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The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. ReV. B 1998,
58, 7260) is derived by a second-order expansion of the density functional theory total energy expression,
followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped
Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-
charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical
hardness parameter independent of the atomic charge state. While these approximations seem to be
unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding
interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-
DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness
parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve
the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement
in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

I. Introduction

The self-consistent-charge density-functional-tight-binding
(SCC-DFTB) method1 is an approximation to density functional
theory (DFT), derived from a second-order expansion of the
DFT total energy expression. In recent years, SCC-DFTB has
been successfully applied to a wide range of problems involving
structures and dynamics of biomolecules and biocatalysis in
several enzymes; for comprehensive reviews see, for example,
refs 2-6.

With respect to its computational efficiency, SCC-DFTB is
comparable to the widely used semiempirical methods such as
AM1 and PM3, i.e., being 2-3 orders of magnitude faster than
DFT(HF) methods (with small to medium-sized basis sets). This
increase in speed with respect to DFT is achieved without much
loss of accuracy in the description of molecular geometries,
while reaction energies and vibrational frequencies are usually
less reliable.1,7 This is confirmed by two recent thorough studies
that evaluated SCC-DFTB for heats of formation, molecular
structures, etc. on large sets of molecules.8,9 While the most
sophisticated neglect of diatomic differential overlap (NDDO)
methods10 are slightly superior to SCC-DFTB for heats of
formation, the strength of SCC-DFTB is the overall excellent
prediction of molecular structures, in particular for larger (bio)-
molecular systems, where NDDO-type methods may have some
limitations.11-13

There has been a resurgence of interest in developing
improved fast quantum models such as SCC-DFTB and NDDO-
based semiempirical methods for use in linear-scaling electronic
structure14,15 and combined quantum mechanical/molecular
mechanical (QM/MM) simulations.6,16-22 Some of the more
recent efforts include the inclusion of orthogonalization cor-
rections in the OMx model,23 PDDG/PM3 model,24 the PM3-
MAIS and PM3-PIF models,25,26and the NO-MNDO model.27

Other notable improvements include the PM3BP model28 for
accurate nucleic acid base-pairing interactions, the AM1/d-PhoT
model29 for phosphoryl transfer reactions based on a database
of quantum calculations for RNA catalysis,30 and a new method
that greatly improves the modeling of charge-dependent response
properties.31

Consequently, it is of considerable importance to identify
systematic strengths and weaknesses of the different models to
derive new functional forms and parametrizations that consider-
ably advance the field. In the case of the SCC-DFTB method,
several limitations have been identified over the years. The main
problems of SCC-DFTB are twofold. First, because SCC-DFTB
is implemented based on popular generalized gradient ap-
proximation (GGA) functionals, it inherits the problems associ-
ated with these approximate functionals. Examples include
inaccuracies and failures in the description of electronically
excited states involving long-range charge separation or disper-
sion interactions.4 While there is no simple cure for the treatment
of electronically excited states, an empirical correction for
dispersion interactions has been proposed12 and has been adopted
for DFT calculations later on.32,33This correction was found to
be crucial for predicting reliable nucleic acid base-stacking
interactions12 and polypeptide (protein) structures, as, for
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example, exemplified in the relative stabilities ofR- and 310-
helices in proteins34 (for a more detailed discussion, see refs 3
and 4).

However, it has also been recognized that the current SCC-
DFTB model is not flexible enough to account for various
chemical environments. In this work, we focus on the description
of hydrogen-bonding interactions and proton affinities because
these properties are of ultimate importance in the context of
biological applications. Hydrogen-bonding interactions play a
major role in maintaining the structural integrity and association
of biomolecules as well as determining the specificity of
substrate selection and chemical modification in enzymes.35

Proton affinity is crucial because changes in the protonation
state are involved in many catalytic processes as well as
association events.36 Quantitatively describing these two types
of properties, however, is far from trivial especially if ap-
proximate or semiempirical QM methods are used. In this
context, we emphasize that for biological problems sufficient
conformational sampling is particularly important especially if
the process spans a large spatial scale, such as in long-range
proton pumping.6,37 Therefore, there is a compelling reason for
developing approximate QM methods that are semiquantitatively
accurate and allow for at least nanosecond scale sampling in a
QM/MM framework.6,17-20

To describe the interaction between molecules engaged in
hydrogen bonds, a generally reliable method has to be able to
treat a combination of components including electrostatics,
charge-transfer effects, as well as dispersion interactions.38 Ab
initio methods39 such as MP2 have been shown to generally
give a reliable description for these interactions in complexes
dominated by hydrogen bonding, but they are too demanding
for realistic biological applications. Density functional theories
such as B3LYP40-42 give reasonable hydrogen-bonding struc-
tures and energies in most cases although the lack of dispersion
and other deficiencies in the exchange-correlation functionals
deserve further improvements. MNDO-based methods are
computationally much more efficient, but the popular models
underestimate weak hydrogen-bond strengths, and many at-
tempts have been made to improve their performance in this
regard (for a review, see ref 43). A major strategy has been to
modify the core-core repulsion terms leading to the AM1 and
PM3 models. Voityuk and Bliznyuk have added an additional
set of Gaussian functions to the core-core repulsion terms
within the MNDO framework, resulting in a major improvement
for hydrogen-bonded compounds.44 A different strategy has been
applied by Jug and Geudtner45 for the SINDO1 method by
extending the minimal basis to include p-orbitals at the hydrogen
atoms. This should allow a better description of the electron
density in the interatomic regions. For the best results, they used
a small Slater exponent and applied an additional empirical
function that enhances bonding in the hydrogen-bonding region
and damps the effect of the p-functions in the covalent region.

Because SCC-DFTB has rather systematic errors in the
calculated hydrogen-bonding interactions, i.e., binding energies
of weak hydrogen bonds are slightly underestimated by typically
about 1-2 kcal/mol compared to high-level ab initio re-
sults,2,46,47 there have been previous attempts to improve the
description of hydrogen-bonding interactions in the SCC-DFTB
framework. First, the DFTB repulsive potential contribution
(Ẽrep) was modified to introduce a stronger attraction at
hydrogen-bonding distances (such as the changes of core-core
repulsion in MNDO). But this strategy is purely empirical and
would imply that the energy of each X-H (X being heavy
atoms) pair is increased by the same amount, irrespective of

the chemical environment. This approach works well for many
small hydrogen-bonded complexes but fails to account properly
for cooperative effects, such as the shrinking of hydrogen-bond
lengths for larger water clusters. As an alternative, we followed
the SINDO1 strategy within the framework of the SCC-DFTB
method by including p-orbitals. The inclusion of the very diffuse
2p atomic orbital of the hydrogen atom would, in the case of
covalent bonding of the hydrogen atom to oxygen, for example,
lead very much to an extension of the basis functions located
at the oxygen atom. This results in an erroneous description of
atomic charges when applying the Mulliken charge analysis,
on which the SCC-DFTB total energy expression is based. We
therefore, similar to the procedure in SINDO1, convoluted the
Hamiltonian and overlap matrix elements corresponding to the
hydrogen 2p-orbitals with a Gaussian function centered at the
hydrogen-bonding distance. This results in an effective damping
of these matrix elements in the covalent bonding region, whereas
in the hydrogen-bonding region they remain unaltered. We used
the atomic 2p function of hydrogen and chose a Gaussian,
exp[-A(RAB - r0)2], with the widthA ) 2 andr0 ) 1.9 Å for
the convolution. These values are empirical and chosen to make
the hydrogen 2p contributions vanish in the covalent bonding
region.2 This approach was also successful for small hydrogen-
bonded complexes; however, it is not very elegant with respect
to an unbalanced inclusion of polarization and leads to a
significant slowdown of the calculations.

Calculating accurate proton affinities, especially for large
molecules, is also not trivial. Sophisticated quantum chemical
methods, such as coupled cluster methods, are not readily
applicable to large systems, although remarkable progress has
been made in recent years toward making such methods linear
scaling. MNDO-based semiempirical methods10 are much more
practical but have limited accuracy. In a recent study,48 for
example, we have systematically studied the accuracy of several
popular semiempirical methods including AM1 and PM3, using
a series of phosphate-containing compounds. It was found that
AM1, PM3, and SCC-DFTB have comparably large errors on
the order of 14-19 kcal/mol (root-mean-square error, RMSE)
compared to experimental data. If proton affinity or pKa is the
only property of interest, then one may choose to perform
systematic corrections based on either empirical correlation48

or single-point energy calculations at higher levels. In fact, the
latter approach was found to be quite effective in a recent QM/
MM study of pKa in solution and protein environments.49 In
many cases, however, exchange of proton(s) is an important
part of the chemical reaction under study;36 a poor description
of relative proton affinities of the participating groups may
cause qualitative errors in the chemical nature of intermediate
state(s) and configuration sampling.

In light of all previous attempts to improve the performance
of NDDO-based semiempirical methods and SCC-DFTB, it
seems that ad hoc modifications and re-parametrizations of
existing methods may lead to only a partial improvement for
some systems, causing problems for others. Therefore, a
systematic improvement requires an extension of the existing
formalisms, probably for both SCC-DFTB and traditional
NDDO methods.

Here, considering the promise of the SCC-DFTB approach
in biophysical studies,3,6 we make two physically motivated
improvements to the method. First, we propose an extension of
the DFTB formalism by a third-order expansion of the DFT
total energy. This leads to charge dependence of the chemical
hardness (Hubbard) parameter, which has a major impact on
the predicted proton affinities. Second, we reexamine the
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assumptions underlying the Coulomb interactions in the second-
order terms; the proposed revision has a significant effect on
the calculated hydrogen-bonding interactions. The small number
of parameters associated with the improvements have been
determined based on a set of biologically relevant molecules
and are expected to be transferable. For specific applications
that demand an even higher accuracy than achieved here, the
current developments also offer the framework for developing
specific reaction parameters.

In the following sections, we first describe the relevant
theoretical developments and computational algorithms used to
determine the relevant parameters; this is followed by test
calculations that illustrate the improvements in the performance
of the SCC-DFTB method for a series of molecules of general
biological interest. Finally, we draw a few conclusions.

II. Theory and Computational Methods

To facilitate the discussion of the new developments, we first
briefly review the current formulation of the SCC-DFTB
approach. Extensions of the formalism are discussed in section
II.B.

A. The SCC-DFTB Method.The first step in the derivation
of the SCC-DFTB model1 is a second-order expansion of the
DFT total energy functional with respect to the charge density
fluctuations δF around a given reference densityF0 (F′0 )
F0(rb′), ∫′ ) ∫ drb′)

F0 is usually taken as the superposition of the electron densities
F0

R of the neutral atomsR constituting the molecular system of
interest.Ĥ0 ) Ĥ[F0] is the effective Kohn-Sham Hamiltonian
evaluated at the reference densityF0, and theΨi’s are Kohn-
Sham orbitals.Exc andVxc are the exchange-correlation energy
and potential, respectively, andEcc is the core-core repulsion
energy.

In a second step, the energy contributions in eq 1 are subjected
to several approximations described below.

1. Determination of the Hamiltonian Matrix Elements.The
Hamiltonian matrix elements〈Ψi|Ĥ0|Ψi〉 in the first term of eq
1 are represented in a minimal basis set of confined, pseudo-
atomic orbitalsφµ (see refs 1 and 50 for more details)

The basis functionsφµ are determined by solving the atomic
Kohn-Sham equations in the presence of an additional har-
monic potential,50 which leads to a confinement of the basis
functions. The Hamiltonian matrix elements in this linear
combination of atomic orbital (LCAO) basis,Hµν

0 , are then
calculated as follows. The diagonal elementsHµµ

0 are taken to
be the Kohn-Sham energies of the atomic orbitalsφµ, and the
nondiagonal elementsHµν

0 are calculated in a two-center
approximation

Hµν
0 and the overlap matrix elementsSµν ) 〈φµ|φν〉 are

tabulated as a function of the interatomic distanceRRâ. Veff is
the effective Kohn-Sham potential according to the superposi-
tion of the densities of neutral atomsR andâ. The exchange-
correlation functional applied is that suggested by Perdew,
Burke, and Ernzerhof.51

2. The Second-Order Term.The second-order term in the
charge density fluctuationsδF (second term in eq 1) is
approximated by writingδF as a superposition of atomic
contributionsδF ) ∑R∆FR, which decay quickly with increasing
distance from the corresponding center

whereΓ[rb,rb′,F0] denotes the second derivative of the Hartree
and exchange-correlation contributions with respect to the
atomic-like charge densities.

To further simplifyE2nd, we apply a monopole approximation1

F00
R denotes the normalized radial dependence of the density

fluctuation on atomR, which is constrained (approximated) to
be spherical (Y00 is the zeroth-order spherical harmonics); i.e.,
the angular deformation of the charge density change in second
order is neglected. After integration,E2ndbecomes a simple two-
body expression depending on atomic-like charges

and a function

The diagonal termsγRR model the dependence of the total
energy on charge density fluctuations (decomposed into atomic
contributions) in the second order. The monopole approximation
restricts the change of the electron density considered, and no
spatial deformations are included; only the change of energy
with respect to the change of charge on the atomR is considered.
By neglecting the effect of the chemical environment on atom
R, the diagonal part ofγ can be approximated by the chemical
hardnessη of the atom

ER is the energy of the isolated atomR. UR is known as the
Hubbard parameter and is twice the chemical hardness of atom
R, which can be estimated from the difference of the ionization
potential and the electron affinity of atomR. For SCC-DFTB,
it is calculated using Janak’s theorem52 by taking the first
derivative of the energy of the highest occupied orbital with
respect to occupation number.1

For R * â, γRâ is determined analytically by considering,
for the moment, only the Hartree contribution and the exchange-
correlation contributions will be included implicitly later on.
By approximating the charge density fluctuations with spherical
charge densities, Slater-like distributions

E ) ∑
i

occ

〈Ψi|Ĥ0|Ψi〉 +

1

2
∫∫′( 1

|rb - rb′|
+

δ2Exc

δFδF′
|F0)δFδF′ -

1

2
∫∫′

F′0F0

|rb - rb′|
+ Exc[F0] - ∫ Vxc[F0]F0 + Ecc (1)

Ψi ) ∑
µ

cµ
i
φµ (2)

Hµν
0 ) 〈φµ|T̂ + Veff[FR

0 + Fâ
0]|φν〉 µεR, νεâ (3)

E2nd )
1

2
∑
Râ

∫∫′ Γ[ rb,rb′,F0]∆FR∆Fâ (4)

∆FR ≈ ∆qRF00
R Y00 (5)

E2nd )
1

2
∑
Râ

∆qR∆qâγRâ (6)

γRâ ) ∫∫′ Γ[ rb,rb′,F0]F00
R F00

â Y00
2 (7)

γRR ) UR ) 2ηR )
∂

2ER

∂
2qR

(8)

FR(r) )
τR

3

8π
exp(-τR|rb - RBR|) (9)
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located atRBR allow for an analytical evaluation of the Hartree
contribution. This leads to a function forγRâ, which depends
on the parametersτR andτâ that determine the extension of the
charge densities of atomsR andâ. This function has a 1/RRâ
dependence for largeRRâ and approaches a finite value forRRâ
f 0. The neglect of exchange-correlation contributions is a
good approximation for large interatomic distances because the
exchange-correlation energy decays in a manner proportional
to the density overlap for standard GGA functionals. For zero
interatomic distances, i.e.,R ) â, one finds1 that

A consistent approximation at the Hartree level would
consider only the Hartree contributions inγRR ) UR. Because
our calculated Hubbard parameters include exchange-correla-
tion contributions forRRâ f 0, they are also extrapolated into
the binding region due to the curve shape ofγRâ.

In summary, the standard approximations of the second-order
terms in SCC-DFTB1 contain three major items:

•The charge monopole approximation: This approximation
does not imply that higher multipole moments in the electron-
electron interaction are completely neglected in DFTB. They
are included to a large degree in theHµν

0 terms. Therefore, the
higher multipole terms are neglected only for electron-electron
interactions arising from the charge density fluctuationsδF.
Therefore, this approximation is probably uncritical for small
charge transfer, i.e., within the limits of the expansion underlying
the SCC-DFTB formalism. This is the main difference with
respect to CNDO-like methods in semiempirical theory; see also
ref 53.

•The Hubbard parameters, evaluated for neutral atoms, are
independent of the charge state of the atom. More realistically,
the atomic hardness changes with the charge state of the atom
and this effect can be captured by including higher-order terms
as discussed below.

•Equation 10 makes an interesting statement. It implies that
the extension of the charge distribution is inversely proportional
to the chemical hardness of the respective atom; i.e. the size of
an atom is inversely related to its chemical hardness. It should
be emphasized that SCC-DFTB is based on this relation
irrespective of its empirical validity. DFTB makes use of this
relation, requiring the Hubbard parameter to represent the
inverse of the atomic size inγRâ; i.e., for large atoms the onset
of the overlap occurs already at large interatomic distances and
leads to a deviation from the 1/RRâ behavior. This deviation
effectively decreases the electron-electron interaction in the
binding region where the atomic densities overlap. That this
relation is not empirically valid throughout the periodic table
is the basis of modifications, which will be discussed below.

The second and third approximations are the subject of
developments in this work and will be discussed in detail below.
To complete the description of SCC-DFTB, we now discuss
the last term in the total energy expression.

3. The RepulsiVe Potential.The “double counting” contribu-
tions and the core-core repulsion energy (the last four terms
in eq 1) are represented asErep

Writing the initial charge density as a superposition of atomic-
like neutral charge densities

centered at the atomsR, the repulsive energyErep does not
depend on the charge density fluctuations and contains no long-
range Coulombic interactions due to the neutrality of the atomic-
like densitiesF0

R. However, the repulsive energy as defined
above does not go to zero for large interatomic distancesRRâ
but to a constant given by the atomic contributions

Therefore, by neglecting the atomic contributionsErep can be
approximated as a sum of short-ranged two-center terms with
respect to the energiesErep[F0

R] of neutral atomic fragments

For given densitiesF0
R, Erep could be calculated in principle.

However, it is convenient to fit this expression to ab initio
calculations, as have been done in current implementations.

4. The SCC-DFTB Total Energy.With these definitions and
approximations, the SCC-DFTB energy finally reads

The variational principle leads to approximate Kohn-Sham
equations, which have to be solved iteratively for the wave-
function expansion coefficientscµ

i , because the Hamiltonian
matrix elements depend on thecµ

i ’s due to the Mulliken
charges. The two-body contributionsV[RRâ] are determined by
comparison of the energy according to eq 15 with that from
full DFT calculations with respect to the interatomic distance
RRâ. The resulting energy curveV[RRâ] is then analytically
represented by splines; for more details, see ref 4.

The neglect of the atomic contributionsErep[F0
R] has conse-

quences for the calculation of proton affinities and deprotonation
energies: The proton has a finite energy of 0.5UH, because the
total energy in eq 15 is not zero due to the use of a neutral
hydrogen atom as the reference

Clearly, this should be compensated byErep[F0
R]; therefore we

obtain

As discussed previously,54,55when calculating proton affinities
with SCC-DFTB one simply could take the energy of the proton
into account. However, this is based on the chemical hardness
parameter, which is evaluated for the neutral atom and therefore
gives only a rough estimate for the ionized system ofErep[F0

H]
) -131.6 kcal/mol. CalculatingErep[F0

H] directly54 leads to a
value ofErep[F0

H] ) -141.8 kcal/mol, which has been used to
calculate the proton affinity values in previous studies.

B. New Developments.As pointed out above, as a conse-
quence of the monopole approximation, the “shape” of the
charge density in SCC-DFTB is not iteratively updated but only

τR ) 16
5

γRR (10)

Erep[F0] )

- 1
2∫∫′

F′0F0

|rb - rb| + Exc[F0] - ∫ Vxc[F0]F0 + Ecc (11)

F0 ) ∑
R

F0
R (12)

Erep[F0] ) ∑
R

Erep[F0
R] RRâ f ∞ (13)

Ẽrep[F0] ) Erep[F0] - ∑
R

Erep[F0
R] )

1

2
∑
Râ

V[F0
R,F0

â;RRâ] (14)

ESCC)

∑
iµν

cµ
i cν

i Hµν
0 +

1

2
∑
Râ

γRâ∆qR∆qâ +
1

2
∑
Râ

V[F0
R,F0

â;RRâ] (15)

ESCC) 1
2

UH (16)

Erep[F0
H] ) - 1

2
UH (17)
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the distribution of the net atomic (Mulliken) charges. The
interaction of the charge density fluctuations in the monopole
approximation is governed by the analytic functionγ, which
assumes the chemical hardness (Hubbard parameter) to be
inversely proportional to the atomic size (eq 10). A second
approximation is that the Hubbard parameter is independent of
the charge state of the atom. In the following, we will discuss
these approximations in further detail and suggest corresponding
extensions of the SCC-DFTB formalism.

1. ImproVing the Interatomic Electrostatic Description.As
described above,γRâ is derived from the assumption that the
electron-electron interaction in the second-order terms of the
DFTB total energy can be evaluated from the interaction of two
exponentially decaying charge densities (eq 9), in which the
exponentτR is a measure for the extension of the atomic charge
density, or inverse of the atomic “size”. Further, the on-site
interactionγRR should correspond to the electron self-interaction
on the atom; i.e., it can be expressed via the Hubbard parameters
UR, which are equal to twice the chemical hardnessηR

This immediately leads to the relation betweenτR andUR (eq
10). In other words, the functionγRâ, as used in the SCC-DFTB
method, assumes that there is an inverse correspondence
between the size of an atom, 1/τR, and its chemical hardness
parameter,UR.1 For RRâ ) 0, γRâ assumes a finite value ofUR
and the deviation from 1/R in the region of covalent bonding
(1-3 Å) is largely dependent on the size of the respective atoms
modeled by 1/UR. In fact, a very similar approximation is used
in semiempirical quantum chemical methods such as MNDO,
AM1, or PM3, whereγ has a simpler form, as given, for
example, by the Klopman-Ohno approximation56,57

which also assumes that the size of an atom, which is crucial
for determining the deviation ofγ from the 1/R behavior, can
be estimated based on the chemical hardness of this atom.

To check the validity of this crucial assumption, i.e., to assess
how well 1/UR can be used as a measure of the size of an atom,
one can compare covalent radii with the respective chemical
hardness values. In a recent work of Politzer and co-workers,58

various sets of covalent radii have been examined and an overall
reasonable agreement between the different concepts has been
found. Large deviation, however, has been found in particular
for the hydrogen atom.

In Table 1, we summarize the covalent radii from Politzer et
al.58 and the calculated (as described above in section II.A.2)
and experimental chemical hardness values (taken from ref 59).
The covalent radii of the atoms depend on whether they are

bonded to hydrogen, first row, or second row atoms. In addition,
Table 1 shows the atomic radii as calculated from the chemical
hardness values with the relationrc ) 5/(16UH) (eq 10). The
calculatedrc values are systematically smaller than the covalent
radii because they only reflect the half-widths of the Slater-
like distribution (eq 9) and not the true covalent radius. Close
inspection of Table 1 suggests that the inverse relationship of
chemical hardness and atomic size, as suggested by eq 10, only
holds well for group II-IV elements; thus application of the
γRâ expression derived in ref 1 is justified for these elements.
A major exception is the hydrogen atom. It has a chemical
hardness comparable to nitrogen but has only half of the size.

BecauseγRâ approaches the valueγRR ) UR at short distances,
the poor relation between its size and the chemical hardness
for H means that modifications have to be made forγRâ for all
X-H (X being heavy atoms) pairs. In principle, this could be
done by modifying the value ofUH for hydrogen according to
its atomic size, which would, however, make the on-site
interaction on H,γH-H, inconsistent with its chemical hardness.

We propose to modifyγRâ in the intermediate region only,
leaving the limiting cases at short and long interatomic distances
unchanged. Specifically,γRâ has the following form in the
standard implementation of the SCC-DFTB method1

with S being a short-range function that leads to the desired
limit for small interatomic distances. Because the hydrogen atom
size according torc ) 5/(16UH) is too large, the density overlap
is overestimated; i.e., the electronic interaction starts to deviate
from 1/RRâ too early. To correct for this, an additional damping
term is added for the X-H pairs

This leads to a faster decay for the influence ofUH on the shape
of γRH, thereby reducing the effect of the overlap. This
modification contains a single parameter, the exponentú, which
can be fitted to appropriate reference systems as described
below.

2. Third-Order Contributions.The formal second-order
expansion of the DFT total energy leads to the SCC-DFTB
formalism,1 where the second-order one-center integrals are
approximated using the Hubbard (chemical hardness) param-
eters. However, the chemical hardness calculated from small
variations around the reference density may be different from
chemical hardness parameters calculated from the difference of
ionization potential and electron affinity values. More impor-
tantly, the Hubbard value may not be a constant for different
atomic charge states, as assumed in the second-order SCC-DFTB
method.

TABLE 1: Covalent Radii rc (Å) Estimated by Politzer et al.,58 Calculated (UH) and Experimental (UH
exp)59

Hubbard Parameters (in bohr-1), and the Effective Radii rc ) 5/(16UH) (Å) Estimated Using the Calculated Hubbard Parameters

H C N O F Si P S Cl

rcov

with H 0.70 0.65 0.62 0.59 1.00 0.96 0.91 0.59
with first row 0.37 0.74 0.72 0.70 0.69 0.96 0.97 0.98 0.97
with second row 0.46 0.82 0.77 0.74 0.69 1.09 1.08 1.03 1.00

UH 0.42 0.36 0.43 0.50 0.59 0.25 0.29 0.33 0.37
UH

exp 0.47 0.37 0.53 0.45 0.52 0.25 0.36 0.30 0.34

rc ) 5/(16UH) 0.39 0.44 0.39 0.33 0.28 0.66 0.57 0.50 0.44

γRR ) UR ) 2ηR (18)

γRâ ) 1

xRRâ
2 + 0.25(1/UR + 1/Uâ)

2
(19)

γRâ ) 1
RRâ

- S (20)

γRH ) 1
RRH

- Sexp[-(UR + UH

2 )ú

RRH
2] (21)
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The change of the (neutral atomic) chemical hardness
parameters due to environmental factors can be estimated by
their derivatives with respect to the atomic charge. These
chemical hardness derivatives can be determined by calculating
the chemical hardness values as described above but for charged
atoms. Taking the numerical derivative leads to the derivatives
of the Hubbard parameters, i.e., to third-order derivatives of
the energy of an atom; we obtain-0.16 a.u. for H, C, and N
and-0.17 a.u. for O. Interestingly, these values are very similar
although the chemical hardness values are quite different
(Table 1).

Formally, the charge dependence of the Hubbard parameter
can be accounted for by expanding the DFT total energy up to
third order in the density fluctuations (∫ drb′ ) ∫′)

In the following we will introduce similar approximations to
the third-order term as already used in the second-order
formalism. As for the second-order formalism, we introduce
atomic density fluctuations,δF ) ∑R∆FR in the monopole
approximation (eq 5) and a functionalΩ[r,r′,r′′,F0], which
represents the third-order derivative of the total energy with
respect to the atomic-like densities (at the reference densityF0):

In analogy to the second-order formalism, we have to evaluate
in particular the integral

As the simplest approximation, we consider only the one-
center (on-site) terms; i.e., we consider the caseR ) â ) λ, for
which we have to evaluate the third derivative of energy with
respect to the density fluctuation on atomR. In the spirit of
evaluating the Hubbard parameters, we approximate this as the
third derivative of the energy of an atom (Eat) with respect to
the atomic chargeqR

which contains the derivative of the Hubbard parameterUR with
respect to the atomic charge, denoted byUR

d. Finally, we arrive
at the total energy expression with on-site third-order contribu-
tions

The extension of this scheme including the off-center
contributions is straightforward but requires, within the SCC-
DFTB framework, calculating the derivative ofγRâ with respect
to the charge on atomλ, qλ. This will be explored in future
work.

C. Parameter Fitting and Benchmark Calculations. For
the modified Coulomb interaction, we introduce a single
parameterú, in the damping function associated withγRH in eq
21. For the chemical hardness (Hubbard) derivative, one new
parameter is required per element.

The modified γRH function has a significant impact on
hydrogen bonding. For example, the standard SCC-DFTB
method yields a binding energy of 3.3 kcal/mol for the water
dimer. Choosingú ) 3.6 in eq 21 increases this binding energy
to 4.6 kcal/mol, which is close to the expected value of 5.0
kcal/mol.60 The third-order contribution, however, improves the
predicted proton affinity substantially. For example, with the
estimatedUR

d based on atomic calculations mentioned above,
the error in the calculated proton affinity of water is reduced
from 26.5 to-5.4 kcal/mol.

These results encouraged us to systematically optimize the
parameters in a second step by fitting based on the binding
energies and proton affinities of a set of gas-phase compounds
that are of general biological interest. For testing, an additional
set of small molecules are studied. All reference calculations
are carried out using the Gaussian 0361 program, and all SCC-
DFTB calculations are carried out using a locally modified
version of CHARMM.62

1. Protocols for Parameter Fitting.The general fitting set
includes a series of biologically relevant molecules (e.g., water
clusters and amino acid side chains), and the corresponding
properties of interest include 32 proton affinities and 22 binding
energies in the gas phase. A genetic algorithm (GA)63 is used
to optimize the Hubbard derivatives and the damping exponent
in γRH to minimize the penalty function defined as

where the summation is over all properties of interest in a
particular set of optimizations (see below),wi is the weight of
a specific property, andYi

ref/Yi
SCC are the values of theith

property from a reference calculation (see below) and a SCC-
DFTB calculation with a specific set of{UR

d,ú}, respectively.
During the GA optimization, the properties of interest include
proton affinities, binding energies, and the root-mean-square
gradient (GRMS) of the molecule at the reference geometry,
addressing both energetic and structural information; the cor-
responding weights inø are 10, 10, and 1, respectively. The
micro-GA technique63 is applied with a population of 10
chromosomes for 100 generations with uniform crossovers.

Rigorously speaking, the proton affinity of molecule A- is
the negative of the enthalpy change for the gas-phase reaction
A-(g) + H+(g) f AH(g) at a given (room) temperature, which
involves the thermal vibrational contribution. To avoid a large
number of vibrational calculations, we consistently consider only
the potential energy contribution in both the reference calcula-
tions and the SCC-DFTB calculations during the GA optimiza-
tion for both proton affinities and binding energies. Another
subtle point is, as discussed above, that the energy (eq 15) of a
proton in the SCC-DFTB method is not zero; however, once a

ø )

∑
i

wi(Yi
ref - Yi

SCC)2

∑
i

wi

(27)
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value forErep[F0
H] ) -141.8 kcal/mol is selected,54 the results

are consistent among all SCC-DFTB calculations.
Regarding the level of reference calculations, except for

neutral water hexamer clusters and methylimidazole water
clusters, the reference data (energy and geometry) are obtained
at the G3B3 level.64,65Previous benchmark calculations showed
that the G3B3 method predicts the proton affinity for small
molecules very well compared to experiments; for 16 species
studied, RMSE was 1.2 kcal/mol compared to available
experimental data, which makes G3B3 one of the best methods
available for proton affinity calculations.48 For the four neutral
water hexamers, complete basis set (CBS) results from Xantheas
et al.66 are used. For the relatively large methylimidazole water
clusters, B3LYP/6-31G(d) geometries and single-point energies
at the level of MP2 with the G3Large basis set are used;
G3Large is a modified version of the 6-311+G(3df,2p) basis
set applied in the G2 theory. For the systems in our training set
that can be studied by the G3B3 approach, MP2/G3Large shows
a strictly systematic negative deviation on the order of 1.0 kcal/
mol and thus supports its role as a reliable reference for the
methylimidazole-water clusters.

Several sets of optimizations have been carried out as
summarized in Table 2. First, the Hubbard derivatives and the
damping exponent are optimized separately based on proton
affinity and binding energy data, respectively, and their impact
on the corresponding properties is made clear by comparison
to the standard second-order SCC-DFTB approach. Next, both
sets of parameters are optimized simultaneously based on all
of the reference systems to establish an improved SCC-DFTB
approach for both proton affinity and hydrogen-bonding interac-
tions. Additional complication arises because it is found that
nitrogen-containing compounds behave rather differently in
terms of proton affinity; thus two additional sets of optimizations
are done with slightly adjusted repulsive potentials for the N-H
pair (see Table 2 and below for details).

2. Additional Benchmark Calculations.To test the transfer-
ability of the fitted parameters and modifications to the SCC-
DFTB approach, additional benchmark calculations are carried
out. For hydrogen-bonding interactions, systems chosen include
DNA base pairs and a set of clusters involving small molecules;
a set of different conformers of the water dimer studied by
Quack and co-workers67 is also included to probe different
regions of the water-dimer potential surface. For proton affini-
ties, tautomerization energies in DNA/RNA bases and the proton
affinities of a set of small molecules that mimic commonly
found biological cofactors are selected. Most structures involved
in the benchmarks are optimized at the B3LYP/6-311++G
(d,p) level while higher-level calculations are done for the

energetics wherever possible (see Tables 8-11 for details). For
the smaller hydrogen-bonding clusters, G3B3 calculations64,65

are done to generate the structure and energetics. In the SCC-
DFTB calculations, the structures are reoptimized at the
respective level.

III. Results and Discussions

In this section, we first discuss how different modifications
of the SCC-DFTB approach impact the calculation of hydrogen-
bonding interactions. Next, we present the corresponding
discussions regarding proton affinity calculations. Finally, we
show results for molecules not included in the fitting set.

A. Hydrogen-Bonding Interactions. As shown in Table 3,
the standard SCC-DFTB method in almost all cases underes-
timates the strength of hydrogen-bonding interactions. The
magnitude of error is on the order of 2-3 kcal/mol per hydrogen
bond and increases slightly as the number of hydrogen bonds
increases. For example, the binding energy of the water dimer
is underestimated by 1.6 kcal/mol, while that of the water
hexamer is underestimated by∼18 kcal/mol, which amounts
to about 3 kcal/mol per hydrogen bond. The errors are larger in
magnitude for protonated water clusters and protonated imida-
zole-water complexes. We note that the binding energy of water
and hydroxide is overestimated by the standard SCC-DFTB
approach by 5.1 kcal/mol, and error cancellation makes the
description of multiple-water-hydroxide clusters fortuitously
good. Overall, RMSE of 10.5 kcal/mol (3.1 kcal/mol per
hydrogen bond) is rather large.

With the dampedγXH modification (eq 21), the situation
improves substantially, especially for neutral and protonated
complexes. The largest error is reduced from 20.0 kcal/mol for
the standard SCC-DFTB method to 10.9 kcal/mol, and the
RMSE is reduced from 10.5 to 6.6 kcal/mol. For the water
hexamer, for example, the error per hydrogen bond is reduced
to ∼1.5 kcal/mol. Unfortunately, because electrostatic interac-
tions are generally enhanced with this modification the over-
estimated hydrogen bonding for hydroxide-water clusters
becomes even worse. For water-hydroxide, for example, the
error increases from-5.1 kcal/mol for the standard SCC-DFTB
method to-9.3 kcal/mol. As a result, the RMSE per hydrogen
bond for all 22 cases studied is only reduced modestly from
3.1 to 2.8 kcal/mol.

With the third-order extension of SCC-DFTB, for which the
Hubbard derivatives are either computed for atoms by calculat-
ing the third derivative of the energy or optimized based on
proton affinity only, the performance for hydrogen-bonding
interactions is similar to that of the standard SCC-DFTB method,
as expected. The RMSEs are 9.2 and 9.5 kcal/mol with the
computed and optimized Hubbard derivatives, respectively, as

TABLE 2: Different Sets of Parameters Optimized for Improving the SCC-DFTB Approach for Proton Affinity (PA) and
Hydrogen-Bonding Binding Energy (BE) Calculationsa

set parameters NHẼrep
c reference datad ú UO,N,C,H

d

0b -0.17,-0.16,-0.16,-0.16
1 ú NHorg 22 BEs 4.50
2 UR

d NHorg 32 PAs -0.14,-0.09,-0.08,-0.08

3 UR
d NHmod 32 PAs -0.14,-0.13,-0.08,-0.14

4 UR
d NHmix 32 PAs -0.15,-0.13,-0.08,-0.08

5 ú, UR
d NHorg all 4.95 -0.14,-0.08,-0.04,-0.07

6 ú, UR
d NHmod all 4.88 -0.14,-0.13,-0.04,-0.05

7 ú, UR
d NHmix all 4.85 -0.14,-0.12,-0.08,-0.08

a UR
d is the Hubbard derivative (in bohr-1) defined in eq 25;ú is the exponent (unitless) in the damping function inγRH defined in eq 21.b The

Hubbard derivatives are calculated based on atoms.c “NHorg” is the standard NH repulsive potential; “NHmod” is the shifted NH repulsive potential
developed in ref 68; “NHmix” means applying “NHmod” for sp3-hybridized acidic nitrogen and “NHorg” for the rest.d “All” means that all 32 PAs
and 22 BEs are considered in the optimization.
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compared to the value of 10.5 kcal/mol for the standard SCC-
DFTB method. The major difference is that the water-
hydroxide interactions are no longer overestimated.

When both the third-order extension and the dampedγXH

modification are introduced, with the Hubbard derivatives and
the damping exponent optimized based on all reference systems,
the performance improves substantially over using the damped
γXH alone. The RMSE, for example, is reduced to 4.4 kcal/mol
for total binding energies (2.2 kcal/mol per hydrogen bond).
For neutral water clusters, the error per hydrogen bond is about
1.0 kcal/mol; the error is slightly larger for protonated water
and about half of that of the standard SCC-DFTB method. For
the hydroxide-water clusters, the strength of interaction is still
overestimated although the magnitude is substantially reduced
from using the dampedγXH alone; e.g., the error for the water-
hydroxide interaction is reduced from-9.3 to-3.4 kcal/mol.

B. Proton Affinities. 1. Impact of the Third-Order Contribu-
tion with Calculated Hubbard DeriVatiVes.Consistent with the
previous study of Range et al.,48 the standard SCC-DFTB
approach has rather large errors for the proton affinities (Table

4) that are comparable to the AM1 and PM3 approaches. The
RMSE for the 32 reference systems is 11.6 kcal/mol, and the
largest error is 26.5 kcal/mol (for water deprotonation). This
magnitude of error is unacceptable for most applications. It can
be observed that the error is the largest for small molecules in
which the excess charge upon deprotonation is strongly local-
ized. For these systems, we expect the charge-dependent
Hubbard parameters to have a significant impact, which is
indeed the case as shown in Table 4. For these deprotonation
processes involving oxygen, the largest error is reduced to-6.3
kcal/mol and the RMSE is only 3.6 kcal/mol! Considering the
simplicity of the approach (only one extra parameter is
introduced per element), the performance is remarkable.

As shown in Table 5, the SCC-DFTB proton affinities (PAs)
involving nitrogen show a peculiarity: The error seems to
correlate with the hybridization state of the nitrogen. For sp3

cases (e.g., NH4+ or lysine side chain), the errors tend to be
substantially larger than those for sp2 cases (e.g., protonated
methylimidazole) by approximately 10 kcal/mol. This trend
holds when the third-order on-site terms are included (first

TABLE 3: Binding Energy (in kcal/mol) Comparison between SCC-DFTB and High-Level Ab Initio Methodsa

SCC-DFTBd

moleculesb high levelc standard HBonde third orderf third order and HBondg

2H2O -4.9/-0.1 1.6 0.7 1.1/1.2 0.2
3H2O -15.1/-0.6 5.5 2.3 3.7/4.2 0.3
4H2O -27.4/-1.0 10.3 5.5 7.6/8.2 2.7
5H2O -36.3/-1.3 14.0 7.9 10.6/11.4 4.2
2H2O(H+) -33.9/-0.8 4.6 1.2 6.1/5.7 2.5
3H2O(H+) -57.3/-1.0 11.1 5.4 11.8/11.7 6.3
4H2O(H+) -77.2/-1.0 15.6 8.6 15.2/15.3 8.7
5H2O(H+) -91.9/-1.2 20.0 10.9 18.6/19.0 10.0
2H2O(-H+) -27.4/-1.2 -5.1 -9.3 2.8/1.3 -3.4
3H2O(-H+) -48.6/-1.3 -2.4 -10.4 4.6/3.3 -5.7
4H2O(-H+) -66.7/-1.7 1.1 -9.0 8.8/7.4 -3.5
5H2O(-H+) -86.3/-1.8 7.2 -6.5 11.1/11.0 -4.5
NH3(H2O) -6.6/-0.2 2.6 2.0 2.1/2.2 1.4
NH4

+(H2O) -20.4/-0.4 1.7 -0.4 1.7/1.8 -0.2
6H2O_book -45.6 (CBS)/s 17.3 9.3 12.9/14.0 4.4
6H2O_cage -45.8 (CBS)/s 17.1 8.1 12.3/13.4 2.3
6H2O_prism -45.9 (CBS)/s 16.9 7.3 11.9/13.1 1.6
6H2O_ring -44.9 (CBS)/s 17.6 10.1 13.3/14.3 5.6
methylimidazole(-H+)(H2O) -16.2 (MP2)/s 0.1 -1.3 -6.1/-3.9 -6.0
methylimidazole(H2O)_1 -6.4 (MP2)/s 2.7 2.1 2.6/2.6 2.1
methylimidazole(H2O)_2 -8.3 (MP2)/s 2.7 2.0 1.2/1.5 0.8
methylimidazoleH+(H2O) -16.4 (MP2)/s 4.4 3.2 4.2/4.2 3.0

Error Analysish

MAXE -1.7i 20.0 10.9 18.6/19.0 10.0
RMSE 1.1i 10.5 6.6 9.2/9.5 4.4
MUE 1.0i 8.2 5.6 7.7/7.8 3.6
MSE -1.0i 7.6 2.3 7.2/7.4 1.5

Error Analysis (per Hydrogen Bond)
MAXE -1.2 5.6 -9.3 6.1/5.9 -6.0
RMSE 0.5 3.1 2.8 3.2/3.0 2.2
MUE 0.4 2.7 2.1 2.8/2.6 1.6
MSE -0.4 2.1 0.4 2.2/2.3 0.4

a The binding energy (BE) is computed as the energy difference between the complex and the isolated molecules at 0 K in the gasphase.
No zero-point energy correction has been included.b Examples of notation: “2H2O”, neutral water dimer; “2H2O(H+)”, protonated water dimer;
“2H2O(-H+)”, deprotonated water dimer; “6H2O_book”, neutral water hexamer in the book configuration; “methylimidazole(-H+)(H2O)”,
deprotonated methylimidazole complexed with water; “methylimidazole(H2O)_1”, neutral methylimidazole complexed with water as the hydrogen-
bond donor; “methylimidazole(H2O)_2”, neutral methylimidazole complexed with water as the hydrogen-bond acceptor; “methylimidazoleH+(H2O)”,
protonated methylimidazole complexed with water.c The number before the slash is the high-level reference data, which is based on G3B3 calculations
for the first 14 molecules, CBS results of ref 50 for the water hexamers, and MP2/G3Large for the rest. The number after the slash is the deviation
of the MP2/G3Large result from the G3B3 value (i.e., BEMP2 - BEG3B3). For the G3Large basis set, please refer to http://chemistry.anl.gov/
compmat/g3theory.htm.d The numbers are the BE differences between various SCC-DFTB models and the corresponding high-level result (i.e.,
BESCC-DFTB - BEhigh-level). Unless indicated otherwise, the “NHmod” repulsive potential is used.e Obtained with parameter set 1 in Table 2.f The
numbers before and after the slash are obtained with parameter sets 0 and 3 (Table 2), respectively.g The values are obtained with parameter set
6 (Table 2).h The notation for errors is the same throughout the work: MAXE, error with the largest magnitude, defined as sign(err) max(|err|);
RMSE, root-mean-square error, defined as〈(err)2〉1/2; MUE, mean unsigned error, defined as〈|err|〉; MSE, mean signed error〈err〉. i The error
analysis for MP2/G3Large is based on the first 14 molecules only.
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column under “third-order” in Table 5). In a previous study,68

where we had to describe a proton transfer from nitrogen to

oxygen, a special parametrization of the repulsive potential for
the N-H pair, termed “NHmod”, has been introduced, which
was introduced to correct for proton affinity errors for sp3-
hybridized nitrogens. Specific problems with nitrogen in certain
chemical environments, mostly for sp3 chemical environments,
could not be resolved by the third-order terms: Here, we found
errors of about 10 kcal/mol. We first recognized this problem
when investigating intramolecular proton-transfer reactions in
the DNA bases guanine and uracil, where proton acceptors can
be either oxygen or nitrogen. To correct this error, we developed
a special parametrization for nitrogen by modifying the N-H
repulsive potential to correct for the wrong energetics.4 Techni-
cally, this is done by adding a constant shift of 10 kcal/mol to
the N-H repulsive energy pair potential. Of course, this is a
severe limitation because this shift should be only applied to
N-H bonds with sp3 nitrogen.

Because the major effect of “NHmod” is to uniformly shift
the nitrogen proton affinity by approximately 10 kcal/mol, using
this set of repulsive potential (second columns for both
“standard” and “third-order” in Table 5) tends to produce errors
of comparable absolute values for different nitrogen-containing
species although the sign of error varies depending on the
hybridization state of nitrogen, regardless of whether third-order
terms are included or not.

Clearly, the introduction of “NHmod” is not a generally
satisfying solution because it attempts to account for deficiencies
in the electronic part of the SCC-DFTB method, which is
obviously not remedied by the current third-order formalism.
The problems seem to be rooted in the Hamiltonian matrix
elements, and the precise reasons for such dependence on the
nitrogen hybridization state are not clear and currently under
investigation. As a practical solution at this stage, we recom-
mend to use the “NHmod” repulsive potential when treating
proton-transfer reactions for sp3 nitrogen species and the
standard parametrization for the rest, whenever this is possible.

Applying “NHmod” only to the sp3 nitrogen species (last four
molecules in Table 5 and the standard repulsive potential for
the rest), we find a mean deviation of 6.7 kcal/mol for the nine
molecules and a RMSE of 7.0 kcal/mol.

2. Results with Optimized Parameters.As an attempt to
further improve the calculated PAs, the Hubbard derivatives
are treated as free parameters to be optimized using a genetic
algorithm. As summarized in Table 2, six sets of parameters
have been developed, three sets using the third-order formalism
alone (with different NH repulsive potentials) and three sets
combining the third-order and the modified Coulomb interaction.

For the PAs of the oxygen species, the performance of the
three sets is very similar (Table 6). Basically, the systematic
error in the PAs is removed with a MSE close to be zero; the

TABLE 4: Proton Affinity (in kcal/mol) Comparison
between SCC-DFTB (Standard and Set 0 in Table 2) and
High-Level Ab Initio Methods for Molecules with Acidic
Oxygena

SCC-DFTBd

moleculesb high levelc standard third order

H2O 398.4/-1.1 26.5 -5.4
2H2O 375.9/-2.2 19.8 -3.6
3H2O 365.0/-2.0 18.5 -4.6
4H2O 359.1/-1.9 17.4 -4.2
5H2O 348.4/-1.7 19.7 -4.9
CH3OH 392.6/-1.5 4.5 -6.3
CH3CH2OH 388.3/-1.2 8.7 -2.8
CH3CH2CH2OH 387.6/-1.3 7.9 -3.5
CH3-CH(OH)-CH3 385.6/-1.1 11.5 -0.5
HCOOH 351.2/-1.7 11.9 3.1
CH3COOH 355.1/-1.6 11.3 1.6
CH3CH2COOH 354.5/-1.5 11.2 1.9
C6H5OH 356.7/-1.9 5.5 0.2
p-CH3-C6H5OH 357.9/-1.8 4.6 -0.4
p-NO2-C6H5OH 334.6/-1.1 0.9 -5.4
H3O+ 171.2/-0.8 9.8 3.4
2H2O(H+) 200.2/-0.2 6.8 -1.6
3H2O(H+) 213.4/-0.4 4.2 -4.6
4H2O(H+) 221.1/-0.9 4.3 -4.3
5H2O(H+) 226.7/-0.7 3.9 -4.5
CH3OH2

+ 186.8/-1.2 1.9 -1.5
H2COH+ 177.1/-2.3 -1.6 -3.7
CH3CHOH+ 190.2/-2.2 0.1 -2.1

Error Analysis
MAXE -2.3 26.5 -6.3
RMSE 1.5 11.5 3.6
MUE 1.4 9.2 3.2
MSE -1.4 9.1 -2.3

a The proton affinity (PA) is calculated with the potential energies
at 0 K without any vibrational contribution.b The molecules are given
in the protonated form in PA calculations.c The number before the
slash is the PA at the G3B3 level; the number after the slash is the
MP2/G3Large PA difference from the G3B3 result (i.e., PAMP2 -
PAG3B3). d The numbers are the differences between the calculated PA
with various SCC-DFTB models and the G3B3 results (i.e., PASCCDFTB

- PAG3B3). The third-order results are based on the calculated (not
optimized) Hubbard derivatives, i.e., parameter set 0 in Table 2.

TABLE 5: Proton Affinity (in kcal/mol) Comparison
between SCC-DFTB (Standard and Set 0 in Table 2) and
High-Level Ab Initio Methods for Molecules with Acidic
Nitrogena

SCC-DFTBb

molecules high level standard third order

HCNH+ 176.0/-1.7 -2.2/9.4/-2.2 -3.7/8.0/-3.7
CH3CNH+ 192.3/-1.8 -4.1/7.6/-4.1 -5.9/5.9/-5.9
C5H5NH+ 229.5/-2.0 -6.9/4.7/-6.9 -7.6/4.0/-7.6
methylimidazoleH+ 237.3/-2.2 -2.5/9.1/-2.5 -3.6/8.0/-3.6
arginineH+ 249.3/-1.2 -1.8/10.0/-1.8 -7.7/4.1/-7.7
NH3 413.9/-1.4 20.6/32.8/32.8 -22.2/-10.8/-10.8
NH4

+ 212.3/-1.1 -14.2/-2.9/-2.9 -18.1/-6.9/-6.9
CH3NH3

+ 223.3/-1.2 -16.6/-5.2/-5.2 -18.5/-7.1/-7.1
lysineH+ 228.2/-1.2 -16.5/-5.1/-5.1 -18.5/-7.1/-7.1

Error Analysis
MAXE -2.2 20.6/32.8/32.8 -22.2/-10.8/-10.8
RMSE 1.6 11.8/12.9/11.6 13.7/7.2/7.0
MUE 1.5 9.5/9.6/7.1 11.8/6.9/6.7
MSE -1.5 -4.9/6.7/0.2 -11.8/-0.2/-6.7

a See the footnotes of Table 4 for the notation of molecules and
details of the high-level results.b For both the standard and the third-
order SCC-DFTB results, the three numbers for each molecule are
calculated with the “NHorg”, “NHmod”, and “NHmix” sets of the NH
repulsive potential (see Table 2 footnotes), respectively.

TABLE 6: Proton Affinity (in kcal/mol) Errors for the
Optimized SCC-DFTB Models as Compared to High-Level
Ab Initio Methods for Molecules with Acidic Oxygena

SCC-DFTB

error analysis third orderb third order and HBondc

MAXE -4.4/4.5/5.1 -6.1/-7.5/-6.8
RMSE 2.4/2.5/2.4 3.1/3.3/3.4
MUE 1.9/2.1/1.9 2.8/2.9/3.0
MSE 0.0/-0.1/-0.1 -0.2/-0.5/-0.4

a See the footnotes of Table 4 for the notation of molecules and
details of the high-level results. For the specific PA results, see the
Supporting Information.b The three numbers for each molecule are
obtained with parameter sets 2, 3, and 4 (Table 2), respectively.c The
three numbers for each molecule are obtained with parameter sets 5,
6, and 7 (Table 2), respectively.
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RMSE is about 2.4 kcal/mol, which is very encouraging for a
semiempirical method. When both the third-order and damped
γXH modification are considered, the errors in the calculated
PAs are somewhat increased because PA and binding energy
need to be balanced. The RMSE is about 3.0 kcal/mol, and the
largest error is-6.1 kcal/mol, which are quite comparable for
the third-order model optimized based on PA alone.

The situation is different for the nitrogen species (Table 7);
using parameters optimized either with the standard N-H
repulsive potential or with the “NHmod” alone leads to very
large errors. A consistent trend is observed only if different NH
repuslive potentials are used for different species based on the
hybridization state of the acidic nitrogen (last column for “third-
order” in Table 7). Even with this “NHmix” optimization set,
the NH3 molecule shows up as an exception, for which the PA
is overestimated while for all other species the PAs are
underestimated (i.e., negative error). The “NHmix” optimization
set has a MSE of-4.8 kcal/mol and a RMSE of 5.4 kcal/mol,
which are only slightly smaller than the results obtained with
the calculated Hubbard derivatives (last column in Table 5).
Including the dampedγXH modification does not change the
trend and slightly increases the errors in the PAs.

In the context of realistic applications, the quantities of
primary interest are the relative PAs between O and N species,
which often act as proton donors and acceptors in biological
processes. Because the optimized PAs show a mean error of
about 0.0 kcal/mol for oxygen species and approximately-5

kcal/mol for nitrogen species, we expect average errors in this
range for many applications. Interestingly, this average error is
comparable, in fact even slightly larger, than that obtained with
the calculated (not optimized) Hubbard derivatives, which is
-4.4 kcal/mol (without the dampedγXH). This consistency
suggests that the Hubbard derivative parameters should be rather
transferable to many molecular systems.

Benchmark calculations using AM1 and PM3 on the same
molecule set indicate (see Supporting Information for more
details) that these methods have similar problems to describe
the PAs consistently, comparable to the standard SCC-DFTB
method. This may be a general problem of minimal basis set
methods, because DFT calculations without diffuse functions
face a similar problem, yielding a very inhomogeneous descrip-
tion of the PAs in the molecule set finding errors of a similar
size (see Supporting Information).

C. Additional Benchmarks. 1. Hydrogen-Bonding Systems.
As shown in Table 8, the standard SCC-DFTB method does a
rather good job for the hydrogen-bonding energies for all 24
base pairs, with a RMSE of 1.6 kcal/mol and a maximal error
of 3.0 kcal/mol, as compared to MP2 calculations of Hobza
and co-workers.69 The third-order extension, as expected, does
not change the result dramatically although the errors tend to
systematically decrease; the RMSE is 0.9 kcal/mol, and the
maximum error is 1.7 kcal/mol. With both third-order and
dampedγXH, the RMSE is further reduced slightly to 0.8 kcal/
mol and the maximal error is-1.2 kcal/mol.

For the set of hydrogen-bonding complexes studied in Table
9, which includes both neutral and charged species, a small but
systematic decrease in error is also observed when modified

TABLE 7: Proton Affinity (in kcal/mol) Comparison
between Optimized SCC-DFTB Models and High-Level Ab
Initio Methods for Molecules with Acidic Nitrogen a

SCC-DFTB

molecules high level third orderb
third order and

HBondc

HCNH+ 176.0/-1.7 -3.0/8.3/-3.0 -3.6/8.1/-3.9
CH3CNH+ 192.3/-1.8 -5.0/6.3/-5.1 -5.3/6.4/-5.6
C5H5NH+ 229.5/-2.0 -7.3/4.1/-7.4 -7.7/3.8/-7.8
methylimidazoleH+ 237.3/-2.2 -3.0/8.2/-3.2 -3.3/8.2/-3.5
arginineH+ 249.3/-1.2 -4.8/5.2/-6.5 -5.1/4.6/-6.7
NH3 413.9/-1.4 3.3/2.5/1.2 5.1/0.2/4.0
NH4

+ 212.3/-1.1 -16.1/-6.1/-5.9 -18.4/-8.7/-8.6
CH3NH3

+ 223.3/-1.2 -17.6/-6.8/-6.6 -19.1/-8.2/-8.3
lysineH+ 228.2/-1.2 -17.6/-6.8/-6.6 -18.8/-8.0/-8.1

Error Analysis
MAXE -2.2 -17.6/8.3/-7.4 -19.1/-8.7/-8.6
RMSE 1.6 10.6/6.3/5.4 11.6/6.8/6.6
MUE 1.5 8.6/6.0/5.1 9.6/6.2/6.3
MSE -1.5 -7.9/1.7/-4.8 -8.5/0.7/-5.4

a See the footnotes of Table 4 for the notation of molecules and
details of the high-level results.b The three numbers for each molecule
are obtained with parameter sets 2, 3, and 4 (Table 2), respectively.
c The three numbers for each molecule are obtained with parameter
sets 5, 6, and 7 (Table 2), respectively.

TABLE 8: Benchmark Calculations of SCC-DFTB for
Hydrogen-Bond Interactions (in kcal/mol) in DNA Base
Pairsa

SCC-DFTB

error analysis standard third orderb third order and HBondc

MAXE 3.0 1.7/1.7 -1.2
RMSE 1.6 0.9/0.9 0.8
MUE 1.4 0.7/0.7 0.7
MSE 1.4 0.6/0.7 -0.3

a The reference data are MP2 calculations with large basis sets by
Hobza et al.53 For the specific data, see the Supporting Information.
b The numbers before and after the slash are obtained with parameter
sets 0 and 3 (Table 2), respectively.c The numbers are obtained with
parameter set 6 (Table 2).

TABLE 9: Benchmark Calculations for SCC-DFTB for the
Binding Energy of Small Molecule Clustersa

SCC-DFTB

error analysis standard third orderb third order and HBondc

MAXE 4.5 4.2/4.2 3.0
RMSE 2.5 2.3/2.3 1.4
MUE 2.1 1.9/1.9 1.1
MSE 1.9 1.5/1.5 0.6

a The reference data are based on G3B3 calculations; for their
structures and specific data, see the Supporting Information.b The
numbers before and after the slash are obtained with parameter sets 0
and 3 (Table 2), respectively.c The number is obtained with parameter
set 6 (Table 2).

TABLE 10: Benchmark Calculations for SCC-DFTB for the
Tautomerization Energy (in kcal/mol) of Neutral DNA and
RNA Bases

SCC-DFTBa

molecules
B3LYP

6-311++G** standard third orderb
third order and

HBondc

adenine 11.9 0.1 -1.6/-1.1 -1.1/-0.8
cytosine 1.6 3.2 1.7/2.3 2.2/2.3
guanine 1.3 4.5 4.4/4.3 3.1/-7.6
thymine 13.2 0.9 1.3/1.1 -0.1/-11.1
uracil 12.4 1.4 1.7/1.5 0.4/-10.6

Error Analysis
MAXE 4.5 4.4/4.3 3.1/-11.1
RMSE 2.6 2.4/2.4 1.8/7.7
MUE 2.0 2.1/2.1 1.4/6.5
MSE 2.0 1.5/1.6 0.9/-5.6

a The modified set of NH repulsive potentials (NHmod) is used unless
stated otherwise.b The numbers before and after the slash are obtained
with parameter sets 0 and 3 (Table 2), respectively.c The numbers
before and after the slash are obtained with parameter sets 6 and 5
(Table 2), respectively.
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TABLE 11: Benchmark Calculations for SCC-DFTB for the Proton Affinity (in kcal/mol) of DNA and RNA Bases a

a A, C, G, T, and U represent the bases for purine adenine, pyrimidine cytosine, purine guanine, pyrimidine thymine and pyrimidine uracil,
respectively. The deprotonation position is in bold.b The modified set of NH repulsive potentials (NHmod) is used unless stated otherwise.c The
numbers before and after the slash are obtained with parameter sets 0 and 3 (Table 2), respectively.d The numbers before and after the slash are
obtained with parameter sets 6 and 5 (Table 2), respectively.

Extension of the SCC-DFTB Method J. Phys. Chem. A, Vol. 111, No. 42, 200710871



γXH is used; for example, the RMSE for the standard SCC-
DFTB method is 2.5 kcal/mol, while that for the optimized
parameter set 3 (third-order plus dampedγXH) is 1.3 kcal/mol.

2. Proton Affinities.For the tautomerization energies of DNA
and RNA bases, the standard SCC-DFTB method with the
NHmod repulsive potential gives rather good results due to error
cancellations for the PAs associated with the two tautomers (see
below); the RMSE is only 2.6 kcal/mol (Table 10). With the
third-order extension, the result is essentially the same with a
RMSE of 2.4 kcal/mol. With both third-order and dampedγXH,
the result is further improved slightly with a RMSE of 1.8 kcal/
mol. It should be noted that the NH repulsive potential makes
a notable difference here; with the original NH repulsive
potential with the third-order and dampedγXH, for example,
the RMSE is as large as 7.7 kcal/mol.

The absolute PAs of the DNA and RNA bases, by contrast,
still have sizable errors (Table 11). While set 6 leads to quite
reasonable tautomerization energies, it is not acceptable for the
calculation of absolute PAs. This clearly shows the limits of
the current DFTB version. The errors may be associated with
the use of a minimal basis set; an extension of the basis set
may remedy the situation. However, the current version of
DFTB should therefore be carefully tested before application
to new chemical species.

Finally, for the model biological “cofactors” shown in Table
12, the standard SCC-DFTB has large errors with a RMSE of
11.5 kcal/mol. Including the third-order extension substantially
reduces the error to a RMSE of about 5 kcal/mol. With both
third-order and dampedγXH, however, the errors become larger
in magnitude; the RMSE increases to 6.7 kcal/mol, which is
quite significant although still a major improvement over the
standard SCC-DFTB method.

IV. Conclusions

Many biological applications of QM/MM simulations require
that the method is capable of accurately describing proton
affinities and hydrogen-bonding interactions. This is a significant
challenge especially for semiempirical QM methods, which
currently are the most practical for carrying out QM/MM
simulations with a sufficient amount of sampling. Motivated
by such considerations, we have improved the formulation of
the SCC-DFTB approach by including third-order terms in
density expansion and modifying the short-range behavior of

the γ function for X-H pairs. Both improvements have been
proposed based on physical considerations rather than ad hoc
parametrizations.

These modifications are shown to significantly improve the
reliability of the SCC-DFTB approach. In particular, the third-
order terms, even if only the on-site terms are considered,
improve proton affinities dramatically. The dampedγXH,
however, improves the description of hydrogen-bonding interac-
tions (by approximately 1-2 kcal/mol per hydrogen bond).
Using a set of small molecules of biological interest, several
sets of parameters have been fitted. Considering the small
number of parameters needed (one Hubbard derivative for each
element type, one parameter that describes the damping ofγXH),
the results are expected to be rather transferable to systems
beyond the fitting set, which is largely supported by additional
benchmark systems.

Although satisfying progress has been made, there are still
major limitations in the improved SCC-DFTB approach. For
example, although the RMSE of proton affinities for oxygen
species is fairly small, typically on the order of 2-3 kcal/mol,
the errors in the proton affinities for nitrogen species appear to
be dependent on the hybridization state of the nitrogen. The
origin of this is not well understood and requires further study.
Although this limitation can be somewhat alleviated by adopting
different repulsive potentials for the N-H pair, such a “remedy”
is clearly only useful for proton affinity calculations but less
suitable for studying reactions. For the hydrogen-bonding
interactions, the errors in the neutral/positively charged species
and negatively charged species tend to be of different signs;
this systematic behavior also requires further studies to improve.

In short, our improvements in the SCC-DFTB method are
expected to enhance the applicability of this approximate density
functional method, especially in biological applications. On the
basis of the current set of benchmark calculations, it appears
that set 7 in Table 2 is the most useful in many applications. It
leads to a quite reasonable overall performance for hydrogen-
bonded systems, although there are still problems for some
systems, as has been shown for the absolute PAs of the DNA
bases. Whether the accuracy of the method is sufficient for the
question of interest depends on the system of interest and needs
to be established with careful benchmark calculations.
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