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Polar graphs for differential cross section (dcs) called spatial dcs maps are presented as graphical representation
of the angular distribution of vibrationally inelastic electron scattering by polyatomic molecules. The objective
of this paper is to show that an intuitive understanding of the principal features of these graphs can be obtained
from a simple analysis of the normal modes of vibration of the target molecule and plane-wave functions
representing the scattering electron. The procedure is illustrated on the H2 and CH4 molecules.

1. Introduction

The title of this paper has been intentionally selected as a
counterpart to the title of F. H. Read’s pioneering paper1

“Angular Distributions for Resonant Scattering of Electrons by
Molecules”. Indeed, since the early attempts2-6 to explain and
predict angular distributions of vibrational excitation of mol-
ecules by electron impact, attention has been focused on resonant
scattering, as illustrated by more recent applications (see, for
example, refs 7-9) and by a recent comprehensive review.10

In this paper, we concentrate on nonresonant scattering. More
precisely, since resonant and nonresonant scattering cannot be
rigorously distinguished, we deal with electron scattering at
energies that do not correspond to shape resonances. In our
application of the static exchange approximation to H2 and H2O
molecules,11 lacking explicit interaction with resonant states,
the resonances are still reproduced to some extent, though, in
the calculated energy dependence of the integral vibrational cross
section, the maxima corresponding to resonances are underes-
timated and shifted to higher energies. Hence, it seems to us
that a theory based on symmetry arguments for nonresonant
scattering can be a good starting point for a future develop-
ment of a unified theory for both resonant and nonresonant
scattering. The objective of this paper is to demonstrate how
the principal features of the angular distribution of vibrationally
inelastic scattering can be deduced from simple consideration
of symmetry and the form of normal modes without reference
to the full complexity of the quantitative tools of scattering
theory.

Thus, we are not trying to devise an approximate method for
the calculation of the angular dependence of vibrationally
inelastic scattering cross sections that would replace the full-
blown complex static exchange ab initio calculation. Rather,
we are reporting that it is possible to understand qualitatively
and in simple intuitive terms the results of such computations,

and we illustrate the procedure on H2 and CH4. Since the full
static exchange calculations are already known to agree with
experimental data for energies higher than about 8 eV (see, for
example, refs 10,12), we do not need to address a comparison
with experiment here. It is conceivable that the simple analysis
devised here might provide useful predictions for larger
molecules as well, and we intend to examine this possibility
elsewhere.

For infrared (IR)-active modes, a simple rule is available
according to which forward scattering dominates.13 Here,
we treat IR-inactive modes, that is, modes with a zero derivative
of the dipole moment with respect to the normal coordinate.

2. Theory

2.1. Spatial Differential Cross Section Maps.For graphical
representation of the angular distribution of vibrationally
inelastic electron scattering, we use graphs called spatial
differential cross section (dcs) maps. These are three-dimen-
sional polar plots of differential cross sections. Thek1 vector
for the incoming electron is fixed along a selected significant
direction in the molecular framework, for example, parallel or
perpendicular to a principal molecular axis or parallel to a bond.
The value of the differential cross section is plotted along the
direction of thek2 vector, which describes the direction of the
outgoing electron. The spatial dcs maps are constructed using
the formula

which represents a transformation of the dcs from the plane-
wave basis to the basis of spherical harmonics. The differential
cross sectionDji is defined as the probability for the electron
scatteringk i f k j. The coefficientsAlm,l′m′ can be derived from
eq 1 as

where wi and wj are weights in the angular quadrature.
Solution of the Lippmann-Schwinger equation by numerical
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quadrature yields the differential cross section for a definite
number of pairs ofk1 andk2 vectors as given by the angular
quadrature.11 These are used for obtainingAlm,l′m′ coefficients
from eq 2. Once theAlm,l′m′ values are available, the dcs can
be evaluated for any pair ofk1 and k2 by means of eq 1.
As is apparent from figures in the next sections, the spatial dcs
maps exhibit distinct anisotropy. We will show that the main
features of spatial dcs maps can be estimated without scattering
calculations and evaluation ofAlm,l′m′ coefficients by means of
simple considerations based on symmetry arguments alone.

2.2. Approximate T10 Maps. As with transition moments in
photon spectroscopy, we require that the integrand of the
amplitude -2π2<ø1k1|T|ø0k0> for the 1 r 0 vibrational
excitation be totally symmetric. In the two-channel approxima-
tion, the T operator is given11 by the Lippmann-Schwinger
equation as

where the subscripts 10 and 00 refer to the transitions 1r 0
and 0r 0, respectively. Since the Green’s functionsG0 and
G1 are totally symmetric, the symmetry of theT10 operator
is determined by the symmetry ofU10. If the harmonic
approximation is adopted,U10 for the ith normal mode can be
taken11 as the derivative of the electron-molecule interaction
potential with respect to theith dimensionless normal coordinate

Hence, the symmetry ofT10 is the same as that ofqi. For
qualitative estimates, we may neglect the exchange term in the

interaction potentialU and constructU10 from the static potential
Us alone.Us can be easily obtained from standard quantum
chemical software. Commonly used programs such as Gauss-
ian14 or Hondo15 have an option that permits a calculation of
electrostatic potential maps. By calculating electrostatic potential
maps at geometries displaced by+∆qi and-∆qi along theith
vibrational coordinate, we can obtain the numerical derivative
∆Us/∆qi, which when multiplied by a factor of 1/x2 can be
taken as an approximation to theT10 interaction potential. The
use of maps so obtained will be explained below.

In fact, for the purpose of symmetry considerations, the
∆Us/∆qi maps need not be calculated. The pattern of∂Us/∂qi

(see Figure 1) looks like a set of oppositely charged circles. On
each atom, the line connecting their centersCi is oriented along
the direction of motion followed by that atom during a
displacement of molecular geometry along the respective normal
coordinate. Hence, the symmetry behavior of theT10 interaction
potential can be visualized as

wheresi are charged spheres with a radius of 0.7Qi centered at
points Ci +0.7Qi and Ci - 0.7Qi. Hereafter,Qi are normal
coordinates normalized to unity (in au), whereasqi are dimen-
sionless normal coordinates. The adjustable parameter of 0.7
fits best to the∂Us/∂qi maps of H2 and CH4. Comparison of the
true and simulated∂Us/∂qi maps in Figure 1 shows that simulated
maps can be used as a simple tool for symmetry considerations.
In this paper, however, we use∂Us/∂qi maps calculated
rigorously.

Figure 1. Maps of derivative of the electrostatic potential of H2 with respect to the normal coordinate in theσxz plane (top) and of CH4 with respect
to the symmetric stretching normal coordinate in the H(3)-C-H(4) plane (bottom). The maps on the left were calculated rigorously, and those on
the right were simulated by means of eq 6. Red and yellow mark regions of positive values, and blue regions mark those with negative values. The
step in contours is 0.1.

T10 ≈ ∑
i

3N

[si(+r i) + si(-r i)] (6)

T10 ) U10 + U10G0T00 + U11G1T10 (3)

T00 ) U00 + U00G0T00 + U01G1T10 (4)

U10 ) (1/x2) ∂U/∂qi (5)
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Assignment of symmetries to plane-wave functions requires
their partial-wave expansion, used already in the very first
attempts to explain angular distributions for the vibrational
excitation of molecules by electron impact.1,4 The formula for
the partial-wave expansion is

For symmetry considerations, it is convenient to use real
spherical harmonics defined as

and to express the plane-wave function as

Tables with symmetries of spherical harmonicsYl0, Ylm
c , and

Ylm
s can be found in the literature.16 Hence, the integral

<k2|T10|k1> is nonvanishing on symmetry grounds if the
irreducible representationΓ(qi) is contained in the product
Γ(Yk2,l2m2) × Γ(Yk1,l1m1) of any pair of components of plane-
waves|k2> and |k1>. By means of partial-wave expansion of
|k2> and |k1> plane-wave functions, we can express theT10

matrix element as follows

where the complex coefficientsC are

NonvanishingC coefficients are only those for which the
productYl2m2‚Yl1m1 has a component of the same symmetry as
that of the vibrational coordinateqi. We can also exclude
additionalC coefficients from the inspection of spherical Bessel
functionsjl and the shapes ofYlm functions. This will be done
in the following paragraphs.

Figure 2. Spherical Bessel functionsj l for the electron energies of 6
(top), 10 (center), and 20 eV (bottom).

eik‚r ) 4π ∑
l)0

∞

∑
m)-l

m)l

i lj l(kr)Y*lm(ϑr,ær)Ylm(ϑk,æk) (7)

Yl,m
c ) 1

x2
(Yl,m + Yl,-m) if m ) 0 Yl0

c ) Yl0 (8)

Yl,m
s ) -i

1

x2
(Yl,m - Yl,-m) if m ) 0 Yl0

s ) 0 (9)

TABLE 1: Real Spherical Functions

symmetry

D4h Td

Ylm

(θ ) 0°,
æ ) 0°)

Ylm

(θ ) 90°,
æ ) 0°)

Ylm

(θ ) 180°,
æ ) 0°)

Y00 A1g A1 0.2821 0.2821 0.2821
Y10 A2u T2 0.4886 0 -0.4886
Y11

c Eu T2 0 -0.4886 0
Y11

s Eu T2 0 0 0
Y20 A1g E 0.6308 -0.3154 0.6308
Y21

c Eg T2 0 0 0
Y21

s Eg T2 0 0 0
Y22

c B1g E 0 0.5463 0
Y22

s B2g T2 0 0 0
Y30 A2u T2 0.7464 0 -0.7464
Y31

c Eu T1 + T2 0 0.4570 0
Y31

s Eu T1 + T2 0 0 0
Y32

c B2u T1 0 0 0
Y32

s B1u A1 0 0 0
Y33

c Eu T1 + T2 0 -0.5900 0
Y33

s Eu T1 + T2 0 0 0

eik‚r )

4π ∑
l)0

∞

i lj l(kr) ∑
m)0

m)l

[Ylm
c (ϑr,ær)Ylm

c (k̂) + Ylm
s (ϑr,ær)Ylm

s (k̂)] (10)

〈k2|T10|k1〉 )

∑
l2)0

∑
m2)0

l2

∑
l1)0

∑
m1)0

l1

[Cl2m2,l1m1
cc Yl2m2

c (k̂2)Yl1m1
c (k̂1) +

Cl2m2,l1m1
cs Yl2m2

c (k̂2)Yl1m1
s (k̂1) + Cl2m2,l1m1

sc Yl2m2
s (k̂2)Yl1m1

c (k̂1) +

Cl2m2,l1m1
ss Yl2m2

s (k̂2)Yl1m1
s (k̂1)] (11)

Cl2m2,l1m1
cc )

16π2(i l2)*i l1〈j l2(k2r)Yl2m2
c (ϑr,ær)|T10|Yl1m1

c (ϑr,ær)j l1(k1r)〉 (12)

Cl2m2,l1m1
cs )

16π2(i l2)*i l1〈j l2(k2r)Yl2m2
c (ϑr,ær)|T10|Yl1m1

s (ϑr,ær)j l1(k1r)〉 (13)

Cl2m2,l1m1
sc )

16π2(i l2)*i l1〈j l2(k2r)Yl2m2
s (ϑr,ær)|T10|Yl1m1

c (ϑr,ær)j l1(k1r)〉 (14)

Cl2m2,l1m1
ss )

16π2(i l2)*i l1〈j l2(k2r)Yl2m2
s (ϑr,ær)|T10|Yl1m1

s (ϑr,ær)j l1(k1r)〉 (15)
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2.3. Spherical Bessel Functions.In Figure 2, we display
spherical Bessel functionsj0-j4 for electron energies of 6, 10,
and 20 eV. As will be shown in the figures below, the derivative
of the interaction potential∂U/∂qi, and therefore also theT10

interaction potential, decay outside of the electronic cloud of
the molecule. Hence, if the integral in eq 11 is to have a
significant value, the Bessel functionsjl1 and jl2 need to have
an appreciable value just in the region where the electronic
density is high. Figure 2 shows that this is satisfied only for
the lowest values ofl.

2.4. Shapes of Spherical Functions.Since theYl2m2 functions
in eqs 12-15 determine the direction of the outgoing electron
(seeYl2m2

c (k̂2) andYl2m2
s (k̂2) in eq 11), it is useful to recall the

shapes ofYlm functions. For example, ifYl2m2 is Y10, Y20, or Y30,
the favored direction for the outgoing electron is along thez
axis. However, a nonzero value of aCl2m2,l1m1 coefficient is not

a sufficient condition for making this coefficient contribute.
Also, the value ofYl1m1(k̂1) in eq 11 for the incoming electron
must be nonzero. TheC00,l1m1 coefficients contribute to isotropic
scattering because theY00 function (contributing tok2) has no
angular dependence. Because of the very anisotropic angular
distribution observed in spatial dcs maps, we may assume that
contributions fromC00,l1m1 will be small. The properties of real
spherical functionsYlm

c andYlm
s used in this paper are listed in

Table 1.
2.5. Maps for Products of Spherical Functions.Values of

coefficientsC in eqs 12-15 can only be large if the symmetry
of the productjl2‚Yl2m2‚jl1‚Yl1m1 conforms to the symmetry of
T10. This can be checked quickly by comparing the map of
jl2‚Yl2m2‚jl1‚Yl1m1 with the map ofT10. As a substitute, the latter
can be represented by the map of the derivative of the
electrostatic potential, calculated or guessed from the geo-

Figure 3. Maps ofj0‚Y00‚j0‚Y00 (left) andj1‚Y10‚j1‚Y10 (right) for energies of 6 (top), 10 (center), and 20 eV (bottom). The maps are contoured with
steps of 0.005. The contours with the highest values are at 0.075 (left) and 0.045 (right). The maps are invariant with respect to rotation around the
z axis.
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metrical representation of the normal mode alone, as noted
above. The maps ofjl2‚Yl2m2‚jl1‚Yl1m1 are general and can be
precalculated and used for any molecular target. Contour graphs
for productsjl2‚Yl2m2‚jl1‚Yl1m1 with l e 1 are plotted in Figures
3-5. Some other relevant products are available in the Sup-
porting Information (Figures S1-S18). Compared to the energy
of the incoming electron (6, 10, or 20 eV), the vibrational
excitation energy is small, and we can assume thatk1 ≈ k2.
Therefore, the twojl2(kr) and jl1(kr) functions were evaluated
for the same value ofk.

2.6. Symmetry Considerations.As with the “allowed”
transitions in photon spectroscopy, we require that the product
k2‚T10‚k1 must contain a component which represents a totally
symmetric integrand. It is therefore necessary to find a map of
jl2‚Yl2m2‚jl1‚Yl1m1 which matches the∂Us/∂qi map. In Figure 6,

we present an example of an “allowed” and “forbidden”
contribution. Obviously, in general, the situation is not as ideal
as that in Figure 6, but at least with small symmetric molecules,
a determination of allowed contributions is feasible.

In the next section, we will show the procedure for selecting
the most relevant allowed contributions on the examples of H2

and CH4 molecules. We will proceed according to the following
scheme. First, we will plot the∂Us/∂qi maps as an approximation
of the T10 maps. Then, we eliminateYlm functions for which
the Ylm(k̂1) values are zero. The success of this procedure
depends on the selection ofjl2‚Yl2m2‚jl1‚Yl1m1 maps that match
the ∂Us/∂qi best. This permits us to truncate the expansion in
eq 11 to a few terms and to predict the preferential angular
distribution for a particular vibrational mode.

Figure 4. Maps of j1‚Y11
c ‚j1‚Y11

c for energies of 6 (top), 10 (center), and 20 eV (bottom). The maps are plotted in planesz versusx (æ ) 0°, left)
and H(2)-C-H(1) (æ ) -45°, right). The same maps are obtained forj1‚Y11

s ‚j1‚Y11
s for energies of 6 (top), 10 (center), and 20 eV (bottom) when

plotted in planesz versusy (æ ) 90°, left) and H(2)-C-H(1) (æ ) -45, right).
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3. Spatial DCS Maps for the H2 Molecule

In Figure 7, we present spatial dcs maps for incident electron
energies of 6, 10, and 20 eV, obtained by rigorous solution of
the Lippmann-Schwinger equation in the static exchange
approximation (eqs 1-4).

3.1. Approximate T10 Map. We start the analysis of the
angular distribution by plotting the derivative of the static
potential,∂Us/∂q, with respect to the normal coordinate. It may
be assumed that the plot forT10 would have similar features.
The shape of the plot (Figure 8) indicates whichjl and Ylm

functions in eqs 12-15 are optimal for high values of the
coefficientsCl2m2,l1m1.

3.2. Selection of Bessel Functions.Figure 8 shows that the
absolute value of∂Us/∂q is highest close to the positions of the
nuclei. From Figure 2, it is seen that only thej0, j l, and j2
functions have appreciable values in this region. Hence, the
summation in eq 11 can be limited tol e 2.

3.3. Nonvanishing Ylm Values for Fixed k1 Vectors.
Consider separately the case ofk1 parallel to the molecular
axisz andk1 perpendicular toz. For the orientationk1 parallel
to z, only Y00, Y10, and Y20 have nonzero values. In the
case ofk1 perpendicular toz in the σxz plane, the nonvanish-
ing Yl1m1 functions with l e 2 in eq 11 areY00, Y11

c , Y20, and
Y22

c .
3.4. Truncated Expansion of<k2|DU/Dqi|k1> and Prefer-

ential Angular Distribution. Next, we examine which products
of spherical functions have the same symmetry as the normal
mode. For simplicity, we reduce the three-dimensional dcs map
to a two-dimensional plot in theσxz plane, and we consider the
D4h point group. Hence, the product of the two spherical
functions must also have a1g symmetry. This condition is
satisfied for Y20‚Y00 and all diagonal productsYlm

c ‚Ylm
c and

Ylm
s ‚Ylm

s . From Figures 3-5 and S1-S18 (in the Supporting
Information), it is seen that plots forY10‚Y10, followed by

Figure 5. Maps of j1‚Y11
c ‚j1‚Y10 for energies of 6 (top), 10 (center), and 20 eV bottom). The maps are plotted in planesz versusx (æ ) 0°, left)

and H(2)-C-H(1) (æ ) -45°, right). Yellow and red mark regions of positive values, and blue regions are of negative values. The maps are
contoured with steps of 0.005. The same maps are obtained forj1‚Y11

s ‚j1‚Y10 when plotted in planesz versusy (æ ) 90°, left) and that withæ )
-45° (right).
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Y00‚Y00 and Y20‚Y20, match the map of∂Us/∂q best. Consider
therefore the amplitude in the following form

All three products have the right symmetry. Some products of
Y11

c , Y11
s , and alsoY30, Y31

c , Y31
s , Y33

c , and Y33
s can conform by

symmetry, but their contributions will be small because of the
size mismatch.C00,00 and C00,20 represent theY00 isotropic
contribution tok2 and can be therefore expected to be small.
Compared to the energy of the incoming electron (6, 10, or 20
eV), the vibrational excitation energy is small, and we can
assume thatk1 ≈ k2 and, consequently,C20,00 ≈ C00,20 and, in
general,Cl2m2,l1m1 ≈ Cl1m1,l2m2.

Consider first the case ofk1 parallel to the molecular axisz.
For this orientation, onlyY00, Y10, andY20 have nonzero values.
Y10(k̂2) andY20(k̂2) orient k2 along thez axis, thoughY20 has
also a small lobe perpendicular toz. Nevertheless, we can expect
that the shape of the plot in the spatial dcs map is determined
by the C10,10 contribution. Next, we calculate the weights of
contributions by evaluation of spherical harmonics (from Table
1) in eq 16. Weights ofY(k̂2)‚Y(k̂1) favor the location ofk2 in
the+z and-z directions. Notice that the graphs for 6, 10, and
20 eV in Figure 7 are not plotted on the same scale. As the
energy of the scattering electron is increased, the overlap of
j1‚Y10‚j1‚Y10 with ∂Us/∂q drops, and the differential cross section
decreases. Fork2 (θ ) 90°) perpendicular tok1 (θ ) 0°), we
haveY10(k̂2) ) 0, and the main contribution given byC10,10

vanishes.C20,00andC20,20contributions are again small because
Y20 is primarily oriented along thez axis and has only a small
lobe perpendicular to thez direction. Also, C00,20 is small
becauseC20,00 ≈ C00,20, as already noted. Moreover, the two
contributions tend to cancel becauseY20(k̂2)‚Y00(k̂1) ) -0.0890
and Y00(k̂2)‚Y20(k̂1) ) 0.1779. Compared to the forward and
backward scattering, the scattering perpendicular to the molec-
ular axis can be expected to be small, and this agrees with the
calculated spatial dcs maps (Figure 7).

In the case ofk1 perpendicular to the molecular axisz in the
σxz plane, the nonvanishingYl1m1 functions withl e 2 in eq 11
are Y00, Y11

c , Y20, andY22
c . The map forY22

c ‚Y22
c in Figure S11

indicates that this contribution can be disregarded. It may be
assumed that the amplitude can be approximated as

All three terms in eq 17 give rise only to weak scattering
oriented along thex axis, in accordance with the spatial dcs
map in Figure 7. Preference for forward over backward
scattering is due to a partial cancellation of the three terms in
eq 17, but this cannot be determined from symmetry alone.

4. Spatial DCS Maps for the CH4 Molecule

With the methane molecule, two normal modes are IR active
and two are IR inactive. According to the spectroscopic
convention, the symmetric stretch is designated asν1. It is of
a1 symmetry, and the normal coordinate is

The bending mode of e symmetry is designated asν2, and the
normal coordinate is

The meaning of indices 1-4 is defined in Figure 9. The spatial
dcs maps for coordinatesQ1 andQ2a and electron energies of
6, 10, and 20 eV are presented in Figure 10 fork1 oriented
along the direction of the C-H(1) bond and in Figures 11 and
12 for the positive direction along thez axis. Thek2 vector is
chosen to lie in the planes defined by atoms H(1), C, and H(2)
(æ2 ) 135°) and H(3), C, and H(4) (æ2 ) 45°).

4.1. Approximate T10 Maps. We start the analysis of the
angular distribution by inspection of the maps of the derivative
of the static potential,∂Us/∂q, with respect to normal coordinates.
Figure 13 shows that the derivative is highest close to positions

Figure 6. T10 map of H2 approximated by the derivative of the
electrostatic potential with respect to the vibrational stretching coor-
dinate (top). Thej1‚Y11

c ‚j1‚Y10 map (center) does not match this map,
and its contribution to the total amplitude vanishes. Thej1‚Y10‚j1‚Y10

map (bottom) is oriented along thezaxis similar to theT10 map, which
suggests that the favored orientations ofk1 andk2 are along thez axis
(forward and backward scattering fork1 parallel to thez axis).

〈k2|T10|k1〉 ≈ C00,00Y00(k̂2)Y00(k̂1) +

C11,11
cc Y11

c (k̂2)Y11
c (k̂1) + C20,20Y20(k̂2)Y20(k̂1) (17)

Q1 ) 1/2(r1 + r2 + r3 + r4) (18)

Q2a ) (1/x12)(2R12 - R13- R23 + 2R34- R14- R24) (19a)

Q2b ) 1/2(R23- R13 + R14- R24) (19b)
〈k2|T10|k1〉 ≈ C00,00

cc Y00(k̂2)Y00(k̂1) +

C20,20
cc Y20(k̂2)Y20(k̂1) + C10,10

cc Y10(k̂2)Y10(k̂1) (16)
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of hydrogen atoms, that is, about 2 au from the origin of the
coordinate system along the C-H bonds, and that it can be taken
as vanishingly small forr > 4 au.

4.2. Selection of Bessel Functions.In contrast to the
hydrogen molecule, plots of Bessel functions in Figure 2 indicate
that in addition toj0, j1, and j2, the functionj3 may also have

appreciable values in the region where the derivative of the static
potential is large. The limitation tol e 2 in eqs 12-15 is only
justified for 6 and 10 eV.

4.3. NonvanishingYlm Values for the Fixed k1 Vectors. If
we choosek1 to be oriented along the CH(1) bond (θ ) 125
andæ ) -45°), Y20, Y22

c , andY32
c have zeroY(k̂1) values and

can be dropped from further consideration. If we choosek1 to

Figure 7. Spatial dcs maps for the H2 molecule for the incident electron energy of 6 (top), 10 (center), and 20 eV (bottom). Thek1 vector is
parallel (left) or perpendicular (right) to the principal molecular axis. Note that maps are plotted on different scales. The H2 molecule is oriented
along the axis 0-180°.

Figure 8. Map of the derivative of the electrostatic potential of H2

with respect to the normal coordinate in theσxz plane. Nuclei are
positioned atz ) (0.715 au. The map is contoured with a step of 0.1

Figure 9. Tetrahedral structure of CH4 in the coordinate system.
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be oriented along thez axis, the only nonzeroY(k̂1) values are
Y00, Y10, Y20, andY30.

4.4. Truncated Expansion of<k2|DU/Dqi|k1> and Prefer-
ential Angular Distribution. The symmetry of the symmetric
stretching modeν1 is a1, which means that allowed pairs of
spherical functions in eq 11 must be of A1 × A1, E × E, T1 ×
T1, or T2 × T2 symmetry. We determine next, by inspection of
Figures 3-5 and S1-S18 in the Supporting Information, which
pair of contributionsjl2‚Yl2m2‚jl1‚Yl1m1 conform to the∂Us/∂q1

maps best. This is straightforward for energies of 6 and 10 eV.
As noted above, we can limit ourselves tol e 2 in this case,
and we find that the optimum fit is provided by thej2‚Y21

c ‚j2‚
Y21

c , j2‚Y21
s ‚j2‚Y21

s , andj2‚Y22
s ‚j2‚Y22

s terms (Figures S5 and S11).
Note thatj2‚Y22

s ‚j2‚Y22
s conforms to the∂Us/∂q map at positions

of all four hydrogen atoms, whereasj1‚Y11
s ‚j1‚Y11

c or j2‚Y21
s ‚j1‚

Y11
c , for example, do not. This reduces eq 11 to

If we choosek1 to be oriented along the CH(1) bond andk2

to lie in the H(2)-C-H(1) plane, all three products

Y21
c (k̂2)Y21

c (k̂1), Y21
s (k̂2)Y21

s (k̂1), andY22
s (k̂2)Y22

s (k̂1) are zero forθ
) 0, 90, 180, and 270°. Their sum is(0.363× 0.364 forθ )
55, 235, and 305° and 3× 0.363× 0.364 forθ ) 125°. This
is in qualitative agreement with the spatial dcs maps presented
in Figure 10. When the energy of the incident electron is 20
eV, the situation is more complicated. The highest values of
∂Us/∂q1 are localized at the positions of the hydrogen atoms
(corners of thexyzcube; see Figure 13). As Figure 2 shows, at
r equal to the CH bond length (2.25 au), the Bessel function
j3(kr) also has to be taken into account. Actually,j3‚Y32

s ‚j3‚Y32
s

(Figure S18) gives the largest contribution and must be added
to the three terms in eq 20. Also, the productY32

s (k̂2)Y32
s (k̂1) is

zero forθ ) 0, 90, 180, and 270°, which explains why the map
for 20 eV in Figure 10 does not show any contribution at these
scattering angles. However, the observed preference of backward
scattering over the forward scattering cannot be explained by
this simple approach. Some conclusions can be drawn from eq
20 itself. If we also addY32

s (k̂2)Y32
s (k̂1) to the right-hand side of

eq 20,k2 is represented by a combination ofY21
c (k̂2), Y21

s (k̂)2,
Y22

s (k̂2), and Y32
s (k̂2), that is, by xz-, yz-, yx-, and xyz-type

functions. This means that preferential directions for the

Figure 10. Spatial dcs maps for the symmetric CH stretch (left) and the bending e mode (right) in CH4 and incident electron energies of 6 (top),
10 (center), and 20 eV (bottom). Thek1 vector is parallel to the CH(1) bond (θ ) 125°), andk2 lies in the H(2)-C-H(1) plane.

〈k2|T10|k1〉 ≈ C21,21
cc Y21

c (k̂2)Y21
c (k̂1) +

C21,21
ss Y21

s (k̂2)Y21
s (k̂1) + C22,22

ss Y22
s (k̂2)Y22

s (k̂1) (20)
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outgoing electron are along the C-H bonds, not along directions
bisecting the valence angles H-C-H.

If we choosek1 to be oriented along thez axis, the situation
is different. Now,Y00, Y10, Y20, and Y30 are the onlyY(k̂1)
functions that are significant. This excludes the four main
contributionsY21

c (k̂2)Y21
c (k̂1), Y21

s (k̂2)Y21
s (k̂1), Y22

s (k̂2)Y22
s (k̂1), and

Y32
s (k̂2)Y32

2 (k̂1) noted above. Scattering is therefore much weaker
(Figure 11) than it was when the incident electron approached
the molecule along the C-H(1) bond. The only symmetry-
allowed contributionsYl2,m2

c,s ‚Yl1,0 are Y00‚Y00 (A1 × A1),
Y20‚Y20 (E × E), and all contributionsYl2,m2

c,s ‚Y10 andYl2,m2
c,s ‚Y30

of the T2 × T2 symmetry (See Table 1). Again, the inspection
of Figures 3-5 and S1-S18 can reduce this list. As a matter
of fact, no ideal fit to∂Us/∂q1 is found.Y32

s (k̂2)Y00(k̂1) (Figure
S16) seems to conform best, followed byY10(k̂2)Y10(k̂1) (Figure
3) andY30(k̂2)Y22

s (k̂1) (Figure S14), and to a lesser extent to
Y20(k̂2)Y20(k̂1) (Figure S2). Hence, we express eq 11 in the form

and assume accordingly that the plane-wave functionk2 can be
represented as a linear combination ofY32

s , Y10, Y22
s , andY20.

Y10 andY20 arez andz2 functions, respectively, and they direct
the outgoing electron along thez axis (forward and backward).
Y32

s and Y22
s are xyz- and xy-type functions, respectively, and

together, they orient the outgoing electron into the “wings” of
plots in Figure 11. If those maps are plotted asz versusx and
z versusy plots, the maps lose their “wings”, and only forward
and backward scattering is observed becauseY32

s and Y22
s are

zero in these planes. In contrast to the preceding case ofk1

parallel to the C-H(1) bond, the outgoing electron avoids the
hydrogen atoms.

Consider now the bending modeν2. Its symmetry is e, which
means that allowed pairs of spherical functions in eq 11 must
be of A1 × E, T1 × T1, T1 × T2, or T2 × T2 symmetry. The list
of allowed terms can be reduced by inspection of Figures 3-5
and S1-S18, which suggest that for low energies (6 and 10
eV), the best fit for the∂Us/∂q2 map (Figure 13) is provided by
Y22

s ‚Y22
s , Y21

c ‚Y21
c , Y21

s ‚Y21
s , and to a lesser extent byY22

s ‚Y10 and
Y10‚Y22

s terms. This means that, as with the symmetric stretch,
the T10 element can be approximated by eq 20. We limit

Figure 11. Spatial dcs maps for the symmetric CH stretch in CH4 and incident electron energies of 6 (top), 10 (center), and 20 eV (bottom). The
k1 vector is parallel to thez axis, andk2 lies in the H(2)-C-H(1) (left) and H(3)-C-H(4) (right) planes.

〈k2|T10|k1〉 ≈ C32,00
sc Y32

s (k̂2)Y00(k̂1) + C10,10Y10(k̂2)Y10(k̂1) +

C22,30
s Y22

s (k̂2)Y30(k̂1) + C20,20Y20(k̂2)Y20(k̂1) (21)
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ourselves to the case ofk2 lying in the H(2)-C-H(1) plane.
Figure S11 shows that thej2‚Y22

s .j2‚Y22
s density is higher in

the region where∂Us/∂q2 is negative than in the region where
∂Us/∂q2 is positive (Figure 13). In contrast,j2‚Y21

c ‚j2‚Y21
c and

j2‚Y21
s ‚j2‚Y21

s densities (Figure S5) are higher in the region
where ∂Us/∂q2 is positive than they are in the region where
∂Us/∂q2 is negative. Therefore, we may conclude thatC22,22

ss is
of the opposite sign thanC21,21

cc andC21,21
ss . From eqs 13 and 14,

it may be concluded (from the imaginary factor) thatC10,22
cs ≈

-C22,10
sc . Consider two orientations ofk1. For k1 parallel to the

CH(1) bond,Y10(k̂1) ) -0.282, Y21
c (k̂1) ) 0.364, Y21

s (k̂1) )
-0.364, andY22

s (k̂1) ) -0.364. This permits us to estimate
relative ratios of differential cross sections for four preferential
directions of k2. For forward scattering (θ ) 125°),
Y22

s (k̂2)Y10(k̂1) ) (-0.364) × (-0.282) ) 0.103 and
Y10(k̂2)Y22

s (k̂1) ) (-0.282)× (-0.364)) 0.103. Thus, the two
contributions tend to cancel (becauseC10,22

cs ≈ -C22,10
sc , as

noted above). AlsoY21
c Y21

c and Y21
s Y21

s tend to cancel the
Y22

s Y22
s contribution becauseY21

c (k̂2)Y21
c (k̂1) ) 0.364× 0.364)

0.135, Y21
s (k̂2)Y21

s (k̂1) ) (-0.364) × (-0.364) ) 0.135, and
Y22

s (k̂2)Y22
s (k̂1) ) (-0.364)× (-0.364) ) 0.135. This partial

cancellation occurs because the sign ofC22,22
ss is opposite of

those ofC21,21
cc and C21,21

ss . The same cancellation occurs with
backward scattering. In contrast, atθ ) 55 and 235°, the three
contributions are of the same sign, giving rise to two lobes
observed in spatial dcs maps (Figure 10). For the energy of
20 eV, the situation is more complicated. For this energy, the
Bessel functionj3 (Figure 2) has an appreciable value in the
region of high∂Us/∂q2 density (Figure 13), and contributions
with l ) 3 cannot be excluded a priori. Actually, Figure S13
shows that the termj3‚Y32

s ‚j2‚Y20 conforms ideally to the
∂Us/∂q2 density, and therefore, it also should be taken into
account. Assumingk1 to be parallel to the CH(1) bond,Y20(k̂1)
) 0.000 andY32

s (k̂1) ) 0.556. Hence, we are only left with the
Y20(k̂2)Y32

s (k̂1) term. Its value is largest in the+z and -z
directions, giving rise to two additional lobes in the spatial dcs
map for this energy (Figure 10).

If k1 is parallel to thez axis, the nonvanishing components
of k1 are onlyY00, Y10, Y20, andY30, and the main terms from
the last paragraph,Y22

s ‚Y22
s , Y21

c ‚Y21
c , and Y21

s ‚Y21
s , cannot con-

tribute. Differential cross sections for this orientation ofk1 are
therefore considerably smaller (compare scales of Figures 10

Figure 12. Spatial dcs maps for the e bending mode of CH4 and incident electron energies of 6 (top), 10 (center), and 20 eV (bottom). Thek1

vector is parallel to thez axis, andk2 lies in the H(2)-C-H(1) (left) and H(3)-C-H(4) (right) planes. Note that the maps are on different scales.
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and 12) and do not show much anisotropy. The difference of
the spatial dcs maps for the energy of 20 eV from those for 6
and 10 eV can be explained by the contribution of terms with
l ) 3. A distinct contribution is due to thej3‚Y30‚j3‚Y30 term
(Figure S13), which gives rise to forward scattering.

5. Conclusions

We have found that it is possible to understand the results of
ab initio computations of the angular distribution of vibrationally
inelastic nonresonant scattering qualitatively in relatively simple
terms. If the form of the vibrational normal modes is known,
this can actually be done without recourse to a computer. The
procedure is as follows: (1) guess the∂U/∂qi map from the
geometrical representation of the normal mode alone, as
explained in section 2.2; (2) inspect Bessel functions in Figure
2 and select those that have appreciable value in the range of
high values of∆Us/∆qi; (3) fix the k1 vector and determine the
nonvanishingYlm values for this orientation; (4) set up a
truncated expansion of the<k2|∂U/∂qi|k1> element, as shown
by eq 11; (5) inspect the contributions to the plane-wave function
k2 and, with help of their weights (Yl2m2‚Yl1m1 in eq 11),
determine the preferential directions for the scattered electron.
If desired, instead of guessing the∂U/∂qi map, as described in
section 2.2, it is possible to obtain it in a somewhat more
laborious but also more reliable way by means of commonly
accessible quantum chemical software. For the selectedith
vibrational mode of the target, electrostatic potential maps can
be calculated at the geometries distorted from the equilibrium
geometry along the vibrational coordinateqi by +∆qi and-∆qi.
By numerical differentiation, the∆Us/∆qi map is obtained.

We illustrate the procedure on the examples of H2 and CH4

molecules. In both cases, the qualitatively deduced angular

distribution agrees with the calculated spatial dcs maps. It has
not been our primary objective to develop an approximate
method of calculation of vibrationally inelastic vibrational cross
sections but, rather, to obtain intuitive understanding of the
results of the ab initio method. Still, it is conceivable that the
simple procedure could be used to make qualitative predictions
for larger molecules, including those for which a full ab initio
treatment may be presently prohibitively expensive. It is unclear
whether the number of required Bessel functions (Figure 2)
would then not become excessive, even for localized vibrations,
and we intend to examine these issues next.
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