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Time-dependent density functional theory (TDDFT) is an efficient method to evaluate excited-state properties
of electron systems. However, it is not so well-known that it also provides a very accurate prescription to
obtain correlation energies by using the so-called adiabatic connection fluctuation dissipation theorem (ACFDT).
In this paper we present a detailed study of the ACFDT performance in bulk solids and jellium clusters.
These results confirm the reliability of the ACFDT scheme and pave the way to future applications where
standard implementations of the Keh8ham density functional theory dramatically fail, in particular to
weakly bound systems and van der Waals complexes.

1. Introduction Orbital-dependent (OD) XC functionals, that is, functionals

The Kohn-Sham (KS) implementatidrof density-functional that depend imp.licitly on the electron density through the
theory (DFTY is one of the most powerful and used methods Kohn—Sham orbitals, are the natural next step toward the
for electronic structure calculations in material science and formulation of DFT prescriptions with chemical accuracy. The
quantum chemistry. In this scheme, the exact ground-stateObV'OUS advantag(_a is thgt they provide a description of the
energy and electron density can be obtained self-consistently if€l€ctron-electron interaction at a much deeper level than
the so-called exchangeorrelation (XC) energy functionc- conyennongl densny-pased functionals. The. main drawback is
[n] was known. BecausBxc[n] contains information about the the increasing numerical cost. However, this next generation
quantum many-body effects in the electron interaction, its actual ©f XC functionals can be very competitive if compared with
(and unknown) expression is very complicated. However, and gxactmgthods like quantum qute Carlo or.fuII configuration
this is one of the main reasons of the popularity of KS-DFT, interaction. Unlderth|s perspectlve, oD functlonz?lls may be. seen
rather crude approximations Exc[n] depending explicitly on as a more flexible alternative to quantum chemistry techniques
the electron density(r) often provide very accurate results at  1ké Meller—Pleset perturbation theory and coupled cluster
a moderate computational cost. Examples of such prescriptionsTethods. The novel meta-GGA functionals proposed by Perdew
are the local-density approximation (LD)and the generalized ~ and co-workers~** are the simplest examples of OD function-
gradient approximation (GGA)S which, presently, constitute als. In this paper, h_owever, we will focus on more sophisticated
the methods of choice for practical applications of KS-DFT. @Pproaches that incorporates exactly the exchange energy
However, this family of approaches may be reaching a limit of functional. Namely,
accuracy and a next generation of hybrid orbital functionals (see
below) is taking more relevance nowadays. 1)

The limitations of the LDA and GGA are obviously due to
their local or semilocal nature, which implies that they are Where Ec[n] is an approximation to the correlation energy
extremely short-ranged. Thus they cannot describe at all thefunctional andEZ*[n] is the exact exchange (EXX) energy
very nonlocal nature of electrerelectron correlations and, for ~ functional given in terms of the occupied KS orbitaigr):
instance, van der Waals dispersion forces are completely out
of the scope of the LDA and GGA. Another concomitant
consequence of their simplicity is the appearance of self-
interaction errors which, for instance, compromises their ac-
curacy when dealing systems with localized electrons. More
complicated XC nonlocal functionals, like the so-called averaged
and weighted density approximatiofis? do not provide

Exc[nl = EX[n] + E[n]

oce Cnm(r) Cmn(r ,)

d3 d31
;nfr r -

wherecni(r) = ¢5(r) ¢m(r). The factor 2 appears as a result of
the sum over spin-degrees of freedom (we will restricted

B = -2 x % )

r'|

systematic improvements upon LDA and GGA but are com-
putationally much more demanding.
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ourselves to spin-unpolarized systems and use Hartree atomic
units throughout the paper unless otherwise specified). Note that
(2) has the same form that the well-known Hartr€®ck (HF)
exchange, except that the KS orbitals are used instead of the
HF ones. Therefore, the correlation energy is the only term that
must be approximated in this EXX-based KS prescription.
Nonetheless, the XC functionals given by (1) miss one of the

© 2007 American Chemical Society

Published on Web 10/12/2007



Advanced Correlation Functionals J. Phys. Chem. A, Vol. 111, No. 49, 20012459

reasons of the success of LDA (and to a lesser extent of GGA): are related to energglifferencesn isoelectronic systent§:2°
the systematic cancellation of errors between the exchange andNonetheless, this point is still an open issleand some
correlation counterparts. As a consequence, implementations ofinteresting attempts directed to find aptimal XC kernel for
(1) with full predictive power require very accurate approxima- correlation energy calculations have been already presénf&d.
tions to the correlation energy. Second, the evaluation of the ACFDT correlation potentl
An interesting route is the use of many-body theory, which (r) is a formidable task?—3® much more demanding that the
defines a perturbative formulation of the correlation energy in calculation of the EXX potentiady(r),3"-38 which is presently
terms of the KS orbitals and eigenenerdits® much akin to carried out routinely in both molecufr*® and extended
the standard MgllerPleset expansion. Another option is the systemg142In fact, the self-consistent evaluation of the ACFDT
use of the following exact expression for the correlation energy vc(r) has been only implemented for model electron syst8iifs,

functional: atoms?® and simple bulk crystalline solid€.Thus, almost all
the applications of the ACFDT scheme made s@°f&#4754
Eln] = — Om% tan der & L % have neglected any attempt of self-consistency, and the cor-
21 /o Ir—r’| relation energy is evaluated using LDA, GGA, or EXX Kehn
Do, (rortsiu) — xo(rorsiw)] (3) Sham wavefunctions and eigenenergies as an input, as com-

monly done in excited-stat@b initio calculationg! This
known as adiabatic connection fluctuatiedissipation theorem  prescription will be followed in this paper as well, where we
(ACFDT).1718 Here, y;(r,r";iu) is the imaginary-frequency  will present detailed ACFDT results for two rather simple, but
density response of a fictitious system of electrons interacting very different, systems: compact bulk structures (silicon and
through a scaled Coulomb potentidri, and whose ground-  sodium chloride) and jellium metal clusters.
state density equals the actual one. Thgfyr,r';iu) is the For simple bulk systems, LDA already shows a very good
response function of the fictitious noninteracting KS system: performance. Hence, it is not expected that the sophisticated

EXX/ACFDT XC functional will lead to significant differences

(fy = f)Canr) (1) with respect to the LDA results. However, it is important to
Xo(r,r'iu) =2 x : (4) show that this good performance is not compromised by the
iUt (6, — €) more developed ACFDT functional. Then, our main goal will
be the detailed discussion of the implementation of the ACFDT
wheref, (0 or 1) are Fermi occupation numbers andhe KS to extended crystalline systems. Because many-body effects in

eigenenergies. The interacting respopsean be evaluated in  the correlation energy are not going to be critical, we will use
the framework of time-dependent density functional theory the simplest ACFDT prescription and neglect the XC kernel in

(TDDFT)'*-21 by solving the Dyson-like equation the evaluation of the interacting density response (eis
. a o o obtained in a random phase approximation [RPA] fashion). As
Xo(iu) = (1 = Jo(u)[AW + fy e, ((U)]) 7, (1U) (®) it is known, RPA accounts for long-range correlation effects

) ) o but the description of short-range ones is very poor. Thus, RPA
where the usual matrix operations are impliédis the bare  gjves too deep correlation holes and too large (in absolute value)
Coulomb interaction anékc (iu) is the dynamical XC kernel  correlation energies. Fortunately, these short-range effects can

of the fictitious system with the scaled interactid#. Thus, be effectively modeled by an LDA or GGA correction term:
the evaluation of the correlation energy only relies on the 2829

approximations made t&xc,/l- Also note that under this

formulation the ground-state energy and the optical properties
of the electron system (related to the neutral excitations in the
system) are treated under the same framework, which incorpo-

Edlnl = EZ"An] + AE([n]

_ RP. 3
rates higher order electron interactions whose treatment has =Ec A[n] T fd FN(r) ecodn(r), Vn(r) (6)
shown to be mandatory &b initio calculations of spectroscopic ] ) ) ) )
properties of extended systefig! whereecoris a function of the local density and its gradiéht?

As anticipated, the implementation of this ACFDT scheme AS we will see, this hybrid scheme, often called RP/suffices
is much more computationally demanding than usual KS to0 obtain very accurate correlation energies.
methods. However, it is a promisingb initio total-energy On the contrary, jellium metal cluster are examples of small
method due to a number of reasons. First, exchange andlocalized systems where the elimination of self-interaction errors
correlation are treated at the same level. Second, ACFDT is required to obtain reliable results. Furthermore, by increasing
accounts for van der Waals forc&s24 thus being a suitable the size of the cluster, we approach the homogeneous electron
approach for a unified treatment of electreglectron interac-  gas limit and, hence, in spite of the simplicity of these systems,
tions with different spacial ranges, a situation that appears in different correlation regimes appear. The existence of accurate
bundled nanotubes, polymer crystals and, in general, sparsébenchmark quantum Monte Carlo calculatinallows us to
systems. Third, by construction there are not self-interaction assess the performance of not only the RPA&orrelation
errors in the exchange part whereas they do not seem to befunctional but also the one corresponding to the evaluation of
very serious in the correlation term and might be systematically the response function using different approaches to the XC
reduced by choosing a proper kernel. Finally, it serves as thekernel.
starting point of further simplifications aimed for implementation The outline of this Article is as follows. In section 2 we will
in very complex system®?®at an affordable computational cost.  present a detailed description of our implementation of the
On the other hand, a first evident problem of the ACFDT is the ACFDT scheme for crystal solids, applied recetttljo the
dependence of the results on the choice of the XC kernel, which problem of layet-layer interactions in laminar systems. Section
is especially relevant when consideritajal correlation ener- 3 contains the results and discussion for bulk Si and NaCl,
gies?” However, there is some evidence that such a choice is whereas section 4 is devoted to the ACFDT results for metal
not so critical for the evaluation of structural properties, which clusters, covering different ranges of densities and electron
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number. The corresponding conclusions and perspectives will 1000/N,
close this paper. 0 2 4 6 8 10 12

2. The ACFDT Scheme for Solids -50 Fg0s 3

Our implementation of the ACFDT correlation functional for % 08----- BN
crystalline solids is built on the long-standing experience gained @

in the last years imb initio TDDFT calculation&' as reflected % 08
OJO

by the existence of a number of efficient computational tools.
Specifically, KS wavefunctions and operators are represented
in a planewave basis set and core electrons are approximately B6E et le ]
described using standard nonlocal pseudopotertfidgtence, - —O—=N=10
KS wavefunctions and energies are labeled by a band index - Si(@=102au) —O—N,=28
and a vectok belonging to the first Brillouin zone (BZ). Due 0 1 2 3 4 5 6

to the periodicity of the system, the reciprocal space representa- 1000/N

tion of the_reSponse functions takt_as the fQJ,{(i(_+Gl,k+Gz;lu), Figure 1. Analysis of the convergence of the RPA correlation energy
where G is a vector of the reciprocal lattice. The ACFDT  for pulk silicon (lattice parametexr = 10.2 au). For a coarse sampling

correlation energy per volume unit is then given by of the Brillouin zone with just two special points (hollow and solid
circles), the limit corresponding to an infinite number of bands @nd
Ec vectors can be easily extrapolated from the values indicated with solid

—— fldl *“%f kY ek,Gud) (7) symbols. The reliability of the fitting curve (dashed line) is evident
V 0 0 o VB2 Z because it fits other values not used in the extrapolation. For a finer
BZ sampling with 10 special points (squares), the change on the
with correlation energy with respect to the previous one converges very
quickly with the number ofG vectors, as represented in the inset.
A _ Finally, it'can be seen thaw = 10 provides full convergence becal_Jse
ec(k,G,ul) = —ZAXA(k+G:k+G;|U) (8) the inclusion of moré vectors (rhombuses) does not lead to appreciable
k + G| variations in the correlation energy. Note that the numerical error in
the final result ¢57.8+ 0.2 mHa/e) is mostly due to the uncertainties
and Ay; = y. — xo. The KS responsgg is calculated from in the extrapolation procedure.The number@fvectors used in the
well-converged KS wavefunctions and energies evaluated usingcalculations are displayed in the figure.
the abinit packag®’ The interacting responseg are then
obtained for each vectdk in the Brillouin zone, imaginary ~ ©f k points. All this prevents us from having reasonably
frequencyu, and coupling parameter solving (5) using the ~ converged energy differences and, as a consequence, the
self-code®8 where the expressions (7) and (8) are implemented ev_aluat|on of structural properties is completely impossible in
as well. this way.

At a first glance, this implementation seems to be straight- These problems can be circumvented because, for a fixed
forward, but there are some technical issues that must be solvedsampling of the BZ, the planewave representation allows a
to have a stable and easy to converge numerical procedure. Firstgystematic simultaneous convergence with respedld@nd
the dependences of the functieg(k,G,u,A) defined in (8) on N,. Namely, regardless of the energy cutoff, the number of bands
the coupling constarit and the imaginary frequenayare very used in the evaluation of the KS response function is imposed
smooth. Thus, both integrals can be carried out in a very efficient by the expressiomM, = (N — 1)/a, wherea is an integer
way using GaussLegendre (GL) samplings. Far a six-point (typically equal to 2, although we have checked that the same
GL grid is enough for our purposes, whereas the frequency final results are obtained using= 3 and 4). As we may see
integral is done using two GL grids, each typically comprising in Figure 1, the convergence with respédt is very well
18—24 points. The first one lies in the range [8], whereu; defined, and it is easy to obtain the infinig and N, limit of
is of the order of the plasmon frequency associated to the mearthe correlation energy as long as the numbés pbints is small.
density of the system, and the second one lies in the interval However, this procedure is not feasible for finer samplings of
[u1, Umad, Where umax is a frequency cutoff. This procedure the BZ. Fortunately, theifferencesnduced in the correlation
allows an accurate evaluation of the contributions from both energy by increasindlx are very insensitive to the number of
small and large imaginary frequencies. The convergence with G vectors used in the calculation (see the inset in Figure 1).
respect the critical parametag,x is carefully checked, but it This suggests a well-defined procedure. First, using a coarse

does not pose any major problem. BZ sampling, the correlation energy is converged by increasing
Much more delicate is the convergence versus (i) the samplingsimultaneouslyNs and Ny. Second, using the results corre-
of the BZ (determined by the number of spediatectors,N, sponding to théargest Ns's, the infinite limit result is obtained

in the irreducible wedge of the BZ), (i) the number of reciprocal by extrapolation ensuring that the extrapolating curve also fits
lattice vectorsNg (i.e., the energy cutoff in reciprocal space), the rest of the values. Finally, the error due to the coarse BZ
and (iii) the number of band#, used to evaluate the KS sampling is determined by comparing the correlation energy
response function (remember thatcontains contributions from  obtained using moré points but evaluated with a relatively
occupied and unoccupied states). Unfortunately, the commonsmall number of reciprocal lattice vectors. By doing this, we
practice in electronic structure calculations that fixes the energy are fully confident that the absolute correlation energy for a
cutoff for all geometries (and, hence, defines a diffeidgfor given geometry is converged within a numerical error less than
each geometry) does not work in the present case. The0.2 mHa per electron, whereas for correlation energy differences,
convergence ofc versus the number of bands is very slow such an error turns out to be of the order of 0.05 mHa per
and, what is more important, the convergence rate depends veryelectron.

sensitively on the considered geometry. Furthermore, the Finally, it is worthwhile to mention a few words about exact
required numerical effort increases dramatically with the number exchange. When calculating the EXX energy, the only critical
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Figure 2. Exchange and correlation energies per unit cell for bulk . . .

silicon as functions of the lattice parametausing EXX/RPAF (solid Figure 3. Total energy per unit cell for bulk silicon as a function of
lines with circles) and LDA (solid line). Note that the energy scale for the lattice parametea obtained from EXX/RPA- (solid line with

the correlation is much smaller than the one corresponding to exchangecircles), LDA (solid line), and EXX/LDA (dashed line). In the EXX/
and exchangecorrelation. The LDA greatly overestimates both the LDA, the exchan'ge energy is calculated exactly and the correlation is
absolute value of the correlation energy and its variation with the lattice @PProximated using the LDA. All the calculations have been performed

constant. The behavior of the LDA exchange is the opposite if compared USing the same pseudopotential. Note that the EXX/LDA lacks the
with the EXX results. typical LDA cancellation of errors. The corresponding equilibrium

lattice constants are included within the figure. The experimental value,
aexp, IS indicated as a reference.

the very different behavior exhibited by the LDA correlation
energy if compared with the RPA one. However, exchange
dominates upon correlation in bulk Si and this discrepancy will
not affect too much to the final structural properties. We must

parameter i\, because only occupied wave functions enter
into the evaluation and thég convergence is quite fast. In fact,
EZ converges rather slowly with respect to the BZ sampling,
and a relatively large number of speclalpoints is required.
Nevertheless, this part of the calculation is inexpensive com- . .
pared with the ACFDT one and, furthermore, the convergence Mention the LDA correction termAEc[n] has an almost
can be sped up using random integration techniques over thenegligible dependence on t_he lattice parameter. In other words,
BZ zone®® The absolute numerical errors in the EXX energies the RPA and RPA correlatlor! curves are prac.t|ca||y pa}rallel
are of the same order of magnitude than the ACFDT correlation "d; s a consequence, the inclusiom&[n] simply shifts

ones, although we have to bear in mind that the exchange energy19idly the total energy, without affecting the rest of the
is often several times larger than the correlation one. equilibrium properties of bulk Si, but providing total energies
as accurate as LDA.

The variation of the total energy per unit cell with respect
the lattice constard is represented in Figure 3. We may see
The methodology described in the previous section allows that the inclusion of many-body effects via the EXX/RPA
us to calculate the exchangeorrelation energy for crystalline  leads to a marginal reduction (less than 0.5%) of the equilibrium
solids at different geometries, thus giving us access to a fully lattice constant if compared with the LDA one (10.17 au).
microscopic evaluation of structural properties, including se- Similarly, the bulk modulus is unaffected within the unavoidable
lected lattice dynamics using a frozen-phonon approximation. numerical error bars. At a first glance, this small correction goes
As mentioned before, this scheme has been already applied tdan the wrong direction, because the experimental lattice constant
the calculation of equilibrium structural properties of a layered (ax, = 10.26 au) is roughly a 1% larger than the LDA one.

material (hexagonal boremitride) > This is a system where  Nevertheless, we must point out that (i) our EXX/RPA
long-range van der Waals forces coexist with short-ranged implementation is not self-consistent but is evaluated using LDA
covalent ones, thus being a perfect scenario where the ACFDT,wavefunctions, (i) the RPA approximation to the exact

3. Results for Bulk Structures

under the RPA- approach, shows its full capacity. In this section
we will describe the results for bulk silicon (the paradigmatic
example ofspinsulator) and, very briefly, for NaCl (an example

of ionic solid). We can anticipate that there will be marginal
differences between the LDA and the EXX/RPAesults. Those

differences are going to be less important than, for instance,
the choice of the pseudopotential used in the calculations.

Nevertheless, these calculations illustrate very well the known

correlation functional is the simplest one within the ACFDT
scheme, and (iii) we are working under a pseudopotential
approximation. Very likely, the first point is going to be the
least important. It is known for a long tirfef1 that for bulk sp
semiconductors, the shape of the LDA XC potential is very
similar than the one corresponding to the local XC potential
obtained from the linearized form of the Shachliter
equatiorf263 which formally corresponds to the EXX/RPA

cancellation of errors between exchange and correlation in thepotential3*3564 This overall coincidence has been recently

LDA prescription and the robustness of the EXX/RPA
approximation.
The EXX and the RPA: correlation energies per unit cell

confirmed bystate-of-the-artalculations® The second point
should deserve further attention, although it is very likely that
for this simple compact sp structure the inclusion of effects

for bulk silicon at different lattice constants are presented and beyond the RPA via appropriate XC kernels is not going to
compared with the LDA counterparts in Figure 2. The most lead to dramatic changes. Thus, we can conclude that the
noticeable features are the discrepancies between exchange angseudopotential approximation itself is the main responsibility
correlation energies if considered separately, which reflects the of the small discrepancies with respect to the experimental result.
well-known LDA underestimation (overestimation) of the At this point, we have to mention that Miyake efapresented
absolute value of the exchange (correlation) energy. However,a few years ago a prospective study of the RPA correlation
both LDA errors compensate each other and the total LDA and energy for bulk systems in an all-electron picture. As can be
EXX/RPA+ XC energies are practically the same. A similar easily inferred by the discussion in section 2 (restricted to the
cancellation appears if we consider the lattice parameter much simpler pseudopotential picture), the numerical difficulties
dependence of the XC energy, although it is worth emphasizing that these authors had to face were formidable. Hence, their
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" i i ' ' i completely absent because we can easily reach full numerical
Method [da o0 convergence.

3 Because of the spherical symmetry, the KS wave functions
] take the familiar formp(f) = Ru(r) Z/(R2), Ru being the radial
wavefunction andz/(R2) a spherical harmonic. The density
responsey, (and, in general, any involved operator) can be
written as a Legendre expansion:

N
o
T

-
(3]
T

EXX/RPA+|10.40
EXX/LDA |10.40

a_ <1057

[¢)]
T

P

o
T

ot

Il Il L

95 100 105 _ 1.0 _ 115 _ 120

.2.65 Exchangé ' ' . *1-2.85 . > L .
/ L ¥, (rriu) = Z}XA (r.r;iu) 4 (cosy) (9)
2. =

E(@-E,(a,,) (mHa)

= o
T -2.75 .
~ Correlation -0.25 . . .
I -041F > where 4 is theLth order Legendre polynomial andis the
2 026 o le formed by andr’. yO(r r"i be readil d
5 o2 S angle formed by andr’. yg (r,r ,|u)_ can be readily expresse
S P ; ; ; 310 as a function of products of occupienaland unoccupiedy’)
-3.05 & radial wavefunctions, KS eigenergies, and ClebsGlordan
315 3.20 coefficients in such a way that only the wavefunction products
TeE I00 i05 10 115 20 with || = I' = L < |l + I'| enter into the evaluation of{".
a(au) Unbounded unoccupied states are discretized by imposing

Figure 4. Upper panel: same as Figure 3 for bulk NaCl. Lower infinite wall boundary conditions at @max > Rs. In our
panels: same as Figure 2 for bulk NaCl. The many-body effects Calculationsfmax ~ 10Rg suffices. Dyson’s eq 5 is solved for
included in the RPA- correlation can be only appreciated far from eachL component separately, and the solution can be done either
the equilibrium geometry, which explains why the EXX/LDA and EXX/  in real space or in a matrix representation. As we can see, the
RPA+ lattice constants are the same. simplicity of the system reflects on the fact that the original
three-dimensional problem can be effectively separated in

quantitative results must be taken with caution, although their L-decounled one-dimensional ones. Finallv. the intearations over
main qualitative conclusions agrees very well with the ones pi6 : 1y, 9
the coupling constanf. and the imaginary frequency are

obtained from our well converged pseudopotential-based results. ¢ d followi h hod already d ibed | )
Finally, the EXX/RPAt description of the XC effects in NaCl performed following the method already described in section

leads to similar conclusions. As can be seen in the upper panelgilz\:]esr}%vrﬁet? ?ye?gﬁgvsrnzg t&iﬁgﬂ;ﬂgﬁggﬁ ;?gédogg dmg;ie

of Figure 4, the LDA and EXX/RPA equilibrium properties Furche3%4° Moreover, the sum over unoccupied states could

are practically the same. Moreover, the discrepancies in the . : L . .
. be circumvented by solving the Schlinger-like equation
exchange and correlation energy curves are even smaller than

in the case of bulk Si. In fact, the substitution of the LDA obeyed by the one-ele(_:tron KS Green_ function, whose knowl-
correlation by the RPA one does not change the equilibrium edge allows us to obtain the KS density response.

. . . - Ouir first aim is the critical discussion of the performance of
lattice constant and the mentioned small discrepancies a"Che RPAF correlation functional for localized systems. We will
mainly due to the different treatment of exchange. y .

also pay attention to more elaborate ACFDT prescriptions based
on the evaluation of the density response including local field
effects (i.e., corrections beyond RPA) using suitable XC
Jellium clusters, where the positive ions are modeled by a nonlocal kernels. We will restrict ourselves to the well-known
uniform spherical positive background of density have been  petersilka-GossmarGross (PGG) kernél and to a recent
used extensively in the past to study the experimental propertiesenergy-optimizedonlocal Hubbard-like kernel (OHU) proposed
of alkali metal cluster8>5¢ This approach is presently super- py Jung et a3 The PGG kernel
seded by modern electronic structure calculations, although

4. Application to Jellium Clusters

jellium clusters are still useful to assess advanaédinitio oce
theories. In this model, the cluster is fully characterized by the |Z¢n(r) ¢)ﬁ(r’)|2
number of electron®l and the mean background density. PGG/. ., 2% n
. i -~ fooo(r rw) = — (10)
Because the system is neutral, the radius of the jellium sphere XCA Ir—r'| n(r) n(r)

is Re = NY3g, rg = [3/(47n)]*3 being the so-called Wigner

radius. He_nce, thed_electrpns move und(_er t.he action of an is a static model that has the advantage of being the exact
electrosta_ltlc_ potential which is harmonic if = Rs and exchange-only kernel for a system with two electrons (and the
Coulombic ifr = RB . exact XC kernel for a single electron system). Therefore, and
As commented in the Introduction, therg are accurate quantumyp ¢ is the reason for this choice, it is in principle suitable to
Monte Carlo results for closed-shell jellium clustétsyhich deal in an approximate manner with the spurious self-interaction
correspond tN = 2, 8, 18, 20, 34, 40, 58, ... at least in the that appears in the response function for a few electron systems.

range of metallic densities. Because of the closed-shell config- On the contrary, the OHU nonlocal kernel has a completely
uration, the electronic ground state is nondegenerate and eXhibit%ifferent physica’l motivation. It has the form

spherical symmetry. This enormously simplifies not only the
implementation of the KS equations but also the evaluation of
the EXX and ACFDT correlation energies, which can be carried
out at a low computational cost. Therefore, this simple model
is very suited to assess the performance of different implemen-wherer(r,r') = [3/(4zy/n(r)n(r'’))]"® is an effective Wigner
tations of the ACFDT scheme. Note that the problems that radius andzg‘("c’“(rs,r) is a static nonlocal approximation to the
plague its application to real extended materials (as we haveXC kernel of the homogeneous electron gas (HEG). Such a

seen in section 2) and localized molecular systrase now kernel is given by

foe(r ) = A2FRarr i) Alr—r'))  (11)
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2 - TABLE 1: ACFDT Correlation Energies per Electron
Ehome, r = Krgprd expCArIn (12) (mHa) for Closed-Shell Jellium Clus%ers gompared with
XC Vs 4 r DMQC,%5 LDA, and GGA
wherek(rs) = d¥(nec)/dn? (n and ec being the HEG electron N_DQMC RPA* OHU PGG KS-LDA KS-GGA
density and correlation energy per particle, respectively) and rs=2
2 -169 -19.2 -17.6 -—19.6 —35.7 —-21.0
9\ 173 100+ 5r 8 —-26.1 —-26.7 -—26.6 —23.2 —39.1 —29.7
ﬂ(rs) _ (_JT) / s (13) 20 :30.5 :31.5 :31.3 :27.3 :40.6 :33.8
4 8.2 2+ 13 34 33.1 33.6 334 29.8 41.5 35.6
S s 58 —34.7 —-352 —-350 -315 —42.1 —37.2
is a parametrized function that guarantees that the ACFDT under rs=3.25
this OHU kernel reproduces exactly the HEG correlation energy. 2 :%g:i :g:g :%g:g :gj:? :gg:i :%g:g
Note that despite the differences between these two approxima-og  —26.0 -26.7 -264 -242 —32.9 —281
tions, for two electron systems both kernels are rather similar. 34 -275 -28.0 -27.7 -25.7 —335 -29.3
Henceforth, the OHU energy-optimized nonlocal kernel also 58 —285 —29.0 -287 -265 —33.8 —30.4
takes into account the correction to self-interaction errors at least re=4
at the same level than the PGG kernel. 2 -146 -—165 -158 -185 278 —18.3
In Table 1, the obtained jellium clusters ACFDT correlation 8 —20.8 -21.7 -214 -202 —292 —23.4
energies (RPA, OHU, and PGG) are compared with the quasi- 0 -241 -247 -244 -229 298 —25.7
. . . 34 251 —-258 —-254 -241 —30.3 —26.7
exact fixed-node diffusion quantum Monte Carlo (DQMC) 55 _565 _568 -266 -251 —306 276

results by Sottile and Ballorf&.For completeness and despite

their low quality, the KS-LDA and KS-GGA correlation s 131 153 156 A76  —oa0 165
energies are included as wéilThe very good performance of 8§ -181 -192 -189 —18.7 —248 —20.1
the RPAH for all densities and electron numbers is evident, 20 -206 -21.5 -21.1 -209 -25.1 -21.8
because the absolute errors are merely of the order of 1 mHa34 —-21.7 -222 -219 -216 254 —22.6
per electron, except in the limit of = 2, where this erroris ~ °8 —222 —227 -—224 -—224 -256 = -232

slightly greater (223 mHa/e). In general, the higher the number . . .
of electrons the smaller the relative errors committed by the €l9enenergies themselves are not very accurate. This explains
RPA+, because the LDA/GGA correction termEc in (6) why the inclusion of EXX effects in the KS equations is

guarantees the exact reproduction of the HEG correlation energyMandatory to obtain realistic optical properties through the
However, bearing in mind the simplicity of the RRAscheme, TDDFT. However, we have checked the choice of the reference

the good results for small and medium size clustéts=8, KS systems and it is not critical when .ACFDT correlation
20) is rather striking because these clusters are far from the€Nergies are calculated, because they arise after a sum over all
homogeneous limit. The PGG does not provide any Systemaﬁcunc_)ccupled states matrix element_s and after integrations over
improvement upon the RPAresults and, in fact, the correlation 5,‘" Imaginary frequenmes. In fact, |f.the EXX/LDA wavefunc-
energies araworse for two electron clusters. For large and tlpns are u§ed (i.e., the Wayefunctlons are evaluat.ed'selfcon-
medium size clusters, the slightly poor overall performance of SiSténtly using the EXX functional and a LDA prescription for
the PGG-ACFDT with respect to the RRAis not a surprise, the correlation), the ACFDT correlation energies only suffer
because the PGG-ACFDT energies are not exact in the changes always less tha}n 0.2 mH@We can conclude that,.
homogeneous lim# However, the bad performance of the contrary to Wh_at occurs in the evaluation of optical properties
PGG-ACFDT for two electron systems+3 mHa/e deviations of Iow-dlmensmnal systems, t_he ACFDT res_ults are extrem_ely
from the DQMC energies) is somehow disappointing, showing robust with respect to the chc_nlce of KS functllon.s and energies.
that the use of the exact exchange-only kernel is not enough tolN other Words,.spectral det.alls that are cruc!al in the optentlon
obtain accurate correlation energies. Finally, the use of the of TDD_FT optical properties are not so important in the
nonlocal OHU kernel, where both exchange and correlation evaluation ofintegratedquantities likeEc.
contributions to the kernel are incorporated in an approximate
manner, provides remarkably good resultsdbrdensities and
electron numbers, including the problemalic= 2 clusters. In this paper we have presented extensive results for the
Although numerically a bit more involved than RPAthe OHU correlation energy of many-electron systems using a sophisti-
prescription truly corresponds to an implementation of the cated approach (ACFDT) based on the knowledge of the
TDDFT to evaluate interacting density responses. Furthermore,interacting response function. This ACFDT prescription accounts
the correlation energies are quite robust with respect to the for many-body effects that are absent in standard implementa-
details of the optimized kernét. These results confirm the tions of the Kohm-Sham density functional theory. This
superiority of schemes based on nonlocal approximations to themethodology is much more expensive than LDA/GGA; but
XC kernel for ACFDT correlation energy calculatioffslt is physically well motivated approximations within the ACFDT
also worth noting that the accuracy of the OHU-ACFDT and scheme provide correlation energies very close to the exact (up
RPA+ correlation energies for jellium clusters is tightly related to numerical convergence) configuration interaction or quantum
to the success of these approaches when evaluating jelliumMonte Carlo results at a lower numerical cost.
surface energies, as shown by recent DMQC calculafidns. For extended systems, we have explained in detail the
The above correlation energies have been evaluated usingnumerical implementation of the ACFDT scheme, thus paving
LDA Kohn—Sham wave functions. In principle this would be the way to further studies specially aimed for situations where
a bad choice because, as is well-known, the KS effective the standard LDA-GGA lacks predictive accuracy. On the other
potential behaves as1/r for r > 0 in localized systems. hand, several ACFDT approximations have been carefully
Therefore, all the series of Rydberg unoccupied orbitals are assessed in a family of model systems (jellium clusters).
missed in the KS-LDA and, moreover, the LDA orbital Superior results are obtained if the XC kernel that enters into

5. Conclusions
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the evaluation of the response function is modeled in a nonlocal

Garéa-GonZtez et al.

(20) Time-Dependent Density Functional Theokjarques, M. A. L.,

fashion. We have also checked that the ACFDT results are ratherd!fich, C. A, Nogueira, F., Rubio, A., Burke K., Gross, E. K. U., Eds.;

insensitive to the KS wavefunctions used to obtain the respons

Springer: Berlin, 2006.

e (21) Onida, G.; Reining, L.; Rubio, ARev. Mod. Phys.2002 74,

function. Henceforth, for extended systems it is safe to evaluate 601.

the ACFDT correlation energies using LDA or GGA wave-
functions. For localized systems the method of choice should

(22) Hult, E.; Andersson, Y.; Lundgvist, Bhys. Re. Lett. 1996 77,
2029.
(23) Kohn, W.; Meir, Y.; Makarov, D. EPhys. Re. Lett. 1998 80,

be EXX/LDA, due to the accuracy required in the exact 4153
exchange energy because the ACFDT correlations are practically (24) Dobson, J. F.; McLennan, K.; Rubio, A.; Wang, J.; Gould, T.; Le,

the same if we use LDA wavefunctions instead.

H. M.; Dinte, B. P.Aust. J. Chem2002 54, 513.
(25) Rydberg, H.; Lundgvist, B. I.; Langreth, D. C.; Dion, M®hys.

Some issues need to be addressed in the future. First, it isge "5 200q 62 6997.

still not clear what is the optimal pseudopotential for EXX/

ACFDT calculations. Certainly, a full EXX/ACFDT-based

construction of the pseudopotential should be the proper way,

(26) Rydberg, H.; Dion, M.; Jacobson, N.; Stteo, E.; Hyldgaard, P.;
Simak, S. |.; Langreth, D. C.; Lundqvist, B. Phys. Re. Lett. 2003 91,
126402.

(27) Lein, M.; Gross, E. K. U.; Perdew, J. Phys. Re. B 2000 61,

and calculations along this line are on the horizon. Second, more 34371’

efficient numerical implementations are required. For instance,
much of the computational effort is employed to calculate
contributions from high-energy unoccupied states that could be
effective modeled by free-electron planewaves. Work in this
direction is presently in progress as well. Finally, ongoing self-
consistent implementations of the EXX/ACFDT scheme will
have a clear impact in the evaluation of many other properties

(28) Kurth, S.; Perdew, J. PPhys. Re. B 1999 59, 10461.

(29) Yan, Z.; Perdew, J. P.; Kurth, Shys. Re. B 200Q 61,
16430.

(30) Furche, F.; Voorhis, TJ. Chem. Phys2005 122 164106.

(31) Dobson, J. F.; Wang, Phys. Re. B 200Q 62, 10038.

(32) Pitarke, J. M.; Perdew, J. Phys. Re. B 2003 67, 045101.

(33) Jung, J.; GafarGonZ&z, P.; Dobson, J. F.; Godby, R. Whys.
Rev. B 2004 70, 205107.

(34) Niquet, Y.-M.; Fuchs, M.; Gonze, XPhys. Re. A 2003 68,

besides structural ones. Highly accurate KS wavefunctions andg32507.

eigenergies are required for reliable predictions regarding optical
properties, phonons, etc. in low-dimensional systems (for 9504

instance, conjugate polymer®).
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