{k}}_{1}\right)=-0.282, Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{1}\right)=0.364, Y_{21}^{\gtrdot}\left(\hat{\mathbf{k}}_{1}\right)=$ -0.364 , and $Y_{22}^{\diamond}\left(\hat{\mathbf{k}}_{1}\right)=-0.364$. This permits us to estimate relative ratios of differential cross sections for four preferential directions of \mathbf{k}_{2}. For forward scattering $\left(\theta=125^{\circ}\right)$, $Y_{22}^{s}\left(\hat{\mathbf{k}}_{2}\right) Y_{10}\left(\hat{\mathbf{k}}_{1}\right)=(-0.364) \times(-0.282)=0.103$ and $Y_{10}\left(\hat{\mathbf{k}}_{2}\right) Y_{22}^{\varsigma}\left(\hat{\mathbf{k}}_{1}\right)=(-0.282) \times(-0.364)=0.103$. Thus, the two contributions tend to cancel (because $C_{10,22}^{\mathrm{cs}} \approx-C_{22,10}^{\mathrm{sc}}$, as noted above). Also $Y_{21}^{c} Y_{21}^{c}$ and $Y_{21}^{¢} Y_{21}^{\infty}$ tend to cancel the $Y_{22}^{\diamond} Y_{22}^{\diamond}$ contribution because $Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{2}\right) Y_{21}^{\mathrm{c}}\left(\hat{\mathbf{k}}_{1}\right)=0.364 \times 0.364=$ $0.135, Y_{21}^{\varsigma}\left(\hat{\mathbf{k}}_{2}\right) Y_{21}^{\diamond}\left(\hat{\mathbf{k}}_{1}\right)=(-0.364) \times(-0.364)=0.135$, and $Y_{22}^{s}\left(\hat{\mathbf{k}}_{2}\right) Y_{22}^{s}\left(\hat{\mathbf{k}}_{1}\right)=(-0.364) \times(-0.364)=0.135$. This partial
cancellation occurs because the sign of $C_{22,22}^{\mathrm{ss}}$ is opposite of those of $C_{21,21}^{\mathrm{cc}}$ and $C_{21,21}^{\text {ss }}$. The same cancellation occurs with backward scattering. In contrast, at $\theta=55$ and 235°, the three contributions are of the same sign, giving rise to two lobes observed in spatial dcs maps (Figure 10). For the energy of 20 eV , the situation is more complicated. For this energy, the Bessel function j_{3} (Figure 2) has an appreciable value in the region of high $\partial U_{\mathrm{s}} / \partial q_{2}$ density (Figure 13), and contributions with $l=3$ cannot be excluded a priori. Actually, Figure S13 shows that the term $j_{3} \cdot Y_{32}^{ో} \cdot j_{2} \cdot Y_{20}$ conforms ideally to the $\partial U_{s} / \partial q_{2}$ density, and therefore, it also should be taken into account. Assuming \mathbf{k}_{1} to be parallel to the $\mathrm{CH}(1)$ bond, $Y_{20}\left(\hat{\mathbf{k}}_{1}\right)$ $=0.000$ and $Y_{32}^{\gtrdot}\left(\hat{\mathbf{k}}_{1}\right)=0.556$. Hence, we are only left with the $Y_{20}\left(\hat{\mathbf{k}}_{2}\right) Y_{32}^{\triangleleft}\left(\hat{\mathbf{k}}_{1}\right)$ term. Its value is largest in the $+z$ and $-z$ directions, giving rise to two additional lobes in the spatial dcs map for this energy (Figure 10).

If \mathbf{k}_{1} is parallel to the z axis, the nonvanishing components of k_{1} are only Y_{00}, Y_{10}, Y_{20}, and Y_{30}, and the main terms from the last paragraph, $Y_{22}^{\varsigma} \cdot Y_{22}^{¢}, Y_{21}^{c} \cdot Y_{21}^{c}$, and $Y_{21}^{\prec} \cdot Y_{21}^{乃}$, cannot contribute. Differential cross sections for this orientation of \mathbf{k}_{1} are therefore considerably smaller (compare scales of Figures 10

Figure 13. Maps of the derivative of the electrostatic potential of CH_{4} with respect to the symmetric stretching (top) and bending 2a (bottom) normal coordinates. The plots are in the $\mathrm{H}(2)-\mathrm{C}-\mathrm{H}(1)$ (left) and $\mathrm{H}(3)-\mathrm{C}-\mathrm{H}(4)$ (right) planes, and the center of mass is at $z=0$. The step in contours is 0.1 .
and 12) and do not show much anisotropy. The difference of the spatial dcs maps for the energy of 20 eV from those for 6 and 10 eV can be explained by the contribution of terms with $l=3$. A distinct contribution is due to the $j_{3} \cdot Y_{30} \cdot{ }_{3} \cdot Y_{30}$ term (Figure S13), which gives rise to forward scattering.

5. Conclusions

We have found that it is possible to understand the results of ab initio computations of the angular distribution of vibrationally inelastic nonresonant scattering qualitatively in relatively simple terms. If the form of the vibrational normal modes is known, this can actually be done without recourse to a computer. The procedure is as follows: (1) guess the $\partial U / \partial q_{i}$ map from the geometrical representation of the normal mode alone, as explained in section 2.2; (2) inspect Bessel functions in Figure 2 and select those that have appreciable value in the range of high values of $\Delta U_{s} / \Delta q_{i}$; (3) fix the \mathbf{k}_{1} vector and determine the nonvanishing $Y_{l m}$ values for this orientation; (4) set up a truncated expansion of the $<k_{2}\left|\partial U / \partial q_{i}\right| k_{1}>$ element, as shown by eq 11 ; (5) inspect the contributions to the plane-wave function k_{2} and, with help of their weights $\left(Y_{l 2 m 2} \cdot Y_{l 1 m 1}\right.$ in eq 11), determine the preferential directions for the scattered electron. If desired, instead of guessing the $\partial U / \partial q_{i}$ map, as described in section 2.2 , it is possible to obtain it in a somewhat more laborious but also more reliable way by means of commonly accessible quantum chemical software. For the selected i th vibrational mode of the target, electrostatic potential maps can be calculated at the geometries distorted from the equilibrium geometry along the vibrational coordinate q_{i} by $+\Delta q_{i}$ and $-\Delta q_{i}$. By numerical differentiation, the $\Delta U_{s} / \Delta q_{i}$ map is obtained.

We illustrate the procedure on the examples of H_{2} and CH_{4} molecules. In both cases, the qualitatively deduced angular
distribution agrees with the calculated spatial dcs maps. It has not been our primary objective to develop an approximate method of calculation of vibrationally inelastic vibrational cross sections but, rather, to obtain intuitive understanding of the results of the ab initio method. Still, it is conceivable that the simple procedure could be used to make qualitative predictions for larger molecules, including those for which a full ab initio treatment may be presently prohibitively expensive. It is unclear whether the number of required Bessel functions (Figure 2) would then not become excessive, even for localized vibrations, and we intend to examine these issues next.

Acknowledgment. This work was supported by the NSF (CHE-0446688, OISE-0532040), the Czech Ministry of Education (Kontakt ME857), the EIPAM project sponsored by the European Science Foundation (Grant No. PESC7-20), and the Academy of Sciences of the Czech Republic (Grants No. A100400501 and 1ET400400413). One of us (B.P.) thanks the ESF for the EIPAM Fellowship.

Supporting Information Available: Additional maps of 18 $l 2 m 2, l 1 m 1$ pairs of $j_{l 2} \cdot Y_{l 2 m 2} \cdot j_{l 1} \cdot Y_{l 1 m 1}$ for $l \leq 3$. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Read, F. H. J. Phys. B 1968, $1,893$.
(2) Bardsley, J. N.; Mandl, F.; Wood, A. R. Chem. Phys. Lett. 1967, 1, 359 .
(3) Bardsley, J. N.; Read, F. H. Chem. Phys. Lett. 1968, 2, 333.
(4) Andrick, D.; Read, F. H. J. Phys. B 1971, 4, 389.
(5) Schulz, G. J. Rev. Mod. Phys. 1973, 45, 423.
(6) Wong, S. F.; Schulz, G. J. Phys. Rev. Lett. 1975, 35, 1429.
(7) Gallup, G. A. J. Chem. Phys. 1993, 99, 827.
(8) Allan, M.; Moreira, O. J. Phys. B 2002, 35, L37.
(9) Merz, R.; Linder, F. J. Phys. B 2003, 36, 1143.
(10) Itikawa, Y. J. Phys. B 2004, 37, R1.
(11) Čurík, R.; Čársky, P. J. Phys. B 2003, 36, 2165.
(12) Popovič, D. B.; David, D. E.; Michl, J.; Čurík, R.; Čársky, P. J. Chem. Phys. 2004, 121, 1055.
(13) Itikawa, Y. Int. Rev. Phys. Chem. 1997, 16, 155.
(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.
(15) Dupuis, M. M.; Farazdel, A.; Karna, S. P.; Maluendes, S. A. HONDO: A General Atomic and Molecular Electronic Structure System. In Modern Techniques in Computational Chemistry: MOTECC-90; Clementi, E., Ed.; ESCOM Science Publishers: Leiden, The Netherlands, 1990; p 277.
(16) Altmann, S. L. S. L. Proc. Cambridge Philos. Soc. 1957, 53, 343.

[^0]: † Part of the "Giacinto Scoles Festschrift".

 * To whom correspondence should be addressed. E-mail: carsky@ jh-inst.cas.cz.
 * Academy of Sciences of the Czech Republic.
 ${ }^{8}$ University of Podlesie.
 ${ }^{£}$ University of Colorado.

