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The recently proposed Hartree-Fock-Heitler-London, HF-HL, method (Corongiu, G.J. Phys. Chem. A
2006, 110, 11584) previously tested for single bond molecules is validated by potential energy computations
for open and closed shells, single and multiple bonds, in ground and excited states of homopolar diatomic
molecules of the first and second period. The simple HF-HL function, including the configurations for 2s/2p
near degeneracy and avoiding state crossing, yields correct dissociation products, qualitatively correct binding,
and accounts for non-dynamical correlation. Addition of ionic structures improves the ab initio HF-HL function
and yields about 95% of the experimental binding energies on average. Computed excitation energies are
also in agreement with laboratory values as verified for the3Πu and3∑g

- excited states of the C2 molecule.
Computation of the remaining dynamical correlation using a semiempirical functional yields binding energies
with an average deviation of 1.5 kcal/mol from laboratory values, and total energies with an average deviation
of 0.7 kcal/mol from exact nonrelativistic dissociation energies.

1. Introduction

The variational technique provides one of the main methods
used in quantum chemical computations of molecular binding.
Since the beginning of theoretical chemistry, molecular orbitals
(MO) and atomic orbitals (AO) one-electron functions have been
recognized1,2 as a fundamental tool. They provide the basic
starting point for the linear combination of atomic orbitals3-5

(LCAO) and the Heitler-London6 (HL) methods, and many
subsequent extensions, including Hartree-Fock7-10 (HF); full
configuration interaction11,12 (FCI); multi-configuration self-
consistent-field13-19 (MC-SCF); multi-reference configuration
interaction20 (MRCI); natural orbitals21-24 (NO); alternant
orbitals;25 the propagator techniques;26,27 geminals;28 and a
number of valence bond29-36 (VB) approaches. Alternative
methods do exist, such as quantum Monte Carlo,37 and semiem-
pirical approaches, which include the popular density functional
techniques38-40 (DFT). Perturbation methods provide a parallel
and efficient complement to the variational method, but they
are not discussed here, as they are not directly related to
variational techniques considered in this work.

The driving force for the development of many of these
methods was to create quantum chemical algorithms that are
computationally affordable and easy to interpret, yet provide
realistic representations of bond formation and breaking. This
led to the introduction of electronic correlation energy correc-
tions,21 which were neglected in the two traditional models, the
HF7-10 and HL.6

The Hartree-Fock-Heitler-London (HF-HL) approach is
a recent quantum chemical model41,42 based on well-defined
computational steps43-45 that unify and improve the HF and
the HL description. The approach combines either ab initio HF
and HL multi-configuration techniques,43 or short ab initio HF
and HL expansions with semiempirical density functional
approximations.44,45

In this work, I present HF-HL computations on diatomic
homopolar molecules of the first and second period and, with

a simple wave function, obtain realistic binding energies from
dissociation, to equilibrium separation, to the repulsive region.
This demonstrates the applicability of the HF-HL method to
molecules with open and closed shells, single and multiple
bonds, in ground and excited states.

I start by describing the physical ideas that form the basis
for the HF-HL model. Correct dissociation products are
obtained by constructing theΨHF-HL wave function from a
variational linear combination of HF and HL functions. If the
molecule under analysis contains atoms that are nearly
degenerate13,46-51 at dissociation and/or if the molecular state
results from an avoided state crossing,5 then a few HF
configurations and a few HL structures are added toΨHF-HL to
create a wave function, called the “simple HF-HL function”,
which accounts for the non-dynamical correlation energy.43

The computation of the dynamical correlation energy is dealt
with in post-HF-HL steps. By adding a few ionic structures to
the simpleΨHF-HL function, the computed molecular binding
energy is improved to nearly the experimental value. This
approach is based on a suggestion originally in Majorana’s paper
on the H2 molecule.52 This work also demonstrates that ionic
structures are as effective in HF-HL computations on homopo-
lar molecules, as they are in polar molecule computations. The
simple HF-HL function with the addition of ionic structures
is denoted “HF-HL-ionic”, ΨHF-HL-i.

The remaining dynamical correlation correction can then be
reduced to the sum of the correlation energies of the atoms
composing the molecule. This is a nearly constant energy
contribution at different internuclear separations, which can
be approximated by a semiempirical density functional, the “soft
Coulomb hole”.53-57 This functional was recently recalibrated58

using more accurate estimates of atomic correlation
energies.59

In section 2, I provide a summary of the method, updating
previous versions.42-45 In section 3, I list and discuss the HF
configurations and HL structures used in the computations. In
section 4, ab initio computations with and without ionic
structures are discussed for Li2, Be2, B2, C2, N2, O2, and F2. In* Corresponding author. E-mail: corongiu@unisubria.it.
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section 5, I report on the computation of the atomic component
of the dynamical correlation correction.

2. The HF-HL Method

The HF-HL formal methodology42,43 summarized and up-
dated below includes experience gained in this work and recent
applications.44,45 For an n electron molecule, the HF-HL
method variationally combines HF and HL wave functions,ΨHF

andΨHL:

Above,Φi defines theith HF molecular orbital andæjk the jth
atomic orbital of thekth determinant in the HL function, a VB
structure; theΦi forms an orthogonal set, but not theæjk.

Note that theΨHL is constructed to satisfy the correct spin
coupling constraints,60 with dissociation products into atoms in
the lowest state of their ground-state configuration, subjected
to satisfying Wigner-Witmer rules.61 When atoms in the
molecule are in a state with near degeneracy at dissociation (e.g.,
2s/2p for Be, B, and C atoms) and/or when there is an avoided
state crossing,5 then ΨHF and ΨHL in eqs 1a and 2a can be
replaced with MC-HF and/or MC-HL expansions,∑sasΨHF-
(s) and∑tbtΨHL(t), respectively, designatedΨHF andΨHL:

whereas andbt are the coefficients of the MC expansions, and
s and t characterize the length of the expansions;s and t need
not be equal (see ref 43 for details).

The HF-HL wave functionΨHF-HL is obtained by variational
optimization of the linear expansion

The number of terms (s and t) of the MC-HF and MC-HL
expansions differs from molecule to molecule. For the MC-
HF component, in general, I use only one term, the HF ground-
state configuration function. One reason for this choice is that
the MC-HF configurations when added to MC-HL expansions
can easily form a redundant set (the H2 computation reported
in detail in ref 43 provides a good example). Although near
degenerate configurations can be selected by simple inspection
of the HL terms, selection of MC-HF terms is less obvious, as
the distinction between non-dynamical and dynamical correla-
tion can be difficult; this is discussed below. State crossing
configurations are an exception to this situation.

The HF function in eq 3 is either the traditional HF solution
or one where the orbitals are reoptimized in the field of the
MC-HL component. The number of the MC-HL terms in the
HF-HL approach is discussed in section 3, where I tabulate
the dissociation products generating the different MC-HL terms
(structures).

In eq 3, theas andbt coefficients are obtained variationally
by solving the equation

whereH and S are the interaction super-matrices containing
the Hamiltonian and the overlap matrix elements, respectively.
TheΦi orbitals of theΨHF component are a linear combination
of a basis set of Gaussian functions, and the same basis set is
also used to expand the orbitalælk of the ΨHL component. I
recall that theΦi orbitals form an orthogonal set, whereas the
ælk orbitals can be non-orthogonal. In the latter case, following
a general method proposed by Lo¨wdin62 and later reinterpreted
by Slater,63 the interaction between two determinants,da and
db, is given by:

where the indicesi and k refer to the occupied orbitals ofda

andj andl to those ofdb; S(i,j) andS(i,k,j,l) are the first- and second-
order cofactors of the overlap matrixS, constructed with the
occupied orbitals ofda anddb. The biorthogonal transformation
is an effective way to compute the cofactors,64 but matrix
element evaluation is computationally demanding. Therefore,
a number of related simplifying techniques have been pro-
posed.36,65For example, Leasure et al.66 combined determinant
properties and the biorthogonal transformation, to produce an
efficient evaluation of all of the matrix elements, thus reducing
the complexity of the original Lo¨wdin formulation.

In my approach, I first define the chosen HF configurations
and HL structures expanded with a unique basis set of N
functions. Next, I apply an integral transformation from the basis
set integral list to molecular and atomic orbitals and relative
cross terms between molecular and atomic functions. With
algorithms used in VB literature,65 the matrix elements〈da|H|db〉
are then computed for the interactions of HF with HF functions,
of HL with HL structures, and of HF with HL structures. I then
solve by diagonalization (H - SE)C ) 0. To optimize the
orbital expansion coefficients, I currently use a numerical
algorithm based on the Newton-Raphson procedure (the related
computer code is still in development).67

Equation 3 represents the first of three HF-HL successive
steps, and it is referred to as the “simple HF-HL wave
function”. Solutions of eq 3 produce the correct dissociation
products and account for avoided curve crossing and 2s/2p near
degeneracy. This means the non-dynamical component,Ec(non-
dyn), of the correlation energy,Ec, is well represented. If I
denote the dynamical component ofEc asEc(dyn), then:

The standard definition21 of the correlation energy,Ec, related
to HF functions, is extended44 to include HL and HF-HL wave
functions: Ec ) E(n.r.) - Emodel, whereE(n.r.) is the exact
nonrelativistic energy, andEmodel refers to the energy computed
via a model, like HF, HL, HF-HL, etc.

For historical reasons,21,68 the correlation energy correction
is defined with reference to HF solutions, although the underlin-
ing expectation is to define the error implicit in any model
solution relative to the exact solution of the Schro¨dinger
equation. Again, for historical reasons, the models are de facto
subdivided into those that either consider or neglect the
relativistic corrections. In this work, I needed to extend the
Löwdin21 definition, because I consider both the HF and the
HL models. The relativistic correction can be considered as a
small perturbation for the molecular quantities considered in
this work.

Correlation correction is often partitioned by applying criteria
that evaluate interaction type (short or long range) and number
of electrons (two or many). Here, I apply citeria introduced in

ΨHF ) det(Φ1, ...,Φi, ...,Φn) (1a)

ΨHL ) ∑kdet(æ1k, ...,æjk, ...,æmk) (2a)

ΨHF ) ∑sasΨHF(s) ) ∑sas[detΦ1, ...,Φi, ...,Φn]s (1b)

ΨHL ) ∑tbtΨHL(t) ) ∑tbt∑k[det(æ1k, ...,æik, ...,æmk)]t

(2b)

ΨHF-HL(s,t) ) cHFΨHF + cHLΨHL ) ∑sasΨHF(s) +

∑tbtΨHL(t) (3)

(H - SE)C ) 0

〈da|H|db〉 ) ∑ijhijS
(i,j) + ∑i<k,j<l [〈ij |kl〉 - 〈il |kj〉] S(i,k,j,l)

Ec ) Ec(non-dyn)+ Ec(dyn) (4)
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the early quantum chemistry literature: dynamical and non-
dynamical correlation;46-48 Bethe-Goldstone electron pair
correlation;69 and atomic and molecular correlation components
decomposition.70 Sinanoglu’s non-dynamical correlation in-
cludes the correlation energy correction, which can be obtained
from multi-configuration energy computations limited to near
degenerate configurations, following Hartree et al.13 for Be[1S]
and Veillard et al.51 for Be[1S], B[2P], and C[3P] neutral atoms
and the corresponding iso-electronic series of ions.

In configuration expansions, some interactions are grouped
separately. For example, on the basis of the energy difference
from the reference configuration energy, I differentiate the set
of nearly degenerate interactions13,71 from covalent or ionic
higher excitations.72 In general, the partitioning stresses partial
aspects of the correlation effects, and therefore can be incom-
plete and approximated, underlining that the correlation cor-
rection is a combination of different effects, often overlapping
one another.

In this work, I follow a pragmatic approach, which is neither
the most general nor unique, but is based on the simple
application of established partitioning definitions.

It has been known since the work by Linderberg and Shull71

that the atomic near degeneracy can be related to theZ-effect
and to the hydrogenic energy expression, which depends on the
n, but not on thel quantum numbers (n - l near degeneracy).
One consequence is the atomic 2s/2p near degeneracy and the
Z dependency of the ionic iso-electronic series for Be[1S], B[2P],
C[3P, 1D, 1S], and N[2P] atoms. The 3s-3p-3d near degeneracy,
and so on, are similar. By simply inspecting a configuration, I
can decide the near degeneracy relative to a reference config-
uration (the ground-state configuration in this work). The atomic
near degeneracy affects the molecular energy computations,
because the orbital molecular correlation diagrams by Herzberg73

and Mulliken74 are built either directly with AO or with
symmetry adapted linear combinations of AOs, the MO.

Alternative definitions of non-dynamical correlation have
been proposed. For example, to account for the non-dynamical
correlation in density functional formalisms in a Be[1S] study,
the local scaling transformation of density functional theory was
used as criterion to partition dynamical and non-dynamical
correlation corrections. This led to the conclusion that the non-
dynamical correlation component is 1 order of magnitude
smaller than previously assumed.75 Still another definition
redefines the 2s/2p angular correlation as correlation of dynami-
cal type.76

A more general definition, unrelated to density functionals
theory, has been recently advanced,77 which provides criterion

to quantitatively establish a measure of the near degeneracy of
two configurations, by comparing the computed energy of the
two configurations with their interaction. This computational
approach allows one to consider as near degenerate eventual
configurations excluded by the simplen - l near degeneracy
criterion.

In this work, I consider the non-dynamical correlation for
HF-HL functions, which dissociate correctly, unlike the HF
function. I restrict the identification of near degenerate con-
figurations simply ton - l near degenerate configurations.
Finally, I add the eventual state crossing configurations, a clear
near degeneracy instance. My goal is to provide a simple but
reasonable operational definition, while remaining open to the
application of the above-reported “more general definition”.77

I believe it is outside the scope of this work to compare the
quality and validity of different definitions.

In the HF-HL model, the computation of dynamical cor-
relation is dealt with in the “post-HF-HL” computations, the
second and third HF-HL steps.42-45 In principle, I would like
to correlate ab initio the valence electrons first (second HF-
HL step) and then target the inner shell electrons (third HF-
HL step). This can be accomplished with MC-HF13-19 and
MC-HL expansions with large basis sets, but this approach is
restricted to molecules with relatively few electrons and the
computational costs are high (as shown in ref 43 for H2 [1∑g

+],
HeH [1∑+], LiH [ 1∑+], and BeH [1∑+]). Instead, I exploit
correlation energy decompositions, like the one in eq 4 and
others discussed below, to create specific components of the
correlation energy to be computed either ab initio or by
semiempirical density functionals.53-58,70,78-83

To account forEc(dyn), I make use of the decomposition into
the molecular extra correlation energy,70 η, and the sum of the
correlation energy of the separated atoms∑aεa. Recalling43,44

that η ) η(dyn) + η(non-dyn) and∑aεa ) ∑aεa(dyn) + ∑aεa-
(non-dyn), I write:

Because the non-dynamical correlation is included via the simple
HF-HL computation, I solve eq 5b;η(dyn) is computed ab
initio and ∑aεa(dyn) and a small residual fraction ofη(dyn)
(discussed below in eq 6b) are approximated with density
functionals.

Complementing eqs 4 and 5 I recall that, following Nesbet,69

the correlation correction can be partitioned into the Bethe-

TABLE 1: Laboratory Molecular Binding Energy (kcal/mol), Eb, Laboratory Equilibrium Distance (bohr), Re, Total
Nonrelativistic Energy (hartree) at Equilibrium, ET(Re), and at Dissociation,ET(R∞), Atomic Ground-State Energies at the
Hartree-Fock Limit, EHF[Limit], and Computed with the Basis Sets of This Work, EHF[This Work]

molecule Eb
a Re

a -ET[Re] -ET[R∞]h -EHF[limit] -EHF[this work]

H2 [1∑g
+] 109.48b 1.40b 1.1744757 1.000000 H [2S] 0.500000 0.499999

He2 [1∑g
+] 0.02c 5.62c 5.807483 5.807448 He [1S] 2.861680 2.861679

Li2 [1∑g
+] 24.67 5.0510 14.99543 14.95612 Li [2S] 7.432727 7.432721

Be2 [1∑g
+] 2.40d 4.63d 29.33860 29.33477 Be [1S] 14.573023 14.573016

B2 [3∑g
-] 68.49e 3.0047 49.41695 49.30780 B [2P] 24.529061 24.529036

C2 [1∑g
+] 147.85f 2.3480 75.9256 75.6900 C [3P] 37.688619 37.688616

N2 [1∑g
+] 228.4 2.0743 109.5426 109.1786 N [4S] 54.400934 54.400924

O2 [3∑g
-] 120.6 2.2819 150.3270 150.1348 O [3P] 74.809398 74.809384

F2 [1∑g
+] 39.0 2.6682 199.5305 199.4683 F [2P] 99.409349 99.409343

Ne2 [1∑g
+] 0.08g 5.84g 257.87673 257.8766 Ne [1S] 128.547098 128.547052

a Reference 84.b Reference 85.c Reference 86.d Reference 87.e Reference 88.f Reference 89.g Reference 90.h Reference 59.

Ec ) η(dyn) + ∑aεa(dyn) + η(non-dyn)+ ∑aεa(non-dyn)
(5a)

Ec(dyn) ) η(dyn) + ∑aεa(dyn) (5b)

Multiple Bonds and Excited States from the HF-HL Method J. Phys. Chem. A, Vol. 111, No. 51, 200713613



Goldstone decomposition, into pair correlation energies, intra-
pair ωii and inter-pairs,ωij. Thus, for ann electron molecule, I
write:

where in the first summationi ) 1, ...,n/2, and in the second,
i * j. Note that, in general,ωij , ωii and each pairω can be
decomposed into dynamical and non-dynamical components (see
refs 43 and 44 for details). Therefore, I write:

From eqs 4 and 6, I see that the computation ofη(dyn) includes
not only the intra-pair energies∑iωii(dyn) for binding electrons
but also the elusive and small inter-pair energiesωij(dyn)
between binding and nonbinding electrons; the latter is the small
residual fraction ofη(dyn), mentioned in the discussion of eq
5b.

Finally, the molecular binding energy,Eb, can also be
partitioned43,44 into the computed binding relative to a given
quantum mechanical model,Eb(model), and itsηmodel:

In HF-HL computations,ηmodel is reduced toη(dyn)model; below
I use the shorter notationη(dyn) in place ofη(dyn)model.

From previous computations45 on the hydrides, I learned that
a large fraction ofη(dyn) can be recovered by adding toΨHL

of eq 3 a few HL ionic structures,34,45,52constrained to dissociate
into the lowest ionic states. In this work, I confirm the large
energy gain obtained with ionic structures, but remove the
constraint on the selection of the ionic structures. These are
formed with products of ions in their lowest configuration, not
necessarily in the lowest ionic state, and are added to the
covalent HL functions of eq 3. In addition, I include, when
needed, single, double, and triple ions; the ionic configurations
I have selected are discussed in section 3.

The partitioning given in eqs 4-7 makes it feasible to isolate
those relatively few but important HF-type functions and HL-
type structures, which account forη(dyn) when added to eq 3.
This strategy provides realistic binding energies, as previously
reported45 for the hydrides and for the van der Waals molecule
HeH.

In the HF-HL computations, I consider the use of density
functionals simply as algorithms to scale the total energy and
to secure atomic correlation, nearly “an extrapolation proce-
dure”.

From the early days of quantum chemistry,53-57,68,70,78-83

semiempirical functionals have been known to yield energies
of different accuracy, depending partly on the functional form,
but mainly on their parametrization. Today, density functional
use is usually associated with DFT computations.1,2,38-40 Fol-
lowing my previous computations on hydrides, in this Article,
I use the Coulomb hole, Ch, functional, specifically “the soft
Coulomb hole” algorithm,53,54,56 recalibrated for the HF-HL
energies and for near degenerate atomic energies.58 The HF-
HL wave function,ΨHF-HL, corrected with the soft Coulomb
hole functional is designated as the HF-HL-Ch function,
ΨHF-HL-Ch.

3. HF and HL Characterization of the HF-HL Functions

The computations performed for the homopolar molecules
are obtained with basis sets43 large enough to reach the Hartree-

Fock limit energy for the atoms. These basis sets are augmented
with polarization functions to ensure molecular energies close
to the Hartree-Fock limit and accurate CASSCF expansions.43

In Table 1, for the homopolar diatomic molecules, I report
laboratory binding energy (kcal/mol),Eb, laboratory equilibrium
distance (bohr),Re, total nonrelativistic energy (hartree) at
equilibrium,ET(Re), at dissociation,ET(R∞), Hartree-Fock limit
for the separated atoms,EHF[limit], and the HF energy computed
with the basis set of this work,EHF[this work]. The nonrela-
tivistic energiesET(R∞) are obtained from the carefully estimated
atomic energies by Chakravorty et al.;59 the total nonrelativistic
energiesET(Re) are obtained by addingEb to ET(R∞).

In Table 2, I report the atomic state functions (neutral and
ionic) used to build the dissociation products of the HF-HL
functions (constrained by the Wigner-Witmer rules). For Be2,

Ec ) ∑iωii + ∑i∑jωij (6a)

Ec ) ∑iωii(dyn) + ∑i∑jωij(dyn) + ∑iωii(non-dyn)+

∑i∑jωij(non-dyn) (6b)

Eb ) Eb(model)+ ηmodel (7)

TABLE 2: Atomic and Ionic States for the HF-HL
Functions at Dissociation

H2 [1∑g
+] atomic cationic anionic

[1] H [2S](1s1) [1] H+ (1s0) [1] H- [1S](1s2)
[2] H- [1S](2p2)

He2 [1∑g
+] atomic cationic anionic

[1] He [1S](1s2)

Li 2 [1∑g
+] atomic cationic anionic

[1] Li [ 2S](1s22s1) [1] Li + [1S](1s2) [1] Li - [1S](1s22s2)

Be2 [1∑g
+] atomic cationic anionic

[1] Be [1S](2s2) [1] Be+ [2S](2s1) [1] Be- [2S](2s23s1)

[2] Be [3P](2s12p1) [2] Be+ [2P](2s02p1) [2] Be- [2S](2s13s2)

[3] Be [1S](2s02p2) [3] Be- [2P](2s22p1)

[4] Be [1D](2s02p2) [4] Be- [2S](2s12p2)

[5] Be [3P](2s02p2) [5] Be- [2P](2s02p3)

B2 [3∑g
-] atomic cationic anionic

[1] B [2P](2s22p1) [1] B+ [1S](2s2) [1] B- [3P](2s22p2)

[2] B [2P](2s02p3) [2] B+ [3P](2s02p2) [2] B- [3P](2s12p3)

[3] B [2D](2s02p3) [3] B+ [3P](2s12p1) [3] B- [1S](2s12p3)

[4] B [2P](2s12p2) [4] B+ [1S](2s02p2) [4] B- [1D](2s12p3)

[5] B [2D](2s12p2)

C2 [1∑g
+] atomic cationic anionic

[1] C [3P](2s22p2) [1] C+2 [1S](2s22p0) [1] C-2 [1S](2s22p4)

[2] C [1S](2s22p2) [2] C+2 [1S](2s02p2) [2] C-2 [1D](2s22p4)

[3] C [1D](2s22p2) [3] C+2 [1D](2s02p2) [3] C-2 [3P](2s22p4)

[4] C [3P](2s12p3) [4] C+2 [3P](2s02p2) [4] C-2 [3P](2s12p5)

[5] C [3P](2s02p4) [5] C+2 [3P](2s12p1) [5] C-1 [2P](2s22p3)

[6] C [1S](2s02p4) [6] C+ [2P](2s12p2) [6] C-1 [2D](2s22p3)

[7] C [1D](2s02p4) [7] C+ [2S](2s12p2) [7] C-1 [2S](2s12p4)

[8] C+ [2D](2s12p2) [8] C-1 [2D](2s12p4)
[9] C-1 [2P](2s12p4)
[10] C-1 [2P](2s02p5)

N2 [1∑g
+] atomic cationic anionic

[1] N [4S](2s22p3) [1] N+ [3P](2s22p2) [1] N- [3P](2s22p4)

[2] N [2D](2s22p3) [2] N+ [1D](2s22p2) [2] N- [1D](2s22p4)
[3] N+ [1S](2s22p2) [3] N- [1S](2s22p4)
[4] N+2 [2P](2s22p1) [4] N-2 [2P](2s22p5)
[5] N+3 [1S](2s22p0) [5] N-3 [1S](2s22p6)

O2 [3∑g
-] atomic cationic anionic

[1] O [3P](2s22p4) [1] O+ [2P](2s22p3) [1] O- [2P](2s22p5)

[2] O [1D](2s22p4) [2] O+2 [3P](2s22p2) [2] O-2 [1S](2s22p6)

[3] O [1S](2s22p4)

F2 [1∑g
+] atomic cationic anionic

[1] F [2P](1s22s22p5) [1] F+ [1D](1s22s22p4) [1] F- [1S](1s22s22p6)

Ne2 [1∑g
+] atomic cationic anionic

[1] Ne [1S](1s22s22p6)
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B2, and C2 to the neutral atomic states of the 1s22s22pn

configurations, I add states of the near degenerate configurations
1s22s02pn+2 and 1s22s12pn+1 (and equivalently for the ionic
configurations). Note the limited number of states used to create
the HL structures. From the table, it is easy to see how the
number of states might be increased, but I purposely kept it
small to show the impact of a few well-chosen states mainly
belonging to the lowest configuration. For the HF component
of the HF-HL function, I have restricted my choice to the
ground-state function of the ground-state configuration, tabulated
for example in Herzberg’s classical volume.5

To demonstrate the use of Table 2, I consider the O2 molecule.
The HF-HL(1,1) function is simply the combination of the HF
ground-state function and of the HL function generated by
“atomic” state labeled [1] in the first column of the table,3P-
3P. The notation HF-HL(S,T), which relates to HF configura-
tions and HL structures, should not be confused with the one
of eq 3, where the indicess and t refer to the number of
component functions in the HF-HL wave function. The (HF-
HL)(1,3) function is obtained by adding to (HF-HL)(1,1) the
HL covalent structures generated from the combination of
“atomic” states labeled [1] and [2] in the table and from the
combination of “atomic” states labeled [1] and [3], thus3P-
3P, 3P-1D, and 3P-1S. The (HF-HL-i) function is obtained
by adding ionic structures to (HF-HL)(1,3): these are a
combination of the “cationic” state labeled [1] with the “anionic”
state labeled [1] and also of the “cationic” state labeled [2] with
the “anionic” state labeled [2], O+[2P]-O-[2P], O+2[3P]-O-2-
[1S]; thus, the (HF-HL)(1,3) function is composed by a total
of 4 HL structures and the (HF-HL-i) by a total of 8 structures.
It is evident that the number of covalent and/or ionic structures
can be easily increased to yield computed binding energies even
closer to the experimental value than those reported in this work.

However, the so-called “ionic structures” raise the physical
interpretation problem pointed out in 1931 by Majorana:52

charge transfer via ionic structures has no physical interpretation
in homopolar molecules. The ionic structures are simply an
efficient way to introduce “in-out” correlation. Majorana used
the designation “pseudo-polar”; I shall continue with the use
of the term “ionic structure”, following the VB tradition.

4. Ab Initio Computation of Binding Energy for Ground
and Excited States

In this section, I report on the ab initio HF-HL computations,
with and without ionic structures (limited to those constructed
with the data in Table 2). If in HF-HL computations the orbitals
of the HF component are frozen to the HF solution, I use the
notation HF-HL, if reoptimized in the field of the HL structures
I use the notation HF*-HL. Therefore, I shall discuss HF-
HL(1,1), HF*-HL(1,1), HF-HL(S,T), HF*-HL(S,T), HF-HL-
i, and HF*-HL-i computations, summarized in Table 3, where
the experimental binding energies have been added. In Figure
1, I report the potential binding energy curves computed with
the HF, HL, and simple HF-HL wave functions (eq 3), without
inclusion of 2s/2p near degeneracy effects. For computations
with interactions between structures generated from atomic
ground states and from atomic excited states (of the same atomic
ground-state configuration) like in N2 and O2, see Table 2 first
column case [1] and [2] for N2 and [1], [2], and [3] for O2, the
two lowest solutions are indicated with the letters a (lower state)
and b (higher state). In the figure, I use the notation HF-HL
(S,T), except for the case whereS) T ) 1, to avoid a redundant
notation. Each potential energy curve is computed at 30-40
internuclear separations, and the reported dissociation energy
values are computed at internuclear separation of 40 bohr.

The binding energies for H2 are those reported in ref 45, with
Eb(HF-HL)(1,1) ) 83.83 kcal/mol andEb(HF-HL-i)(1,2) )
100.24 kcal/mol. For H2 and Li2, the binding energy from the
ΨHL function is essentially equal to that fromΨHF-HL, and both
are superior to theΨHF binding energy. For Be2 and B2, the
binding energy improves fromΨHL (which yields repulsive
potential energy curves) toΨHF to ΨHF-HL to ΨHF*-HL. From
Figure 1, I see that the HF-HL approximation (even without
inclusion of 2s/2p near degeneracy) is definitely superior to the
HF and HL approximations.

For C2, the HL approximation is rather poor at equilibrium;
it improves in the HF model and notably so in HF-HL and
HF*-HL computations.

For N2, the HF and HL approximations yield essentially the
same binding energy value, which improves significantly with
the use of the HF-HL and HF*-HL approximations, and even

TABLE 3: Computed (at the Experimental Geometries) Ab Initio Binding Energy (kcal/mol), Eb, Total Energy (hartree), Et,
and Correlation Energy (hartree), Ec, for HF, HL, HF -HL( S,T), and HF-HL-i Models (Experimental Binding Energies
(kcal/mol), Eb(exp), Are Also Reported)

binding Li2 Be2 B2 C2 N2 O2 F2

Eb(HF) 3.83 -7.54 20.53 18.27 120.15 30.18 -29.24
Eb(HL) 8.68 -19.23 -15.59 -0.92 121.96 1.51 -17.59
Eb(HF-HL)(1,1) 8.69 -7.53 23.05 41.90 159.96 62.26 11.46
Eb(HF*-HL)(1,1) 8.80 -7.48 25.58 53.68 164.19 65.58 15.43
(S,T) (1,1) (1,5) (1,5) (1,7) (1,2) (1,3) (1,1)
Eb(HF-HL)(S,T) 21.84a -9.49 55.01 127.10 175.04 76.56 11.46
Eb(HF*-HL)(S,T) 21.87 -8.56 56.07 134.38 178.96 82.11 15.43
Eb(HF-HL-i) 25.48b 0.50 62.95 138.40 213.16 110.12 35.70
Eb(HF*-HL-i) 25.70 0.52 63.77 143.86 220.03 115.02 38.71
Eb(exp) 24.67 2.40 68.49 147.85 228.4 120.6 39.0
total
Et(HF-HL)R∞ 14.86544 29.23347 49.12360 75.41206 108.80184 149.61924 198.81916
Et(HF-HL)Re 14.87929 29.21834 49.21126 75.61460 109.05677b 149.71845c 198. 83742
Et(HF-HL-i)Re 14.90604 29.23427 49.22392 75.63262 109.14154 149.79473 198.87700
correlation
Ec(HF) 0.12389 0.20458 0.32615 0.51925 0.54927 0.66014 0.75841
Ec(HL)(T) 0.11616 0.12101 0.20569 0.31120 0.54640 0.70536 0.73942
Ec(HF-HL)(S,T) 0.11614 0.12026 0.20169 0.31100 0.48584 0.60855 0.69308
Ec(HF-HL-i) 0.08939 0.10433 0.19303 0.29298 0.40106 0.53227 0.65350

a This value is obtained with a MC-HL containing four structures.b The value reported corresponds to the (1,1) computation. The values for the
(1,2) case are:Et(HF-HL)(Re) ) -109.08077 hartree, andEb(HL)(2) ) 163.58 kcal/mol.c The value reported corresponds to the (1,1) computation.
The values for the (1,3) case are:Et(HF-HL)(Re) ) -149.74078 hartree, andEb(HL)(3) ) 54.53 kcal/mol.
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more when the interaction with a second HL structure is
included (see Table 2) leading to the curve HF-HL(1,2)a. The
binding computed with HF*-HL-i reaches the value of 220.03
kcal/mol.

The same situation holds for O2 (see Figure 1), where the
HF-HL(1,3) function results from the linear combination of
O(3P)-O(3P), O(3P)-O(1D), and O(3P)-O(1S), leading to three

solutions, designed a, b, and c (the latter is not reported in the
figure because it is too high in energy). The HL(1) potential
energy presents a small energy bump before dissociation, which
is notably reduced in the lower solution, curve labeled a. The
HF*-HL-i binding energy is 115.02 kcal/mol.

For the F2 molecule, the HF binding energy, the well-
publicized Achilles’ heel of the HF method, is strongly repulsive

Figure 1. HF, HL, and HF-HL first step potential energy curves, without near degeneracy, for the ground state of H2, Li2, Be2, B2, C2, N2, O2,
F2, and state interactions for N2 and O2.
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both in the HF and in the HL models. On the contrary, the HF-
HL method yields an attraction, 11.46 kcal/mol, without
reoptimization of the HF orbitals in the field of the HL structure,
and 15.43 kcal/mol after reoptimization. I recall that two
determinant MC-HF computations yield binding, 12.45 kcal/
mol by Das and Wahl91 and 14.99 kcal/mol by Lie and
Clementi.92

The HF-HL method is clearly an improvement over the
HF and HL methods, and it provides qualitative agreement
with experimental binding. The assumption that the HF com-
ponent always prevails at relatively short distances, whereas
the HL always at large distances, is brought into question
by the data in ref 42, which shows the computed coefficients
a and b of eq 3. The implication is that two methods co-
exist for much of the binding region and complement each
other.

The effect of near degeneracy for Be2, B2, and C2 is
substantial, shown by the potential energy curves of Figure 2.
For C2, I have in addition considered the3Πu and3∑g

- excited
states; experimentally,84,89 the lowest state is the1∑g

+, followed
by the3Πu with an excitation energy of 0.1 eV and by the3∑g

-

with an excitation energy of 0.96 eV. The HF-HL binding of
the 1∑g

+, 3Πu, and 3∑g
- states, without inclusion of near de-

generacy, is 41.90, 83.72, and 100.61 kcal/mol, respectively.
This can be compared to the HF values of 18.27, 72.94, and
87.34 kcal/mol and to the experimental values84,89 of 147.85,
143.51, and 126.91 kcal/mol. The HF-HL total energies are
-75.44406,-75.51065, and-75.53767 hartree for the three
states3∑g

+, 3Πu, and3∑g
-, respectively. Note the incorrect trend

in the excitation energies. Inclusion of near degeneracy improves
the binding energies to 127.10, 124.06, and 107.30 kcal/mol
with total energies of-75.61460,-75.60967, and-75.58305
hartree for the three states1∑g

+, 3Πu, and 3∑g
-, respectively.

Note that inclusion of near degeneracy leads to a correct order
of the excitation energies, 0.13 and 0.86 eV for the3Πu and
3∑g

-, respectively; the 0.13 eV value improves previous93

MC-HF results. In Figure 3, left inset, I display the three states
without and with inclusion of near degeneracy. Recalling the
importance of near degeneracy in the CH study,43 and consider-
ing the data from Figure 3, I conclude that carbon chemistry is
notably influenced by near degeneracy.

Table 3 reports the binding energy (in kcal/mol) obtained
from the HF, HL, HF-HL(1,1), HF-HL(S,T), and HF-HL-i
computations, indicated asEb(HF), Eb(HL), Eb(HF-HL)(1,1),
Eb(HF-HL)(S,T), and Eb(HF-HL-i), respectively, andEb-
(HF*-HL)(1,1), Eb(HF*-HL)(S,T), and Eb(HF*-HL-i). In
Table 3, I also report the total energy from HF-HL at
equilibrium,Et(HF-HL)(Re), and at dissociation,Et(HF-HL)-
(R∞), and the total energy at equilibrium for HF-HL-i,
designatedEt(HF-HL-i)(Re). The improvement due to the
inclusion of the ionic structures is large as shown from the values
of Eb(HF-HL-i) and Eb(HF*-HL-i) reported in the table. The
computed binding energy results confirm the conclusion from
my hydride study:45 ab initio HF-HL computations with the
addition of ionic structures yield realistic binding values from
wave functions with short expansions. Now I can extend that
conclusion from single to multiple bond molecules, from ground
to excited states. In the HF-HL-i computations for Li2, the ionic
structure includes the negative ion Li- (1s22s2), near degenerate
with Li- (1s22p2); thus, because the basis set includes 2p
functions, inEb(HF-HL-i) there is some near degeneracy gain,
which accounts for the 0.82 kcal/mol, seemingly overestimating
the experimental value near equilibrium, but not at dissociation,
where the ionic structure does not contribute.

In a recent computation,94 the ground state of the O2 molecule
is carefully investigated with a variety of VB methods and with
different quality basis sets. The best binding energy, obtained
with the VBCISD method and the cc-pVTZ basis set, amounts
to 110.0 kcal/mol at the internuclear distance of 2.336 bohr,
whereas a VBSCF computation with 105 structures yields a
binding of 77.71 kcal/mol, to be compared with the experimental
value of 120.6 kcal/mol at 2.2819 bohr (see Table 1). Total
energies are not reported.94 From Table 3, I see that only one
HF function and one HL covalent structure, the simple HF-
HL computation, yields a binding energy of 62.26 and 65.88
kcal/mol with the (HF-HL)(1,1) and the (HF*-HL)(1,1),
respectively. The (HF-HL)(1,3) with 4 HL structures (see Table
2) yields 76.56 kcal/mol, whereas the value is 82.40 kcal/mol
with the (HF*-HL)(1,3). Finally, I obtain 110.12 and 115.02
kcal/mol with the HF-HL-i and the HF*-HL-i, respectively.
This comparison indicates that the new HF-HL method is
competitive with modern VB computations.35,94

The addition of ionic structures in F2 brings to a computed
binding energy of 35.70 kcal/mol for HF-HL-i and to 38.71
kcal/mol for HF*-HL-i, close to the experimental value; note
that this value takes into account the stabilization energy at
dissociation, 2.35 kcal/mol, due to the split of the 2p electrons

Figure 2. HF(1), HL, and HF-HL with near degeneracy: potential
energy curves for the ground state of Be2, B2, and C2.
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of the atomic spherical symmetry at dissociation into the 2pσ
and 2pπ in the linear field of the molecule (as discussed in ref
45 and at the end of the next section).

In the left inset of Figure 4, I report the computed binding
energies at equilibrium from HF, (HF-HL)(S,T), (HF-HL-i)-
(S,T), and the laboratory values. In the right inset, I report the
corresponding quantities for the diatomic hydride molecules,
to provide a more general comparison of ab initio HF-HL
computations. The quality of the three computational levels, HF,
HF-HL, and HF-HL-i, and the relative improvements are clear
from the figure. Note, in addition, that in the inset for the
homopolar I have not included the improvement obtained with
Eb(HF*-HL) and Eb(HF*-HL-i), because these are not com-
puted for the hydrides. I conclude that the computations are
rather unreliable, even qualitatively at the HF level, but become
qualitatively reliable at the HF-HL level, and quantitatively
realistic at the HF-HL-i level. The error in the computed
binding energy, the extra correlation energy,ηmodel of eq 7, is
illustrated in Figure 5 for different models. From the figure, it
is evident that in binding energy calculations, the correlation
energy varies notably from model to model. As expected, the
residual error (related toωij(dyn) discussed for eq 6) is
proportional to the number of binding electron pairs; thus it is
a maximum for N2.

As previously stated, the small remaining error inEb(HF-
HL-i) can be accounted for by adding a few well-chosen
structures to the HF-HL-i function to introduce inter-pair
correlation energy (ωij(dyn) of eq 6). However, rather than
follow this ab initio approach, which requires adding more terms
in the HF-HL expansion, I use a semiempirical density
functional to scale the energy to accurate nonrelativistic values.

5. Computation of the Atomic Dynamical Correlation
Energy

Once the HF-HL wave function is computed, the largest
energy correction that remains to be included is∑aεa(dyn) (see
eq 5). Asεa(dyn) is a simple and regular function of the atomic
numberZ, the functional task is not as complex as in DFT
computations, so it can be represented by the soft Coulomb hole,
Ch, density functional approximation.44,45,53-58 In the soft
Coulomb hole approximation, the operator 1/rij is replaced with-
(1 - e-Rrij

2)/rij, whereR is a semiempirical parameter. As shown
in previous papers, the choice of the Coulomb hole algorithm
is not unique. Therefore, different functionals, such as those in
ref 83, could have been used after being recalibrated for the
HF-HL model.

Figure 3. Potential energy for the three lowest states of C2. Left: Computations from HF-HL without and with near degeneracy. Right: Computations
from HF-HL with near degeneracy and HF-HL-Ch; bullets for the exact nonrelativistic energy at equilibrium and dissociation.

Figure 4. Binding energy (kcal/mol): values from experiments and from HF-HL-i, HF-HL, and HF computations. Left for homopolar molecules.
Right for hydride molecules.

Figure 5. Residual binding energy error (i.e., the molecular extra
correlation,ηmodel) for the HF, HF-HL, HF-HL-i, and HF*-HL-i
models.
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Computed total energies from the HF-HL function corrected
with the Ch functional are collected in Table 4, and the
corresponding potential energy curves are given in Figure 6. In
the figure, I have included the HF-Ch and the HL-Ch potential
energy curves obtained from the HF and HL wave functions,
and a portion of the HF-HL potential curve near equilibrium
is displayed for comparison. There are small deviations from
experiments for F2 and Be2, but the overall resulting trend is
satisfactory, particularly as it is obtained with the ab initio HF-
HL wave function, which yields nearly correct binding energy,

and with a scaling of the total energy using the soft Coulomb
hole algorithm. This confirms the trend I previously reported
for single bond molecules.

Note that it is easier to account for∑aεa(dyn) than forEc-
(dyn), becauseη(dyn) depends on the chosen computational
model (for the HF-HL model, it is smaller than the HF and
the HL models, but still substantial) and varies from molecule
to molecule at each internuclear distance. On the other hand,
for a given electronic configuration,εa(dyn) is a relatively simple
and well-behaved function58 of the atomic numberZ, which is

Figure 6. Coulomb hole computations. HF-Ch, HL-Ch, and (HF-HL)-Ch potential energy curves for the ground state of H2, Li2, Be2, B2, C2, N2,
O2, and F2.
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nearly constant at different internuclear separations. Furthermore,
the semiempirical parametrization ensures a best fit to the “exact
nonrelativistic energies”, as detailed in previous work.44,45

In Table 4, I report the computed binding energy at equilib-
rium, Eb(HF-HL)-Ch, the total energy at equilibrium,ET(HF-
HL)-Ch-Re, and dissociation,ET(HF-HL)-Ch-R∞, the error in
the computed binding energy,∆Eb, and in the total energy at
dissociation,∆ET∞, relative to accurate nonrelativistic values
(see Table 1), and the equilibrium distance,Re. The data from
the computed binding energy either fromEb(HF-HL-i) or from
Eb(HF-HL)-Ch show that the computational technique I have
proposed yields reasonable or accurate values. This is high-
lighted in Figure 7 where I compare the experimental and the
(HF-HL)-Ch binding energies both for the homopolar mol-
ecules and for the diatomic hydrides.

For the C2 excited states, (HF-HL)-Ch computations yield,
at equilibrium, total energies of-75.92009 and-75.89203
hartree, for the3Πu and the 3∑g

- states, respectively. The
ground-state total energy is-75.92379 hartree (see Table 4 and
right inset of Figure 3), leading to the excitation energies of
0.10 and 0.82 eV, for the3Πu and 3∑g

-; the corresponding
experimental values84,88 are 0.10 and 0.96 eV. The good
agreement between computed and experimental electronic
excitation is in line with previous results43 for an excited state
in LiH.

To complete the tabulation for the homopolar molecules, I
add very preliminary computations for He2 and Ne2; the HF-
HL(1,1) total energies at the experimental equilibrium separation
and at dissociation are-5.723331 and-5.723359 hartree for
He2 and-257.094010 and-257.094104 hartree for Ne2. The
computations with HF-HL-Ch (see Table 4) show a minimum,
but at larger internuclear separation then experimentally ob-
served.

Concerning the computed binding energies at dissociation, I
recall that, due to the molecular symmetry, the 2p electrons are
split into 2pσ different from 2pπ; for the separated atom (in
spherical symmetry), there is no such splitting. This causes some
correlation energy gain (due to the use of different orbitals for
different spins) in the molecule but not in the separated atoms.95

This energy gain is not negligible and amounts to∼2.5 kcal/
mol in F2. The molecular energy at a very large distance
(considered “dissociation distance”) is required to match the
sum of the separated atoms by constraining the basis set
coefficients of the 2pσ orbitals to be degenerate to the 2pπ
orbitals;45 the imposed constraint notably improves the energy
matching of the linear and spherical symmetry computations
(compare the data at dissociation of Table 4 with the equivalent
data in Table 1).

6. Conclusions

The goal of this work is to compare my model with laboratory
data. However, I have included a brief summary of some
recently published computational results to provide a comparison
of the results of my approach with those models.

Quantum Monte Carlo, QMC, computations are known to
providing reliable energies. However, computations96 with
diffusion QMC for the ground state of Li2, Be2, B2, C2, N2, O2,
and F2 performed at the experimental internuclear separation
underestimate the energy by 0.00162, 0.00848, 0.01899, 0.03543,
0.0375, 0.0499, and 0.0434 hartree, respectively, as compared
to the exact nonrelativistic energies given in Table 1. Thus, they
are marginally more accurate than my value for Li2 (see Table
4) but somewhat worse for the remaining molecules. This is
also true for more recent work97 where the deviations are
0.00062, 0.025, and 0.0223 hartree for Li2, C2, and N2,

TABLE 4: Coulomb Hole Functional Energies: Binding (kcal/mol), Eb(HF-HL)Ch, Total (hartree), Et(HF-HL)Ch- Re,
Et(HF-HL)Ch- R∞, Errors ∆Eb (kcal/mol) and ∆Et∞ (mhartree), and Computed Equilibrium Distance (bohr), Re

molecule Eb(HF-HL)Ch -Et(HF-HL)Ch-Re -Et(HF-HL)Ch-R∞ ∆Eb ∆Et∞ Re

H2 [1∑g
+] 109.48 1.17448 1.00000 0.00 0.00 1.40

He2 [1∑g
+] 0.02 5.807470 5.807436 0.00 0.00 6.25

Li2 [1∑g
+] 22.95 14.99253 14.95596 -1.74 -0.02 5.111

Be2 [1∑g
+] 2.09 29.33761 29.33427 -0.31 -0.05 4.167

B2 [3∑g
-] 66.41 49.41007 49.30423 -2.11 -3.57 3.025

C2 [1∑g
+] 147.44 75.92379 75.68883 -0.41 -1.17 2.348

N2 [1∑g
+] 227.83 109.54025 109.17717 -1.11 -1.43 2.041

O2 [3∑g
-] 116.91 150.32046 150.13415 -3.72 -0.65 2.191

F2 [1∑g
+] 39.86 199.53180 199.46827 0.86 -0.07 2.603

Ne2 [1∑g
+] 0.08 257.875856 257.875723 0.00 -0.88 6.40

Figure 7. Experimental and (HF-HL)-Ch, HF-HL, and HF binding energies for homopolar diatomic molecules (left inset) and for diatomic
hydrides (right inset).
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respectively. Hylleraas CI computations,98,99with explicit 1/r12

correlation factors, performed for Be2 and N2, report total
energies underestimated by 0.00594 hartree for N2 and by
0.06697 hartree for Be2 (note in ref 98 the very accurate com-
puted binding energy for Be2, 2.58 kcal/mol, and a discussion
on the errors of experimental binding energies). Recent full CI
computations100,101for N2 report a total energy of-109.3753
hartree with a very extended number of SD-NO100 and a total
energy,101 with frozen core, of-109.278339 hartree, the latter
with a binding energy of 201.55 kcal/mol. Another extended
set of computations102 yields the total energies of-75.81445,
-109.42505,-150.20396, and-199.39929 for C2, N2, O2, and
F2, to be compared to the data in Table 4. A coupled cluster
computation103 for F2 reports a total energy of-199.102796,
and another FCI computation for N2 reports104 a total energy
of -109.3754 hartree. A recent publication105 on C2 establishes
the computational accuracy limit, particularly for coupled cluster
techniques, and contains extensive tabulation for binding energy
and other properties.

From this limited summary, one can appreciate the accuracy
achieved by today’s computational chemistry and also realize
that the infant HF-HL model is a reasonable alternative.
Admittedly, the use of the semiempirical Coulomb hole
algorithm favors the HF-HL computations in the above
comparison.

The computational performance of the HF-HL method can
be assessed by comparison to the well-known HF and MC-
HF1,2,106and VB methods.35,65The bottleneck for the HF-HL,
VB, and nonorthogonal CI107 is the lack of more efficient
algorithms for the orbital optimization.

In general, the HF-HL method is computationally competi-
tive with most VB methods, because it requires shorter
expansions and uses essentially equivalent algorithms. However,
it falls behind MC-HF approaches, despite the shorter expan-
sions, because of the orthogonality of the MC-HF orbitals. The
importance of short expansions has been stressed in the natural
orbital and in the VB literature, particularly as a way to provide
a chemical interpretation on quantum chemical computations.

Recently, I have included67 efficient optimization techniques
and shortened the orbital coefficient list by switching from
Gaussian to Slater-type functions;108 tests of these improvements
are in progress on computations of the CO ground state.67

However, I hope that transfer of HF-HL bond representations
from small to larger molecules will eventually become a way
to deal with HF-HL in large molecular systems. Further
algorithmic improvements in nonorthogonal CI and VB methods
will also improve the HF-HL performance.

In conclusion, I have discussed the application of a new
computational method, the Hartree-Fock-Heitler-London, and
compared Hartree-Fock, Heitler-London, and Hartree-Fock-
Heitler-London potential energy curves for the first and second
period homonuclear molecules. The present results confirm the
conclusion obtained from the study on the diatomic hydrides:
42-45 the HF-HL method leads to realistic binding energies with
relatively few configurations and to accurate total energies with
density functionals.

Neither the HF nor the HL approximations are capable of
systematically reproducing, at least qualitatively, the basic
molecular binding features known experimentally (bond break-
ing and bond formation). However, the two traditional methods
have provided the foundation for many concepts in physical
chemistry and in chemical physics. Their sound basic qualities
of mathematical simplicity and immediate physical interpret-

ability have historically provided two distinct quantum chemical
models for theoretical and computational chemistry.

The HF-HL method merges the two historical paths, with a
marginal increase in computational complexity, while retaining
the easy physical interpretability of the two traditional proposals.

I stress that the computations validate the notion44,45that the
two traditional methods, HF and HL, are both required to
satisfactorily describe the evolution of the electronic structure
in a chemical bond from molecular dissociation to the united
atom.

The limited number of configurations and structures given
in Table 2, which yield the realistic binding energies reported
in Figures 4 and 7, stand in stark contrast to the typical
expansion length of CI computations and remind us of the
proposals originated by Lo¨wdin21 and continued by his school,
where canonical atomic and molecular orbitals are replaced by
new formulations, including natural,23,24alternant,25 Dayson26,27

orbitals, nonorthogonal CI,107 and geminals.28
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achko, E. S., Eds.; Kluwer Academic: Boston, 2003.

(2) Theory and Applications of Computational Chemistry: The First
40 Years; Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E., Eds.;
Elsevier: Amsterdam, 2005.

(3) Hund, F. R.Z. Phys.1927, 40, 742.
(4) Mulliken, R. S.Phys. ReV. 1928, 32, 186.
(5) Herzberg, G.Spectra of Diatomic Molecules; D. Van Nostrand:

Princeton, NJ, 1951 and references thereby given.
(6) Heitler, W.; London, F.Z. Phys.1927, 44, 455.
(7) Hartree, D. R.Proc. R. Soc. A1933, 141, 269 and references thereby

given.
(8) Fock, V.Z. Phys. 1930, 62, 795.
(9) Roothaan, C. C. J.ReV. Mod. Phys.1951, 23, 69.

(10) Roothaan, C. C. J.ReV. Mod. Phys.1960, 32, 179.
(11) Sherrill, D. C.; Schaefer, H. F., III.AdV. Quantum Chem.1999,

34, 143.
(12) Shavitt, I.AdV. Quantum Chem.1999, 34, 189.
(13) Hartree, D. R.; Hartree, W.; Swirles, B.Trans. R. Soc.1939, 299,

238.
(14) Shepard, R.AdV. Chem. Phys.1987, 69, 6.
(15) Sabelli, N.; Hinze, J.J. Chem. Phys.1969, 50, 684.
(16) Roos, B. O.; Siegbahn, P. E. InModern Theoretical Chemistry;

Schaefer, H. F., III, Ed.; Plenum Press: New York, 1977.
(17) Roos, B. O. InMethods in Computational Molecular Physics;

Dierkersen, G. H. F., Wilson, S., Eds.; Reidel: Dordrecht, 1984.
(18) Andersson, K.; Barysz, M.; Bernhardsson, A.; Blomberg, M. R.

A.; Cooper, D. L.; Fulscher, M. P.; da Graaf, C.; Hess, B. A.; Karlstrom,
G.; Lindh, R.; Malmqvist, P.-A.; Nakjima, T.; Neogardy, P.; Olsen, J.; Roos,
B. O.; Schimmelpfennig, B.; Shutz, M.; Seijo, L.; Serrano-Andres, L.;
Siegbhan, P. E. M.; Stalrig, J.; Thorsteinsson, T.; Veryazov, V.; Widmark,
P.-O.MOLCAS, Version 5.4; Lund, Sweden, 2002.

(19) Helgaker, T.; Jensen, H. Ja. Aa.; Jørgensen, P.; Olsen, J.; Ruud,
K.; Ågren, H.; Anderson, T.; Bak, K. L.; Bakken, V.; Christiansen, O.;
Dahle, P.; Dalskov, E. K.; Enevoldsen, T.; Fernandez, B.; Heiberg, H.;
Hettema, H.; Jonsson, D.; Kirpekar, S.; Kobayashi, R.; Koch, H.; Mikkelsen,
K. V.; Norman, P.; Packer, M. J.; Saue, T.; Taylor, P. R.; Vahtras, O.
DALTON, an ab initio electronic structure program, Release 1.0; Norway,
1997.

(20) Peyerimhoff, S. D.; Buenker, R. J. InExcited States in Chemistry;
Nikolaides, C. A., Beck, D. R., Eds.; Reidel: Dordrecht, 1978; p 79.
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