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Time-dependent density functional theory (TDDFT) is an efficient method to evaluate excited-state properties
of electron systems. However, it is not so well-known that it also provides a very accurate prescription to
obtain correlation energies by using the so-called adiabatic connection fluctuation dissipation theorem (ACFDT).
In this paper we present a detailed study of the ACFDT performance in bulk solids and jellium clusters.
These results confirm the reliability of the ACFDT scheme and pave the way to future applications where
standard implementations of the Kohn-Sham density functional theory dramatically fail, in particular to
weakly bound systems and van der Waals complexes.

1. Introduction

The Kohn-Sham (KS) implementation1 of density-functional
theory (DFT)2 is one of the most powerful and used methods
for electronic structure calculations in material science and
quantum chemistry. In this scheme, the exact ground-state
energy and electron density can be obtained self-consistently if
the so-called exchange-correlation (XC) energy functionalEXC-
[n] was known. BecauseEXC[n] contains information about the
quantum many-body effects in the electron interaction, its actual
(and unknown) expression is very complicated. However, and
this is one of the main reasons of the popularity of KS-DFT,
rather crude approximations toEXC[n] depending explicitly on
the electron densityn(r ) often provide very accurate results at
a moderate computational cost. Examples of such prescriptions
are the local-density approximation (LDA)1,3 and the generalized
gradient approximation (GGA),4,5 which, presently, constitute
the methods of choice for practical applications of KS-DFT.
However, this family of approaches may be reaching a limit of
accuracy and a next generation of hybrid orbital functionals (see
below) is taking more relevance nowadays.

The limitations of the LDA and GGA are obviously due to
their local or semilocal nature, which implies that they are
extremely short-ranged. Thus they cannot describe at all the
very nonlocal nature of electron-electron correlations and, for
instance, van der Waals dispersion forces are completely out
of the scope of the LDA and GGA. Another concomitant
consequence of their simplicity is the appearance of self-
interaction errors which, for instance, compromises their ac-
curacy when dealing systems with localized electrons. More
complicated XC nonlocal functionals, like the so-called averaged
and weighted density approximations,6-10 do not provide
systematic improvements upon LDA and GGA but are com-
putationally much more demanding.

Orbital-dependent (OD) XC functionals, that is, functionals
that depend implicitly on the electron density through the
Kohn-Sham orbitals, are the natural next step toward the
formulation of DFT prescriptions with chemical accuracy. The
obvious advantage is that they provide a description of the
electron-electron interaction at a much deeper level than
conventional density-based functionals. The main drawback is
the increasing numerical cost. However, this next generation
of XC functionals can be very competitive if compared with
exactmethods like quantum Monte Carlo or full configuration
interaction. Under this perspective, OD functionals may be seen
as a more flexible alternative to quantum chemistry techniques
like Møller-Pleset perturbation theory and coupled cluster
methods. The novel meta-GGA functionals proposed by Perdew
and co-workers11-13 are the simplest examples of OD function-
als. In this paper, however, we will focus on more sophisticated
approaches that incorporates exactly the exchange energy
functional. Namely,

where EC[n] is an approximation to the correlation energy
functional andEX

EXX[n] is the exact exchange (EXX) energy
functional given in terms of the occupied KS orbitalsφn(r ):

wherecnm(r ) ) φn
/(r ) φm(r ). The factor 2 appears as a result of

the sum over spin-degrees of freedom (we will restricted
ourselves to spin-unpolarized systems and use Hartree atomic
units throughout the paper unless otherwise specified). Note that
(2) has the same form that the well-known Hartree-Fock (HF)
exchange, except that the KS orbitals are used instead of the
HF ones. Therefore, the correlation energy is the only term that
must be approximated in this EXX-based KS prescription.
Nonetheless, the XC functionals given by (1) miss one of the
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reasons of the success of LDA (and to a lesser extent of GGA):
the systematic cancellation of errors between the exchange and
correlation counterparts. As a consequence, implementations of
(1) with full predictive power require very accurate approxima-
tions to the correlation energy.

An interesting route is the use of many-body theory, which
defines a perturbative formulation of the correlation energy in
terms of the KS orbitals and eigenenergies,14-16 much akin to
the standard Møller-Pleset expansion. Another option is the
use of the following exact expression for the correlation energy
functional:

known as adiabatic connection fluctuation-dissipation theorem
(ACFDT).17,18 Here, øλ(r ,r ′;iu) is the imaginary-frequency
density response of a fictitious system of electrons interacting
through a scaled Coulomb potentialλ/r12 and whose ground-
state density equals the actual one. Then,ø0(r ,r ′;iu) is the
response function of the fictitious noninteracting KS system:

wherefn (0 or 1) are Fermi occupation numbers andεn the KS
eigenenergies. The interacting responseøλ can be evaluated in
the framework of time-dependent density functional theory
(TDDFT)19-21 by solving the Dyson-like equation

where the usual matrix operations are implied.ŵ is the bare
Coulomb interaction andf̂XC,λ(iu) is the dynamical XC kernel
of the fictitious system with the scaled interactionλŵ. Thus,
the evaluation of the correlation energy only relies on the
approximations made tof̂XC,λ. Also note that under this
formulation the ground-state energy and the optical properties
of the electron system (related to the neutral excitations in the
system) are treated under the same framework, which incorpo-
rates higher order electron interactions whose treatment has
shown to be mandatory inab initio calculations of spectroscopic
properties of extended systems.20,21

As anticipated, the implementation of this ACFDT scheme
is much more computationally demanding than usual KS
methods. However, it is a promisingab initio total-energy
method due to a number of reasons. First, exchange and
correlation are treated at the same level. Second, ACFDT
accounts for van der Waals forces,22-24 thus being a suitable
approach for a unified treatment of electron-electron interac-
tions with different spacial ranges, a situation that appears in
bundled nanotubes, polymer crystals and, in general, sparse
systems. Third, by construction there are not self-interaction
errors in the exchange part whereas they do not seem to be
very serious in the correlation term and might be systematically
reduced by choosing a proper kernel. Finally, it serves as the
starting point of further simplifications aimed for implementation
in very complex systems25,26at an affordable computational cost.
On the other hand, a first evident problem of the ACFDT is the
dependence of the results on the choice of the XC kernel, which
is especially relevant when consideringtotal correlation ener-
gies.27 However, there is some evidence that such a choice is
not so critical for the evaluation of structural properties, which

are related to energydifferencesin isoelectronic systems.28,29

Nonetheless, this point is still an open issue,30 and some
interesting attempts directed to find anoptimal XC kernel for
correlation energy calculations have been already presented.31-33

Second, the evaluation of the ACFDT correlation potentialVC-
(r ) is a formidable task,34-36 much more demanding that the
calculation of the EXX potentialVX(r ),37,38 which is presently
carried out routinely in both molecular39,40 and extended
systems.41,42In fact, the self-consistent evaluation of the ACFDT
VC(r) has been only implemented for model electron systems,43,44

atoms,45 and simple bulk crystalline solids.46 Thus, almost all
the applications of the ACFDT scheme made so far30-33,47-54

have neglected any attempt of self-consistency, and the cor-
relation energy is evaluated using LDA, GGA, or EXX Kohn-
Sham wavefunctions and eigenenergies as an input, as com-
monly done in excited-stateab initio calculations.21 This
prescription will be followed in this paper as well, where we
will present detailed ACFDT results for two rather simple, but
very different, systems: compact bulk structures (silicon and
sodium chloride) and jellium metal clusters.

For simple bulk systems, LDA already shows a very good
performance. Hence, it is not expected that the sophisticated
EXX/ACFDT XC functional will lead to significant differences
with respect to the LDA results. However, it is important to
show that this good performance is not compromised by the
more developed ACFDT functional. Then, our main goal will
be the detailed discussion of the implementation of the ACFDT
to extended crystalline systems. Because many-body effects in
the correlation energy are not going to be critical, we will use
the simplest ACFDT prescription and neglect the XC kernel in
the evaluation of the interacting density response (i.e.,ø is
obtained in a random phase approximation [RPA] fashion). As
it is known, RPA accounts for long-range correlation effects
but the description of short-range ones is very poor. Thus, RPA
gives too deep correlation holes and too large (in absolute value)
correlation energies. Fortunately, these short-range effects can
be effectively modeled by an LDA or GGA correction term:
28,29

whereεcor is a function of the local density and its gradient.28,29-
As we will see, this hybrid scheme, often called RPA+, suffices
to obtain very accurate correlation energies.

On the contrary, jellium metal cluster are examples of small
localized systems where the elimination of self-interaction errors
is required to obtain reliable results. Furthermore, by increasing
the size of the cluster, we approach the homogeneous electron
gas limit and, hence, in spite of the simplicity of these systems,
different correlation regimes appear. The existence of accurate
benchmark quantum Monte Carlo calculations55 allows us to
assess the performance of not only the RPA+ correlation
functional but also the one corresponding to the evaluation of
the response function using different approaches to the XC
kernel.

The outline of this Article is as follows. In section 2 we will
present a detailed description of our implementation of the
ACFDT scheme for crystal solids, applied recently54 to the
problem of layer-layer interactions in laminar systems. Section
3 contains the results and discussion for bulk Si and NaCl,
whereas section 4 is devoted to the ACFDT results for metal
clusters, covering different ranges of densities and electron

EC[n] ) - ∫0

∞du
2π ∫0

1
dλ ∫d3r d3r ′ 1

|r - r ′| ×
[øλ(r ,r ′;iu) - ø0(r ,r ′;iu)] (3)

ø0(r ,r ′;iu) ) 2 × ∑
nm

(fn - fm)cnm(r ) cmn(r ′)

iu + (εn - εm)
(4)

ø̂0(iu) ) (1̂ - ø̂0(iu)[λŵ + f̂XC,λ(iu)])ø̂λ(iu) (5)

EC[n] = EC
RPA[n] + ∆EC[n]

) EC
RPA[n] + ∫d3r n(r ) εcor(n(r ),∇n(r)) (6)
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number. The corresponding conclusions and perspectives will
close this paper.

2. The ACFDT Scheme for Solids

Our implementation of the ACFDT correlation functional for
crystalline solids is built on the long-standing experience gained
in the last years inab initio TDDFT calculations21 as reflected
by the existence of a number of efficient computational tools.
Specifically, KS wavefunctions and operators are represented
in a planewave basis set and core electrons are approximately
described using standard nonlocal pseudopotentials.56 Hence,
KS wavefunctions and energies are labeled by a band indexn
and a vectork belonging to the first Brillouin zone (BZ). Due
to the periodicity of the system, the reciprocal space representa-
tion of the response functions takes the formøλ(k+G1,k+G2;iu),
where G is a vector of the reciprocal lattice. The ACFDT
correlation energy per volume unit is then given by

with

and ∆øλ ) øλ - ø0. The KS responseø0 is calculated from
well-converged KS wavefunctions and energies evaluated using
the abinit package.57 The interacting responsesøλ are then
obtained for each vectork in the Brillouin zone, imaginary
frequencyu, and coupling parameterλ solving (5) using the
self-code,58 where the expressions (7) and (8) are implemented
as well.

At a first glance, this implementation seems to be straight-
forward, but there are some technical issues that must be solved
to have a stable and easy to converge numerical procedure. First,
the dependences of the functioneC(k,G,u,λ) defined in (8) on
the coupling constantλ and the imaginary frequencyu are very
smooth. Thus, both integrals can be carried out in a very efficient
way using Gauss-Legendre (GL) samplings. Forλ, a six-point
GL grid is enough for our purposes, whereas the frequency
integral is done using two GL grids, each typically comprising
18-24 points. The first one lies in the range [0,u1], whereu1

is of the order of the plasmon frequency associated to the mean
density of the system, and the second one lies in the interval
[u1, umax], where umax is a frequency cutoff. This procedure
allows an accurate evaluation of the contributions from both
small and large imaginary frequencies. The convergence with
respect the critical parameterumax is carefully checked, but it
does not pose any major problem.

Much more delicate is the convergence versus (i) the sampling
of the BZ (determined by the number of specialk vectors,Nk,
in the irreducible wedge of the BZ), (ii) the number of reciprocal
lattice vectorsNG (i.e., the energy cutoff in reciprocal space),
and (iii) the number of bandsNb used to evaluate the KS
response function (remember thatø0 contains contributions from
occupied and unoccupied states). Unfortunately, the common
practice in electronic structure calculations that fixes the energy
cutoff for all geometries (and, hence, defines a differentNG for
each geometry) does not work in the present case. The
convergence ofEC versus the number of bands is very slow
and, what is more important, the convergence rate depends very
sensitively on the considered geometry. Furthermore, the
required numerical effort increases dramatically with the number

of k points. All this prevents us from having reasonably
converged energy differences and, as a consequence, the
evaluation of structural properties is completely impossible in
this way.

These problems can be circumvented because, for a fixed
sampling of the BZ, the planewave representation allows a
systematic simultaneous convergence with respect toNG and
Nb. Namely, regardless of the energy cutoff, the number of bands
used in the evaluation of the KS response function is imposed
by the expressionNb ) (NG - 1)/R, whereR is an integer
(typically equal to 2, although we have checked that the same
final results are obtained usingR ) 3 and 4). As we may see
in Figure 1, the convergence with respectNG is very well
defined, and it is easy to obtain the infiniteNG andNb limit of
the correlation energy as long as the number ofk points is small.
However, this procedure is not feasible for finer samplings of
the BZ. Fortunately, thedifferencesinduced in the correlation
energy by increasingNk are very insensitive to the number of
G vectors used in the calculation (see the inset in Figure 1).
This suggests a well-defined procedure. First, using a coarse
BZ sampling, the correlation energy is converged by increasing
simultaneouslyNG and Nb. Second, using the results corre-
sponding to thelargest NG’s, the infinite limit result is obtained
by extrapolation ensuring that the extrapolating curve also fits
the rest of the values. Finally, the error due to the coarse BZ
sampling is determined by comparing the correlation energy
obtained using morek points but evaluated with a relatively
small number of reciprocal lattice vectors. By doing this, we
are fully confident that the absolute correlation energy for a
given geometry is converged within a numerical error less than
0.2 mHa per electron, whereas for correlation energy differences,
such an error turns out to be of the order of 0.05 mHa per
electron.

Finally, it is worthwhile to mention a few words about exact
exchange. When calculating the EXX energy, the only critical

EC

V
) - ∫0

1
dλ ∫0

+∞du

2π
∫BZ

d3k ∑
G

eC(k,G,u,λ) (7)

eC(k,G,u,λ) ) 4π
|k + G|2

∆øλ(k+G,k+G;iu) (8)

Figure 1. Analysis of the convergence of the RPA correlation energy
for bulk silicon (lattice parametera ) 10.2 au). For a coarse sampling
of the Brillouin zone with just two special points (hollow and solid
circles), the limit corresponding to an infinite number of bands andG
vectors can be easily extrapolated from the values indicated with solid
symbols. The reliability of the fitting curve (dashed line) is evident
because it fits other values not used in the extrapolation. For a finer
BZ sampling with 10 special points (squares), the change on the
correlation energy with respect to the previous one converges very
quickly with the number ofG vectors, as represented in the inset.
Finally, it can be seen thatNk ) 10 provides full convergence because
the inclusion of morek vectors (rhombuses) does not lead to appreciable
variations in the correlation energy. Note that the numerical error in
the final result (-57.8( 0.2 mHa/e) is mostly due to the uncertainties
in the extrapolation procedure.The number ofG vectors used in the
calculations are displayed in the figure.
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parameter isNk, because only occupied wave functions enter
into the evaluation and theNG convergence is quite fast. In fact,
EX

EXX converges rather slowly with respect to the BZ sampling,
and a relatively large number of specialk points is required.
Nevertheless, this part of the calculation is inexpensive com-
pared with the ACFDT one and, furthermore, the convergence
can be sped up using random integration techniques over the
BZ zone.59 The absolute numerical errors in the EXX energies
are of the same order of magnitude than the ACFDT correlation
ones, although we have to bear in mind that the exchange energy
is often several times larger than the correlation one.

3. Results for Bulk Structures

The methodology described in the previous section allows
us to calculate the exchange-correlation energy for crystalline
solids at different geometries, thus giving us access to a fully
microscopic evaluation of structural properties, including se-
lected lattice dynamics using a frozen-phonon approximation.
As mentioned before, this scheme has been already applied to
the calculation of equilibrium structural properties of a layered
material (hexagonal boron-nitride).54 This is a system where
long-range van der Waals forces coexist with short-ranged
covalent ones, thus being a perfect scenario where the ACFDT,
under the RPA+ approach, shows its full capacity. In this section
we will describe the results for bulk silicon (the paradigmatic
example ofsp insulator) and, very briefly, for NaCl (an example
of ionic solid). We can anticipate that there will be marginal
differences between the LDA and the EXX/RPA+ results. Those
differences are going to be less important than, for instance,
the choice of the pseudopotential used in the calculations.
Nevertheless, these calculations illustrate very well the known
cancellation of errors between exchange and correlation in the
LDA prescription and the robustness of the EXX/RPA+
approximation.

The EXX and the RPA+ correlation energies per unit cell
for bulk silicon at different lattice constants are presented and
compared with the LDA counterparts in Figure 2. The most
noticeable features are the discrepancies between exchange and
correlation energies if considered separately, which reflects the
well-known LDA underestimation (overestimation) of the
absolute value of the exchange (correlation) energy. However,
both LDA errors compensate each other and the total LDA and
EXX/RPA+ XC energies are practically the same. A similar
cancellation appears if we consider the lattice parameter
dependence of the XC energy, although it is worth emphasizing

the very different behavior exhibited by the LDA correlation
energy if compared with the RPA+ one. However, exchange
dominates upon correlation in bulk Si and this discrepancy will
not affect too much to the final structural properties. We must
mention the LDA correction term∆EC[n] has an almost
negligible dependence on the lattice parameter. In other words,
the RPA and RPA+ correlation curves are practically parallel
and, as a consequence, the inclusion of∆EC[n] simply shifts
rigidly the total energy, without affecting the rest of the
equilibrium properties of bulk Si, but providing total energies
as accurate as LDA.

The variation of the total energy per unit cell with respect
the lattice constanta is represented in Figure 3. We may see
that the inclusion of many-body effects via the EXX/RPA+
leads to a marginal reduction (less than 0.5%) of the equilibrium
lattice constant if compared with the LDA one (10.17 au).
Similarly, the bulk modulus is unaffected within the unavoidable
numerical error bars. At a first glance, this small correction goes
in the wrong direction, because the experimental lattice constant
(aexp ) 10.26 au) is roughly a 1% larger than the LDA one.
Nevertheless, we must point out that (i) our EXX/RPA+
implementation is not self-consistent but is evaluated using LDA
wavefunctions, (ii) the RPA+ approximation to the exact
correlation functional is the simplest one within the ACFDT
scheme, and (iii) we are working under a pseudopotential
approximation. Very likely, the first point is going to be the
least important. It is known for a long time60,61 that for bulk sp
semiconductors, the shape of the LDA XC potential is very
similar than the one corresponding to the local XC potential
obtained from the linearized form of the Sham-Schlüter
equation,62,63 which formally corresponds to the EXX/RPA
potential.34,35,64 This overall coincidence has been recently
confirmed bystate-of-the-artcalculations.46 The second point
should deserve further attention, although it is very likely that
for this simple compact sp structure the inclusion of effects
beyond the RPA via appropriate XC kernels is not going to
lead to dramatic changes. Thus, we can conclude that the
pseudopotential approximation itself is the main responsibility
of the small discrepancies with respect to the experimental result.
At this point, we have to mention that Miyake et al.53 presented
a few years ago a prospective study of the RPA correlation
energy for bulk systems in an all-electron picture. As can be
easily inferred by the discussion in section 2 (restricted to the
much simpler pseudopotential picture), the numerical difficulties
that these authors had to face were formidable. Hence, their

Figure 2. Exchange and correlation energies per unit cell for bulk
silicon as functions of the lattice parametera using EXX/RPA+ (solid
lines with circles) and LDA (solid line). Note that the energy scale for
the correlation is much smaller than the one corresponding to exchange
and exchange-correlation. The LDA greatly overestimates both the
absolute value of the correlation energy and its variation with the lattice
constant. The behavior of the LDA exchange is the opposite if compared
with the EXX results.

Figure 3. Total energy per unit cell for bulk silicon as a function of
the lattice parametera obtained from EXX/RPA+ (solid line with
circles), LDA (solid line), and EXX/LDA (dashed line). In the EXX/
LDA, the exchange energy is calculated exactly and the correlation is
approximated using the LDA. All the calculations have been performed
using the same pseudopotential. Note that the EXX/LDA lacks the
typical LDA cancellation of errors. The corresponding equilibrium
lattice constants are included within the figure. The experimental value,
aexp, is indicated as a reference.
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quantitative results must be taken with caution, although their
main qualitative conclusions agrees very well with the ones
obtained from our well converged pseudopotential-based results.

Finally, the EXX/RPA+ description of the XC effects in NaCl
leads to similar conclusions. As can be seen in the upper panel
of Figure 4, the LDA and EXX/RPA+ equilibrium properties
are practically the same. Moreover, the discrepancies in the
exchange and correlation energy curves are even smaller than
in the case of bulk Si. In fact, the substitution of the LDA
correlation by the RPA+ one does not change the equilibrium
lattice constant and the mentioned small discrepancies are
mainly due to the different treatment of exchange.

4. Application to Jellium Clusters

Jellium clusters, where the positive ions are modeled by a
uniform spherical positive background of densitynB, have been
used extensively in the past to study the experimental properties
of alkali metal clusters.65,66 This approach is presently super-
seded by modern electronic structure calculations, although
jellium clusters are still useful to assess advancedab initio
theories. In this model, the cluster is fully characterized by the
number of electronsN and the mean background densitynB.
Because the system is neutral, the radius of the jellium sphere
is RB ) N1/3rs, rs ) [3/(4πn)]1/3 being the so-called Wigner
radius. Hence, theN electrons move under the action of an
electrostatic potential which is harmonic ifr e RB and
Coulombic if r g RB.

As commented in the Introduction, there are accurate quantum
Monte Carlo results for closed-shell jellium clusters,55 which
correspond toN ) 2, 8, 18, 20, 34, 40, 58, ... at least in the
range of metallic densities. Because of the closed-shell config-
uration, the electronic ground state is nondegenerate and exhibits
spherical symmetry. This enormously simplifies not only the
implementation of the KS equations but also the evaluation of
the EXX and ACFDT correlation energies, which can be carried
out at a low computational cost. Therefore, this simple model
is very suited to assess the performance of different implemen-
tations of the ACFDT scheme. Note that the problems that
plague its application to real extended materials (as we have
seen in section 2) and localized molecular systems30 are now

completely absent because we can easily reach full numerical
convergence.

Because of the spherical symmetry, the KS wave functions
take the familiar formφ(rb) ) Rnl(r) Yl

m(Ω), Rnl being the radial
wavefunction andYl

m(Ω) a spherical harmonic. The density
responseøλ (and, in general, any involved operator) can be
written as a Legendre expansion:

wherePL is the Lth order Legendre polynomial andγ is the
angle formed byr andr ′. ø0

(L)(r,r′;iu) can be readily expressed
as a function of products of occupied (nl) and unoccupied (n′l′)
radial wavefunctions, KS eigenergies, and Clebsch-Gordan
coefficients in such a way that only the wavefunction products
with |l - l′| e L e |l + l′| enter into the evaluation ofø0

(L).
Unbounded unoccupied states are discretized by imposing
infinite wall boundary conditions at armax . RB. In our
calculations,rmax ∼ 10RB suffices. Dyson’s eq 5 is solved for
eachL component separately, and the solution can be done either
in real space or in a matrix representation. As we can see, the
simplicity of the system reflects on the fact that the original
three-dimensional problem can be effectively separated in
L-decoupled one-dimensional ones. Finally, the integrations over
the coupling constantλ and the imaginary frequency are
performed following the method already described in section
2. We have to mention that the whole procedure could be made
even simpler by following the implementation proposed by
Furche.30,49 Moreover, the sum over unoccupied states could
be circumvented by solving the Schro¨dinger-like equation
obeyed by the one-electron KS Green function, whose knowl-
edge allows us to obtain the KS density response.

Our first aim is the critical discussion of the performance of
the RPA+ correlation functional for localized systems. We will
also pay attention to more elaborate ACFDT prescriptions based
on the evaluation of the density response including local field
effects (i.e., corrections beyond RPA) using suitable XC
nonlocal kernels. We will restrict ourselves to the well-known
Petersilka-Gossman-Gross (PGG) kernel67 and to a recent
energy-optimizednonlocal Hubbard-like kernel (OHU) proposed
by Jung et al.33 The PGG kernel

is a static model that has the advantage of being the exact
exchange-only kernel for a system with two electrons (and the
exact XC kernel for a single electron system). Therefore, and
that is the reason for this choice, it is in principle suitable to
deal in an approximate manner with the spurious self-interaction
that appears in the response function for a few electron systems.
On the contrary, the OHU nonlocal kernel has a completely
different physical motivation. It has the form

where rs(r ,r ′) ) [3/(4πxn(r )n(r ′))]1/3 is an effective Wigner
radius andFXC

hom(rs,r) is a static nonlocal approximation to the
XC kernel of the homogeneous electron gas (HEG). Such a
kernel is given by

Figure 4. Upper panel: same as Figure 3 for bulk NaCl. Lower
panels: same as Figure 2 for bulk NaCl. The many-body effects
included in the RPA+ correlation can be only appreciated far from
the equilibrium geometry, which explains why the EXX/LDA and EXX/
RPA+ lattice constants are the same.

øλ(r ,r ′;iu) ) ∑
L)0

∞

øλ
(L)(r,r′;iu) PL(cosγ) (9)

fXC,λ
PGG(r ,r ′;ω) ) -

2λ

|r - r ′|

|∑
n

occ

φn(r) φn
/(r ′)|2

n(r ) n(r )
(10)

fXC,λ
OHU(r ,r ′;ω) ) λ2FXC

hom(λrs(r ,r ′),λ|r-r ′|) (11)

12462 J. Phys. Chem. A, Vol. 111, No. 49, 2007 Garcı́a-Gonza´lez et al.



whereκ(rs) ) d2(nεC)/dn2 (n and εC being the HEG electron
density and correlation energy per particle, respectively) and

is a parametrized function that guarantees that the ACFDT under
this OHU kernel reproduces exactly the HEG correlation energy.
Note that despite the differences between these two approxima-
tions, for two electron systems both kernels are rather similar.
Henceforth, the OHU energy-optimized nonlocal kernel also
takes into account the correction to self-interaction errors at least
at the same level than the PGG kernel.

In Table 1, the obtained jellium clusters ACFDT correlation
energies (RPA+, OHU, and PGG) are compared with the quasi-
exact fixed-node diffusion quantum Monte Carlo (DQMC)
results by Sottile and Ballone.55 For completeness and despite
their low quality, the KS-LDA3 and KS-GGA5 correlation
energies are included as well.68 The very good performance of
the RPA+ for all densities and electron numbers is evident,
because the absolute errors are merely of the order of 1 mHa
per electron, except in the limit ofN ) 2, where this error is
slightly greater (2-3 mHa/e). In general, the higher the number
of electrons the smaller the relative errors committed by the
RPA+, because the LDA/GGA correction term∆EC in (6)
guarantees the exact reproduction of the HEG correlation energy.
However, bearing in mind the simplicity of the RPA+ scheme,
the good results for small and medium size clusters (N ) 8,
20) is rather striking because these clusters are far from the
homogeneous limit. The PGG does not provide any systematic
improvement upon the RPA+ results and, in fact, the correlation
energies areworse for two electron clusters. For large and
medium size clusters, the slightly poor overall performance of
the PGG-ACFDT with respect to the RPA+ is not a surprise,
because the PGG-ACFDT energies are not exact in the
homogeneous limit.27 However, the bad performance of the
PGG-ACFDT for two electron systems (3-5 mHa/e deviations
from the DQMC energies) is somehow disappointing, showing
that the use of the exact exchange-only kernel is not enough to
obtain accurate correlation energies. Finally, the use of the
nonlocal OHU kernel, where both exchange and correlation
contributions to the kernel are incorporated in an approximate
manner, provides remarkably good results forall densities and
electron numbers, including the problematicN ) 2 clusters.
Although numerically a bit more involved than RPA+, the OHU
prescription truly corresponds to an implementation of the
TDDFT to evaluate interacting density responses. Furthermore,
the correlation energies are quite robust with respect to the
details of the optimized kernel.33 These results confirm the
superiority of schemes based on nonlocal approximations to the
XC kernel for ACFDT correlation energy calculations.69 It is
also worth noting that the accuracy of the OHU-ACFDT and
RPA+ correlation energies for jellium clusters is tightly related
to the success of these approaches when evaluating jellium
surface energies, as shown by recent DMQC calculations.70

The above correlation energies have been evaluated using
LDA Kohn-Sham wave functions. In principle this would be
a bad choice because, as is well-known, the KS effective
potential behaves as-1/r for r . 0 in localized systems.
Therefore, all the series of Rydberg unoccupied orbitals are
missed in the KS-LDA and, moreover, the LDA orbital

eigenenergies themselves are not very accurate. This explains
why the inclusion of EXX effects in the KS equations is
mandatory to obtain realistic optical properties through the
TDDFT. However, we have checked the choice of the reference
KS systems and it is not critical when ACFDT correlation
energies are calculated, because they arise after a sum over all
unoccupied states matrix elements and after integrations over
all imaginary frequencies. In fact, if the EXX/LDA wavefunc-
tions are used (i.e., the wavefunctions are evaluated selfcon-
sistently using the EXX functional and a LDA prescription for
the correlation), the ACFDT correlation energies only suffer
changes always less than 0.2 mHa/e.71 We can conclude that,
contrary to what occurs in the evaluation of optical properties
of low-dimensional systems, the ACFDT results are extremely
robust with respect to the choice of KS functions and energies.
In other words, spectral details that are crucial in the obtention
of TDDFT optical properties are not so important in the
evaluation ofintegratedquantities likeEC.

5. Conclusions

In this paper we have presented extensive results for the
correlation energy of many-electron systems using a sophisti-
cated approach (ACFDT) based on the knowledge of the
interacting response function. This ACFDT prescription accounts
for many-body effects that are absent in standard implementa-
tions of the Kohn-Sham density functional theory. This
methodology is much more expensive than LDA/GGA; but
physically well motivated approximations within the ACFDT
scheme provide correlation energies very close to the exact (up
to numerical convergence) configuration interaction or quantum
Monte Carlo results at a lower numerical cost.

For extended systems, we have explained in detail the
numerical implementation of the ACFDT scheme, thus paving
the way to further studies specially aimed for situations where
the standard LDA-GGA lacks predictive accuracy. On the other
hand, several ACFDT approximations have been carefully
assessed in a family of model systems (jellium clusters).
Superior results are obtained if the XC kernel that enters into

FXC
hom(rs,r) )

κ(rs)â
2(rs)

4π
exp(-â(rs)r)

r
(12)

â(rs) ) (9π
4 )1/3x 100+ 5rs

8.26rs
2 + rs

3
(13)

TABLE 1: ACFDT Correlation Energies per Electron
(mHa) for Closed-Shell Jellium Clusters Compared with
DMQC,55 LDA, and GGA

N DQMC RPA+ OHU PGG KS-LDA KS-GGA

rs ) 2
2 -16.9 -19.2 -17.6 -19.6 -35.7 -21.0
8 -26.1 -26.7 -26.6 -23.2 -39.1 -29.7

20 -30.5 -31.5 -31.3 -27.3 -40.6 -33.8
34 -33.1 -33.6 -33.4 -29.8 -41.5 -35.6
58 -34.7 -35.2 -35.0 -31.5 -42.1 -37.2

rs ) 3.25
2 -15.3 -17.4 -16.5 -18.9 -30.2 -19.2
8 -22.4 -23.3 -23.0 -21.1 -32.1 -25.3

20 -26.0 -26.7 -26.4 -24.2 -32.9 -28.1
34 -27.5 -28.0 -27.7 -25.7 -33.5 -29.3
58 -28.5 -29.0 -28.7 -26.5 -33.8 -30.4

rs ) 4
2 -14.6 -16.5 -15.8 -18.5 -27.8 -18.3
8 -20.8 -21.7 -21.4 -20.2 -29.2 -23.4

20 -24.1 -24.7 -24.4 -22.9 -29.8 -25.7
34 -25.1 -25.8 -25.4 -24.1 -30.3 -26.7
58 -26.2 -26.8 -26.6 -25.1 -30.6 -27.6

rs ) 5.62
2 -13.1 -15.3 -14.6 -17.6 -24.0 -16.5
8 -18.1 -19.2 -18.9 -18.7 -24.8 -20.1

20 -20.6 -21.5 -21.1 -20.9 -25.1 -21.8
34 -21.7 -22.2 -21.9 -21.6 -25.4 -22.6
58 -22.2 -22.7 -22.4 -22.4 -25.6 -23.2
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the evaluation of the response function is modeled in a nonlocal
fashion. We have also checked that the ACFDT results are rather
insensitive to the KS wavefunctions used to obtain the response
function. Henceforth, for extended systems it is safe to evaluate
the ACFDT correlation energies using LDA or GGA wave-
functions. For localized systems the method of choice should
be EXX/LDA, due to the accuracy required in the exact
exchange energy because the ACFDT correlations are practically
the same if we use LDA wavefunctions instead.

Some issues need to be addressed in the future. First, it is
still not clear what is the optimal pseudopotential for EXX/
ACFDT calculations. Certainly, a full EXX/ACFDT-based
construction of the pseudopotential should be the proper way,
and calculations along this line are on the horizon. Second, more
efficient numerical implementations are required. For instance,
much of the computational effort is employed to calculate
contributions from high-energy unoccupied states that could be
effective modeled by free-electron planewaves. Work in this
direction is presently in progress as well. Finally, ongoing self-
consistent implementations of the EXX/ACFDT scheme will
have a clear impact in the evaluation of many other properties
besides structural ones. Highly accurate KS wavefunctions and
eigenergies are required for reliable predictions regarding optical
properties, phonons, etc. in low-dimensional systems (for
instance, conjugate polymers).72
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