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Quantum Wavepacket Ab Initio Molecular Dynamics: An Approach for Computing
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We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of
critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab
initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular
dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders
of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced
time-dependent deterministic sampling procedure measure to achieve stable, picosecond length;-quantum
classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a
novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized patrticle is
combined with classical nuclear velocities to obtain the vibrational density of states. The approach is
demonstrated by computing the vibrational density of states of H=tCI]~, inclusive of critical quantum

nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is
also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics,
computation of nuclear quantunmechanical eigenstates, and employing quantum wavepacket ab initio
dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of

anharmonicities.

I. Introduction available in standard electronic structure packages. This ap-
proach, however, is not adequate for fluxional protonst&d
and hydroxide-rich systenig220The effect of nuclear dynamics
must be considered through quantéfrf2 semiclassicai?63-78

or classical treatments where the electronic structure is ac-
curately compute®79-8 There are many important meth-
0dg9:33.87.88fgr the quantum dynamical treatment of nuclei.

The impact of hydrogen-bonded systems and hydrogen
transfer extends beyond fundamental chemistry and well into
the areas of materials? atmospherié; 13 condensed? 17 and
gas-phase cluster chemistfy}318-20 and biological science. 23
Recently, gas-phase single-phctband multiphoto?® vibra-
tional action spectroscopy experiments and (:ondensed-phaseSOme of the bottlenecks in these approaches include the
multidimensional infrared experimeAt2” have become critical

in deciohering th ; brational sianat that tribut exponential scaling of quantum dynamics and the choice of the
In gecipheéring the precise vibrational sighatures that Contribute ., i e syster$? 91 Recently, several attempts have been

to dynamics in soft-mode hydrogen-bonded systems. In biologi- o6 't circumvent the exponential scaling problem numer-
cal systems, many enzymes that catalyze hydrogen-transfer.

i thouaht to display t HaProton-transf ically,29.33:34,70,87.88,994 gnd the choice of coordinate systems
reactions are thougnht to dispiay tunne fiig roton-transier has also received considerable attention in the liter§&fe9>%6
reactions are also of interest in fuel cell applicatiéns. .
. . For systems with more than a few degrees of freedom, a
However, there are multiple factors that influence the accurate . . : . . o
- . . . classical or semiclassical approximation of nuclei is generally
computational modeling of processes involving excess protons, | . . .
v 4 ; desirable, if only to keep the computational expense tractable.
hydride ions, and atomic hydrogen in heterogeneous systems. . . :
o o . - In this regard, for some larger-sized water clusters, a classical
For protons and hydride ions, the polarizability of the immediate

! : . : treatment of nuclei has been found to be sufficient in providing
environment® and the changing bonding topography duringa . =~ . L ; . 3
13 ; . .2 7 vibrational properties in agreement with experiméts?
transfer proced$! render the problem attractive to ab initio

; , . Important insights have been gleaned from these simulatidfis.
guantum chemical treatment. Dynamical aspects become sig- .
o - " Furthermore, our group has recently contributed a method-
nificant at finite temperatures;tt and nuclear quantum effects

" . > ology??9that is extended in this publication to treat vibrational
may be critical through hydrogen tunneling and zero-point in ol inclusi ¢ critical |
effects19.20 spectroscopy in clusters inclusive of critical nuclear quantum

H ist ber of tational methods that att teffects. Our approach is quanturolassical 69:106-106 gng
ere exists a number of computational methods that attempl ., jypines guantum wavepacket dynamics treatment of the
to solve the vibrational spectroscopic problems in such funda-

. . . time-dependent Schdinger equation with ab initio molecular
mental chemlcal_ systems. One of_th_e most direct app_roach_es IS‘dynamics. Consequently, this method is called quantum wave-
through harmonic analyses of optimized nuclear configurations packet ab initio molecular dynamics (QWAIMD). The approach
— - is summarized below, and details can be found in refs®.
T Part of the special issue “Robert E. Wyatt Festschrift”.
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complexity30.75-77 Subsystem A comprises particles, such as such as protons, that display critical quantum dynamical effects
protons, that display critical quantum dynamical effects and is obeys

treated as a quantum wavepacket. Subsystems B and C comprise

the surrounding “bath” particles that dynamically influence the 9 k2 5

properties of subsystem A. We include the bulk of the nuclear 't aX(RQM;t) =~ 2v—VRow T E(Rc:Rom) [ 1(Rowit)
and electronic degrees of freedom within subsystems B and C. QM (1)

Ab initio molecular dynamics (AIMD¥79-83.85is used to treat

the evolution of these subsystems, where the nuclei in subsystensubsystems B and C comprise the surrounding nuclei and
B are treated using classical mechanics. Both extendedelectrons that dynamically influence subsystem A and are treated
Lagrangiafit8384.107111 and Born-Oppenheimer treatmeR#s simultaneously using ab initio molecular dynanfigg2.79-86.127
options are available. We have derived and tested a schemeThus subsystem B obeys

97-99 that allows simultaneous dynamics of all three subsystems

coupled through a time-dependent procedure. A few salient &R 9E(R Ro )
features of QWAIMD are: (a) The quantum dynamical propa- M 2C = Q‘¢ o XD )
gation is formally exact and computationally efficient, because dt aRc E

the quantum propagator is represented as a banded Toeplitz
matrix97-%° (b) The ab initio dynamics treatment allows the Herey(Rom;t) represents the quantum dynamical wavepacket,
use of both accurate (hybrid) density functionals as well as post- Mom depicts the mass of the quantum subsystem particle(s) with
Hartree-Fock methods for smaller systems. (c) One of the coordinatesRom, andM denotes the classical nuclear masses
primary bottlenecks in QWAIMD is the computation of the With coordinateRc. Subsystem B experiences an “averaged”
interaction potential between the quantum wavepacket and theforce!?® that depends on the instantaneous wavepagkéhe
surrounding classical nuclei and electrons. Improvements in hon-Hellmanr-Feynman contributions to the force rigorously
efficiency (by several orders of magnitude) are achieved through approach zero becausgllis obtained from propagation ac-
a novel, time-dependent, deterministic sampling (TDP®S) cording to eq 1. The electronic structure eneigyand gradients
procedure that allows efficient, “on-the-fly” quantum propaga- May be computed using single-particle formalisms such as
tion and simultaneous ab initio dynamical treatment of medium- density functional theory (DFT), Hartre¢=ock, or semiem-
sized system¥® (d) The overall computational scheme for Ppirical treatments for medium-sized systeth&’Post-Hartree
conducting QWAIMD?-9° displays high efficiency and is  Fock formalisms can currently be utilized for smaller systems
implemented in parallel. Time scales on the order of picosecondswith QWAIMD.
are accessible. (e) For periodic condensed-phase systems, An alternative description of subsystems B and C is obtained
wavepacket propagation is being extended through the introduc-Py employing the recently developed atom-centered density
tion of a space-group-symmetry-adapted form of the quantum matrix propagation (ADMP) formalisr#?.108-111.129.130T¢ arrive
free propagatof2 QWAIMD has been recently utilized to study ~ at this step, we first note that under conditions of “adiabatic
quantum mechanical tunneling in enzyme active sités. control"84109.11013kxtended Lagrangian formalists!*3such

This paper is organized as follows: For convenience, the &S ADMP provide good appr.OXim.a.tions to single-particle
dynamics formalism is briefly reviewed in section I1, and further (Hartree-Fock, DFT, and semiempirical treatments) Bern
computational generalizations are provided in section IIl. These OPpenheimer molecular dynamics (BOMB}31%*When ADMP
generalizations include a Haar wavélét!” implementation is used to describe the dynarr_ucs of the _electrons', subsystem C
of TDDS®in section IlA and a scheme to compute the classical S descrlbed 'Fhrough propagation of the single-particle electronic
nuclear forces using Lagrange interpolation attenuated by low- density matrix,Pc, as
pass filtering'® in section IIIB. In section IV, numerical tests
are provided. In section V, a demonstration of the approach is 1/2d2PC Q‘BE({ Rc.PctRom) D

9P 4
[AP.+ PcA — A] (3)

undertaken to predict vibrational spectra in a smalHBH ¢ a2 ﬂm:
CI]~ system including critical nuclear quantum effects. This

section includes comparisons between frequencies obtained from

electronic structure, classical AIMD, and one- and three-

dimensional QWAIMD. For the QWAIMD simulations, a new Here, u is a fictitious inertia tensd#1%%11% describing the
formalism is utilized® that includes the cumulative time Mmotion of Pc, andA is a Lagrangian multiplier matrix used to
correlation of the wavepacket flux combined with the velocity imposeN-representability oPc. The equations of motion for

or dipole correlation of the classical nuclei. It is noted that the Subsystem B remain the same as those in eq 2 apart from the
harmonic analysis even at very high levels of electronic structure fact that the forces used in ADMP are different from that in
theory (such as coupled cluster) is insufficient to describe this BOMD®***%through the inclusion of an additional term that
problem. Classical AIMD is seen to improve on the harmonic depends on the commutator of the single-particle electronic
result, and QWAIMD provides good agreement with experi- Hamiltonian (Fock matrix) anéc. _
ment. An analysis of errors is provided by comparing the All calculations in this contribution are performed using

classical and quantuntlassical nuclear dynamics formalisms converged electronic structure calculations (BOMD). .
utilizing the Bohmian quantum potenti105.106.119126 Concly- The time evolution of; is approximated using the symmetric

sions are given in section VI. split operator techniqu;'34+136 where the free propagation is
carried out in the coordinate representation using distributed
approximating functionals (DAF§Y:°8.137.138The banded Toeplitz
representation of the DAF propagator renders a great deal of
efficiency to quantum propagatiéh?7.98137The evolution of

The QWAIMD approach has been discussed in many recent{Rc,Pc} is given by the velocity Verlet integratd#? which is
publications?’~9% We present a brief summary here. As stated also obtained through a third-order Trotter factorization of the
in the Introduction, subsystem A, which comprises particles, classical Liouville form of the AIMD equation¥.

Re

Il. Quantum Wavepacket Ab Initio Molecular Dynamics
Enhanced by Time-Dependent Deterministic Sampling
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Figure 1. TDDS function,w(Rqwm), in comparison with the wavepacket
density,p(Rowm), the shifted potential energy surface (shifted such that (b) 0.008

the minimum energy point is zerd}(Rowm), and the Bohmian potential,
Vo(Row) = —(R22m)(1/v/p)V3/p at one time slice from a one- 0.006
dimensional dynamical treatment of the shared proton ir-fC+CI] .

The wavepacket is localized in two areas where the potential energy is
low. Thereforew(Rom) has a higher density in these areas, resulting
in a higher density of calculations. The left vertical axis represents 0.002 F
E(Rom), While the right vertical axis representg(Rowm).

Energy (E,)
=}
=
S
X

An important advantage of QWAIMD is that the potential : -0.1

energy surface in eq 1 is obtained on-the-fly during dynamics, 0455 o 0.455
which obviates the need for an a priori fitted electronic surface. Rom )
However, the need to compute an approximation to the time- Figure 2. Time-averaged TDDS functiond(Rom)l] wavepacket
dependent energy and gradients, at every time step, constitutegensity,[o(Rou)L classical potentialE(Rowm)[) and Bohmian potential
a computational bottleneck in the procedure, and the complexity ENergy surfaceVo(Row)LI The time-averaged Bohmian potential tracks

. . - . the time-averaged TDDS function well in areas with a significant
grows Ilnear_ly W'_th the number of 9“0_' points. Hence, the wavepacket density. Panel a shows a high-temperature simuldtion (
number of grid points where the electronic structure energy and — 271 14 k), and panel b shows a low-temperature simulatios:
gradients are evaluated needs to be optimized to bring the overall133.76 K) of [CHH—CI]~ (see text). In both panels, the left vertical
scaling of the algorithm down from a dependence on the total axis represent€(Rom), whereas the right vertical axis represents
number of quantum dynamical grid points to a small fraction Vo(Rowm).
where the electronic structure calculations are performed.
Toward this, we introduced a TDDS measure in ref 99 that nodes, where the Bohmian potential is large. In Figure 2, we
adaptively helps determine the relevant regions of the potential also present the behavior of the time-averaged TDDS function
where the energy and gradients are obtained; the values of thes@nd the Bohmian quantum potential at two different tempera-
parameters in the other regions are obtained through an efficienttures. At the higher temperature, the wavepacket penetrates

interpolation scheme. The TDDS function is defined as deeper into the barrier, which is seen from the broader
distribution of p in Figure 2a. The deeper penetration is
[p+ 1/|X][E' + 1] facilitated by a larger average kinetic energy of the wavepacket
o(Row) U EL 1 (4) at the classical turning point, that is, a more oscillatory nature
E

of , which translates to the oscillatory nature of the Bohmian

potential beyond the turning point for the higher-temperature

simulation. The time-averaged TDDS function tracks the time-

- i averaged Bohmian potential in regions where the wavepacket
parameterd,, IEr! andlg are chos_en_to b_e integers anc_i are fixed amplitude is significant. (Compar@ (Rou)Cin both plots to

at values that yield an equal distribution of grid points in the e the broader spread into the classically forbidden region

classically allowed (minimum energy) and classically forbidden ¢, he higher-temperature simulation.) This aspect has important
(in the vicinity of the classical turning point) regions of the bearings on our results in section V where we notice a

potential surface. The sampling function is evaluated at every temperature dependence to the vibrational spectrum. This

mstan'g in time tolhelp dete".n'ne the grid points Whef? the temperature dependence is a direct consequence of the discus-
potential and gradient evaluations are conducted. In section Il g5, here, i.e., the greater penetration of the wavepacket

we present new algorithms to implement the TDDS, and in gijitated by the broader EICI distribution at higher temper-
section IV we find that a reduction in computational effort of 5 oq

several orders of magnitude is achieved via the sampling
function and the numerical implementation developed in section
.

In Figure 1, the TDDS function is illustrated along with
the wavepacket, the shifted potential energy surface, and
the Bohmian quantum potentl# Vo(Rom) = —(h%2m) Apart from the(At3) errors introduced using the symmetric
(l/x/;)VZ\/_, at one time slice from a QWAIMD treatment of  split operator and the velocity Verlet schemes, the error in
[CI-H—CI]~ where the shared proton is a one-dimensional wavepacket propagation is directly proportional to that intro-
wavepacket. The Bohmian quantum potential represents regionsgduced from computing the potential on a discrete set of grid
of the surface where quantum mechanical contributions are points. If AE(Rowm) is the (time-dependent) error introduced in
important. It has been shown in ref 99 that the TDDS function the potential as a result of TDDS, then the deviation of the
exhibits significant contributions in regions around wavepacket propagated wavepacket, from the exact result, is proportional

wherep, E', andE are thel>-normalized wavepacket, gradient
(E' = [0E({Rc,Pc},Rom)/dRom]), and potential energ$f. The

[ll. Computational Algorithms for Quantum Wavepacket
Ab Initio Molecular Dynamics Using Time-Dependent
Deterministic Sampling
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to AE(Rgm), and to allow the computational dynamics to be  The family of functions{f/’/f(aiRéM — jkNg/d)} for all
close to the exact result, this quantity should remain small. To allowed values of indices, j, andk, form an overcomplete
provide an adaptive control on the accuracy of the dynamics, nonorthogonal set of functions for differemtvalues. The
we present two sets of algorithms. In section IllA, we compute algorithm picks an orthogonal subset with coefficients in this
the “ideal” set of grid points, where electronic structure series determined according to the constrﬁm‘ﬁii" (ﬂd%M
calculations are performed, using a wavelet representation of — j,Nq/ai)|w(Rom) = ¢igj; ~ 1. Because the TDDS functian
TDDS. This scheme, along with Lagrange interpolation attenu- has the physical interpretation thai(k)dx] is the number of
ated by low-pass filter function8®is then used in section llIB electronic structure calculations to be performed inside the
to compute the forces on the classical nuclei. volume &, ¢ represents the number of calculations to be
A. A Haar Wavelet Representation of the Time-Dependent  performed inside the physical region defined by the Haar scaling
Deterministic Sampling Function. We wish to perform function [HE‘ET W(aiRéM — jiNg/a)]. This implies that one
quantum dynamics on a grid comprisifd, points using  electronic structure calculation (energy and forces) needs to be
electronic structure energies and gradients computed oy at  performed inside the region defined by every wavelet given by
points (Ne < Ng), determined using the TDDS function in eq  the indices, j,, andk where the coefficient is equal to 1. It is
4. Some algorithms for reduced dimensional cases have beery|so important to note that the reduced grid obtained from this
introduced in ref 99. However, these algorithms do not utilize scheme is not a direct product grid.
the full anisotropy and dimensional dependence of the TDDS B. Classical Nuclear Forces through Lagrange |nterpo|a_
function, w. Here, we generalize these algorithms through the tjon Attenuated by Low-Pass Filtering. The QWAIMD
construction of a multiresolution analysi$!16.117.140.14f ¢, approach requires the time-dependent potential and gradients
Let us first consider the following definitions for the scaling on 3 set ofNg grid points. In section IlIA, we introduced a
and wavelet functions used to construct multiresolution analysis computational algorithm that utilizes wavelet theory to represent
the TDDS function and hence perform electronic structure

0= a g(xal — i) (5) calculations on a potentially smaller set of grid points. In this
' section, we discuss approaches to estimate the average forces,
7 (%) = a y(xa’l — i) (6) (9E{ Re,Pc},Ram)/dRc) [pcly L using the electronic structure

gradients at the sét} of Ng grid points. The simplest algorithm

whereé&(x) is the scaling function and is generally localized in utilizes an irregular grid summation

lower-frequency regions, whilg(x) is the wavelet function and

has relatively greater high-frequency componéHt!6.117.146142 IE{Rc.Pct.Rom)

Using the translationdilation properties of eqs 5 and 6, an T x

overcomplete hierarchy of basis functions is constructed. The c Pe

indicesi andj are generally integers, although that is not N i

required. The quantity specifies the extent of “dilation”. In £ 9E{RcPct Row)

most signal processing applications, the two-scale versaon (

= 2) of these equations is commiéhbut not so in standard

electronic structuré®” On the basis of eqs 5 and 6, a variety of _ _ _

hierarchical wavelet bases have been develdpeds-117.142145 wherep(Row) = x*(Rowx(Rom) @nd the volume elemenf ™
Here, we expand the multidimensional, positive semidefinite is obtained from trapezoidal rule.

TDDS function as a multiconfigurational (sum-of-products) A second procedure that we have tested for force estimation

p(Rou)b ™ (8)

aR
1 Cc Pe

expansion of Haar scaling functions is through low-pass filtered Lagrange interpolatisn
Ry 0P IIE + 1] Q IE({Re,Pc Row) H@
M = N
E+ 1/ IR, . x
(o}
Neen al—1 a—-1 Npim ) jkNQ N ;
— Z Zo w0y Ci,{j}| ﬂ %‘(a'l%M __)} e 0E({ Re,Pc} . Rom) NPT
1I=0 1= INpjm= = a IZ IR¢ !
(7) Pe
where

where the Haar scaling functiof(x), is a square function equal
to 1, for 0< x < 1, and zero otherwise. The quantNgey is Noim
the number of wavelet generations, and the underline below p-ag-LPF — I‘l dx Z(x — i)p_( (%) (10)
the summations is meant to indicate that there B, ' f,: 55 X; 5P

summations,jj,jz, ..., jnoml, @ndcigjy implies that the coefficients

depend oni and the entire set of-indices. The functions  TheP; are one-dimensional Lagrange interpolating polynomials,
{A(@&x — jNo/a)} comprise a hierarchy of translated and dilated and the functions are low-pass filter function®:® we use a
forms of #(x). We only use the scaling function in our treatment Gaussian function in the current study to repregeifiowever,
because the Haar wavelet function is the orthogonal complementthat is not the only possible choice. We use low-pass filtering
of the Haar scaling function and is not positive semidefinite. here because it is well-known that Lagrange interpolation can
(The TDDS function is required to be positive semidefinite.) introduce spurious high frequencies into the functionat“fit.
The quantityl%M, in eq 7, is thekth component of thé\pjm- Clearly the differences between egs 8 and 9 arise from the fact
dimensional vector, and is chosen to be 2 or 3; that is, we that the grid sampldy; in eq 9, is smooth. Other grid samples
employ two- and three-scale functions in our scheme. will be tested in future publications.
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TABLE 1: Energy Conservation Summary for CI—H—CI~ 2 TABLE 2: Energy Conservation Data from a
One-Dimensional Dynamical Treatment of the Shared

time AE ; —_H—ClN- 2
Ne No NgNe (ps) (hartree) Proton in [CI—H—CI]
level of force  temperature time AE
1D-QWAIMDP 11° 101 9.18 3.0 1.%10° b £
110 101 018 24 23 10° theory xo  scheme (K) NE No/Ne (ps) (hartree)
HF eq 13 eq8 32526 101 1 1.5 4@810°
3D-QWAIMD® 1331 210681 158 04 4%10° B3LYP eq13 eq8 258.45 101 1 1.1 13105
441 210681 478 07 7210 : B3LYP eq12 eq9{41} 13429 11 9.18 1.3 & 10°
441 232897 528 07 35 105 B3LYP eq12 eq9{53 13416 11 9.18 1.7 & 10°
343 232897 679 14 45 104 B3LYP eq12 eq9{62} 13477 11 9.18 1.0 4.810°
64 232897 3639 04 6%10 B3LYP eq12 eq9 133.76 11 9.18 3.0 1.810°
2 Nq is the total number of grid points, amd is the actual number ~ B3LYP €q13 eq 9 27114 11 918 39 18 10:
of calculations performed, placed (irregularly) on the grid employing HF ~ ed13 eq9 321.38 11 918 05 15 10_5
the Haar wavelet implementation of TDDS. Thus, the ratigNe MP2  eql2 eq9 127.26 11 918 24 23 104
represents the computational gakE represents the standard deviation MP2 g 13 eq9 290.17 11 9.18 3.7 2%x10
of the total (kinetic plus potential) energy of the system during the 5
simulation.? The 6-3H-G(d,p) basis is used for one-dimensional gg:ﬁi Zg g Zgg %gg;g ﬂ gig 1'35X£g05
studies.® On-the-fly electronic structure is performed using the B3LYP ' ' '
density functional? On-the-fly electronic structure is performed using aFor all calculations the quantum dynamical time si&fuw = 0.05
MP2.¢The B3LYP/6-3%G* level of theory is used for three- fs, the classical time ste@\tc; = 0.25 fs, andNg = 101. The ratio
dimensional QWAIMD studies. No/Ne represents the computational gain, aA#& is the standard
deviation of the total energy of the system. The 6-&l(d,p) basis set
IV. Numerical Tests on Accuracy and Efficiency of was used for all levels of theory Calculated from classical nuclear
Wavelet-Based TDDS and the Force Estimation velocities and wavepacket kinetic energy(x — x) in eq 10 is a

Algorithm (_3auss_ian. Thfa fuII_Width at half-maxim_um is shown in curly brackets
(in units of grid points)d¢(x — x') = 1 in eq 10.

We have chosen to study a bihalide cluster{8HCI]~, to
benchmark our approach. This has been the subject of substantia
experimental and theoretical stddy 154 and contains a shared f t t ;

roton undergoing excursions between dererceptor moieties. orce temperature ime
IF—)|ence, it is %resgeeable that the shared proto?n modes may be *° scheme  (K)° Ne No NoNe (ps) AE(Ew
coupled with all other atoms. Furthermore, due to the size of €412 eq9{53} 323.50 343 232897 679 1.4 45<10°
the problem (three atoms), it is possible to treat this system €412 €49{53 319.40 441 232897 528 0.7 3.5¢10°

. 4 . . eq 12 eq9{53 370.03 64 232897 3639 0.4 6.7x 104
using full-dimensional quantum dynamics. Our goal here, eq13 eq9{53 714.45 343 232897 679 1.9 1.2« 104

instead, is to gauge the accuracy of our quantehassical eq13 eq9{53 723.40 441 232897 528 0.7 1.4x 10
dynamical scheme for electrons and nuclei, and hence, in oUreq 13 eq9{53 724.20 441 210681 478 0.7 7.9¢ 10°5

study, the shared proton is treated using quantum dynamicseq 13 eq9{53 727.76 1331 210681 158 0.4 4.5x 1075
whereas all other atoms are treated with BOMD, as allowed eq 13 eq 9{41} 719.81 343 232897 679 1.3 1.1x 10°*

ABLE 3: Energy Conservation Data for C|—H—CI~ for
Il TDDS Algorithms and Different Force Scheme$

within QWAIMD. The electronic structure is treated using DFT, eq13 eqH 726.16 343 232897 679 05 2.7 10-*
Hartree-Fock, and post-HartreeFock MP2 formalisms. All eq13 eq9 904.31 441 232897 528 05 1.7x 10°2
QWAIMD computations in this publication are performed using eq 13 eq 9 770.09 441 210681 478 0.5 3.0x 104

a development version of the Gaussian sétfesf electronic

eq13 eq8 700.77 441 210681478 0.7 2.8< 10
s”“nglre codes. J i 4 three. €113 €a8 71544 1331 210681158 0.3 1.3x 1074
Table 1 provides a summary of the one- and three- o413 ¢qg 714.771 441 232897528 0.6 2.3x 107

dimensional wavepacket numerical tests. Further details can be
found in Tables 2 and 3, but it is already clear that 1 order of - o :

. Lo Sy i - treatment of the shared proton in fgH—CI]~: 3D-QWAIMD with
magnitude Compre§5|on in grid size is poss'l?'e t.h'rough TDDS density functional and basis set B3LYP/643&*. For all calculations,
when a one-dimensional quantum treatment is utilized ardl 3 A(,, = 0.05 fs andAtq = 0.25 fs. The ratioNo/N represents the
orders of magnitude of compression in grid size is possible when computational gain, andE represents the standard deviation of the
the wavepacket is treated in full three dimensions. Because thetotal energy of the system during the simulatié&alculated from
potential and gradient evaluations are the critical bottlenecks classical nuclear velocities and wavepacket kinetic enérgfx — x)

in QWAIMD, this leads to a large reduction in computational N €d 10 is a Gaussian. The full width at half-maximum is shown in
time ' curly brackets (in units of grid points} 97 x 49 x 49 grid with 97

. grid points along the CtCl axis.®81 x 51 x 51 grid with 81 grid
In Tables 2 and 3, we analyze the energy conservation gints along the GHCl axis.! (x — X) = 1 in eq 10.

properties of the dynamics over a rangéNgfvalues for different
initial conditions (simulation temperatures and initial wave- yariant of the Lanczos meth&§ 158 and involves the repetitive
packets), electronic structure methodologies, classical nuclearapplication of the Hamiltonian matrix on an initial vector to
force calculation algorithms, and dimensionalities of the quan- form a Krylov basis se¥¢ The representation of the Hamiltonian
tum mechanical particle. The initial wavepacket is chosen as ajn this new basis set leads to a Hessenberg form or tri-diagonal
linear combination of the proton Hamiltonian eigenstates at the form?56 for the Hamiltonian, which is relatively easy to
initial time step diagonalize. Note from Table 3 that the size of the matrices
involved, given byNg, can be very large, which explains the
Xo= z Cid; (11) need for employing the iterative diagonalization scheme. The
coefficients in eq 11 are obtained in two different ways, leading
where the eigenstatés (and the corresponding eigenvallgs to two different families of initial wavepackets for the tests
are obtained from Arnoldi iterative diagonalization of the proton shown in Tables 2 and 3. In one case, a thermalized initial
Hamiltonian at the initial step26 158 The Arnoldi scheme isa  wavepacket is obtained usingwhefds inverse temperature.

a All calculations are performed using a three-dimensional dynamical
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(a)  14e-06 g5z TABLE 4: Vibrational Frequencies at Optimized
2 12006 [, oo Geometrie$
< e—05 | |
E 10e-06 5 oc | | 1 ci—cl
) /\/N level of 21 2 V3 distance
g 8.0e-07 1100 theory (cmd)  (cmY (cmry) R)
z 000 1 B3LYP/6-3L+G(d,p) 328 83% 849 56(° 94F 3.15
= 4.0e-07 1 B3LYP/aug-cc-PVTZ 324 818 82% 582 95 3.15
; 2.00—07 | MP2/6-3H-G(d,p) 353 893 907 98 86F 3.10
0.00400 MPZ/a/ug-cc-PVTZ 345 8L§7 863 63:7; 974 3'1419
-Oe+ ‘ ' . ' CCsD/aug-cc-PVTZ 181 828 874 833 764 3.1
0 250 500 750 1000 CCSD(T)/%ug-CC-PVTZ 340 842 325 3.12
Time (fs)
experimeng 318 792+ 9 723
(b) 5e-06 NEO-MP2(ee-ep) 334
6605 CC—VSCF-MP2 327 811 925
3 4e-06 4e-05 a Anharmonic contributions are critical far;, the shared proton
T 3e-06 [26-05 stretch.” Harmonic frequency corresponding to the optimized geometry.
E 06400 ¢ From three-dimensional - O eigenstate transitions. The potential
8 2606 energy surface for the eigenstates is obtained from a full scan of the
E quantum proton with the chlorides fixed at optimized geometry
1e-06 positions. Hence, the eigenstates here are corrected for anharmonicity
but do not include coupling with the chloride motiod$zor CCSD,
0e+00 z s . s the shared proton is not symmetrically placed along the@laxis.
0 250 500 750 1000 This is in contrast with respect to all other optimized geometries here.

Time (fs) ¢ Reference 147.Reproduced from ref 148.Reproduced from ref 148
Figure 3. (a) Error in the CHCI distance in a one-dimensional based on the implementation of VSCF by Gerber and co-wofRe¥s.
QWAIMD, B3LYP/6-31+G(d,p) simulation of [CFH—CI]~ for Ne

= 11 with reference tdNg = 101. The initial quantum wavepacket is . ) )
a Gaussian. (b) Root-mean-square deviation of the classical nuclearature simulations. The approaches provide-a4 3orders of

forces for theNe = 11 calculation. Clearly, using 11 points in one  magnitude reduction in computational cost (ti/Ng ratio in
dimension based on TDDS leads to no significant change in the Taples 2 and 3). Because the temperatures in Table 3 are higher
dynamics over picosecond time scales. The insets in both panelsthan those in Table 2, the energy conservation is generally of

represent force interpolation according to eq 8 while the larger plots L . .
display Lagrange interpolation in eq 10. (The difference between the I0Wer quality in Table 3. However, as shown in section V, there

trajectories calculated by the Lagrange polynomial formalisms, with 1S Iitt]e influence in comparison with measured properties SU(_:h
and without low-pass filtering, is indistinguishable in these plots.) The as vibrational spectra. Also note that the largest compression
horizontal axes on the insets depict the same time scale as the IargeNQ/NE = 3639, which is only 64 calculated grid points in three

plots. The errors are negligible, but the Lagrange interpolated force dimensions, may reflect the lower limit fdéz using the current
formalisms result in a trajectory that is orders of magnitude better than algorithm.

the simple force calculation of eq 8.

¢, = exp[—pE] (12) V. Vibrational Spectra of Clusters, Inclusive of Critical
Nuclear Quantum Effects

In another case a Gaussian initial WaVGpaCket is chosen and As a benchmark of our method’s accuracy, we examine the

hence vibrational spectrum of [CtH—CI]~. To lay a foundation for
the need for a dynamical study, we begin by examining at the
_ X~ Xo harmonic frequencies calculated from optimized geometries,
C = |¢|ex (13) . . . . X
202 using various electronic structure methods in section VA. These

results are compared with experiments, and the resultant

While the thermalized wavepacket, eq 12, allows for eigenstatesdeviations, due to anharmonicity, are then partially overcome
to be populated starting from the lowest states, the Gaussianusing AIMD in section VB. Finally, in section VC, we provide
distribution, eq 13, allows a different range of eigenstates results from QWAIMD, which provide enhanced agreement with
(generally higher in energy) to be populated because thethe experimental results.
potential is generally not harmonic. We have used both of these A. Harmonic Analysis of CI—H—CI~. In Table 4, we present
in benchmarking our approach. harmonic frequencies calculated from optimized geometries

Table 2 comprises results from one-dimensional wavepacketusing a variety of electronic structure methods using both DFT
dynamics. This allows us to compare the different force and post-HartreeFock methods.
estimation algorithms, as discussed in section IlIB. As can be When comparing these calculations, it is interesting to note
seen, the filtered Lagrange polynomial formalism allows the that all levels of electronic structure theory, except CCSD,
greatest stability in the dynamics by providing energy conserva- predict equilibrium geometries where the shared proton is
tion in the range of microhartrees for reasonably long (pico- symmetrically arranged along the -©Cl axis. CCSD, on the
second length) simulations. This fact is also clear from Figure contrary, predicts a geometry with the same symmetry to be a
3 where the error in nuclear forces and deviations in classical transition state with an imaginary frequency equal to 332i. The
chloride dynamics are shown over a picosecond time scale. TheCCSD potential energy surface has a small (0.08 kcal/mol)
agreement is good between the TDDS trajectory and the barrier at the minimum geometry, which is an order of
trajectory obtained from calculations at &l grid points. magnitude less than the zero-point energy (0.93 kcal/mol) of

Table 3 also indicates good energy conservation for the caseshe same surface. As can be seen from Table 4, the proton stretch
where the filtered Lagrange force interpolation scheme is used (v3) is not reproduced well enough by any of the electronic
in conjunction with the wavelet scheme even for large temper- structure methods. This suggests a strong anharmonicity con-
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0.004 TABLE 6: Dynamically Averaged Vibrational Density of
O — States Calculated from Classical aimd Studies
MP2/aug-cc-PVTZ -~ level of temperature v % v
0.003 _ p 1 2 3
- R i p— theory K (emh (emy  (em?
= 0002 I / B3LYP/6-31+-G(d,p) 15.95 319 830 600
2 B3LYP/6-31+G(d,p) 50.29 308 818 658
& B3LYP/6-31+G(d,p) 75.5 308 814 658
0.001 B3LYP/aug-cc-PVTZ 15.89 317 813 622
7/ B3LYP/aug-cc-PVTZ 49.63 313 808 625
N /f,./‘ B3LYP/aug-cc-PVTZ 74.97 308 806 647
0 S MP2/aug-cc-PVTZ 15.72 336 842 645
Figure 4. One-dimensional slices of the potential energy surfaces of MP2/aug-cc-PVTZ 49.64 330 834 653
the shared proton along the -€ClI axis at equilibrium geometries experiment 318 7924 9 723

obtained at the levels of theory indicated in Table 4. The horizontal
axis represents a spread of 0.529 A (1 bohr). The B3LYP/aug-cc-PVTZ 2 Average internal temperature of the system during the simulation
and B3LYP/6-31#G(d,p) surfaces are indistinguishable, and the CCSD computed using nuclear velociti€sReference 147.
surface shows a double well. The basis set used for both CCSD and

CCSD(T) is aug-cc-PVTZ as listed in Table 4. ' ' ' ‘

TABLE 5: Harmonic and Anharmonic Constants T=75.5K
Calculated from the Eigenstates of the One-Dimensional . | (N -
Potentials

level of We WieXe WeYe WeZe et 1

theory (cm?d)  (cm™) (cm™) (cm™) |'|| T=15.95K
B3LYP/6-31+G(d,p)  827.54 —173.484 —11.0147 0.377976 - .
B3LYP/aug-cc-PVTZ ~ 833.463—169.508 —10.7189 0.369335 . _Ji,  Hammonic Analysis
MP2/6-3HG(d,p) 698.037 —217.648 —15.4189 0.553249
MP2/aug-cc-PVTZ 858.043—181.427 —11.6547 0402117 10300450 600 750 900 1030
CCsSD/aug-cc-PVTZ 565.65 —228.137 —16.9142 0.618542 Frequency (cm™)

CCSD(T)/aug-cc-PVTZ  730.253-204.83 —14.3846 0.51683 Figure 5. Dynamically averaged vibrational spectra obtained from

I . 7 . classical AIMD simulations. See discussion for details.
tribution, as noted previoush’ The proton potential energy

surfaces shown in Figure 4 are obtained from retaining the Cl degree of agreement between our three-dimensional proton
atoms at their respective optimized positions. A direct polyno- €igenstate calculations in Table 4 and the correlation-corrected
mial fit of these surfaces displays significant contributions from VSCF results fows, reproduced from ref 148. The remainder
fourth- and sixth-order terms, which explains the limited Of this publication deals with a discussion of improvements to
accuracy of the harmonic frequency calculations shown in Table vs that arise by including the anharmonicity of the proton

4. potential surface and the coupled motion of the shared proton
In fact, borrowing diatomic molecular spectroscopy notation, and the chlorine atoms as allowed within classical AIMD and
the harmonione and anharmonic constanigsxe, Weye, etc. for QWAIMD simulations.

the v vibration at each level of theory can be calculated using ~ B. Including Anharmonicity Contributions through Tem-

the vibrational eigenstates determined from the Arnoldi diago- perature-Dependent, Classical AIMD Simulationslt has been
nalization of these potential surfaces. The constants in Table 5recently showfrt3that temperature-dependent AIMD tech-
were determined from a least-squares fit of a fourth-order niques can accurately reproduce experimentally observed vi-

polynomial brational spectra even when harmonic analysis aitd181n
Table 6 and Figure 5, we present our results from BOMD studies
_ 1 1?2 13 at constant energy (NVE) where spectra are computed using
Glv) = We(v + 2) W‘?("(V + 2) + Wy, e(v + 2) + the Fourier transform of the dipole autocorrelation function (FT-

1\4 DAC) and the velocity autocorrelation function (FT-VAC).
Weze(” + §) (14) While the FT-VAC strictly provides the vibrational density of
states, the FT-DAC also accounts for dipole selection rules.
to the first 10 eigenstates of each one-dimensional potential Hence, the spectral intensities are generally expected to be
energy surface shown in Figure 4. The anharmonic contributions different in the two cases. Deconvolving the FT-VAC spectra
are significant, and the first-order anharmonic constagte, through analysis of the individual nuclear motions indicates
is negative because the spacing between vibrational levelstemperature-dependent peaks corresponding,to,, andvs.
increases with respect to the harmonic approximation. In Table The dynamical spectra show an improvement inithandv,
4, we also provide corrections to the harmonic approximation stretches over the harmonic approximation. The most dramatic
by computing three-dimensional proton eigenstates at the change, however, is shown in the asymmetric proton stretch,
equilibrium CHCI geometries for the respective levels of theory. vs.
These eigenstates are obtained from Arnoldi diagonaliZ8%3a? To probe the effect of temperature, in Figure 6 we present
of the three-dimensional proton potential surfaces obtained atthe radial distribution functions for the proton position ane-Cl
the respective optimized geometries. (See footnote b in TableCl distances at different internal temperatures. The shared proton
4.) Even these calculations only provide an upper bound to the displays a broader distribution as the temperature increases. This
experimental results, although they significantly improve the is, however, coupled with a broader-GTI distribution at higher
quality of the spectra. Clearly, in addition to anharmonicity, temperatures. It is also important to note the transition in the
coupling between the proton and the chloride motions is critical. proton radial distribution function from a bimodal distribution
This aspect also manifests itself through the relatively high below 75 K to a single broad distribution at 150 K. At the lower
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performed using velocity modulation spectroscopy where the
effective vibrational temperature could be as high as 1000
K.159.160Hence, it is not surprising that the higher-temperature
AIMD results become closer to the experimental result.
However, this also indicates an internal temperature dependence
(and hence experimental technique dependence) to the spectrum,
as has been noted for other fluxional systéMmi. will be
interesting to see how single-photon argon-tadgéfeahd mul-
tiphoton experiment8 differ in the prediction of the proton
stretch for this particular system.

34
CI-Cl Distance (A)
C. Quantum Wavepacket Description of the Vibrational

(b) [=149.50k — hooof Analysis. In this section, we present the vibrational density of
TE?&'SE by states computed from QWAIMD simulations of [&H—CI]~.
T=15.95K - S As noted earlier, the FT-VAC represents the vibrational density

of states. This aspect has been widely used in classical AIMD
simulations?11.13.162 Additionally, the FT-DAC provides the
dipole selection rules. There exist many approaches that attempt
to provide quantum corrections to such classical time-correlation
functions!63-165Here, we present an alternate scheme to obtain
the vibrational spectra directly from quantuidassical simula-
tions such as those performed within QWAIMD.

H Position on C1-Cl axis (A)

Figure 6. (a) Distribution of CHCI distances and (b) hydrogen In QWAIMD, the presence of both classical and quantum
positions along the GICl axis for BOMD B3LYP/6-3%-G(d,p) at dynamical nuclei complicates the direct application of velocity
several temperatures. Plots for other levels of theory and basis sets are. rajation. We exploit the fact that the quantum correspondence

similar. for the classical nuclear velocity is given in terms of the
(a) - - - ™ - probability flux or currents®
) MP2/6-31+G(d,p) Gaussian y,
e —— ___." '»\.._ J— . . _ h . .
MP2/6-31+G(d,p) Thermal 3, T —m[zp (XD VYt — ) Vy*(x,1)]
'B3LYP/6-314G(d.p) Gaussian = AtV 15
"\ MLy Vi ()] (15)
B3LYP/6-31+G(d,p) Thermal

150 300 450 600 750 900 1050
Frequency (cm'l)

where ImP] represents the imaginary portion of the complex
number A. Thus, to construct the velocity autocorrelation
function, we consider the expectation value of flux at a given

time
b)[ ] \
I ' ; _ —ih
,l I'. Gaussian 1" I". ‘J(t) = gﬂ]: (/IJ[B/"(t)‘W V‘w(t)u] (16)
S/ VAN NUNRIDY LV A W,V | WV
'| | in conjunction with the classical nuclear velocities. The symbol
'I 1 7[---] represents the real part of the complex bracketed quantity.
, |
.' \ Thermal 5, M Therefore, we simultaneously compute the correlation func-
J L _ A tions [J(t)J(0)Oand [2(t)(0)C) and the full vibrational density

150

300 450 600 750 900
Frequency (cm'l)

1050

of states is the Fourier transform of the cumulative flux/velocity
correlation function

Figure 7. Fourier transform of the flux/velocity correlation function
for (a) one- and (b) three-dimensional QWAIMD. The one-dimensional
simulations ran for 2.54 ps, and the three-dimensional simulations
ran for 1-2 ps. The prominent peaks in panel b are in close agreement
with experiment.

Cw) = [ expl-iwtl{ B()v(0). + B()IO)3} .

temperatures, the average proton potential is a single well, whilewhere the symbol&--[¢ and 3[4 represent the classical and
at high temperatures it tends to a double well, because largerquantum variable ensemble averages. It is also critical to note
CI—CI distances are sampled at higher temperatures. Thisfrom eq 16 that for a simple Gaussian wavepacket the quantity
changes the basic structure of the distribution and has a critical @ (t)|(—iA/m)V|y(t)Ts also equal to the transition dipole bracket
effect on the temperature dependence of the vibrational spec-and hence this quantity may contain some information also about
trum. the dipole selection rules in regions where semiclassical
Due to a dependence of on the simulation temperature, it  treatment is sufficient. This can be seen from the following
is important to note that the experiments in ref 147 were analysis of eq 15 for time-independent Hamiltonians
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TABLE 7: One- and Three-Dimensional QWAIMD Studies of the Vibrational Density of States as Calculated by the Flux/
Velocity Correlation Function, Eq 172

temperature V1 V3 V2
(K)® Yo (cm™) (cm™) (cm™)

1D-QWAIMD 133.76 eq 12 301 988 983
(No = 101;Ng = 11) 271.14 eq 13 297 900 920°

127.26f eq 12 313 879 87¢

290.17 eq 13 304 74% 764
3D-QWAIMD? 323.50 eq 12 300 806 805 857 853
(No = 232 897; Ng = 343) 714.45 eq 13 254 793 73% 863! 858
experimerit 318 723 792+ 9

aThe assignments are confirmed by considering the dynamic average ofth@ digenstate transitionsAverage internal temperature of the
system during the simulation computed using nuclear velochi@s-the-fly electronic structure is performed using B3LYP/6-&(d,p). ¢ Obtained
from the flux/velocity correlation function (eq 17 Dynamically averaged 4 0 eigenstate transitionsOn-the-fly electronic structure is performed
using MP2/6-3%G(d,p). ¢ On-the-fly electronic structure is performed using B3LYP/6-&E. " 97 x 49 x 49 grid with 97 grid points along the
CI—Cl axis.' Reference 147.

_h simulations described in Table 6, due to the sparse grid utilized
J ) = Imy(x) Vi ()] in this direction (97 grid points along the €Cl axis and 49
A iHt iHt grid points in the orthogonal direction; see Table 6 for details).
~m Im’w*(x,O) ex;{?}v ex;{ — ?}I/J(X,O)] It is critical to distinguish the trends in the change in the

peaks for the classical and quantum wavepacket AIMD simula-
iEt iEt tions. As discussed in section VB and shown in Figure 6, an
Z & exp — VZ exp — — (¢, (18) increase in temperature for the classical spectra allows the
[ h ] h system to sample larger €CI distances. This applies to
QWAIMD as well. But the effect of temperature org is
Hence the Fourier transform of the expectation value of flux in different for the classical and quantum simulations. In classical
eq 16, for time-independent Hamiltonians, can be written, using AIMD, the proton dynamics are influenced by the increasing
the convolution theorerff as fourth- and sixth-order terms in the potential surface on account
of the larger C+ClI distances sampled. These steeper turning
fﬂo dt exp[—iwt]{ J(t)I0)} = |f+°° dt exp[—ia)t]J(t)|2 points, sampled at higher temperatures by the classical proton
@ @ (Figure 6), blue-shift the proton stretch peak. For QWAIMD,
i(E. — E)) @pla [ on the contrary, thes peak is red-shifted at higher temperatures,
_ f+°° dt exp—iwt] 7 z exq[ b ] e because the potential surface becomes wider due to the
o & h m increasing higher-order terms and larger—Cl distances
sampled. The flatter average potential results in a decrease in
[E, — E,-]\Ebilﬁlfﬁjm the 1-— 0O transition energy for one- and three-dimensional
= w — +
]

=—1Im
m

simulations. Hence, the effect of temperature on the quantum
h } m treatment is quite different from that obtained from the classical
. ) treatment. However, the two types of calculated spectra in this
[Ei o Ei]\@i|p|¢j5l study tend to converge to the experimental (high-temperature)
olw — A / m ' (19) spectrum. In addition, the difference between one- and three-
dimensional QWAIMD simulations fors is significant for this
case. Dimensional confinement blue-shifts the frequencies as
where d(-++) is the Dirac delta function. Equation 19 clearly is to be expected.
leads to a spectral representation with peaks positioned at the
various energy differences that correspond to vibrational excita- /| Concluding Remarks
tions. The situation for time-dependent Hamiltonians is, of
course, complicated by the nature of the quantwhassical In this paper, we have extended the recently developed
coupling. However, it is already clear from eq 19 that the peak quantum wavepacket ab initio molecular dynamics technique
intensities are proportional to the momentum of the wavepacket, that allows simultaneous quanturolassical dynamics of elec-
which in turn is proportional to the transition dipole bracketin trons and nuclei. Modifications to the computational scheme
the semiclassical (Gaussian wavepacket) representation. through the utilization of wavelet theory and the use of low-
We present band assignments based on computation using’ass filtered Lagrange interpolating polynomials renders the
eq 17 in Table 7 for two different temperatures for each level approach robust, accurate, and computationally efficient.
of theory. These are confirmed by calculating the average 1 We have demonstrated one application of our approach
0 transition energies over the course of a trajectory. As can bethrough an analysis of the rovibrationalspectroscopy in a small
seen, the agreement between the 3D-QWAIMD results and Cl—H—CI~ cluster. This problem has been studied by a number
experiment improves with increasing temperature. In addition, of theoretical and experimental groups. To study rovibrational
the high-temperature 3D-QWAIMD results for the shared proton spectroscopy in such clusters, we have employed a novel,
stretch ¢3) in this particular system seems to be in better cumulative flux/velocity correlation function where the wave-
agreement with experiment as compared to the implementationpacket flux is combined with the classical nuclear velocities to
of correlation-corrected VSCF discussed in ref 148. The obtain a general description of vibrational density of states in
orthogonal motion of the shared protan); on the contrary, is guantum-classical systems. The approach is analytically shown
not in agreement to the same extent as the classical AIMD to be exact for time-independent Hamiltonians, and numerical
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demonstrations are provided for the case of time-dependent  (6) Gertner, B. J.; Hynes, J. Beiencel996 271, 1563-1566.
Hamiltonians, which corresponds to the situation in QWAIMD. (7) Devlin, J. P.; Uras, N.; Sadlej, J.; Buch, Nature2002 417, 269~
The CHH—CI™ cluster is interesting because Harmonic  “(g) apisio, S.; Francisco, J. $icc. Chem. Re00Q 33, 825-830.
frequencies obtained even from very high levels of ab initio (9) lyengar, S. SJ. Chem. Phys2005 123 084310.
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