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We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of
critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab
initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular
dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders
of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced
time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-
classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a
novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is
combined with classical nuclear velocities to obtain the vibrational density of states. The approach is
demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum
nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is
also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics,
computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio
dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of
anharmonicities.

I. Introduction

The impact of hydrogen-bonded systems and hydrogen
transfer extends beyond fundamental chemistry and well into
the areas of materials,1-5 atmospheric,6-13 condensed,14-17 and
gas-phase cluster chemistry,10-13,18-20 and biological sciences.21-23

Recently, gas-phase single-photon24 and multiphoton25 vibra-
tional action spectroscopy experiments and condensed-phase
multidimensional infrared experiments26,27have become critical
in deciphering the precise vibrational signatures that contribute
to dynamics in soft-mode hydrogen-bonded systems. In biologi-
cal systems, many enzymes that catalyze hydrogen-transfer
reactions are thought to display tunneling.21 Proton-transfer
reactions are also of interest in fuel cell applications.1

However, there are multiple factors that influence the accurate
computational modeling of processes involving excess protons,
hydride ions, and atomic hydrogen in heterogeneous systems.
For protons and hydride ions, the polarizability of the immediate
environment19 and the changing bonding topography during a
transfer process11,13 render the problem attractive to ab initio
quantum chemical treatment. Dynamical aspects become sig-
nificant at finite temperatures,9-11 and nuclear quantum effects
may be critical through hydrogen tunneling and zero-point
effects.19,20

There exists a number of computational methods that attempt
to solve the vibrational spectroscopic problems in such funda-
mental chemical systems. One of the most direct approaches is
through harmonic analyses of optimized nuclear configurations

available in standard electronic structure packages. This ap-
proach, however, is not adequate for fluxional protonated11,13

and hydroxide-rich systems.9,10,20The effect of nuclear dynamics
must be considered through quantum,28-62 semiclassical,30,63-78

or classical treatments where the electronic structure is ac-
curately computed.63,79-86 There are many important meth-
ods29,33,87,88 for the quantum dynamical treatment of nuclei.
Some of the bottlenecks in these approaches include the
exponential scaling of quantum dynamics and the choice of the
coordinate system.89-91 Recently, several attempts have been
made to circumvent the exponential scaling problem numer-
ically,29,33,34,70,87,88,92-94 and the choice of coordinate systems
has also received considerable attention in the literature.91,90,95,96

For systems with more than a few degrees of freedom, a
classical or semiclassical approximation of nuclei is generally
desirable, if only to keep the computational expense tractable.
In this regard, for some larger-sized water clusters, a classical
treatment of nuclei has been found to be sufficient in providing
vibrational properties in agreement with experiments.11-13

Important insights have been gleaned from these simulations.11,12

Furthermore, our group has recently contributed a method-
ology97-99 that is extended in this publication to treat vibrational
spectroscopy in clusters inclusive of critical nuclear quantum
effects. Our approach is quantum-classical 69,100-106 and
combines a quantum wavepacket dynamics treatment of the
time-dependent Schro¨dinger equation with ab initio molecular
dynamics. Consequently, this method is called quantum wave-
packet ab initio molecular dynamics (QWAIMD). The approach
is summarized below, and details can be found in refs 97-99.

Starting from the time-dependent Schro¨dinger equation, a
system is partitioned into three sections based on chemical

† Part of the special issue “Robert E. Wyatt Festschrift”.
* Author to whom correspondence should be addressed. E-mail:

iyengar@indiana.edu.

10313J. Phys. Chem. A2007,111,10313-10324

10.1021/jp074522d CCC: $37.00 © 2007 American Chemical Society
Published on Web 09/26/2007



complexity.30,75-77 Subsystem A comprises particles, such as
protons, that display critical quantum dynamical effects and is
treated as a quantum wavepacket. Subsystems B and C comprise
the surrounding “bath’’ particles that dynamically influence the
properties of subsystem A. We include the bulk of the nuclear
and electronic degrees of freedom within subsystems B and C.
Ab initio molecular dynamics (AIMD)63,79-83,85 is used to treat
the evolution of these subsystems, where the nuclei in subsystem
B are treated using classical mechanics. Both extended
Lagrangian81,83,84,107-111 and Born-Oppenheimer treatment82,85,86

options are available. We have derived and tested a scheme
97-99 that allows simultaneous dynamics of all three subsystems
coupled through a time-dependent procedure. A few salient
features of QWAIMD are: (a) The quantum dynamical propa-
gation is formally exact and computationally efficient, because
the quantum propagator is represented as a banded Toeplitz
matrix.97-99 (b) The ab initio dynamics treatment allows the
use of both accurate (hybrid) density functionals as well as post-
Hartree-Fock methods for smaller systems. (c) One of the
primary bottlenecks in QWAIMD is the computation of the
interaction potential between the quantum wavepacket and the
surrounding classical nuclei and electrons. Improvements in
efficiency (by several orders of magnitude) are achieved through
a novel, time-dependent, deterministic sampling (TDDS)99

procedure that allows efficient, “on-the-fly’’ quantum propaga-
tion and simultaneous ab initio dynamical treatment of medium-
sized systems.99 (d) The overall computational scheme for
conducting QWAIMD97-99 displays high efficiency and is
implemented in parallel. Time scales on the order of picoseconds
are accessible. (e) For periodic condensed-phase systems,
wavepacket propagation is being extended through the introduc-
tion of a space-group-symmetry-adapted form of the quantum
free propagator.112QWAIMD has been recently utilized to study
quantum mechanical tunneling in enzyme active sites.113

This paper is organized as follows: For convenience, the
dynamics formalism is briefly reviewed in section II, and further
computational generalizations are provided in section III. These
generalizations include a Haar wavelet114-117 implementation
of TDDS99 in section IIIA and a scheme to compute the classical
nuclear forces using Lagrange interpolation attenuated by low-
pass filtering118 in section IIIB. In section IV, numerical tests
are provided. In section V, a demonstration of the approach is
undertaken to predict vibrational spectra in a small [Cl-H-
Cl]- system including critical nuclear quantum effects. This
section includes comparisons between frequencies obtained from
electronic structure, classical AIMD, and one- and three-
dimensional QWAIMD. For the QWAIMD simulations, a new
formalism is utilized99 that includes the cumulative time
correlation of the wavepacket flux combined with the velocity
or dipole correlation of the classical nuclei. It is noted that the
harmonic analysis even at very high levels of electronic structure
theory (such as coupled cluster) is insufficient to describe this
problem. Classical AIMD is seen to improve on the harmonic
result, and QWAIMD provides good agreement with experi-
ment. An analysis of errors is provided by comparing the
classical and quantum-classical nuclear dynamics formalisms
utilizing the Bohmian quantum potential.34,105,106,119-126 Conclu-
sions are given in section VI.

II. Quantum Wavepacket Ab Initio Molecular Dynamics
Enhanced by Time-Dependent Deterministic Sampling

The QWAIMD approach has been discussed in many recent
publications.97-99 We present a brief summary here. As stated
in the Introduction, subsystem A, which comprises particles,

such as protons, that display critical quantum dynamical effects
obeys

Subsystems B and C comprise the surrounding nuclei and
electrons that dynamically influence subsystem A and are treated
simultaneously using ab initio molecular dynamics.63,70,79-86,127

Thus subsystem B obeys

Hereø(RQM;t) represents the quantum dynamical wavepacket,
MQM depicts the mass of the quantum subsystem particle(s) with
coordinatesRQM, andM denotes the classical nuclear masses
with coordinatesRC. Subsystem B experiences an “averaged’’
force128 that depends on the instantaneous wavepacketø. The
non-Hellmann-Feynman contributions to the force rigorously
approach zero because|ø〉 is obtained from propagation ac-
cording to eq 1. The electronic structure energy,E, and gradients
may be computed using single-particle formalisms such as
density functional theory (DFT), Hartree-Fock, or semiem-
pirical treatments for medium-sized systems.97,99Post-Hartree-
Fock formalisms can currently be utilized for smaller systems
with QWAIMD.

An alternative description of subsystems B and C is obtained
by employing the recently developed atom-centered density
matrix propagation (ADMP) formalism.83,108-111,129,130To arrive
at this step, we first note that under conditions of “adiabatic
control’’84,109,110,131extended Lagrangian formalisms132,133such
as ADMP provide good approximations to single-particle
(Hartree-Fock, DFT, and semiempirical treatments) Born-
Oppenheimer molecular dynamics (BOMD).11,13,109When ADMP
is used to describe the dynamics of the electrons, subsystem C
is described through propagation of the single-particle electronic
density matrix,PC, as

Here, µ is a fictitious inertia tensor83,108-110 describing the
motion ofPC, andΛ is a Lagrangian multiplier matrix used to
imposeN-representability ofPC. The equations of motion for
subsystem B remain the same as those in eq 2 apart from the
fact that the forces used in ADMP are different from that in
BOMD83,110 through the inclusion of an additional term that
depends on the commutator of the single-particle electronic
Hamiltonian (Fock matrix) andPC.

All calculations in this contribution are performed using
converged electronic structure calculations (BOMD).

The time evolution ofø is approximated using the symmetric
split operator technique,37,134-136 where the free propagation is
carried out in the coordinate representation using distributed
approximating functionals (DAFs).97,98,137,138The banded Toeplitz
representation of the DAF propagator renders a great deal of
efficiency to quantum propagation.59,97,98,137The evolution of
{RC,PC} is given by the velocity Verlet integrator,139 which is
also obtained through a third-order Trotter factorization of the
classical Liouville form of the AIMD equations.97

ıp
∂

∂t
ø(RQM;t) ) [- p2

2MQM
∇RQM

2 + E(RC,RQM)]ø(RQM;t)

(1)

M
d2RC

dt2
) - 〈ø|∂E(RC,RQM)

∂RC
|PC|ø〉 (2)

µ1/2
d2PC

dt2
µ1/2 ) - 〈ø|∂E({RC,PC},RQM)

∂PC
|RC|ø〉 -

[ΛPC + PCΛ - Λ] (3)
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An important advantage of QWAIMD is that the potential
energy surface in eq 1 is obtained on-the-fly during dynamics,
which obviates the need for an a priori fitted electronic surface.
However, the need to compute an approximation to the time-
dependent energy and gradients, at every time step, constitutes
a computational bottleneck in the procedure, and the complexity
grows linearly with the number of grid points. Hence, the
number of grid points where the electronic structure energy and
gradients are evaluated needs to be optimized to bring the overall
scaling of the algorithm down from a dependence on the total
number of quantum dynamical grid points to a small fraction
where the electronic structure calculations are performed.
Toward this, we introduced a TDDS measure in ref 99 that
adaptively helps determine the relevant regions of the potential
where the energy and gradients are obtained; the values of these
parameters in the other regions are obtained through an efficient
interpolation scheme. The TDDS function is defined as

whereF̃, Ẽ′, andẼ are theL∞-normalized wavepacket, gradient
(E′ ≡ [∂E({RC,PC},RQM)/∂RQM]), and potential energy.99 The
parameters,Iø, IE′, andIE are chosen to be integers and are fixed
at values that yield an equal distribution of grid points in the
classically allowed (minimum energy) and classically forbidden
(in the vicinity of the classical turning point) regions of the
potential surface. The sampling function is evaluated at every
instant in time to help determine the grid points where the
potential and gradient evaluations are conducted. In section III
we present new algorithms to implement the TDDS, and in
section IV we find that a reduction in computational effort of
several orders of magnitude is achieved via the sampling
function and the numerical implementation developed in section
III.

In Figure 1, the TDDS function is illustrated along with
the wavepacket, the shifted potential energy surface, and
the Bohmian quantum potential,119 VQ(RQM) ) -(p2/2m)
(1/xF)∇2xF, at one time slice from a QWAIMD treatment of
[Cl-H-Cl]- where the shared proton is a one-dimensional
wavepacket. The Bohmian quantum potential represents regions
of the surface where quantum mechanical contributions are
important. It has been shown in ref 99 that the TDDS function
exhibits significant contributions in regions around wavepacket

nodes, where the Bohmian potential is large. In Figure 2, we
also present the behavior of the time-averaged TDDS function
and the Bohmian quantum potential at two different tempera-
tures. At the higher temperature, the wavepacket penetrates
deeper into the barrier, which is seen from the broader
distribution of F in Figure 2a. The deeper penetration is
facilitated by a larger average kinetic energy of the wavepacket
at the classical turning point, that is, a more oscillatory nature
of ø, which translates to the oscillatory nature of the Bohmian
potential beyond the turning point for the higher-temperature
simulation. The time-averaged TDDS function tracks the time-
averaged Bohmian potential in regions where the wavepacket
amplitude is significant. (Compare〈ω(RQM)〉 in both plots to
notice the broader spread into the classically forbidden region
for the higher-temperature simulation.) This aspect has important
bearings on our results in section V where we notice a
temperature dependence to the vibrational spectrum. This
temperature dependence is a direct consequence of the discus-
sion here, i.e., the greater penetration of the wavepacket
facilitated by the broader Cl-Cl distribution at higher temper-
atures.

III. Computational Algorithms for Quantum Wavepacket
Ab Initio Molecular Dynamics Using Time-Dependent
Deterministic Sampling

Apart from theO(∆t3) errors introduced using the symmetric
split operator and the velocity Verlet schemes, the error in
wavepacket propagation is directly proportional to that intro-
duced from computing the potential on a discrete set of grid
points. If ∆E(RQM) is the (time-dependent) error introduced in
the potential as a result of TDDS, then the deviation of the
propagated wavepacket, from the exact result, is proportional

Figure 1. TDDS function,ω(RQM), in comparison with the wavepacket
density,F(RQM), the shifted potential energy surface (shifted such that
the minimum energy point is zero),E(RQM), and the Bohmian potential,
VQ(RQM) ≡ -(p2/2m)(1/xF)∇2xF at one time slice from a one-
dimensional dynamical treatment of the shared proton in [Cl-H-Cl]-.
The wavepacket is localized in two areas where the potential energy is
low. Therefore,ω(RQM) has a higher density in these areas, resulting
in a higher density of calculations. The left vertical axis represents
E(RQM), while the right vertical axis representsVQ(RQM).

ω(RQM) ∝
[F̃ + 1/Iø][ Ẽ′ + 1/IE′]

Ẽ + 1/IE
(4)

Figure 2. Time-averaged TDDS function,〈ω(RQM)〉, wavepacket
density,〈F(RQM)〉, classical potential,〈E(RQM)〉, and Bohmian potential
energy surface,〈VQ(RQM)〉. The time-averaged Bohmian potential tracks
the time-averaged TDDS function well in areas with a significant
wavepacket density. Panel a shows a high-temperature simulation (T
) 271.14 K), and panel b shows a low-temperature simulation (T )
133.76 K) of [Cl-H-Cl]- (see text). In both panels, the left vertical
axis representsE(RQM), whereas the right vertical axis represents
VQ(RQM).
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to ∆E(RQM), and to allow the computational dynamics to be
close to the exact result, this quantity should remain small. To
provide an adaptive control on the accuracy of the dynamics,
we present two sets of algorithms. In section IIIA, we compute
the “ideal’’ set of grid points, where electronic structure
calculations are performed, using a wavelet representation of
TDDS. This scheme, along with Lagrange interpolation attenu-
ated by low-pass filter functions,118 is then used in section IIIB
to compute the forces on the classical nuclei.

A. A Haar Wavelet Representation of the Time-Dependent
Deterministic Sampling Function. We wish to perform
quantum dynamics on a grid comprisingNQ points using
electronic structure energies and gradients computed only atNE

points (NE , NQ), determined using the TDDS function in eq
4. Some algorithms for reduced dimensional cases have been
introduced in ref 99. However, these algorithms do not utilize
the full anisotropy and dimensional dependence of the TDDS
function,ω. Here, we generalize these algorithms through the
construction of a multiresolution analysis114,116,117,140,141of ω.
Let us first consider the following definitions for the scaling
and wavelet functions used to construct multiresolution analysis

whereê(x) is the scaling function and is generally localized in
lower-frequency regions, whileη(x) is the wavelet function and
has relatively greater high-frequency components.114,116,117,140-142

Using the translation-dilation properties of eqs 5 and 6, an
overcomplete hierarchy of basis functions is constructed. The
indices i and j are generally integers, although that is not
required. The quantitya specifies the extent of “dilation’’. In
most signal processing applications, the two-scale version (a
) 2) of these equations is common141 but not so in standard
electronic structure.167 On the basis of eqs 5 and 6, a variety of
hierarchical wavelet bases have been developed.111,115,117,142-145

Here, we expand the multidimensional, positive semidefinite
TDDS function as a multiconfigurational (sum-of-products)
expansion of Haar scaling functions

where the Haar scaling function,H(x), is a square function equal
to 1, for 0e x e 1, and zero otherwise. The quantityNGEN is
the number of wavelet generations, and the underline below
the summations is meant to indicate that there areNDim

summations, [j1,j2, ..., jNDim], andci,{j} implies that the coefficients
depend oni and the entire set ofj-indices. The functions
{H(aix - jkNQ/ai)} comprise a hierarchy of translated and dilated
forms ofH(x). We only use the scaling function in our treatment
because the Haar wavelet function is the orthogonal complement
of the Haar scaling function and is not positive semidefinite.
(The TDDS function is required to be positive semidefinite.)
The quantityRQM

k , in eq 7, is thekth component of theNDim-
dimensional vector, anda is chosen to be 2 or 3; that is, we
employ two- and three-scale functions in our scheme.

The family of functions {H(aiRQM
k - jkNQ/ai)} for all

allowed values of indicesi, jk, and k, form an overcomplete
nonorthogonal set of functions for differenti values. The
algorithm picks an orthogonal subset with coefficients in this
series determined according to the constraint〈Πk)1

NDim H(aiRQM
k

- jkNQ/ai)|ω(RQM)〉 ≡ ci,{j} ≈ 1. Because the TDDS functionω
has the physical interpretation that [ω(x)dx] is the number of
electronic structure calculations to be performed inside the
volume dx, ci,{j} represents the number of calculations to be
performed inside the physical region defined by the Haar scaling
function [Πk)1

NDim H(aiRQM
k - jkNQ/ai)]. This implies that one

electronic structure calculation (energy and forces) needs to be
performed inside the region defined by every wavelet given by
the indicesi, jk, andk where the coefficient is equal to 1. It is
also important to note that the reduced grid obtained from this
scheme is not a direct product grid.

B. Classical Nuclear Forces through Lagrange Interpola-
tion Attenuated by Low-Pass Filtering. The QWAIMD
approach requires the time-dependent potential and gradients
on a set ofNQ grid points. In section IIIA, we introduced a
computational algorithm that utilizes wavelet theory to represent
the TDDS function and hence perform electronic structure
calculations on a potentially smaller set of grid points. In this
section, we discuss approaches to estimate the average forces,
〈ø|(∂E({RC,PC},RQM)/∂RC)|PC|ø〉, using the electronic structure
gradients at the set{i} of NE grid points. The simplest algorithm
utilizes an irregular grid summation

whereF(RQM
i ) ) ø*(RQM

i )ø(RQM
i ) and the volume elementbi

Trpz

is obtained from trapezoidal rule.
A second procedure that we have tested for force estimation

is through low-pass filtered Lagrange interpolation118

where

ThePi are one-dimensional Lagrange interpolating polynomials,
and the functionsú are low-pass filter functions;118 we use a
Gaussian function in the current study to representú; however,
that is not the only possible choice. We use low-pass filtering
here because it is well-known that Lagrange interpolation can
introduce spurious high frequencies into the functional fit.146

Clearly the differences between eqs 8 and 9 arise from the fact
that the grid sample,bi in eq 9, is smooth. Other grid samples
will be tested in future publications.

êi,j(x) ) a-j/2ê(xa-j - i) (5)

ηi,j(x) ) a-j/2η(xa-j - i) (6)

ω(RQM) ∝
[F̃ + 1/Iø][ Ẽ′ + 1/IE′]

Ẽ + 1/IE

) ∑
i)0

NGEN

∑
j1)0

ai-1

‚‚‚ ∑
jNDim)0

ai-1

ci,{j}{∏
k)1

NDim

H (aiRQM
k -

jkNQ

ai )}
(7)

〈ø
|||||

∂E({RC,PC},RQM)

∂RC

|||||PC

|||||
ø〉 ≈

∑
i

NE ∂E({RC,PC},RQM
i )

∂RC

|||||PC

F(RQM
i )bi

Trpz (8)

〈ø
|||||

∂E({RC,PC},RQM)

∂RC

|||||PC

|||||
ø〉 ≈

∑
i

NE ∂E({RC,PC},RQM
i )

∂RC

|||||PC

bi
Lag-LPF (9)

bi
Lag-LPF ) ∫∏

j)1

NDim

dxjú(xj - xj
i)Pi(xj)F(xj) (10)
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IV. Numerical Tests on Accuracy and Efficiency of
Wavelet-Based TDDS and the Force Estimation
Algorithm

We have chosen to study a bihalide cluster, [Cl-H-Cl]-, to
benchmark our approach. This has been the subject of substantial
experimental and theoretical study147-154 and contains a shared
proton undergoing excursions between donor-acceptor moieties.
Hence, it is foreseeable that the shared proton modes may be
coupled with all other atoms. Furthermore, due to the size of
the problem (three atoms), it is possible to treat this system
using full-dimensional quantum dynamics. Our goal here,
instead, is to gauge the accuracy of our quantum-classical
dynamical scheme for electrons and nuclei, and hence, in our
study, the shared proton is treated using quantum dynamics
whereas all other atoms are treated with BOMD, as allowed
within QWAIMD. The electronic structure is treated using DFT,
Hartree-Fock, and post-Hartree-Fock MP2 formalisms. All
QWAIMD computations in this publication are performed using
a development version of the Gaussian series155 of electronic
structure codes.

Table 1 provides a summary of the one- and three-
dimensional wavepacket numerical tests. Further details can be
found in Tables 2 and 3, but it is already clear that 1 order of
magnitude compression in grid size is possible through TDDS
when a one-dimensional quantum treatment is utilized and 3-4
orders of magnitude of compression in grid size is possible when
the wavepacket is treated in full three dimensions. Because the
potential and gradient evaluations are the critical bottlenecks
in QWAIMD, this leads to a large reduction in computational
time.

In Tables 2 and 3, we analyze the energy conservation
properties of the dynamics over a range ofNE values for different
initial conditions (simulation temperatures and initial wave-
packets), electronic structure methodologies, classical nuclear
force calculation algorithms, and dimensionalities of the quan-
tum mechanical particle. The initial wavepacket is chosen as a
linear combination of the proton Hamiltonian eigenstates at the
initial time step

where the eigenstatesφi (and the corresponding eigenvaluesEi)
are obtained from Arnoldi iterative diagonalization of the proton
Hamiltonian at the initial step.156-158 The Arnoldi scheme is a

variant of the Lanczos method156-158 and involves the repetitive
application of the Hamiltonian matrix on an initial vector to
form a Krylov basis set.156The representation of the Hamiltonian
in this new basis set leads to a Hessenberg form or tri-diagonal
form156 for the Hamiltonian, which is relatively easy to
diagonalize. Note from Table 3 that the size of the matrices
involved, given byNQ, can be very large, which explains the
need for employing the iterative diagonalization scheme. The
coefficients in eq 11 are obtained in two different ways, leading
to two different families of initial wavepackets for the tests
shown in Tables 2 and 3. In one case, a thermalized initial
wavepacket is obtained usingwhereâ is inverse temperature.

TABLE 1: Energy Conservation Summary for Cl-H-Cl- a

NE NQ NQ/NE

time
(ps)

∆E
(hartree)

1D-QWAIMDb 11c 101 9.18 3.0 1.3× 10-5

11d 101 9.18 2.4 2.3× 10-5

3D-QWAIMDe 1331 210681 158 0.4 4.5× 10-5

441 210681 478 0.7 7.9× 10-5

441 232897 528 0.7 3.5× 10-5

343 232897 679 1.4 4.5× 10-5

64 232897 3639 0.4 6.7× 10-4

a NQ is the total number of grid points, andNE is the actual number
of calculations performed, placed (irregularly) on the grid employing
the Haar wavelet implementation of TDDS. Thus, the ratioNQ/NE

represents the computational gain.∆E represents the standard deviation
of the total (kinetic plus potential) energy of the system during the
simulation.b The 6-31+G(d,p) basis is used for one-dimensional
studies.c On-the-fly electronic structure is performed using the B3LYP
density functional.d On-the-fly electronic structure is performed using
MP2. e The B3LYP/6-31+G* level of theory is used for three-
dimensional QWAIMD studies.

ø0 ) ∑ ciφi (11)

TABLE 2: Energy Conservation Data from a
One-Dimensional Dynamical Treatment of the Shared
Proton in [Cl -H-Cl]- a

level of
theory ø0

force
scheme

temperature
(K)b NE NQ/NE

time
(ps)

∆E
(hartree)

HF eq 13 eq 8 325.26 101 1 1.5 4.8× 10-5

B3LYP eq 13 eq 8 258.45 101 1 1.1 1.3× 10-5

B3LYP eq 12 eq 9c {41} 134.29 11 9.18 1.3 6× 10-6

B3LYP eq 12 eq 9c {53} 134.16 11 9.18 1.7 8× 10-6

B3LYP eq 12 eq 9c {62} 134.77 11 9.18 1.0 4.8× 10-6

B3LYP eq 12 eq 9d 133.76 11 9.18 3.0 1.3× 10-5

B3LYP eq 13 eq 9d 271.14 11 9.18 3.9 1.3× 10-4

HF eq 13 eq 9d 321.38 11 9.18 0.5 1.5× 10-5

MP2 eq 12 eq 9d 127.26 11 9.18 2.4 2.3× 10-5

MP2 eq 13 eq 9d 290.17 11 9.18 3.7 2.1× 10-4

B3LYP eq 12 eq 8 134.76 11 9.18 1.25 2× 10-5

B3LYP eq 13 eq 8 260.50 11 9.18 1.0 4.4× 10-5

a For all calculations the quantum dynamical time step,∆tQM ) 0.05
fs, the classical time step,∆tCl ) 0.25 fs, andNQ ) 101. The ratio
NQ/NE represents the computational gain, and∆E is the standard
deviation of the total energy of the system. The 6-31+G(d,p) basis set
was used for all levels of theory.b Calculated from classical nuclear
velocities and wavepacket kinetic energy.c ú(x - x′) in eq 10 is a
Gaussian. The full width at half-maximum is shown in curly brackets
(in units of grid points).d ú(x - x′) ) 1 in eq 10.

TABLE 3: Energy Conservation Data for Cl-H-Cl- for
All TDDS Algorithms and Different Force Schemesa

ø0

force
scheme

temperature
(K)b NE NQ NQ/NE

time
(ps) ∆E(EH)

eq 12 eq 9c {53} 323.50 343 232897d 679 1.4 4.5× 10-5

eq 12 eq 9c {53} 319.40 441 232897d 528 0.7 3.5× 10-5

eq 12 eq 9c {53} 370.03 64 232897d 3639 0.4 6.7× 10-4

eq 13 eq 9c {53} 714.45 343 232897d 679 1.9 1.2× 10-4

eq 13 eq 9c {53} 723.40 441 232897d 528 0.7 1.4× 10-4

eq 13 eq 9c {53} 724.20 441 210681e 478 0.7 7.9× 10-5

eq 13 eq 9c {53} 727.76 1331 210681e 158 0.4 4.5× 10-5

eq 13 eq 9c {41} 719.81 343 232897e 679 1.3 1.1× 10-4

eq 13 eq 9f 726.16 343 232897f 679 0.5 2.7× 10-4

eq 13 eq 9d 904.31 441 232897f 528 0.5 1.7× 10-3

eq 13 eq 9d 770.09 441 210681e 478 0.5 3.0× 10-4

eq 13 eq 8 709.77 441 210681e 478 0.7 2.8× 10-4

eq 13 eq 8 715.44 1331 210681e 158 0.3 1.3× 10-4

eq 13 eq 8 714.771 441 232897d 528 0.6 2.3× 10-4

a All calculations are performed using a three-dimensional dynamical
treatment of the shared proton in [Cl-H-Cl]-: 3D-QWAIMD with
density functional and basis set B3LYP/6-31+G*. For all calculations,
∆tQM ) 0.05 fs and∆tCl ) 0.25 fs. The ratioNQ/NE represents the
computational gain, and∆E represents the standard deviation of the
total energy of the system during the simulation.b Calculated from
classical nuclear velocities and wavepacket kinetic energy.c ú(x - x′)
in eq 10 is a Gaussian. The full width at half-maximum is shown in
curly brackets (in units of grid points)d 97 × 49 × 49 grid with 97
grid points along the Cl-Cl axis. e 81 × 51 × 51 grid with 81 grid
points along the Cl-Cl axis. f ú(x - x′) ) 1 in eq 10.
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In another case a Gaussian initial wavepacket is chosen and
hence

While the thermalized wavepacket, eq 12, allows for eigenstates
to be populated starting from the lowest states, the Gaussian
distribution, eq 13, allows a different range of eigenstates
(generally higher in energy) to be populated because the
potential is generally not harmonic. We have used both of these
in benchmarking our approach.

Table 2 comprises results from one-dimensional wavepacket
dynamics. This allows us to compare the different force
estimation algorithms, as discussed in section IIIB. As can be
seen, the filtered Lagrange polynomial formalism allows the
greatest stability in the dynamics by providing energy conserva-
tion in the range of microhartrees for reasonably long (pico-
second length) simulations. This fact is also clear from Figure
3 where the error in nuclear forces and deviations in classical
chloride dynamics are shown over a picosecond time scale. The
agreement is good between the TDDS trajectory and the
trajectory obtained from calculations at allNQ grid points.

Table 3 also indicates good energy conservation for the cases
where the filtered Lagrange force interpolation scheme is used
in conjunction with the wavelet scheme even for large temper-

ature simulations. The approaches provide a 3-4 orders of
magnitude reduction in computational cost (theNQ/NE ratio in
Tables 2 and 3). Because the temperatures in Table 3 are higher
than those in Table 2, the energy conservation is generally of
lower quality in Table 3. However, as shown in section V, there
is little influence in comparison with measured properties such
as vibrational spectra. Also note that the largest compression
NQ/NE ) 3639, which is only 64 calculated grid points in three
dimensions, may reflect the lower limit forNE using the current
algorithm.

V. Vibrational Spectra of Clusters, Inclusive of Critical
Nuclear Quantum Effects

As a benchmark of our method’s accuracy, we examine the
vibrational spectrum of [Cl-H-Cl]-. To lay a foundation for
the need for a dynamical study, we begin by examining at the
harmonic frequencies calculated from optimized geometries,
using various electronic structure methods in section VA. These
results are compared with experiments, and the resultant
deviations, due to anharmonicity, are then partially overcome
using AIMD in section VB. Finally, in section VC, we provide
results from QWAIMD, which provide enhanced agreement with
the experimental results.

A. Harmonic Analysis of Cl-H-Cl-. In Table 4, we present
harmonic frequencies calculated from optimized geometries
using a variety of electronic structure methods using both DFT
and post-Hartree-Fock methods.

When comparing these calculations, it is interesting to note
that all levels of electronic structure theory, except CCSD,
predict equilibrium geometries where the shared proton is
symmetrically arranged along the Cl-Cl axis. CCSD, on the
contrary, predicts a geometry with the same symmetry to be a
transition state with an imaginary frequency equal to 332i. The
CCSD potential energy surface has a small (0.08 kcal/mol)
barrier at the minimum geometry, which is an order of
magnitude less than the zero-point energy (0.93 kcal/mol) of
the same surface. As can be seen from Table 4, the proton stretch
(ν3) is not reproduced well enough by any of the electronic
structure methods. This suggests a strong anharmonicity con-

Figure 3. (a) Error in the Cl-Cl distance in a one-dimensional
QWAIMD, B3LYP/6-31+G(d,p) simulation of [Cl-H-Cl]- for NE

) 11 with reference toNQ ) 101. The initial quantum wavepacket is
a Gaussian. (b) Root-mean-square deviation of the classical nuclear
forces for theNE ) 11 calculation. Clearly, using 11 points in one
dimension based on TDDS leads to no significant change in the
dynamics over picosecond time scales. The insets in both panels
represent force interpolation according to eq 8 while the larger plots
display Lagrange interpolation in eq 10. (The difference between the
trajectories calculated by the Lagrange polynomial formalisms, with
and without low-pass filtering, is indistinguishable in these plots.) The
horizontal axes on the insets depict the same time scale as the larger
plots. The errors are negligible, but the Lagrange interpolated force
formalisms result in a trajectory that is orders of magnitude better than
the simple force calculation of eq 8.

ci ) exp[-âEi] (12)

ci ) 〈φi|exp{x - x0

2R2 }〉 (13)

TABLE 4: Vibrational Frequencies at Optimized
Geometriesa

level of
theory

ν1

(cm-1)
ν2

(cm-1)
ν3

(cm-1)

Cl-Cl
distance

(Å)

B3LYP/6-31+G(d,p) 328 834b 849c 560b 949c 3.15
B3LYP/aug-cc-PVTZ 324 818b 829c 582b 952c 3.15
MP2/6-31+G(d,p) 353 893b 907c 98b 865c 3.10
MP2/aug-cc-PVTZ 345 847b 863c 637b 974c 3.11
CCSD/aug-cc-PVTZ 181 828b 874c 833b 764c 3.14d

CCSD(T)/aug-cc-PVTZ 340 842b 325b 3.12

experimente 318 792( 9 723
NEO-MP2(ee+ep)f 334
CC-VSCF-MP2g 327 811 925

a Anharmonic contributions are critical forν3, the shared proton
stretch.b Harmonic frequency corresponding to the optimized geometry.
c From three-dimensional 1r 0 eigenstate transitions. The potential
energy surface for the eigenstates is obtained from a full scan of the
quantum proton with the chlorides fixed at optimized geometry
positions. Hence, the eigenstates here are corrected for anharmonicity
but do not include coupling with the chloride motions.d For CCSD,
the shared proton is not symmetrically placed along the Cl-Cl axis.
This is in contrast with respect to all other optimized geometries here.
e Reference 147.f Reproduced from ref 148.g Reproduced from ref 148
based on the implementation of VSCF by Gerber and co-workers.60-62
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tribution, as noted previously.147 The proton potential energy
surfaces shown in Figure 4 are obtained from retaining the Cl
atoms at their respective optimized positions. A direct polyno-
mial fit of these surfaces displays significant contributions from
fourth- and sixth-order terms, which explains the limited
accuracy of the harmonic frequency calculations shown in Table
4.

In fact, borrowing diatomic molecular spectroscopy notation,
the harmonicwe and anharmonic constantswexe, weye, etc. for
theν3 vibration at each level of theory can be calculated using
the vibrational eigenstates determined from the Arnoldi diago-
nalization of these potential surfaces. The constants in Table 5
were determined from a least-squares fit of a fourth-order
polynomial

to the first 10 eigenstates of each one-dimensional potential
energy surface shown in Figure 4. The anharmonic contributions
are significant, and the first-order anharmonic constant,wexe,
is negative because the spacing between vibrational levels
increases with respect to the harmonic approximation. In Table
4, we also provide corrections to the harmonic approximation
by computing three-dimensional proton eigenstates at the
equilibrium Cl-Cl geometries for the respective levels of theory.
These eigenstates are obtained from Arnoldi diagonalization156-158

of the three-dimensional proton potential surfaces obtained at
the respective optimized geometries. (See footnote b in Table
4.) Even these calculations only provide an upper bound to the
experimental results, although they significantly improve the
quality of the spectra. Clearly, in addition to anharmonicity,
coupling between the proton and the chloride motions is critical.
This aspect also manifests itself through the relatively high

degree of agreement between our three-dimensional proton
eigenstate calculations in Table 4 and the correlation-corrected
VSCF results forν3, reproduced from ref 148. The remainder
of this publication deals with a discussion of improvements to
ν3 that arise by including the anharmonicity of the proton
potential surface and the coupled motion of the shared proton
and the chlorine atoms as allowed within classical AIMD and
QWAIMD simulations.

B. Including Anharmonicity Contributions through Tem-
perature-Dependent, Classical AIMD Simulations.It has been
recently shown9-11,13 that temperature-dependent AIMD tech-
niques can accurately reproduce experimentally observed vi-
brational spectra even when harmonic analysis fails.11,13,18 In
Table 6 and Figure 5, we present our results from BOMD studies
at constant energy (NVE) where spectra are computed using
the Fourier transform of the dipole autocorrelation function (FT-
DAC) and the velocity autocorrelation function (FT-VAC).
While the FT-VAC strictly provides the vibrational density of
states, the FT-DAC also accounts for dipole selection rules.
Hence, the spectral intensities are generally expected to be
different in the two cases. Deconvolving the FT-VAC spectra
through analysis of the individual nuclear motions indicates
temperature-dependent peaks corresponding toν1, ν2, andν3.
The dynamical spectra show an improvement in theν1 andν2

stretches over the harmonic approximation. The most dramatic
change, however, is shown in the asymmetric proton stretch,
ν3.

To probe the effect of temperature, in Figure 6 we present
the radial distribution functions for the proton position and Cl-
Cl distances at different internal temperatures. The shared proton
displays a broader distribution as the temperature increases. This
is, however, coupled with a broader Cl-Cl distribution at higher
temperatures. It is also important to note the transition in the
proton radial distribution function from a bimodal distribution
below 75 K to a single broad distribution at 150 K. At the lower

Figure 4. One-dimensional slices of the potential energy surfaces of
the shared proton along the Cl-Cl axis at equilibrium geometries
obtained at the levels of theory indicated in Table 4. The horizontal
axis represents a spread of 0.529 Å (1 bohr). The B3LYP/aug-cc-PVTZ
and B3LYP/6-31+G(d,p) surfaces are indistinguishable, and the CCSD
surface shows a double well. The basis set used for both CCSD and
CCSD(T) is aug-cc-PVTZ as listed in Table 4.

TABLE 5: Harmonic and Anharmonic Constants
Calculated from the Eigenstates of the One-Dimensional
Potentials

level of
theory

we

(cm-1)
wexe

(cm-1)
weye

(cm-1)
weze

(cm-1)

B3LYP/6-31+G(d,p) 827.54 -173.484 -11.0147 0.377976
B3LYP/aug-cc-PVTZ 833.463-169.508 -10.7189 0.369335
MP2/6-31+G(d,p) 698.037 -217.648 -15.4189 0.553249
MP2/aug-cc-PVTZ 858.043-181.427 -11.6547 0.402117
CCSD/aug-cc-PVTZ 565.65 -228.137 -16.9142 0.618542
CCSD(T)/aug-cc-PVTZ 730.253-204.83 -14.3846 0.51683

G(ν) ) we(ν + 1
2) - wexe(ν + 1

2)2
+ weye(ν + 1

2)3
+

weze(ν + 1
2)4

(14)

TABLE 6: Dynamically Averaged Vibrational Density of
States Calculated from Classical aimd Studies

level of
theory

temperature
(K)a

ν1

(cm-1)
ν2

(cm-1)
ν3

(cm-1)

B3LYP/6-31+G(d,p) 15.95 319 830 600
B3LYP/6-31+G(d,p) 50.29 308 818 658
B3LYP/6-31+G(d,p) 75.5 308 814 658
B3LYP/aug-cc-PVTZ 15.89 317 813 622
B3LYP/aug-cc-PVTZ 49.63 313 808 625
B3LYP/aug-cc-PVTZ 74.97 308 806 647
MP2/aug-cc-PVTZ 15.72 336 842 645
MP2/aug-cc-PVTZ 49.64 330 834 653

experimentb 318 792( 9 723

a Average internal temperature of the system during the simulation
computed using nuclear velocities.b Reference 147.

Figure 5. Dynamically averaged vibrational spectra obtained from
classical AIMD simulations. See discussion for details.
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temperatures, the average proton potential is a single well, while
at high temperatures it tends to a double well, because larger
Cl-Cl distances are sampled at higher temperatures. This
changes the basic structure of the distribution and has a critical
effect on the temperature dependence of the vibrational spec-
trum.

Due to a dependence ofν3 on the simulation temperature, it
is important to note that the experiments in ref 147 were

performed using velocity modulation spectroscopy where the
effective vibrational temperature could be as high as 1000
K.159,160Hence, it is not surprising that the higher-temperature
AIMD results become closer to the experimental result.
However, this also indicates an internal temperature dependence
(and hence experimental technique dependence) to the spectrum,
as has been noted for other fluxional systems.10 It will be
interesting to see how single-photon argon-tagged161 and mul-
tiphoton experiments25 differ in the prediction of the proton
stretch for this particular system.

C. Quantum Wavepacket Description of the Vibrational
Analysis. In this section, we present the vibrational density of
states computed from QWAIMD simulations of [Cl-H-Cl]-.
As noted earlier, the FT-VAC represents the vibrational density
of states. This aspect has been widely used in classical AIMD
simulations.9,11,13,162Additionally, the FT-DAC provides the
dipole selection rules. There exist many approaches that attempt
to provide quantum corrections to such classical time-correlation
functions.163-165 Here, we present an alternate scheme to obtain
the vibrational spectra directly from quantum-classical simula-
tions such as those performed within QWAIMD.

In QWAIMD, the presence of both classical and quantum
dynamical nuclei complicates the direct application of velocity
correlation. We exploit the fact that the quantum correspondence
for the classical nuclear velocity is given in terms of the
probability flux or current166

where Im[A] represents the imaginary portion of the complex
number A. Thus, to construct the velocity autocorrelation
function, we consider the expectation value of flux at a given
time

in conjunction with the classical nuclear velocities. The symbol
R[‚‚‚] represents the real part of the complex bracketed quantity.

Therefore, we simultaneously compute the correlation func-
tions 〈J(t)J(0)〉 and 〈V(t)V(0)〉, and the full vibrational density
of states is the Fourier transform of the cumulative flux/velocity
correlation function

where the symbols〈‚‚‚〉C and〈‚‚‚〉Q represent the classical and
quantum variable ensemble averages. It is also critical to note
from eq 16 that for a simple Gaussian wavepacket the quantity
〈ψ(t)|(-ip/m)∇|ψ(t)〉 is also equal to the transition dipole bracket
and hence this quantity may contain some information also about
the dipole selection rules in regions where semiclassical
treatment is sufficient. This can be seen from the following
analysis of eq 15 for time-independent Hamiltonians

Figure 6. (a) Distribution of Cl-Cl distances and (b) hydrogen
positions along the Cl-Cl axis for BOMD B3LYP/6-31+G(d,p) at
several temperatures. Plots for other levels of theory and basis sets are
similar.

Figure 7. Fourier transform of the flux/velocity correlation function
for (a) one- and (b) three-dimensional QWAIMD. The one-dimensional
simulations ran for 2.5-4 ps, and the three-dimensional simulations
ran for 1-2 ps. The prominent peaks in panel b are in close agreement
with experiment.

J (x,t) ) p
2mi

[ψ*(x,t)∇ψ(x,t) - ψ(x,t)∇ψ*(x,t)]

) p
m

Im[ψ*(x,t)∇ψ(x,t)] (15)

J(t) ) 〈J 〉 ) R [〈ψ(t)|-ip
m

∇|ψ(t)〉] (16)

C(ω) ) ∫-∞

+∞
exp[-iωt]{〈V(t)V(0)C + 〈J(t)J(0)〉Q}

(17)
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Hence the Fourier transform of the expectation value of flux in
eq 16, for time-independent Hamiltonians, can be written, using
the convolution theorem,146 as

whereδ(‚‚‚) is the Dirac delta function. Equation 19 clearly
leads to a spectral representation with peaks positioned at the
various energy differences that correspond to vibrational excita-
tions. The situation for time-dependent Hamiltonians is, of
course, complicated by the nature of the quantum-classical
coupling. However, it is already clear from eq 19 that the peak
intensities are proportional to the momentum of the wavepacket,
which in turn is proportional to the transition dipole bracket in
the semiclassical (Gaussian wavepacket) representation.

We present band assignments based on computation using
eq 17 in Table 7 for two different temperatures for each level
of theory. These are confirmed by calculating the average 1r
0 transition energies over the course of a trajectory. As can be
seen, the agreement between the 3D-QWAIMD results and
experiment improves with increasing temperature. In addition,
the high-temperature 3D-QWAIMD results for the shared proton
stretch (ν3) in this particular system seems to be in better
agreement with experiment as compared to the implementation
of correlation-corrected VSCF discussed in ref 148. The
orthogonal motion of the shared proton (ν2), on the contrary, is
not in agreement to the same extent as the classical AIMD

simulations described in Table 6, due to the sparse grid utilized
in this direction (97 grid points along the Cl-Cl axis and 49
grid points in the orthogonal direction; see Table 6 for details).

It is critical to distinguish the trends in the change in theν3

peaks for the classical and quantum wavepacket AIMD simula-
tions. As discussed in section VB and shown in Figure 6, an
increase in temperature for the classical spectra allows the
system to sample larger Cl-Cl distances. This applies to
QWAIMD as well. But the effect of temperature onν3 is
different for the classical and quantum simulations. In classical
AIMD, the proton dynamics are influenced by the increasing
fourth- and sixth-order terms in the potential surface on account
of the larger Cl-Cl distances sampled. These steeper turning
points, sampled at higher temperatures by the classical proton
(Figure 6), blue-shift the proton stretch peak. For QWAIMD,
on the contrary, theν3 peak is red-shifted at higher temperatures,
because the potential surface becomes wider due to the
increasing higher-order terms and larger Cl-Cl distances
sampled. The flatter average potential results in a decrease in
the 1 r 0 transition energy for one- and three-dimensional
simulations. Hence, the effect of temperature on the quantum
treatment is quite different from that obtained from the classical
treatment. However, the two types of calculated spectra in this
study tend to converge to the experimental (high-temperature)
spectrum. In addition, the difference between one- and three-
dimensional QWAIMD simulations forν3 is significant for this
case. Dimensional confinement blue-shifts the frequencies as
is to be expected.

VI. Concluding Remarks

In this paper, we have extended the recently developed
quantum wavepacket ab initio molecular dynamics technique
that allows simultaneous quantum-classical dynamics of elec-
trons and nuclei. Modifications to the computational scheme
through the utilization of wavelet theory and the use of low-
pass filtered Lagrange interpolating polynomials renders the
approach robust, accurate, and computationally efficient.

We have demonstrated one application of our approach
through an analysis of the rovibrationalspectroscopy in a small
Cl-H-Cl- cluster. This problem has been studied by a number
of theoretical and experimental groups. To study rovibrational
spectroscopy in such clusters, we have employed a novel,
cumulative flux/velocity correlation function where the wave-
packet flux is combined with the classical nuclear velocities to
obtain a general description of vibrational density of states in
quantum-classical systems. The approach is analytically shown
to be exact for time-independent Hamiltonians, and numerical

TABLE 7: One- and Three-Dimensional QWAIMD Studies of the Vibrational Density of States as Calculated by the Flux/
Velocity Correlation Function, Eq 17a

temperature
(K)b ø0

ν1

(cm-1)
ν3

(cm-1)
ν2

(cm-1)

1D-QWAIMD 133.76c eq 12 301 988d 983e

(NQ ) 101;NE ) 11) 271.14c eq 13 297 900d 920e

127.26f eq 12 313 879d 876e

290.17f eq 13 304 746d 764e

3D-QWAIMDg 323.50 eq 12 300 806d 805e 857d 853e

(NQ ) 232 897h; NE ) 343) 714.45 eq 13 254 723d 739e 863d 858e

experimenti 318 723 792( 9

a The assignments are confirmed by considering the dynamic average of the 1r 0 eigenstate transitions.b Average internal temperature of the
system during the simulation computed using nuclear velocities.c On-the-fly electronic structure is performed using B3LYP/6-31+G(d,p).d Obtained
from the flux/velocity correlation function (eq 17).e Dynamically averaged 1r 0 eigenstate transitions.f On-the-fly electronic structure is performed
using MP2/6-31+G(d,p). g On-the-fly electronic structure is performed using B3LYP/6-31+G*. h 97 × 49 × 49 grid with 97 grid points along the
Cl-Cl axis. i Reference 147.

J (x,t) ) p
m

Im[ψ*(x,t)∇ψ(x,t)]
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m

Im[ψ*(x,0) exp{iHt
p }∇ exp{- iHt
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|||||
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demonstrations are provided for the case of time-dependent
Hamiltonians, which corresponds to the situation in QWAIMD.

The Cl-H-Cl- cluster is interesting because Harmonic
frequencies obtained even from very high levels of ab initio
quantum chemical calculations are in wide disagreement with
experiment. We study this system using multiple methods,
including post-Hartree-Fock electronic structure optimization
and harmonic frequency calculations, the application of classical
ab initio molecular dynamics techniques to account for anhar-
monicities in the potential, and finally by using quantum
wavepacket ab initio dynamics. In addition, we also perform
corrections to post-Hartree-Fock and DFT harmonic frequen-
cies by including critical quantum nuclear effects, which
dramatically improve the level of agreement with experiment
in all of these cases. We generally find that classical ab initio
molecular dynamics employing DFT, in this case, monotonically
improves over the harmonic frequencies in the direction of the
experimental result, with increasing classical temperature (com-
puted using classical nuclear velocities). The high-temperature
ab initio molecular dynamics results are closer to being in
agreement with experiment as compared to the harmonic results.
This is explained by noting that at higher temperatures the
classical proton samples steeper turning points, because the
potential becomes increasingly dominated by fourth- and sixth-
order terms as the chlorides sample larger distances. This
effectively blue-shifts the proton stretch with increasing tem-
perature. We keep these comparisons for the different temper-
atures meaningful by noting the high vibrational temperature
involved in the experimental situation.

The utilization of QWAIMD brings our final results very
close to those experimentally obtained. Here again, there is a
temperature dependence to our results on account of two factors.
While for the classically treated nuclei the effect of temperature
affects the kinetic energies and hence the sampling of the
potential energy surface, for the quantum mechanically treated
nuclei (through wavepackets) the initial temperature affects the
populations of the eigenstates belonging to the quantized particle
in the initial wavepacket. Hence, the dynamical evolution of
high- and low-temperature wavepackets can be different through
the occurrence of hot bands. But, in addition, the dynamical
evolution of the wavepacket is closely connected to the
temperature-dependent sampling performed by the classical
nuclei, which again has an effect on the result.

In this paper, we have also utilized the Bohmian quantum
potential as a tool to understand the connections between
wavepacket AIMD and classical AIMD simulations. Such tools
are critical because they allow us to determine the extent to
which quantum dynamics plays a role. We will consider these
in greater detail in future publications.
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