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Polarization Selectivity of Third-Order and Fifth-Order Raman Spectroscopies in Liquids
and Solids'
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Polarization selectivity of third-order and fifth-order Raman spectroscopies is examined for both isotropic
liquids and periodic lattices. Our approach directly applies the symmetry property of the probed system to
decompose the polarization tensor elements into independent components. The polarization selectivity predicted
by symmetry analysis is rigorous and applicable to higher-order Raman spectroscopy. The different polarization
selectivities of isotropic systems and periodic lattices can be used as a signature of theslidjdighhase
transition.

Introduction For isotropic systems, the polarization selectivity of the third-
and fifth-order response functions has been examined by various

Ultrafast multipulse time-resolved Raman spectroscépftes
P P ple approaches, such as the orientational diffusion niddeid the

have been applied to extract dynamic and structural information
in molecular system&:2° In the (2 + 1)th-order Raman instantaneous normal-mode approd@H. However, these ap-

experimentn pairs of ultrafast light pulses excite the system at proachgs invoke approximations which limit the validity of their
timest = 0, tg, (t1 + t), ..., and & + t + ... + to_1). The conclusions. In refs 7 and 8, Cao and co-workers proposed a
Raman scattering intensity is detectedt at (t; + t, + ... + symmetry-based method to explicitly derive the Raman polar-
t._1 + t,). The corresponding measurement is described by the ization selectivity _for isotropic systems. The me_thod employs
(2n + 1)th-order response functid®™(ty, th_1, ..., t1) of the the tensor properties cﬁp andUD anq the geometric symmetry
polarizability tensof1. The time-resolved spectroscopies can ©f the probed system without involving detailed angular averages
select particular parts &ty ty_1, ..., tz) based on the phase-  ©F dynamic assumptions. The resulting polarization selectivity
matching condition. The higher-orden & 2) spectroscopies 'S figorous and applicable to linear and nonlinear response
hold the promise of discriminating homogeneous and inhomo- functions and can be extended to nonisotropic systems. In fact,
geneous line shape broadening, which are indistinguishable inStandard group theory explains the decomposition scheme of
the linear spectroscopy. the polarizability tensor and the tensor invariance under various
As a (1 + 2) rank tensor, the 2+ 1)th-order response symmetry groups.Aco.mpIete table on decompoﬂhg lattice .
function includes 32 tensor elements. On the basis of the SYystems is presented in ref 21. We also note that in an earlier

spatial symmetry of the probed system, only a few of thée3 paper, Murry and Fourk@sxplored the rotational invariance

tensor elements are nonzero and distinct. In an isotropic system/Or iSotropic systems and obtained useful relations for polariza-

the third-order response function has three distinct nonzero o tensors, which were later confirmed by instantaneous
elements,RS, RY and R, It is also known that the normal-modes simulatior8:!* Further efforts along this line

772 z Z 1 1 1 1 i 1 1
polarizability tensoyryH in isotyrgpic systems can be separated :gaqgsozezlnl?]tklre]rsdegvag:on Oef pqlllalrrlga_téon tsﬁ(laeCtgggrglf Irsn(()attrr?g(ljc
into irreducible components, for exampld, = I1; + Ilp in éqw | ’ di ! fp 7p ,dW8 fW' | feview i g d di
isotropic systems, wherH, is the isotropic part ofT andIlp cveloped In rets 7 an or isotropic liquids and extend it
is the traceless part dl. As a resultR@1) can be expressed using group the(_)ry to study polarization _select|_V|ty in a particular

Gexample of periodic systems, the cubic lattice. To conclude,

as a superposition of independent response functions induce we summarize the procedure for deriving polarization selectivit
by various combinations of irreducible partslaéf for example, P /INg poia . y
and compare the general method with previous studies.

RA(t) = R(t) + RY,. (1) inisotropic systems, wheRE), . cf)
is the product of twdI)(Ilp)’s. Experimentally, we can choose  |sotropic Systems
particular angles (magic angles) to excite and probe the system L S T .
so that these independent response functions are highly separable P_olarlzatlc_)n _selectlvny In Isotropic liquids was exphcnly_
in spectroscopies. Theoretically, to study the polarization Qer|ved earlier in refs 7.and 8 using symmetry analysis and is
selectivity of a response function requires a complete under- mcludeq herg as an |IIL!s'trat|0n Of. our. method§ and.for
standing of the relationship between the distinct tensor elementsCOmparison with the selectivity for cubic lattices. In this section,

3) : we first present the angular average analysis of the third-order
such aﬂzmzyyzyzy(t) and the independent components such as response, then the more general symmetry analysis for the third-

3)
so(anisof V) order response, and finally, the symmetry analysis of the fifth-

T Part of the “Sheng Hsien Lin Festschrift'. order response. In the next section, the same set of treatments
*To whom correspondence should be addressed. E-mail: jianshu@mit.edu.are applied to cubic lattices.
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In classical mechanics, then(2 1)th-order response function  TABLE 1: Decomposition of the Fifth-Order Raman

is defined as Response Function in Isotropic Systems into Five
Independent Components Derived in Ref 8
R(2n+l)(tn, [P ...,tl) = (—1)n|:ﬂ H(tl +t,+ ..+ tn)* Cui Cibp Cbip Cooi Coob
{1t + tp+ .+t g), - {TH(Ey), TI0)} .3} O(D) oz 11 1 1 1
. ) ] 9, 1 1 -12 —-1/2  -12
where{..., ..} is the Poisson bracket. In the linear Raman y 1 _12 1 _1p —1p
measurement, the lowest-order (third-order) response function R(zzyyzz
is usually expressed &3)(t) = —B3C(t), wheres is the inverse ey L =12  -12 1 —12
temperature, and(t) is the time correlation functiorC(t) = 5) 1 —12  —-12 -1 1
[P(H)I1(0)J In isotropic systems, the polarizability tensor can g
5) 3/4 3/8— a1
decompose to 22y2y
D ey 3/4 —3/4+ 2a
I(T) = I1, + Iy = h(r)l + hp(r)D (2) 5 B
%)y 3/4 3/8—a,
wherel is the identity matrix,D(€2) = 3ff — | is a traceless vy 3/4 —3/4+ 2a,
ma}trix,f = ’_r’/r is the unit vector along the_r directi_on of and 5 3/4 3/8+a; + a
Q is the solid angle. Although eq 2 is derived using the Drude g)y 34 a4 >
model in ref 7, this general expression holds for all isotropic yxyzz &~ e
systems. In the continuum limit, the correlation function is given RS ., 9/16
by aThe coefficient in each blank block is zero. Two variabtdesnd

_ a, are zero for two-time Raman correlation functions but cannot be
C) = f dr f dr'II(T) TI(T")P(F,t;7",0) (3) determined since the time reversal symmetry is not valid for nonlinear
response functions. Notice that typos of Table 2 in ref 8 are corrected

For isotropic systems, the joint probability distribution function here.

P(r.t;r",0) can be expanded using the spherical harmonics
Yim(Q) as to eq 8 is unnecessary. Instead, these ratios can be directly

obtained using the tensor propertiesiaindD. As shown in
1 o , ref 7, the first step is to construct a general expression for
P(T.tT",0)= . Z P(FET0)Yn(Q)Yi () (4) RA)(t) based on the orthogonality relation betweeand D
,m

Substituting eq 4 into eq 3 simplifies(t) to (‘?WOVO( ) =R /‘1"1/401’0() 33,#1%%(0
2 _ 3) 3)
C(t) = Clso(t)(” ) + Canisc(t) z X - C“,‘Lthl[uOVORi(l (t) + CDD,/Alvl/,{OVO D(t) (9)
m=-2
3) . . .
dQY. (Q)D(Q dQ'Y* (QD(Q' where R< t O — QIn), IL)}0Ois the isotropic term
[f an(Q)D(2)] [f 2 )D(EX)] (5) (depolarized) ancR<D () O — QIIp(t), IIp(0)} Dis the aniso-
4n tropic term. All other terms, such &(t) andRE)(t), are zero.
] ) Since all of the diagonal elements are the same and all the off-
where the two independent components are written as diagonal elements are zero fgtthe coefficients of the isotropic

3) )
Cisolt) =/ dr [ dr'hy(n)hy(r)Py(r £:r",0) (6) componenfR*(1) satisfy

Conisd) = dr [ dr'h(n)hp(r)Py(r tr',0)  (7)

CII ,zzzicll ,zzy);CII ,zyzy: 1:1:0 (10)

Since theD matrix is always tracelesRin ., + RS 1o +

respectively. The three distinct elements RP)(t) are thus 3 0 that
written as Dzzyy = atis
24) = 40 Carisdt)/5 + 0Cee®) Cop 222200 czyy ™ #71 (D
RO = —20,Cppisd8)/5 + 8,Cise(t) (8) The rotational invariance for isotropic systems further requires
RO (1) = 33,C,ied1)/5 2= R+ 2R%)  which together with eq 11, results in
CDD zzzzCDD zzyyCDD zyzy =4:-23 (12)

The above equations relate the distinct tensor elements
3Z)thzyyzyzy(t) and the independent compone@syanisoft). In
comparison with other approaches, this spherical harmonic
expansion method generates polarization selectivityR®(t) .
in a more rigorous manner, but the extension to higher-order assumptions. .
To further demonstrate the symmetry-based method in
response functions requires additional approximations, as shown - h \arizati lectivi | he fifth
in ref 8. ex(?mlnmg the pfo arization selectivity, we eva urﬁte the I:‘S
Since the most important information of polarization selectiv- order response function in isotropic systems. Following ref 8,

5)
ity is the relative ratios of the independent components for W identify 12 distinct nonzero tensor elemeni),,R7).,
various distinct tensor elements, the detailed calculation leading RS

We thus obtain the same ratios fgrandcpp as those derived
from the spherical harmonic expansion method, but without any

5) () (5) (5) 5) 5) 5) 5)
Zyyzy | zzzZYy ' ZZYYXX | 2zZyzy ' zyzzzy ' zyzyzr ' zzXyxy ' Xyzzxy ' Xyxyzz
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andRS),,, Similar to eq 9, the fifth-order response function in  the spherical coordinates, we can define six orthogonal basis
the isotropic systems can be decomposed to functions as

ea(€2) = Yoo(€2)
Riion (212 = Gt g RV () + Coop, uy Rip (T + ee,(Q) = —Y(Q)

Coip,{} RSSI)D(tZ’tl) + Copi R§%|(t2rt1) + 1
Q) = — = [V (Q) + Y@
Cono Rg%o(tzatl) (13) €en(€2) | \/E[ 2(€2) ()]
era(Q) = —= [V54(Q) + Yo/ Q)] (16)
whereR(t 1) 0 AITi(t + to), {T(t), T(0)}} Cand{(i, j, k} ' V2o 22
= {I, D}. We note that the orthogonality relation betwden er(Q) = — 1 [Y,4(Q) — Ypx(Q)]

andD requires that all of the terms with only ok, are always
zero. The rotational invariance for isotropic systems results in

V2
%@F—é%ﬁ%ﬁﬁﬂ

2,72,;7,,=131 (14) i
where The polarizability tensof1 in the cubic lattices can thus be
expressed as
G =\ —
;= R T(F) =y h(ne;(@)
— p® 5 5 5 5 5 [
Zzy_ y)zzzz+ z)yyzz+ Z)ZZny’_ 4[R§z)zyzy+ (y)zzzy+ y)zy
—_ pBG 5 5 5 5 ici i i i
Zy= Z)WXX_|_ 2[ (Z)nyy_,_ y)zzxy_,_ y)xyzl +8 X)yxyZ where the coefficientsi(r) for degenerate basis functions are

the same. Since the polarizability tenddris symmetric, that
is, I, = I1,,,, the six basis functions in eq 16 are adequate in
. . . describingIl. Assuming the spherical harmonic expansion for
Using eq 14 and the tensor properties ahdD, we obtainthe 0 i5int probability distribution functioR(F,tF',0) in isotropic

relgtivg ratios _for variouscik, as shown in_ Table 1. The systems is still valid, we obtain the third-order Raman correlation
derivation details of Table 1 can be found in ref 8; here, we fnction in cubic lattices as

will not repeat the derivation. Several typos in the original table

i tabie, we i that e edn owp, cop, andeom can o, 4710 ~ syl T 2O F Crrs 8,
’ Iy UIDD,s “DID, DDI

directly obtained from the polarization selectivity RF)(t). For

the ratios ofcppp, two variables, anda, cannot be determined ~ Where

since the time reversal symmetry is not valid for the response

. —1 T r .
functions. Consgryer® = 72 Jdr [drhy, (O, (F)P(r tr',0)
1 , , g
Ce g = 2 Jdr [drhy,, (Dhy,, (MNP .tr,0)

CTT,Iulvl;tovO(t) =4T];[fdr fdr'h3‘uovo(r)h3,ulvl(r')P2(rlt;rllo)

In the previous section, we summarized the general method (18)
developed in refs 7 and 8 for analyzing polarization selectivity ) }
in isotropic systems. Recent studies of the time-resolved Ramar/Although the third-order response function can be further
spectroscopy in crystalline solids such as ice demonstrate€Valuated usin®3() = —paC(t), we shall demonstrate that
interesting new phenomeR&25 The different polarization polarization selectivity can be derived much more easily without

selectivities for isotropic systems and periodic lattices can serve additional assumptions.

as a signature for detecting and analyzing the liggidlid phase Th_e m(_athod n re_f 8 S.‘hOWS that the_ thlrd-order response
" . - functions in cubic lattices include three distinct tensor elements,
transition. To analyze the data from solid systems, it would be

desirable to use polarization selectivity to separate independentraBLE 2: Decomposition of the Third-Order Raman
components. In this section, we extend the symmetry-basedResponse Function in Cubic Lattices Ds, Csy,, D3n, Den) into

method to cubic lattices, a periodic system with the highest E:X |Ir(1fi|epzer1dent Components; the Coefficient in Each Blank
rotational symmetry. ock Is Zero

I1l. Cubic Lattices

Polarization selectivity is determined by the underlying Crtvia  CoFr  Chhn  Chwrm  Cawrn  CEE
geometric symmetry, which is, in general, described by the R®) 1 1
corresponding point group. For cubic lattices including classes 1 1

T, Th, O, Ty, andOy, the active Raman modes are described by XYy
three irreducible representations, A, E, and T. Since the R® 1
subscripts associated with A, E, and T for various cubic lattices

L . I (3) 1
do not affect our derivation, for convenience, we will ignore Rz
these subscripts. These three representations can be expressed® 1
2 2 2 2 2 2 2 2
as A— n +nj +n;, E—{n +nj — 2n;, @(ny— nx)_}, a_nd 3) 1
T — {nyn,, N\, nyny}, whereny, ny, andn, are the projections 7z

of the unit vectof along thex, y, andz axes, respectively. Using ) 1

ZXZ
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TABLE 3: Decomposition of the Fifth-Order Raman Response Function in Cubic Lattices T, Ty, O, Tq, and Oy) into Twelve
Independent Components; the Coefficient in Each Blank Block Is Zero

Cana CAEE CeAE CeEEA Ceee CaTT CeTT CraT CreT Cr7a CrTE Crrr
5) 1 1 1 1 1
227277
5) 1 1 —-1/2 —-1/2 —-1/2
yzz77
5) 1 —-1/2 1 —-1/2 —-1/2
zyyzz
5) 1 -1/2 -1/2 1 -1/2
z77yy
5) 1 —-1/2 —1/2 —1/2 1
ZYYXX
5) 1 —-1/2
zzy7y
5) 1 1
ZXYXY
5) 1 —-1/2
yzzzy
5) 1 1
yzzXy
5) 1 —-1/2
yzyzz
5) 1 1
yXyzz
5) 1
YYXXZ

) RS ZW andR. yzy Similar to eq 2, the polarizability tensor in and Rf «: The decomposition of[I allows us to write

cubic lattices can be as generallas= I14 + I + Iy, where ROtz t1) as
I, g, andITy are irreducible tensor elements corresponding
to the representations A, E, and T, respectively. Due to the RLW}(tz, 1) = Cana, () RAa (toty) + CAEE {1} RR2e(toty) +

orthogonality relations amorida, I1g, andIly, the third-order (5) 5)
C t,t) +c t,,t,) +
response function can be expressed as EAE{wr} REfE( 2t EEALwr} R'(;EA( 2t
CEEE{W}R(EEE(tzvtl) t CatT {0} R(ATT(tzatl) +
5) 5)
REQ,;)V} (1) = Can {uny RS& () + Ceefun Rg%(t) + Crr R'(I'S'I)'(t) CraT () R(TAT(tZ'tl) * Crra ) R(TTA(tZ’tl) *
(19) CeTT {0} R(ETT(tZ' t) + CTET{W}R( er(toty) +

CTTE{W}R(TTE(thtl) + Crrr ) TT(t27t1) (21)
where R¥(t) O — {II(t), [;(0)}Jand i = A, E, or T. As
shown in ref 21, the irreducible polarizability tensors in cubic where all other terms, such ﬁéaT(tz,tl), vanish due to the
lattices satisfy the following conditionsE1, is proportional to symmetry of the irreducible polarizability tensors. The tensor

the identity tensot, that is,I1a ., [ 8,,; ITe is a diagonal and ~ Properties oflla, IIg, andIlr are used to obtain the complete
traceless matrix, that ig]e ,» = e 0, and relationship between the distinct nonzero tensor elements and

the independent componentsR$f)(t,,t;). For conciseness, here,

we evaluateeee as an example, and the ratios for otbgr({1,

ZHEJM =0 i» K} = {A, E, T}) can be obtained similarly. Since all of the
‘ off-diagonal elements dflg are zero, the distinct elements with

5) (5) (5)
nonzeroR(E E(t2vt1) are Ryzz72 772% zyyzz zzzyy and Rﬁzyyxx

andIly is an off-diagonal matrix, that ig]y,, = 0. Similar to ~ The traceless property dle requiresRe),,,+ RS+ R,
the general method fdR®)(t) in isotropic systems, we use the = 0, yieldingCegezz227Ceeeyy2727—= 1:—1/2. Similarly, we obtain
above tensor properties to evaluate the relative ratios{or the ratios betweenEEEzzzzzzand CEEEzyyzz(zzzzyy The traceless
CeE, andcTT. As a result, the di;tinct tensor elementsR6¥(t) property of IIg also require Z xx+ Zyyyy+ ZWZZ— 0,
in the cubic are decomposed into which, together with the above ratlos results in
CAA zzziCAA zzy);CAA zyzy_ 1:1:0 CEEEzzyyx;(CEEEzzzzz?EEEyyzzz@zyyxx,zzzz)/yz 1:1:-1/2 (22)
CEE,zzzzCEE,zzyyCEEzyzy 1:-1/2:0 (20)
CrT.2225CTT 229y C1T 292y = 0:0:1 The relative ratios for all of thejk are presented in Table 3.

Due to the lose of spatial symmetry from isotropic systems to

cubic lattices, more independent fifth-order Raman response
The comparison between eqgs 8 and 20 shows that Raman modefunctions appear in Table 3 than those in Table 1. For example,
I andITy in the cubic lattices become degenerate mddgs  the degeneratBS), in isotropic systems becom&$),, REL.,
in isotropic systems due to rotational invariance. 5T)E, 5ET' and R(TTT for different tensor elements. Indepen-
dent components involving modﬂsr are easy to separate. For
example, we can useRgzyZy nyxyto extract independent
componeniRs),. As shown in the top left corner of Table 2,
independent components involving onlMa and Ilg are
entangled and difficult to separate.

Next, we proceed to study the fifth-order Raman response
functionsRO)(t,,t;) in cubic lattices. Following the method in
ref 8, we identify 12 distinct nonzero element®?® F{,SV)ZZZZ

5) 5) 5) 5) 5) 5) 5) (5) (5)
zyyzr ' zzzzyy Vzzzyzy Vzzyyxx Vzyzzzy N zyzyze Tzzxyxy 'Xyzzxy ' OXyxyzz
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IV. Conclusion and Discussion transformation from the response functions to the correlation
functions. (ii) The symmetry-based method does not require any
additional dynamic approximations, such as Brownian motions
or a Taylor expansion of the polarizabilithd(t). (iii) The
symmetry-based method avoids calculations of angular averages,
which are always necessary in other approaches. The selectivity
éhus obtained is valid for all time scales, interaction potentials,
and molecular structures.

In this paper, we have studied the polarization selectivity of
the response functions in isotropic systems and cubic lattices.
Our procedure to decompose then(2 1)th-order Raman
response function involves two steps. The first step is to extract
the distinct tensor elements using the spatial symmetry of the
system, as shown in ref 8. The second step is to decompose th
polarizability tensofT into the irreducible Raman active modes,

gl :mnl ; rll_IlP’r fct)ir1 trhenilscltrropilc sytstﬁqmsi (v;/herﬁ?sd }2? ¢ Acknowledgment. This work is supported by the U.S. Army
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