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Gas-phase complexes [La(peptidé)containing 2-4 amino-acid residues have been investigated by
electrospraying solutions containing¥taand the peptide; only complexes in which the peptide contained an
arginine residue were observed. Using the coordination number of eight¥of%ki, T.; Hopkinson, A. C.;

Siu, K. W. M. Chem. Eur. J2007, 13, 1142-1151] and the relative abundances of the hydrates [La(peptide)-
(H20)]3", the number of binding sites provided by the peptides was deduced: Leu-Trp-Met-Arg, 7; Met-
Arg-Phe-Ala, 6; Gly-Arg-Gly, 4; Gly-Gly-Arg 4; and Met-Arg, 4. Density Functional Theory calculations
show that the zwitterionic form of Gly-Gly-Arg preferentially binds®tahrough four coordination sites

the two amide oxygens and the two carboxy oxygens.

Introduction dications, as opposed to transition metals ions, are essentially

Metal ions play a vital role in many biological processes. €lectrostatic?
Metal-ion-cationized peptides have been the subject of tandem In @ preliminary investigation, we were unable to produce
mass spectrometric studies because their spectra are potentiallf-a(Gly)n]** complexesif = 2—5) by electrospraying 4 and
useful for determining the amino-acid sequence in peptides and(Gly).. However, the presence of a relatively strong binding
for elucidating the intrinsic interactions between the metal ion solvent did enable observation of complexes [La(Gly-Gly){CH
and the peptidé-26 However, gas-phase metal-ion complexes CN)J**, [La(Gly-Gly-Gly)(CHsCN)q|**, and [La(Gly-Ala)(CH-
containing neutral (non-deprotonated) peptides have beenCN)qJ*", albeit always in low abundance. Importantly, collision-
reported only for monocations (alkali metal ioh$,20.2224.26 induced dissociation (CID) of these complexes did not result
copper’28and silvet”192%-32) and dications (calciurf nickel 15 in the loss of acetonitriles to ultimately produce [La(G]Y).
copperts and ziné?13. Complexes of triply charged metal ions  Instead, charged-reduced complexes, [La(peptidil)(CHs-
ligated by a neutral peptide are prone to undergoing charge CN)ml%™, resulting from dissociative, interligand proton transfer
reduction reactions by proton abstraction from the peptidé from the peptide to a departing acetonitrile, were produced.
giving [M(peptide— H)]2*. The only [La(peptide§}" complexes Under high collision energies, even the doubly deprotonated
that have been observed contained polypeptidesth a complex [La(peptide- 2H)]* could be produced.
minimum of nine amino-acid residues, e.g., bradykinin (Arg-  One strategy to produce multiply protonated peptides of high
Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg); furthermore, all of the charge, is to ‘immobilize’ the proton on an arginine resiéte.
polypeptides examined had either basic arginine or cysteine Conceptually, in a [La(peptide)j complex, where the peptide
residues, both of which have side chains that might be expectedcontains an arginine residue, the peptide can be in the zwitte-
to interact with a triply charged metal ion. Whether coordination rionic form with the COO group binding the L&" ion and the
with the carbonyl oxygens of the peptide bonds is sufficient to carboxyl proton migrated to the basic side chain of the arginine.
stabilize a given [M(peptidedt complex is, therefore, an open  This arrangement essentially delocalizes a positive charge from

question. the La to the arginine side chain. Bradykinin has two arginine
In our first attempts at producing [M(peptid&)lcomplexes, residues and, as noted previously, the smallest [La(peptide)]

we chose M= La because lanthanum has the lowest third reported to date had bradykinin as the peptide. Our strategy in

ionization energy, 19.2 eV, of all trivalent metdfdn addition, the study of [La(peptideJ] complexes was, therefore, to use

by using the fact that the preferred coordination number of gas- arginine-containing peptides, starting with the larger (tetrapep-
phase L& is eight, it is possible to determine the number of tides) and, if successful, continuing with peptides of smaller
coordination sites provided by the peptide in any [La(peptide)] sizes.

complex that is observed (vide infréh Lanthanum has been

used extensively to probe alkaline earth metal-binding sites gyperimental Section

(especially those for Mg, C&") in proteins? La3* and C&"

have the same electronic structures as inert gases (xenon and Experiments were performed on an MDS SCIEX (Concord,
argon, respectively) and have no valence-shell electrons avail-ON) API 3000 prototype triple-quadrupole mass spectrometer.
able for back-donation; consequently, they behave as hard-acidEach sample was typically 1 mM peptide and 0.1 mM
cations, preferring to bind to “hard” bases (containing oxygen lanthanum (IIl) nitrate in a 50/50 water/methanol mixture. The
and fluorine) rather than to “soft” bases (containing nitrogen, sample was introduced into the pneumatically assisted electro-
phosphorus, and sulfut}. Hence, the interactions between spray ionization (ESI) source at a flow rate ofi&/min,
peptides and the lanthanum trication or alkaline-earth metal and the lens voltages were optimized to produce abundant
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Figure 1. MS spectrum of electrospraying La(N@and Leu-Trp-Met-Arg solution at a declustering potential (DP) of 20 V.

[La(peptide)} ions. For ternary complexes that contained La-
(1), peptide, and acetonitrile, methanol was substituted with
acetonitrile. All peptides were purchased from Bachem Bio-
Sciences (King of Prussia, PA) and were used as received
Lanthanum (Il) nitrate and solvents were available from Sigma/
Aldrich (St. Louis, MO).

complexes giving [La(Leu-Trp-Met-Arg)(#D),]3" and [La(Met-
Arg-Phe-Ala)(HO),3". The most abundant complexes were
[La(Leu-Trp-Met-Arg)(HO)]*" (Figure 2a) and [La(Met-Arg-

.Phe-Ala)(H0),]3" (Figure 2b). In an earlier study, we

determined that the coordination number oftan the gas
phase is eight, using a similar approach in which water was

MS/MS experiments were performed by mass-selecting the used as the auxiliary ligand. This coordination number was

precursor ions using the first quadrupole, colliding them with a
mixture of water and nitrogen in the second quadrupole, and
mass-analyzing with the third quadrupole. The water/nitrogen
mixture was boiled off from liquid nitrogen, which contained
water as a minor componef%64’The collision gas pressure
was varied to probe and control the extent of hydration in the
products. For the sake of simplicity and consistetfcpnly
results at a pressure of 8 mTorr are presented.

Computational Section

Geometry optimizations and energy calculations were per-
formed with Gaussian 08 using the B3LYP exchange-
correlation functionat®=5! The sdd relativistic effective core
potential (ECP) was used for [2(dand a doubly split-valence
basis set 6-31G** for other atoni%.%¢ All stationary points
were characterized by harmonic vibrational frequency calcula-
tions. Relative enthalpies @ K (AH®g) and relative free energies
at 298 K AG°,9g) are reported.

Results and Discussion

Tetrapeptides: Leu-Trp-Met-Arg (604 Da) and Met-Arg-
Phe-Ala (523 Da) Electrospraying a solution of lanthanum (lll)

confirmed by density functional theory (DFT) calculations. In
this current study, we are interpreting the relative abundances
of the hydrates to mean that Leu-Trp-Met-Arg provides seven
binding sites for L&", and Met-Arg-Phe-Ala provides six.
Parenthetically, it is of note that there was a minor channel
involving cleavage of the &-Cs bond of the tryptophan side
chain, giving a product ion atVz 130 and the complementary
doubly charged ion [La(Leu-Trp-Met-Arg 130)F+ atmvz 307.
Them/z 130 ion has also been observed in the fragmentations
of [Cu(dien)(Gly-Gly-Trp){?* (ref 57) and [Trp+ H] .58

DFT calculations have shown that metal ions bind preferen-
tially to the carbonyl oxygens and the terminal amino groups
of peptides. For example, in [Ag(Gly-Gly-Gly)] the Ad' is
four-coordinate, attaching to the three carbonyl oxygens and
the terminal nitrogef? similarly, in [Na(Gly-Gly)[*, the Na
is three-coordinate, attaching to the two carbonyl oxygens and
the amino grouf® In the [La(tetrapeptidejf complexes
examined here, the peptides are probably zwitterionic with the
carboxy group being bidentate. We envision that each of the
peptide bonds will coordinate through its carbonyl oxygen and
through the sulfur atom from the side chain of the methionine
residue. In total, these interactions require six coordination sites;

nitrate and a tetrapeptide generated high abundances of [tetby analogy with [La(Gly-Gly-Arg)}* (vide infra) the terminal

rapeptidet+ nH]"", wheren = 1—-2, and of the doubly charged
complex, [La(NQ)(tetrapeptidef}". Under “mild” conditions
(declustering potential, DR 20 eV), some [La(tetrapeptidéj]

amino group does not coordinate thett,aout instead functions
as a proton acceptor from an amidic NH (see Scheme 1). In
this regard, the coordination in the [La(peptidé)tomplexes

was produced, but the abundance was relatively low (see Figurediffers from that in the singly charged [M(peptidé)omplexes.

1). Figure 2 shows the CID spectra of (a) [La(Leu-Trp-Met-
Arg)]®* and (b) [La(Met-Arg-Phe-Alaf]" at a laboratory
collision energy Ejap) of 15 eV and 8 mTorr with water/nitrogen
as the collision gas. At such a relatively low collision energy,
the predominant reaction was the addition of water to the

The seventh binding site provided by Leu-Trp-Met-Arg is
probably ther-system of the indole, a more powerful electron-
donor than the phenyl ring in Met-Arg-Phe-Ala. The extra
stabilization provided by tryptophan is illustrated by DFT
calculations, which gave the silver ion affinity of tryptophan to
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Figure 2. CID spectra of (a) [La(Leu-Trp-Met-Argdf and (b) [La(Met-Arg-Phe-Alajj" at anEa, = 15 eV and 8 mTorr of water/nitrogen;gives
the hydration number in [La(tetrapeptide}®)n]".

be 62.2 kcal/mol, 5.7 kcal/mol higher than that of phenylala-  Two reaction channels are apparent: charge reduction and

nine®! The difference in metal-ion affinities of these two amino  water attachment. In charge reduction, [La(Gly-Gly-Afg)nd

acids is likely to be higher for 1% because of the triple charge.  [La(Gly-Arg-Gly)]3*" eliminated protonated methanimineN+=
Tripeptides: Gly-Gly-Arg and Gly-Arg-Gly. As mentioned ~ CHz", to give the doubly charged complexes [La(tripeptiee)

in the Introduction, electrospraying a solution oftand Gly- (H2N=CHy)]?*. These doubly charged product ions then as-

Gly-Gly failed to produce the complex [La(Gly-Gly-GIy)], sociated with water giving [La(Gly-Gly-Arg)- (H2N=CH)

but instead resulted in the charge-reduced species [La(Gly-Gly-+ nH20]*" and [La(Gly-Arg-Gly) — (H:N=CH;) + nH0]>".

Gly — H)]2+. However, replacing one glycine residue in the Protonated methanimine hasné value of 29 and is unobserv-

tripeptide with an arginine residuiid result in low abundance ~ able, as this lies below the low mass cutoff of the API 3000

of [La(Gly-Gly-Arg)]3* and [La(Gly-Arg-Gly)E*. Again, the mass spectrometer.

arginine residue apparently plays a key role in stabilizing the At a relatively low collision energy of 15 eV, both [La(Gly-

triply charged lanthanum complexes. The CID spectra of [La- Gly-Arg)]3" and [La(Gly-Arg-Gly)P™ associated with water

(Gly-Gly-Arg)]®* and [La(Gly-Arg-Gly)B' at anEp of 15 eV molecules to form complexes [La(tripeptide}®),]3", where

and 8 mTorr of water/nitrogen are shown in Figure 3, parts a n = 1-5. Among these complexes, the tetrahydrates, [La(tri-

and b, respectively. peptide)(HO)4]%", have the highest abundances (see Figure 3,



J. Phys. Chem. A, Vol. 111, No. 45, 200171565

Generation of [La(peptide}] Complexes in the Gas Phase
SCHEME 1
CHs
NH,
HyC——CH e
HZ/NH/'“NNH
Hy__C 2
HzC . O/ \ H2/C
= P aaid l\\
\ = T o
/CH /O"g / ': \\‘
= / ] AN
H N’ \c/ : A o)
. CHy / ‘CHS\ __—NH
AN N C
.. H H,C
HN s
\ §/C M CH
CH
HN/
[La(Leu-Trp-Met-Arg)]3*
CHg
0
/ N /
/ey fF——cf
’ 1]
;Y
7
/.0 \
l’ e NH
HsC 34,
”””” l!-a\\ s\\\~\ /
,,,, A “0——C,
s A
1
/ / \
! H
HoG / Y CH—C?
l’ \\
o] o]
HoC // \
N C c—NH
CH— \ /
/ ________ HN CH
HoN=---- \ 3+
Hzc\ [La(Met-Arg-Phe-Ala)]
NY
Nz
i/ ®
! )

CN),]®*" at anEpp of 15 eV. Two reaction channels, auxiliary

parts a and b) under a wide range of CID conditions. This Figure 3c shows a CID spectrum of [La(Gly-Gly-Arg)(gH
ligand loss and water attachment, operating individually or in

strongly suggests that Gly-Gly-Arg and Gly-Arg-Gly plus four
water molecules make up the primary solvation shell of'La

We envision that two binding sites are from the anionic carboxy tandem were apparent, and resulting in [La(Gly-Gly-Arg)¢cH
group, a product of proton migration from the carboxylic group CN)z(H20),]*" (n = 1-3) and [La(Gly-Gly-Arg)(CHCN)-

to the basic side chain of the arginine residue, and the other(H,O).]3* (n = 1—4). Among the hydrates, [La(Gly-Gly-
two binding sites are the two carbonyl oxygens of the peptide Arg)(CHsCN), (H20),]*" and [La(Gly-Gly-Arg)(CHCN)-
bonds (Scheme 2). (H20)3]®" had the highest abundances. These results strongly
To verify the aforementioned conclusions regarding™La  corroborate the earlier conclusion that Gly-Gly-Arg provides
coordination, low-energy CID of [La(Gly-Gly-Arg)(CIN)| 3" four La®t binding sites.
and [La(Gly-Arg-Gly)(CHCN),]3" were examined. These The six lowest-energy structures of [La(Gly-Gly-Arg)las
complexes were produced in high abundances when electro-determined by DFT are shown in Figure 4. Complexes contain-
spraying L&" and the tripeptide in the presence of acetonitrile. ing Gly-Gly-Arg in its canonical form have higher energies (by
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Figure 3. CID spectra of (a) [La(Gly-Gly-Arg)]®*, (b) [La(Gly-Arg-Gly)]**, and (c) [La(Gly-Gly-Arg)(CHCN);]®t at anE., = 15 eV and 8
mTorr of water/nitrogenn gives the hydration number in [La(tripeptidey®)-]3", n" in [La(tripeptide)(CHCN)(H.0).]3", n"" in [La(tripeptide)-

(CH3CN)»(H20),]3", andn in [La(tripeptide)— (Ho,N=CH,) + nH,O]?".
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Figure 4. Low-energy structures of [La(Gly-Gly-Arg)] complexes at the B3LYRBAd6-31G** level of theory. Upper values are relative enthalpies
at 0 K (AH®o); lower, italicized values are relative free energies at 298\k%os).
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more than 20 kcal/mol) than those containing the peptide as ato the zwitterionic peptide, and the binding sites are the

zwitterion. Among the canonical structures, the pentacoordinate N-terminal nitrogen, the two amide oxygens, and the two
structureA is slightly higher in enthalpyby 3.3 kcal/mol) than

carboxylic oxygens. By contrast, in structurésand F, both
the tetracoordinate structuBg indicating that the hydrogen bond

lower in enthalpy tha by approximately 3 kcal/mol, 1% is
between the N-terminal amide hydrogen and the amino nitrogen only tetracoordinatedo four oxygens, but there &n additional
is slightly strongerthan the interaction between ¥aand the

hydrogen bondetween the N-terminal amide hydrogen and
N-terminal nitrogen. Structurd can isomerize intoC by

the amino nitrogen. Structur& can isomerize intoF by
transferring the amidic proton to the N-terminal nitrogen; transferring the amidic proton to the amine nitrogen, and once
structureC is 1.9 kcal/mol lower in enthalpy tha. again, it is noteworthy that the lower coordination offtas
Proton transfer from the carboxylic group to the basic side more than compensated for by the strong hydrogen bond.

chain generates the zwitterionic form, and effectively delocalizes Similarly, among the structures of deprotonated [La(Gly-Gly-
the positive charge. In structufe, La®" is pentacoordinated

Gly — H)]?* the lowest-energy structure also hastaound
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Figure 5. CID spectra of (a) [La(Met-Arg§] (at anEn, = 15 eV), and (b) [La(Met-Arg)3* (at anE, = 30 eV) with 8 mTorr of water/nitrogen;
n gives the hydration number in [La(Met-Arg)¢8).]3", nin [La(Met-Arg) — a, + nH,O]?*, andn’ in [La(Met-Arg) — (CH3S=CH,) + nH,OJ**.

to four oxygens from the amide and the carboxylic groups, and separation channels. The first involves formation of théa

the N-terminal nitrogen is hydrogen-bonded to an amidic
hydrogen.

Dipeptide: Met-Arg. For the dipeptides, the presence of an
arginine residue was not sufficient to stabilize the [La-
(dipeptide)}+ complexes and attempts at producing complex
[La(Gly-Arg)]®* were unsuccessful; only the charge-reduced
complex [La(Gly-Arg— H)]?" was observed. However, elec-
trospraying a solution containing £aand the dipeptide Met-
Arg produced [La(Met-Arg)i", albeit in low abundance. We
attribute the existence of this complex ion to the introduction
of an additional binding site, the sulfur atom in the side chain
of the methionine residue.

The CID spectrum of [La(Met-Arg¥f™ at anEyp, of 15 eV

and 8 mTorr of water/nitrogen (Figure 5a) reveals two charge-

plus [La(Met-Arg) — a&]?", and the second fragmentation of
the side chain of the methionine residue yielding methylated
thioformaldehyde, HC=S"—CHjs, and [La(Met-Arg)— H,C=
S—CHg)%". The most abundant channel, however, is the addition
of water to form complexes [La(Met-Arg)@®),]3", wheren

= 1-6, of which the most abundant is [La(Met-Arg){B)4]3*.
This indicates that Met-Arg contributes four sites toSta
binding.

In the Q1 scan, the relative abundance of [La(Met-4fJ)
was higher than that of [La(Met-Ard)j. Furthermore, very little
fragmentation of [La(Met-Arg)3*" occurred under CID condi-
tions, even at ark, as high as 30 eV (Figure 5b), and the
adduction ofonly one water molecule to [La(Met-Argf™ was
observed and in very low abundance throughout a wide range
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Figure 6. CID spectrum of [Ca(Met-Arg¥] at anEi,, = 15 eV and 8 mTorr water/nitrogen.
SCHEME 3
, NH2
HoNs .7/
2 'x /
\C!
W
"\
H2C\
H,C
HsC \
\ ot
S=meeme \ ke
LA CHT N --- -
e P / \C NH,
/’ Y Q7= ~—CH
CH, O/’ / \\‘ ‘\‘ §O O//
/ Vi * o N s’ HoC
/CH\C 3==0 HaC \\ '; / \
L] Ve
H2N~~~ \ CH/ \\\E J/ CH,
~~~~~~ N— i - \CE
-H o\ N -~
CH II \ \\
\2 H,C SN \
\ / VN CH3
C\H2 CH2 o/ lb \\
1 \
O
CH, (!H\ / AN
\ / C /C
HoN'
i e N
,‘c\\ TTH
NG
S NH, GHz
H,oN \
C\H2
[La(Met-Arg)]3* GH.  [La(Met-Arg),|*

of experimental conditions. These experimental observationsLa®" is octacoordinate and has its eight coordination sites
strongly support the hypothesis that in [La(Met-Adg) the saturated by two Met-Arg peptides (Scheme 3).
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