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We illustrate the main features of a recently proposed method based on ensemble density functional theory
to divide rigorously a complex molecular system into its pajtsRhys. Chem. 007, 111, 2229). The
illustrative system is an analog of the hydrogen molecule for which analytic expressions for the densities of
the parts (hydrogen “atoms”) are found along with the “partition potential” that enters the theory. While
previous formulations of chemical reactivity theory lead to zero, or undefined, values for the chemical hardness
of the isolated parts, we demonstrate they can acquire a finite and positive hardness within the present
formulation.

1. Introduction the parts must be determined simultaneously wighall of
which is required to set the stage for the determination of mutual
reactivities between parts, though certain self-reactivities can
be determined for each species alone without reference to a
larger systen.

In a series of recent papers: two of us have developed a
rigorous method for dividing a complex system into its parts
based on its electronic density® The underlying theory,
partition-theory (PT), was used to construct a formulation of

chemical reactivity theory (CR¥Wwhich, for the first time, is Accordingly, in the present paper, we develop the partition
consistent with DFF® and is richer in structure than the theory in detail for an extremely simple system to exhibit its
preexisting CRTL0-13 main features explicitly. The illustrative system is an analog of

the hydrogen molecule in which the electrons move in one

the whole system is partitioned is achieved first by selecting d|m|en3|on allon%the mo_IelcuIar aX"T W'tzot:]t mteerc_a;?, _and the
the nuclei of each putative part and maintaining these in the Nucléar Coulomb potentials are replaced by attraatenction

positions in which they occur in the whole and then requiring POtentials. As a consequence of these extreme simplifications,
that the sum of the electron densities of the parts, each of whichMany quantities of interest can be determined analytically in a
is treated as though isolated, add up exactly to the electrontransparent manner, including the electron density of the
density of the whole (the density constraint). The electron Molecule, of its parts (the “atoms”), and the partition potential
densities of the parts are then to be determined by minimizing @t all internuclear separations.
the sum of the density functionals of the individual parts with  In section 2, the model is defined and the molecular density
respect to the densities of the parts subject to the densityobtained. In section 3, the parts are defined and shown to have
constraint. The density functional used, that of ref 8 (PPLB), one electron each, and a polar representation for their wave
allows for the existence of noninteger numbers of electrons functions is found which facilitates the minimization. In section
on each part, necessary, e.g., for the definitions of electro- 4, the minimization is carried out, resulting in an Euler equation
negativity'? and hardnes® for key indices of chemical reactiv-  for the polar anglgd(x) of that representatiof(x) is found in
ity,® and for incorporating covalent bonding between inequiv- section 5 and used to determine the partition potensiain
alent parts. section 6. The principle of electronegativity equalization
The minimization proceeds via a Legendre transformation, formulated in refs 2 and 3 is shown to hold in section 7. Also
which introduces a partition potenttélup(r) as the Lagrange  in section 7, the hardnessf the isolated H atom is calculated,
multiplier of the density constraint. Thus, the formalism can shown to be nonzero, and correlated with the strength with
become computationally complex. First the electron density of which its electron is bound. Thus, despite the fact that the model
the whole system must be determined. Then, the densities ofis a caricature of the real system, meaningful features of the
partition theory are indeed illustrated by it, as discussed in the
T Part of the “Giacinto Scoles Festschrift”. concluding section, 8.
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In PT =3 a sharp definition of the individual parts into which




12448 J. Phys. Chem. A, Vol. 111, No. 49, 2007 Cohen et al.

2. 1D-H,: Independent Electrons Moving in Attractive W.(X) = /n.(X) (3.2)

o-Function Potentials in One Dimension ¢ ¢ '
Our task is to partition an analog of the frholeculé® in They are mirror images of each other

which two electrons move independentlydffunction nuclear _

potentials in one dimension into parts, analogs of H atoms. Each Vo) = 92— %) (3.3)

H atom has, by symmetry, only one electron, so the need for
the PPLB density functional is avoided. Indeed no explicit use
of density-functional theory is required for either the molecule
or the atoms. Our partition will therefore parallel the wave
function approach of Rychlewski and Pafrwhere the H
molecule was partitioned by requiring that the pseudo-H atom

and both are normalized.

We now decompose thg, into their symmetricys(— X) =
P4X), and antisymmetriapa(— X) = — ya(X), parts by a rotation
within the function space they span

energies were minimally promoted from the ground state values Y, = L WsT vl Y= = Wws—vw) (3.4)
of the unperturbed H atoms and their densities added up to the V2 V2
correct molecular density. 1 1

The ground-state wave functiopo and energyEo of an Ys= 7 (W1t 92, Ya= 7 (Wi—v) (3.5

isolated H atom are (atomic units are used throughout):

_ The rotation leaves “lengths” within the space invariant so
PoX) = VZe 2 (21)  that

E,=—Z%2 (2.2) =l b2 (3.6)

Ineq 21,-2Z is the strength of thé-function potential. To We next introducéﬁ — ﬂ(X), a poIar angle in the function space

draw the analogy closer to real hydrogenic atoms, one could

equateZ to the nuclear charge. I Y 37
The ground-state enerdgyN = 1) of one electron moving Vs MuCOSH,  a Msin (3.7)
independently in the two-function potentials centered at= so that
+ais E(N = 1) = —«?%2, wherex satisfies
« = 27/(1 + tanhia) 2.3) W12~ Y Mul2(cosp £ sin ) (38)
The corresponding wavefunction is Because the, values are non-negativg| cannot exceed/4.
Furthermore s must be an odd function of, to ensurey, is
Py = gea IX| > a also odd. This also guarantees normalizationyf
coshkx (2.4) -
= 4. The Euler Equation for (X
B oshea’ X =@ q Bx)
To apply PT223 begin with the original Hamiltonian
where
1
112 H==Sp’—Z Y [0(x —a)+d(x +a)] (4.1
B=«"q1+—2 4 tanhka (2.5) 2.4 zp' Y. 2[ -+l tal (4.1)
cosH «a ' ’

Then divide the system into overlapping regions, each with a
given number of electrons. In this case, we choose one electron
on the left, and the other on the right. Thus, we have two

1-electron problems:

Note thatx — 2Z asa — 0 (united atom limit) andc — Z as
a — oo (separated atom limit).
The two-electron molecular electron density is given by

() = 2y (2.6)

2
_ Ho=5 4o, n,=-206Fa)  (42)
and the total energy of the molecule is

o

2 The PT problem is to minimize
EWN=2)=2E,(N=1)=—« (2.7)

€ = Yy, Hyyy) + (¥ Hay) (4.3)

subject to normalization of the wavefunctions but also to the
constraint that the total density equal the original molecular
density, eq 3.1. (Without the latter constraint, we’'d obviously
find 11 2= ywo(X = Fa)). In the polar representation of section
3, both density and normalization constraints are automatically
We now partition the molecule into two paxis= 1,2, each satisfied, so the partition problem becomes simply minimizing
having a real one-electron wave functigg, localized around & as a functional of3. That functional is
—a and+a respectively, so thaty(X) is given by

My () = Ny00 + Ny(x) (381 &= [dx [%

where N is the number of electrons in the molecule. The
chemical potential of the molecule is therefore

uy = EQ2) — E(1) = EQ1) = — «%2 (2.8)

3. Parity Decomposition

1 1
P I’ 1 2
an, 2n,\,I +ny(B)| +

wheren,(X) is the electron density of each part= 1, 2 treated 1 .
independently. The “atomic” wavefunctions are given by EnM[(Ul +vp) + (v, — v) sin ] (4.4)
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Varying it yields
0E = f dx{ny,pB'0p" + (v, — vy)ny cOs POS} (4.5)
Integrating by parts, as usual, leads to
0E = 2np' éﬁ|§_f:

f dx{

For € to be stationary with respect to arbitrary variati@yisof
/3, both terms contributing to€ in eq 4.6 must vanish. The

(nM dﬁ) + (v, — v)Ny, COS zﬁ}éﬁ (4.6)

Euler equation which results from the vanishing of the second

termin eq 4.6 is

d (nMg,Q
~dx dx

(nM %) +Z(O(x—a) — o(x + ) n,cos B=0 (4.8)

+ (v —

vy)Ny, cos B=0 4.7)

d
dx

The vanishing of the first term in eq 4.6 sets the boundary
condition at infinity on the Euler equation, eq 4.8. There are
two possibilities, the vanishing ¢f at infinity or the fixing of
S there so thads must vanish. As we shall see in section 5,
imposing the latter results in an unacceptable divergenge in
at infinity. We therefore impose the boundary condition

B(X)=0, |Xx =0 (4.9)
5. Solving for B(x)
Equation 4.8 becomes
dx Ny ?ﬁ 0, [xl=a (5.1)
subject to the boundary conditions in eq 4.9 and
p@)=p@"=p, _
pla) - fa)=zcos %] e 6
p—a)=p(-a)=-p, _
B(-a)—p(-a)=Zcos %J =ra 69
The general solution of (5.1) is
b)) _ &
"X ) ®4)
BKX) = (5.5)

)

wherec; andc; are constants. As implied above in section 4, if
c; does not vanishf' diverges exponentially at infinity,
according to eq 5.4, becausg goes exponentially to zero, so,
in accordance with eq 4.8; vanishes foix| > a, andj(x) is
constant there

B = Pa

i—ﬂa izia} (5.6)
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For [x| < a, we can rewrite eq 5.6 as

X c
B = [ dx o (1X ; (5.7)
which implies that
Pa=3 f - (X) (5.8)
From (5.8) we can relate; to 5, via eq 2.6
BB,
7 cosfixa tanhwa (5:9)

Inserting (5.9) forc; into eq 5.4 and the result into the BC (5.2)
or (5.3) produces an equation gy

Ba=2

P sinh Zacos 25,

(5.10)

Inserting egs 5.9 and 2.6 into eq 5.7 yields the remarkably simple
result

tanhxx
tanhka

p() = Ba O0<Ix<a (5.11)

Equations 5.6, 5.10, and 5.11, together with eq 2.3, provide a
complete analytic solution fg#(x) and through egs 3.5 and 3.8
for they,. In Figure 1, we showy, n;, andny vsxforZ=1
anda = 1. We see that each localized density spreads into the
neighboring region and looks quite similar to an atomic density.
To see the differences from isolated atomic orbitals, in Figure
2 we make the distance smaller=€ 0.3), and show the right-
side “atomic” orbitaly1(x) (solid line) and compare it with the
pure exponential orbitalg(x) of eq 2.1 (dashed line). The orbital
11 resemblesypo and tends to it for large, but is distorted
with respect to it for smal. Its maximum is still a cusp at

= @, but it also shows a second cuspxat —a. Sincex > Z
always, (eq 2.3), and eithegr; or vy, is proportional toyy for

x| > a, whereff = (4 is constant, the PT atomic densities and
orbitals decay more rapidly than isolated atoms. Since their
normalization is the same, this in turn means enhanced density
between the “nuclei” , due to bonding. In Figure 3, we show
B(x) for Z=1, anda = 0.1, 1, and 10. Qualitatively, from eq
511

B()

~ ﬂag, x < min(Lk, a)

= Pa

and if Za> 1 (large separation)j, = z/4 while if Za < 1
(small separation)3, = a. The interpretation of these results is
given in terms of (3.8), outside the bond regionjifis small,
both “atoms” share the density in each outside region. But if
Pa is close ton/4, each atom dominates on its own side,
consuming the entire density there.

Atomic densities with the same qualitative features were
obtained for the pseudo-H atoms in the partitions of the H
molecule performed by Palkéand Gusé? and discussed
subsequently by Pat.Our work is particularly close to that
of Guse!® since, along with the pseudo-atom densities, he also
obtained the partition potential for fixed internuclear separation,
for both H, and K. We find here analytic solutions for the

X > min(1lk, a)
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My (x)

Figure 1. Molecular densitynu(x) (solid), and “atomic” densities;-
(X) andny(x) (dotted) forZ = 1 anda = 1.

o W)

T 2 4

Figure 2. Right-side “atomic” orbitaty1(x) (solid) and pure exponential
orbital yo(X) (dashed) foiz = 1 anda = 0.3.

1 - .

Figure 3. B(x) vsx, as given by eq 5.11, for fixed= 1 and 3 different
values ofa.

guantities he found numerically, and we use them to compute

chemical reactivity indices within the new formulation of CRT.

6. The Partition Potential

The one-electron wave functiong;(X) and y,(x) are not
eigenstates of the part-HamiltoniaHs andH, of eq 4.2. The

natural question arises: What are they eigenstates of? The

partition theory of refs 43 dictates that they are eigenstates
of the modified single-electron Hamiltoniah|§ =pA2+ 7,

oa=1,2:
2
p
£+

where the eigenvalue, regardless of the partis precisely
equal to the molecular chemical potengi@l of eq 2.8. For each

o, 74 can be viewed as the exact version of the “effective
external potential” concept discussed by Ayers and Parr in ref
20. The potentiabp(x) is the partition potentialthat we now
construct explicitly. Summing over and dividing byy1 + 12
yields a symmetric expression fop

va)wa=umwa, =12 (6.1)

T =v, T Up (6.2)

Y1+ v,
1/) + 9,

(wl V) — (6.3)

_ 1
Up = HUm — T 2

1 andy, can be reexpressed in termsyf andy,, eq 3.5.
Noting that

Ny = 2y° (6.4)

using eq 3.7 fors,, and taking the)-function character ofy,
into account results in

Cohen et al.
vp =yt
1
21y, COSP dx2 (wM cosp) — (Ul + v,)(1 +tang,) (6.5)

The molecular wave functiony satisfies the Scfidinger
equation

11/’M
2742

which can be used to transform eq 6.5 to

{ tanj +{2 ﬂ)} .

> (1/1 + v)(1—
Using eq 6.4, the Schdinger-like equation fof3, eq 4.8, can
be rewritten as

— Tt v)yy = (6.6)

Um¥Pwm

2 dyy ds | &g

Yy dx dx2

T2y dx ax "

tang,) (6.7)

’idw_“"% dzﬂ] —(yl—uz)costa—O (6.8)

Multiplying eq 6.8 by tanj, invoking the oddness ¢f and the
d-functions inv; andw,, and subtracting the result from eq 6.7
yield for vp

w=aled *

%(yl + u)[L — (1+ cos B,) tanb.] (6.9)

Inserting our previous result f@gi(x), eqs 5.6 and 5.11, into eq
6.9 yields an explicit result fovp

B 6(a— Ix)
tantf ka cosH «x

vp=

+ = ( +v,)[1 —sin23,] (6.10)

wheref(y) = 0 fory < 0, 1 fory > 0 is the Heaviside step
function. Equation 6.10 shows that(x) vanishes forx| > a,

has attractived-functions at +a whose weights increase
monotonically from 0 to¥2Z asZa decreases from infinity to
zero, and has an attractive inverse d@ghcomponent forx|

< a. For the united atom casBal 0, v1 + vp = v2 + vp = 201
simply reproduces the molecular potential, amd= 12 = yum

as they should. Figure 4 displays vs x for fixed Z = 1 and
representative values af The partition potential is almost flat
for small separations, a wide well in between the two atoms
for intermediate separations, and a narrow well that is far from
both atoms at large separations. Figure 5 displays the weights
of the 6-function components aof divided byZ vs a.

As shown in ref 3, the KohaSham (KS) HOMO eigenvalue
of each part must be identical to the chemical potential of the
whole in the added presence @ In our simple example, the
KS potential of a part reduces to the nuclégunction potential
of one H atom. Addings to the nuclear potential must therefore
transform the HOMO energdl, eq 2.2, of the isolated atom to
the more negative HOMO energy of the molecE@® = 1) =
—«?/2, which is its chemical potential (eq 2.8 must be
attractive to do that, which it is, from eqgs 6.9 and 6.10. In our
simple exampleyp makes thed function of the atom more
negative, adds the attractive inverse dqsbtential between the
atoms, and adds an attractive ghdsfunction at the position
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= 0[5 parto is represented by an ensemble of PPLB type containing
03+ J contributions with only two integer electron numbepg,and
0.6t " ‘ ! pa+1. The principle of electronegativity equalization is expressed
-1 Ya ! as the equality of the chemical potential of each part in the
ok —] presence of the partition potentiadi, to the chemical poten-
F02+ \/ tial of the moleculeuy
_04 C | 1
- P_
! x?a : Mo = Ums Ua (71)
0
S0+ \/ Theui are defined as the difference between the ground state
> 04 J ! energies ofx for p, + 1 andp, electrons in the presence of
4 5
x/a P__ P P
Figure 4. Partition potentiabp, eq 6.10 for fixedZ = 1 and 3 different Ug = Ea(pa +1) - Ea(pa) (7.2)
values ofa : a = 0.1 (upper panel)a = 1 (middle) anda = 10 o
(bottom). Thed-functions at+a are indicated by arrows. and similarly forum

um = Epu(Ny) — Ey(Ny — 1) (7.3)

In our simple exampleyy is given in eq 2.8. The relevant
value of p, is zero, so thaw’ is just EX(1), the lowest
eigenvalue of

HP =H, + vp (7.4)

§—function strength

with Hy given by eq 4.2 andp by eq 6.10. The explicit
4 5 construction ofyp in section 6, not possible in general,
guarantees that eq 7.1, and therefore that electronegativity
equalization holds. In the general case, a modification of the

Figure 5. Weights of thed-function components aof divided byZ
as a function ofa for fixed Z = 1, from the second term of eq 6.10.

The inset showss, vs a. Car—Parrinello schenté22guarantees electronegativity equal-
ization.
The susceptibility of partt measures the response of the
unoceupied density of parta to a small change in the potentidl, of eq
-0.5 - 6.2:
occupied state
E_| ony(X)
(08
XX)=— 7.5
B 1aliX) == S0 (7.5)
-2 . ! ! . . For two electrons, it is simple to show that
0 1 2 3 4 5 6
a
Figure 6. Energy as a function af, in atomic units, for the two lowest- XX X) = = 200, (X)- 96 (s X, X)Po(X) (7.6)
energy solutions of eq 6.Z = 1for this plot.
where 9 (um; X, X) is given by theE — uy limit of
of the other atom to force the wave function to decay sufficiently
rapidly outside the molecule. . B N Y y(X)
In the limit of infinite separation; + vp reduces ta; and ‘ga(E’ xX) = G,(E; X, X) — E — uy (7.7)
v2 + vp reduces ta,, except for|x| < a, where the attractive
potential andG, is the Green’s function for part:
2 2 -1
TE 1 , P :
vp(X) = —— ——— X <a (6.11) G,(E; x, X) = [E— (—+ C/’)] xx)  (7.8)
P 16 cosH zx ’ 2 °

persists. This potential has at least one additional bound state, F_|gure_ 7 Sh°W$ the susc_eptlbmty of the right f‘atom" for_
but with binding energy less thaf|. Thus, it is unoccupied, various interatomic separations when the perturbing potential

and does not affect our results. Taelependence of this state’s is ad‘?'ed ako = 3 (the n.umerical calculatipns were done as
energy is shown for fixed in Figure 6. For very large described in the Appendix). Electron density flows away from

separation between the atoms, it is localized at the center of*@ Puilding up a peak at (positive because of the minus sign

the inverse coskix) component ofp, but it rapidly delocalizes n th(_a definition ofyq, €q 7.5), aqd a_negative _peak atthe clpsest
for smaller separations. In particular, far= 1, it is highly maximum of the charge density, i.e., atWith the analytic

delocalized whena < ~ 1.4, where it vanishes into the Creen function of anisolated “atoftand eqs 7.67.7, . can
continuum. be obtained analytically in the large-separation limit:

7. Susceptibility and Hardness Ko (XX) = 2e’z'x‘{e’z'x’x" - ’% + Z(]x| + |x’|)] X

Having found the partition potential, we now illustrate the

. A —Z(IXIFIX)| o= ZIX|
construction of reactivity indices. In the CRT of ref 3, each € }e (7.9)
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which has the dimension of inverse length. Integrating over

0.04 0.2
=1 =2
7 0.1 ¢ position on the left and right then cancels out th@ependence
<0 arising from the Fukui functions, and the result isza
= 0 ;
= independent hardness.
—0.15 ) | J Do real systems follow such behavior? There is no indication
200 2 46 that they do (see discussion of ref 26 about hardness of

isoelectronic series), but the possibility is not ruled out either.

8. Conclusions

Despite the extreme simplicity of the 1Dlrhodel analyzed
B A S R R T E—" here—two non-interacting electrons moving in 1D under the
* influcence of two equivalent attractivefunction potentials-
that model allows us to illustrate the essential features of our

Figure 7. qucgptibilityx(m,x) of the ri_ght “atom” obtained from eqgs
7.6-7.8, as indicated in the Appendix, wheis set to 3 au. Each 5 4ifion theory and of key indices of our chemical reactivity
panel corresponds to a different value of the internuclear distance, . . g .

via straightforward analysis and easy computations.

The lower-left panel showg(x,,X) whena is just below (solid) and ’
just above (dottedyo. We have shown that the electron density of the molecule can
be decomposed exactly into a sum of atomic densities, a rigorous
solution of the “atoms-in-molecules” probleth.
Electronegativity equalizati@his built into the partition by
3+ - the symmetry of the problem, so this homonuclear model does
25l not illustrate that principle as well as a heteronuclear model
would. Nevertheless, the current example does illustrate a key
nozr feature of the new CRT, the chemical context dependence of
L5} the reactivity indices, in this case the electronegativity of a part,
introduced through the presence of in the Schidinger
equation fonp, cf. eq 7.4. It also demonstrates that the partition
potential remains finite as two atoms separate, but has no effect
F—y “gi 0% o8 T 12 14 16 13 2 on the partitioning after sepgration. . _
VA Another serious shortcoming of the earlier formulations of
Figure 8. Self-hardness V& in the separated-atom limit (atomic units). DFT-based CRT is the vanishing of the hardness, defined as
the second derivative of the ground state energy with respect
to electron number. To compensate for this deficiency, the
second derivative is commonly replaced by the second finite

3.5

1k
0.5
0

#
#
i
;
;
N
:
N
N
N
N
N
N
!
}
g
#

We now construct the susceptibility of the whole system,
by adding together the susceptibilities of the parts difference of the energy with respect to integer numbe#,
wherel is the ionization energy at given integer number and
. . N )
X X) = X, X 710 is the corresponding electron affinit)1! Even that cure fails
1e(% X) Z 1ol X) ( ) in the present case of noninteracting electrons for whichA
and the redefined hardness vanishes. However, we have shown

The inverse of;p determines the hardness matpiyg as shown gxplicitly here that ‘h'? _self-hardne§s, as defined in ref 3, of an
in refs 2 and 3: isolated “atom” is positive. Interestingly, the hardness saturates
as the ionization energy of the “atom” increases, raising the

very interesting question of whether such a saturation of

(7.11) hardness with ionization energy exists in real systems. For this
model, a strong positive correlation between hardness and

o= J [ dxax £,09xp (% X)f4(X)
ionization energy exists only over the limited range&dfetween

where the Fukui function of pardt, fu(X)
0.4 and 0.7.
dn, (N, x) .
f,(x) = T (7.12) Acknowledgment. K.B. is supported by NSF CHE-0355405.
a This paper is dedicated to Professor Scoles on his 72nd birthday.

Although all three authors are practitioners of the black art of

is simply equal to/xﬁ(x) for two noninteracting electrons, since density functional theory (not one of Giacinto’s favorite

Na(Ng, X) = Naz/)(zl(x) (see also refs 24 and 25). Thus, we have methods, except perhaps to complain about), in his honor this
work in no way uses or depends on DFT but is of very general

, - , , chemical interest. We therefore have a small hope that he might
M= [ f XX P20 % X)pA¢)  (73) e P ’

Figure 8 shows the self-hardnesgs, for an isolated H- Appendix

e o 52 o, Numerica Calcton of the Susceptbiy. W s
o . . : obtainedG,(E; x, xX) according to the following well-known

susceptibility has units of energy times length squared. When prescriptioR?
Zis large, it establishes a length scale inversely proportional to
Z, and an energy scale proportionalZ$ so theZ dependence e (B X ) (E X2)
cancels out in the inverse susceptibility. To obtain the hardness, Gy(E; x, X) =2 alr™ 7P 7> (A.1)
we multiply o~ on the left and right by the Fukui function, WYo 1 Yol
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wherex< = inf(x, X), x> = sup, X)

\N[w(x,L' wa,R] =
YL (B, X6 r(E X)) — Yo (B XY, R(E X) (A.2)

and the orbitalsp,,. andiyq,r are solutions of

2
[% - V&(X)]w“*L'R(E’ X)=Eyp, fEX  (A3)
satisfying left and right-boundary conditions, respectively:
%o (B, X140, x}—oo (A.4)
[or(E X0, xte (A.5)

The potential 74(x) of eq A.3 is given by eq 6.2, with the
partition potentialvp(x) of eq 6.10. The computations of
Yo Lr(EX) were carried out alE = uy + AE with AE

chosen for numerical convenience, i.e., large enough so that

SUpx|Go(um +AE)| does not become so large as to be
inconvenient on the one hand, and small enough so that
(MY2)[Goum + AE) + Gy(um — AE)] does not differ significantly
from its limit atAE ¥ 0. We then calculatedy, of eq 7.7 as

Gl X, X) =

%mwm+AExm+GNW—AExm]MQ
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