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Polarization selectivity of third-order and fifth-order Raman spectroscopies is examined for both isotropic
liquids and periodic lattices. Our approach directly applies the symmetry property of the probed system to
decompose the polarization tensor elements into independent components. The polarization selectivity predicted
by symmetry analysis is rigorous and applicable to higher-order Raman spectroscopy. The different polarization
selectivities of isotropic systems and periodic lattices can be used as a signature of the liquid-solid phase
transition.

Introduction

Ultrafast multipulse time-resolved Raman spectroscopies1-4

have been applied to extract dynamic and structural information
in molecular systems.5-20 In the (2n + 1)th-order Raman
experiment,n pairs of ultrafast light pulses excite the system at
times t ) 0, t1, (t1 + t2), ..., and (t1 + t2 + ... + tn-1). The
Raman scattering intensity is detected att ) (t1 + t2 + ... +
tn-1 + tn). The corresponding measurement is described by the
(2n + 1)th-order response functionR(2n+1)(tn, tn-1, ..., t1) of the
polarizability tensorΠ. The time-resolved spectroscopies can
select particular parts ofR(2n+1)(tn, tn-1, ..., t1) based on the phase-
matching condition. The higher-order (n g 2) spectroscopies
hold the promise of discriminating homogeneous and inhomo-
geneous line shape broadening, which are indistinguishable in
the linear spectroscopy.4

As a (2n + 2) rank tensor, the (2n + 1)th-order response
function includes 32n+2 tensor elements. On the basis of the
spatial symmetry of the probed system, only a few of these 32n+2

tensor elements are nonzero and distinct. In an isotropic system,
the third-order response function has three distinct nonzero
elements,Rzzzz

(3) , Rzzyy
(3) , and Rzyzy

(3) . It is also known that the
polarizability tensorΠ in isotropic systems can be separated
into irreducible components, for example,Π ) ΠI + ΠD in
isotropic systems, whereΠI is the isotropic part ofΠ andΠD

is the traceless part ofΠ. As a result,R(2n+1) can be expressed
as a superposition of independent response functions induced
by various combinations of irreducible parts ofΠ, for example,
R(3)(t) ) Riso

(3)(t) + Raniso
(3) (t) in isotropic systems, whereRiso(aniso)

(3) (t)
is the product of twoΠI(ΠD)’s. Experimentally, we can choose
particular angles (magic angles) to excite and probe the system
so that these independent response functions are highly separable
in spectroscopies. Theoretically, to study the polarization
selectivity of a response function requires a complete under-
standing of the relationship between the distinct tensor elements
such asRzzzz(zzyy,zyzy)

(3) (t) and the independent components such as
Riso(aniso)

(3) (t).

For isotropic systems, the polarization selectivity of the third-
and fifth-order response functions has been examined by various
approaches, such as the orientational diffusion model5,6 and the
instantaneous normal-mode approach.10,11 However, these ap-
proaches invoke approximations which limit the validity of their
conclusions. In refs 7 and 8, Cao and co-workers proposed a
symmetry-based method to explicitly derive the Raman polar-
ization selectivity for isotropic systems. The method employs
the tensor properties ofΠI andΠD and the geometric symmetry
of the probed system without involving detailed angular averages
or dynamic assumptions. The resulting polarization selectivity
is rigorous and applicable to linear and nonlinear response
functions and can be extended to nonisotropic systems. In fact,
standard group theory explains the decomposition scheme of
the polarizability tensor and the tensor invariance under various
symmetry groups. A complete table on decomposingΠ in lattice
systems is presented in ref 21. We also note that in an earlier
paper, Murry and Fourkas9 explored the rotational invariance
for isotropic systems and obtained useful relations for polariza-
tion tensors, which were later confirmed by instantaneous
normal-modes simulations.10,11 Further efforts along this line
lead to another derivation of polarization selectivity of isotropic
liquids.22 In this paper, we will review the general method
developed in refs 7 and 8 for isotropic liquids and extend it
using group theory to study polarization selectivity in a particular
example of periodic systems, the cubic lattice. To conclude,
we summarize the procedure for deriving polarization selectivity
and compare the general method with previous studies.

Isotropic Systems

Polarization selectivity in isotropic liquids was explicitly
derived earlier in refs 7 and 8 using symmetry analysis and is
included here as an illustration of our methods and for
comparison with the selectivity for cubic lattices. In this section,
we first present the angular average analysis of the third-order
response, then the more general symmetry analysis for the third-
order response, and finally, the symmetry analysis of the fifth-
order response. In the next section, the same set of treatments
are applied to cubic lattices.
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In classical mechanics, the (2n + 1)th-order response function
is defined as

where {..., ...} is the Poisson bracket. In the linear Raman
measurement, the lowest-order (third-order) response function
is usually expressed asR(3)(t) ) -â∂tC(t), whereâ is the inverse
temperature, andC(t) is the time correlation function,C(t) )
〈P(t)Π(0)〉. In isotropic systems, the polarizability tensor can
decompose to

whereI is the identity matrix,D(Ω) ) 3r̂ r̂ - I is a traceless
matrix, r̂ ) rb/r is the unit vector along the direction ofrb, and
Ω is the solid angle. Although eq 2 is derived using the Drude
model in ref 7, this general expression holds for all isotropic
systems. In the continuum limit, the correlation function is given
by

For isotropic systems, the joint probability distribution function
P(rb,t;rb′,0) can be expanded using the spherical harmonics
Ylm(Ω) as

Substituting eq 4 into eq 3 simplifiesC(t) to

where the two independent components are written as

respectively. The three distinct elements ofR(3)(t) are thus
written as

The above equations relate the distinct tensor elements
Rzzzz(zzyy,zyzy)

(3) (t) and the independent componentsCiso(aniso)(t). In
comparison with other approaches, this spherical harmonic
expansion method generates polarization selectivity forR(3)(t)
in a more rigorous manner, but the extension to higher-order
response functions requires additional approximations, as shown
in ref 8.

Since the most important information of polarization selectiv-
ity is the relative ratios of the independent components for
various distinct tensor elements, the detailed calculation leading

to eq 8 is unnecessary. Instead, these ratios can be directly
obtained using the tensor properties ofI andD. As shown in
ref 7, the first step is to construct a general expression for
R(3)(t) based on the orthogonality relation betweenI andD

where RII
(3)(t) ∝ - 〈{ΠI(t), ΠI(0)}〉 is the isotropic term

(depolarized) andRDD
(3) (t) ∝ - 〈{ΠD(t), ΠD(0)}〉 is the aniso-

tropic term. All other terms, such asRID
(3)(t) andRDI

(3)(t), are zero.
Since all of the diagonal elements are the same and all the off-
diagonal elements are zero forI , the coefficients of the isotropic
componentRII

(3)(t) satisfy

Since theD matrix is always traceless,RDD,zzzz
(3) + RDD,zzxx

(3) +
RDD,zzyy

(3) ) 0, that is

The rotational invariance for isotropic systems further requires
Rzzzz

(3) ) Rzzyy
(3) + 2Rzyzy

(3) , which together with eq 11, results in

We thus obtain the same ratios forcII andcDD as those derived
from the spherical harmonic expansion method, but without any
assumptions.

To further demonstrate the symmetry-based method in
examining the polarization selectivity, we evaluate the fifth-
order response function in isotropic systems. Following ref 8,
we identify 12 distinct nonzero tensor elements:Rzzzzzz

(5) , Ryyzzzz
(5) ,

Rzzyyzz
(5) , Rzzzzyy

(5) , Rzzyyxx
(5) , Rzzzyzy

(5) , Rzyzzzy
(5) , Rzyzyzz

(5) , Rzzxyxy
(5) , Rxyzzxy

(5) , Rxyxyzz
(5) ,

TABLE 1: Decomposition of the Fifth-Order Raman
Response Function in Isotropic Systems into Five
Independent Components Derived in Ref 8a

cIII cIDD cDID cDDI cDDD

Rzzzzzz
(5) 1 1 1 1 1

Ryyzzzz
(5) 1 1 -1/2 -1/2 -1/2

Rzzyyzz
(5) 1 -1/2 1 -1/2 -1/2

Rzzzzyy
(5) 1 -1/2 -1/2 1 -1/2

Rzzyyxx
(5) 1 -1/2 -1/2 -1/2 1

Rzzzyzy
(5) 3/4 3/8- a1

Rzzxyxy
(5) 3/4 -3/4 + 2a1

Rzyzzzy
(5) 3/4 3/8- a2

Rxyzzxy
(5) 3/4 -3/4 + 2a2

Rzyzyzz
(5) 3/4 3/8+ a1 + a2

Rxyxyzz
(5) 3/4 -3/4 - 2a1 - 2a2

Rzyyxxz
(5) 9/16

a The coefficient in each blank block is zero. Two variablesa1 and
a2 are zero for two-time Raman correlation functions but cannot be
determined since the time reversal symmetry is not valid for nonlinear
response functions. Notice that typos of Table 2 in ref 8 are corrected
here.

R(2n+1)(tn, tn-1, ..., t1) ) (-1)n〈{Π(t1 + t2 + ... + tn),

{Π(t1 + t2 + ... + tn-1), ... ,{Π(t1), Π(0)} ...}}〉 (1)

Π( rb) ) ΠI + ΠD ) hI(r)I + hD(r)D (2)

C(t) ) ∫ drb ∫ drb′Πh ( rb)jΠ( rb′)P(rb,t; rb′,0) (3)

P( rb,t; rb′,0) ) ( 1

4π) ∑
l,m

Pl( rb,t; rb′,0)Ylm(Ω)Y*lm(Ω′) (4)

C(t) ) Ciso(t)(II ) + Caniso(t) ∑
m)-2

2

×

[∫ dΩY2m(Ω)D(Ω)] [∫ dΩ′Y*2m(Ω′)D(Ω′)]

4π
(5)

Ciso(t) ) ∫ dr ∫ dr′hI(r)hI(r′)P0(r,t;r′,0) (6)

Caniso(t) ) ∫ dr ∫ dr′hD(r)hD(r′)P2(r,t;r′,0) (7)

{Rzzzz
(3) (t) ) 4∂tCaniso(t)/5 + ∂tCiso(t)

Rzzyy
(3) (t) ) -2∂tCaniso(t)/5 + ∂tCiso(t)

Rzyzy
(3) (t) ) 3∂tCaniso(t)/5

(8)

Rµ1ν1µ0ν0

(3) (t) ) RII,µ1ν1µ0ν0

(3) (t) + RDD,µ1ν1µ0ν0

(3) (t)

) cII,µ1ν1µ0ν0
RII

(3)(t) + cDD,µ1ν1µ0ν0
RDD

(3) (t) (9)

cII ,zzzz:cII ,zzyy:cII ,zyzy) 1:1:0 (10)

cDD,zzzz:cDD,zzyy) 2:-1 (11)

cDD,zzzz:cDD,zzyy:cDD,zyzy) 4:-2:3 (12)
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andRzxyxyz
(5) . Similar to eq 9, the fifth-order response function in

the isotropic systems can be decomposed to

whereRijk
(5)(t2,t1) ∝ 〈{Πi(t1 + t2), {Πj(t1), Πk(0)}}〉 and{i, j, k}

) {I, D}. We note that the orthogonality relation betweenI
andD requires that all of the terms with only oneΠD are always
zero. The rotational invariance for isotropic systems results in

where

Using eq 14 and the tensor properties ofI andD, we obtain the
relative ratios for variouscijk, as shown in Table 1. The
derivation details of Table 1 can be found in ref 8; here, we
will not repeat the derivation. Several typos in the original table
in ref 8, for example,cIDD,zzzyzy, are corrected in Table 1. From
this table, we find that the ratioscIII , cIDD, cDID, andcDDI can be
directly obtained from the polarization selectivity ofR(3)(t). For
the ratios ofcDDD, two variablesa1 anda2 cannot be determined
since the time reversal symmetry is not valid for the response
functions.

III. Cubic Lattices

In the previous section, we summarized the general method
developed in refs 7 and 8 for analyzing polarization selectivity
in isotropic systems. Recent studies of the time-resolved Raman
spectroscopy in crystalline solids such as ice demonstrate
interesting new phenomena.23-25 The different polarization
selectivities for isotropic systems and periodic lattices can serve
as a signature for detecting and analyzing the liquid-solid phase
transition. To analyze the data from solid systems, it would be
desirable to use polarization selectivity to separate independent
components. In this section, we extend the symmetry-based
method to cubic lattices, a periodic system with the highest
rotational symmetry.

Polarization selectivity is determined by the underlying
geometric symmetry, which is, in general, described by the
corresponding point group. For cubic lattices including classes
T, Th, O, Td, andOh, the active Raman modes are described by
three irreducible representations, A, E, and T. Since the
subscripts associated with A, E, and T for various cubic lattices
do not affect our derivation, for convenience, we will ignore
these subscripts. These three representations can be expressed
as Af nx

2 + ny
2 + nz

2, E f {nx
2 + ny

2 - 2nz
2, x3(ny

2 - nx
2)}, and

T f {nynz, nxnz, nxny}, wherenx, ny, andnz are the projections
of the unit vectorr̂ along thex, y, andzaxes, respectively. Using

the spherical coordinates, we can define six orthogonal basis
functions as

The polarizability tensorΠ in the cubic lattices can thus be
expressed as

where the coefficientshi(r) for degenerate basis functions are
the same. Since the polarizability tensorΠ is symmetric, that
is, Πµν ) Πνµ, the six basis functions in eq 16 are adequate in
describingΠ. Assuming the spherical harmonic expansion for
the joint probability distribution functionP(rb,t;rb′,0) in isotropic
systems is still valid, we obtain the third-order Raman correlation
function in cubic lattices as

where

Although the third-order response function can be further
evaluated usingR(3)(t) ) -â∂tC(t), we shall demonstrate that
polarization selectivity can be derived much more easily without
additional assumptions.

The method in ref 8 shows that the third-order response
functions in cubic lattices include three distinct tensor elements,

R{µν}
(5) (t2,t1) ) cIII, {µν}RIII

(5)(t2,t1) + cIDD,{µν}RIDD
(5) (t2,t1) +

cDID,{µν}RDID
(5) (t2,t1) + cDDI,{µν}RDDI

(5) (t2,t1) +

cDDD,{µν}RDDD
(5) (t2,t1) (13)

Zz:Zzy:Zzyx) 1:3:1 (14)

{Zz ) Rzzzzzz
(5)

Zzy ) Ryyzzzz
(5) + Rzzyyzz

(5) + Rzzzzyy
(5) + 4[Rzzzyzy

(5) + Rzyzzzy
(5) + Rzyzyzz

(5) ]

Zzyx) Rzzyyxx
(5) + 2[Rzzxyxy

(5) + Rxyzzxy
(5) + Rxyxyzz

(5) ] + 8Rzxyxyz
(5)

(15)

{eA(Ω) ) Y00(Ω)

eEa(Ω) ) -Y20(Ω)

eEb(Ω) ) - 1

x2
[Y22(Ω) + Y22h(Ω)]

eTa(Ω) ) i

x2
[Y21(Ω) + Y22h(Ω)]

eTb(Ω) ) - 1

x2
[Y21(Ω) - Y22h(Ω)]

eTc(Ω) ) - i

x2
[Y22(Ω) - Y22h(Ω)]

(16)

Π( rb) ) ∑
ij

hi(r)eij(Ω)

TABLE 2: Decomposition of the Third-Order Raman
Response Function in Cubic Lattices (D6, C6W, D3h, D6h) into
Six Independent Components; the Coefficient in Each Blank
Block Is Zero

cA1aA1a cE2E2 cA1aA1b cA1bA1a cA1bA1b cE1E1

Rxxxx
(3) 1 1

Rxxyy
(3) 1 -1

Rxyxy
(3) 1

Rxxzz
(3) 1

Rzzxx
(3) 1

Rzzzz
(3) 1

Rxzxz
(3) 1

Cµ1ν1µ0ν0
(t) ) CAA,µ1ν1µ0ν0

(t) + 2CEE,µ1ν1µ0ν0
(t) + CTT,µ1ν1µ0ν0

(t)
(17)

{CAA,µ1ν1µ0ν0
(t) ) 1

4π ∫ dr ∫ dr′h1,µ0ν0
(r)h1,µ1ν1

(r′)P0(r,t;r′,0)

CEE,µ1ν1µ0ν0
(t) ) 1

4π ∫ dr ∫ dr′h2,µ0ν0
(r)h2,µ1ν1

(r′)P2(r,t;r′,0)

CTT,µ1ν1µ0ν0
(t) ) 1

4π ∫ dr ∫ dr′h3,µ0ν0
(r)h3,µ1ν1

(r′)P2(r,t;r′,0)

(18)
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Rzzzz
(3) , Rzzyy

(3) , andRzyzy
(3) . Similar to eq 2, the polarizability tensor in

cubic lattices can be as general asΠ ) ΠA + ΠE + ΠT, where
ΠA, ΠE, andΠT are irreducible tensor elements corresponding
to the representations A, E, and T, respectively. Due to the
orthogonality relations amongΠA, ΠE, andΠT, the third-order
response function can be expressed as

where Rii
(3)(t) ∝ - 〈{Πi(t), Πi(0)}〉 and i ) A, E, or T. As

shown in ref 21, the irreducible polarizability tensors in cubic
lattices satisfy the following conditions:ΠA is proportional to
the identity tensorI , that is,ΠA,µν ∝ δµν; ΠE is a diagonal and
traceless matrix, that is,ΠE,µν ) ΠE,µµδµν and

andΠT is an off-diagonal matrix, that is,ΠT,µµ ) 0. Similar to
the general method forR(3)(t) in isotropic systems, we use the
above tensor properties to evaluate the relative ratios forcAA,
cEE, andcTT. As a result, the distinct tensor elements ofR(3)(t)
in the cubic are decomposed into

The comparison between eqs 8 and 20 shows that Raman modes
ΠE andΠT in the cubic lattices become degenerate modesΠD

in isotropic systems due to rotational invariance.

Next, we proceed to study the fifth-order Raman response
functionsR(5)(t2,t1) in cubic lattices. Following the method in

ref 8, we identify 12 distinct nonzero elements:Rzzzzzz
(5) , Ryyzzzz

(5) ,

Rzzyyzz
(5) , Rzzzzyy

(5) , Rzzzyzy
(5) , Rzzyyxx

(5) , Rzyzzzy
(5) , Rzyzyzz

(5) , Rzzxyxy
(5) , Rxyzzxy

(5) , Rxyxyzz
(5) ,

and Rzyyxxz
(5) . The decomposition ofΠ allows us to write

R(5)(t2,t1) as

where all other terms, such asRAAT
(5) (t2,t1), vanish due to the

symmetry of the irreducible polarizability tensors. The tensor
properties ofΠA, ΠE, andΠT are used to obtain the complete
relationship between the distinct nonzero tensor elements and
the independent components ofR(5)(t2,t1). For conciseness, here,
we evaluatecEEE as an example, and the ratios for othercijk ({i,
j, k} ) {A, E, T}) can be obtained similarly. Since all of the
off-diagonal elements ofΠE are zero, the distinct elements with
nonzeroREEE

(5) (t2,t1) areRzzzzzz
(5) , Ryyzzzz

(5) , Rzzyyzz
(5) , Rzzzzyy

(5) , andRzzyyxx
(5) .

The traceless property ofΠE requiresRxxzzzz
(5) + Ryyzzzz

(5) + Rzzzzzz
(5)

) 0, yieldingcEEE,zzzzzz:cEEE,yyzzzz) 1:-1/2. Similarly, we obtain
the ratios betweencEEE,zzzzzzand cEEE,zyyzzz(zzzzyy). The traceless

property of ΠE also requiresRzzyyxx
(5) + Rzzyyyy

(5) + Rzzyyzz
(5) ) 0,

which, together with the above ratios, results in

The relative ratios for all of thecijk are presented in Table 3.
Due to the lose of spatial symmetry from isotropic systems to
cubic lattices, more independent fifth-order Raman response
functions appear in Table 3 than those in Table 1. For example,
the degenerateRDDD

(5) in isotropic systems becomesREEE
(5) , REET

(5) ,
RETE

(5) , REET
(5) , and RTTT

(5) for different tensor elements. Indepen-
dent components involving modesΠT are easy to separate. For
example, we can use 2Rzzzyzy

(5) + Rzzxyxy
(5) to extract independent

componentRATT
(5) . As shown in the top left corner of Table 2,

independent components involving onlyΠA and ΠE are
entangled and difficult to separate.

TABLE 3: Decomposition of the Fifth-Order Raman Response Function in Cubic Lattices (T, Th, O, Td, and Oh) into Twelve
Independent Components; the Coefficient in Each Blank Block Is Zero

cAAA cAEE cEAE cEEA cEEE cATT cETT cTAT cTET cTTA cTTE cTTT

Rzzzzzz
(5) 1 1 1 1 1

Ryyzzzz
(5) 1 1 -1/2 -1/2 -1/2

Rzzyyzz
(5) 1 -1/2 1 -1/2 -1/2

Rzzzzyy
(5) 1 -1/2 -1/2 1 -1/2

Rzzyyxx
(5) 1 -1/2 -1/2 -1/2 1

Rzzzyzy
(5) 1 -1/2

Rzzxyxy
(5) 1 1

Rzyzzzy
(5) 1 -1/2

Rxyzzxy
(5) 1 1

Rzyzyzz
(5) 1 -1/2

Rxyxyzz
(5) 1 1

Rzyyxxz
(5) 1

R{µν}
(3) (t) ) cAA,{µν}RAA

(3) (t) + cEE,{µν}REE
(3)(t) + cTT,{µν}RTT

(3)(t)

(19)

∑
µ

ΠE,µµ ) 0

{cAA,zzzz:cAA,zzyy:cAA,zyzy) 1:1:0
cEE,zzzz:cEE,zzyy:cEE,zyzy) 1:-1/2:0
cTT,zzzz:cTT,zzyy:cTT,zyzy) 0:0:1

(20)

R{µν}
(5) (t2,t1) ) cAAA, {µν}RAAA

(5) (t2,t1) + cAEE,{µν}RAEE
(5) (t2,t1) +

cEAE,{µν}REAE
(5) (t2,t1) + cEEA,{µν}REEA

(5) (t2,t1) +

cEEE,{µν}REEE
(5) (t2,t1) + cATT,{µν}RATT

(5) (t2,t1) +

cTAT,{µν}RTAT
(5) (t2,t1) + cTTA,{µν}RTTA

(5) (t2,t1) +

cETT,{µν}RETT
(5) (t2,t1) + cTET,{µν}RTET

(5) (t2,t1) +

cTTE,{µν}RTTE
(5) (t2,t1) + cTTT,{µν}RTTT

(5) (t2,t1) (21)

cEEE,zzyyxx:cEEE,zzzzzz:cEEE,yyzzzz(zzyyxx,zzzzyy) ) 1:1:-1/2
(22)
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IV. Conclusion and Discussion

In this paper, we have studied the polarization selectivity of
the response functions in isotropic systems and cubic lattices.
Our procedure to decompose the (2n + 1)th-order Raman
response function involves two steps. The first step is to extract
the distinct tensor elements using the spatial symmetry of the
system, as shown in ref 8. The second step is to decompose the
polarizability tensorΠ into the irreducible Raman active modes,
Π ) ΠI + ΠD, for the isotropic systems (whereas the
decomposition for other anisotropic systems is presented in ref
21). These irreducible polarizability tensors are used to express
R(2n+1)(tn, tn-1, ..., t1) as the superposition of the independent
response functions, for example,R{µν}

(3) (t) ) cII,{µν}RII
(3)(t) +

cDD,{µν}RDD
(3) (t) in isotropic systems. Extreme care should be

taken in this step to avoid missing or overcounting the
independent components, especially for higher-order response
functions. For example, two distinct A-type Raman modes (x2

+ y2, z2) exist in the hexagonal lattices so that the third-order
independent response functionRAA

(3) (t) exhibits four distinct
components rather than three components in cubic lattices or
two components in isotropic liquids.

Next, we use the tensor properties of the irreducible polar-
izability tensors to obtain the relative values of the coefficients
for the independent response functions. For example, the
tracelessΠD always providesc...D...,...zz...:c...D...,...yy... ) 1:-1/2 in
isotropic systems. To determine all of the coefficients, other
symmetry operations may be invoked. For example, the
rotational invariance requiresR...xx...xx...

(2n+1) ) R...xx...yy...
(2n+1) + R...xy...xy...

(2n+1)

+ R...xy...yx...
(2n+1) in the isotropic systems, whereas the invariance

over 2nπ/3 in the x-y plane provides the same result in the
trigonal and hexagonal lattices.

Compared with other approaches, our general method here
demonstrates several advantages in studying the polarization
selectivity in Raman spectroscopies. (i) Our approach is directly
applicable to evaluate the response functions, while other
approaches often use the evaluation of the correlation functions
as an intermediate step. The transformation from the correlation
functions to the response functions involves two difficulties.
First, for each (2n + 1)th-order response function, the corre-
sponding correlation functions include at least 2n-1 terms.
Second, the additional stability matrix may prevent the explicit

transformation from the response functions to the correlation
functions. (ii) The symmetry-based method does not require any
additional dynamic approximations, such as Brownian motions
or a Taylor expansion of the polarizabilityΠ(t). (iii) The
symmetry-based method avoids calculations of angular averages,
which are always necessary in other approaches. The selectivity
thus obtained is valid for all time scales, interaction potentials,
and molecular structures.
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