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The triple-exponential fluorescenceδ-response function is derived for the photophysical model of successive
complexation between ligand and analyte. Initially, a complex with 1:1 stoichiometry between ligand and
analyte is formed. Further binding leads to a complex with two analyte molecules per ligand molecule. We
show that this model is uniquely identifiable. This means that all deactivation and exchange rate constants in
the excited state and all spectral parameters associated with photoexcitation and fluorescence emission can
be uniquely determined. The issues of controllability and observability are discussed for this photophysical
system. The conditions, under which a non-controllable or non-observable system is obtained, are described.

1. Introduction

Time-resolved fluorescence is an essential spectroscopic
technique for studying the dynamics of excited-state processes.
Since the relaxation of excited states often can be described by
a set of coupled, linear differential equations, excited-state
systems are formally equivalent with compartmental systems.1-3

Although compartmental modeling is extensively used in
pharmacokinetics, ecology, engineering, and chemical reaction
kinetics (see, e.g., refs 1-3), its use in photophysics (energy
transfer kinetics, fluorescence decay analysis, complex associa-
tion/dissociation, excited-state quenching, etc.) is rather limited.
Overall, relatively little has appeared on the use of compart-
mental analysis of excited-state processes, probably because of
the lack of first-class, user-friendly, global compartmental
software for analyzing time-resolved fluorescence data. Since
the first identification analysis of an intermolecular two-state
excited-state process,4 identifiability studies of compartmental
models of intermolecular as well as intramolecular two-state
and three-state excited-state processes have been reported (see
ref 5 for literature data up to 2000). Lately, we have reported
identifiability analyses of a model for diffusion-mediated
intramolecular excited-state quenching6 and of a model for
intermolecular excited-state proton exchange reaction in the
presence of pH buffer.7 Furthermore, the identifications of
models for rotational diffusion monitored by time-resolved
fluorescence depolarization8-12 and for fluorescence quenching
in aqueous micellar systems13,14 have been investigated. A
review on compartmental modeling and identifiability analysis
in photophysics has been published recently.15

Once a particular photophysical model is proposed for
describing the excited-state dynamics, the first step in compart-
mental analysis should be the derivation of the mathematical
expression of the fluorescence decay. Next, one should inves-
tigate if the underlying parameters defining the model can be
determined unambiguously from error-free fluorescence decay

data. This is the subject of the deterministic identifiability (or
identification) analysis. Such an analysis tells one which
information is theoretically accessible from the fluorescence
decay surface.

In this report, we investigate the photophysical model for
successive association between ligand and analyte M (or co-
reactant M). Compartmental modeling is ideally suited for
describing the excited-state dynamics and for analyzing the
deterministic identification of this kinetic photophysical model.
The paper is organized as follows. In section 2, we give a
compartmental description of the time-resolved fluorescence of
the model of successive association. In section 3, we use
similarity transformation as an identifiability analysis method
to verify which model parameters can be uniquely recovered
from error-free observations. For the model discussed here, the
parameters that have to be identified are excited-state deactiva-
tion/exchange rate constants and spectral factors associated with
photoexcitation and fluorescence emission. In section 4, we
discuss the properties of controllability and observability for
the investigated system. It is shown that zero values for exchange
rates and spectral parameters linked to excitation and emission
lead to non-controllable or non-observable systems, respectively.

2. Compartmental Analysis Description of Fluorescence
Decay Kinetics

Consider a linear, time-invariant, dynamic, intermolecular
photophysical system, consisting of three distinct types of
ground-state species (labeled1, 2, and3) and three correspond-
ing excited species (labeled1*, 2*, and 3*, in that order) as
depicted in Scheme 1. Ground-state species1 can undergo a
reversible association reaction with co-reactant (or analyte) M
to form ground-state species2, which can associate further with
M to form ground-state species3. Scheme 1 represents the
reversible association-dissociation between1 and co-reactant
M with a 1:1 stoichiometry leading to2 and the successive
association with 1:2 stoichiometry between1 and M leading to
3. It is further understood that only species1, 2, and3 absorb
light at the excitation wavelengthλi

ex. Photoexcitation atλi
ex

creates, in principle, the excited species1*, 2*, and 3*, which
can decay by fluorescence (F) and nonradiative (NR) processes.
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The composite rate constant for these processes is represented
by k0m () kFi + kNRi) for speciesm in the excited state. The
excited-state association reaction of1* with co-reactant M is
described by rate constantk21, while k12 stands for the rate
constant of dissociation of2* into 1* and M. The further excited-
state association of2* with M to form 3* is described by rate
constantk32, whereask23 denotes the rate constant of dissociation
of 3* into 2* and M.

If the system shown in Scheme 1 is photoexcited (symbolized
by hν) by a δ pulse which does not significantly alter the
concentrations of the ground-state species (i.e., in the low
excitation limit), the fluorescenceδ-response function,fij(t, [M]),
at co-reactant concentration [M] and at emission wavelength
λj

em due to excitation atλi
ex is given by16

It is assumed that the concentration [M] of the co-reactant is
experimentally known. The 3× 3 matrixA can be represented
in terms of its elements:

with amn given by

It is assumed that all rate constantsk0m andkmn are positive,
leading to negative diagonal and nonnegative off-diagonal
elements ofA.

bi([M]) is the 3 × 1 vector with elementsbmi ) [m*] t)0+ (m
) 1-3), symbolizing the time-zero concentration ofm in the
excited state due to excitation atλi

ex:

whereT indicates transpose.

cj is the 1× 3 vector with elementscmj (m ) 1-3):

The emission weighting factorcmj is defined by16

wherekFm is the fluorescence rate constant of speciesm in the
excited state and∆λj

em is the wavelength interval for monitor-
ing the fluorescence signal aroundλj

em. Fm(λem) denotes the
spectral density of the emission due to speciesm in the excited
state atλj

em, normalized to its complete steady-state fluores-
cence spectrumF, and is defined by16

The triple (A, bi, cj) is called a realization of the fluorescence
δ-response functionfij(t). Equation 1 representsfij(t) in terms
of the realization (A, bi, cj) and shows that the impulse response
function fij(t) is composed of three separate contributions:
photoexcitation (throughbi), fluorescence emission (throughcj),
and deactivation and redistribution of the excited species
(throughA).

The explicit expression offij(t) (eq 1) is triple-exponential:

The eigenvaluesγk (k ) 1-3) of the compartmental matrix
A are given by

with

and

whereamn are the elements ofA.
The pre-exponential factorsRk (k ) 1-3) are given by:

with

SCHEME 1: Schematic Representation of the Kinetic
Model for Successive, Reversible, Intermolecular
Association between Ligand and Analyte M: Species 1
Forms with Co-reactant M the 1:1 Complex 2 and
Subsequently the 1:2 Complex 3; Photoexcitation
(symbolized byhν) Leads to the Excited Species 1*, 2*,
and 3*

fij(t, [M]) ) cj etA bi([M]) t g 0+ (1)

A ) (amn) (2a)

a11 ) -(k01 + k21[M]) a12 ) k12 a13 ) 0

a21 ) k21[M] a22 ) -(k02 + k12 + k32[M]) a23 ) k23

a31 ) 0 a32 ) k32[M] a33 ) -(k03 + k23)

(2b)

bi([M]) ) (b1i, b2i, b3i)
T (3)

cj ) (c1j, c2j, c3j) (4a)

cmj ) kFm∫∆λj
em Fm(λem) dλem (4b)

F(λem) ) F/∫full emission band
F dλem (5)

fij(t) ) ∑
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+

x3η
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-
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u ) - 1
3 (h2 + 1

3
h1
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3 +

12x-12h2
3 - 3h2

2h1
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2 + 12h1
3h3 (8b)

h1 ) a11 + a22 + a33 (8c)

h2 ) -a11a22 - a22a33 - a11a33 + a12a21 + a23a32 (8d)

h3 ) a11a22a33 - a12a21a33 - a11a23a32 (8e)

Rk ) (c1â1k + c2â2k + c3â3k)/∏
m)1
m*k

3

(γk - γm) (9)
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and

Although the imaginary uniti ) x-1 is explicitly present
in the expressions of the eigenvaluesγ2 and γ3 (eq 7b), we
note that these eigenvalues are real. The imaginary uniti is
needed to cancel the imaginary component of the variableη
(eq 8b). The eigenvaluesγ are calculated as roots of the
characteristic (cubic) equation of the matrixA and are real.
Indeed, complex eigenvalues are only possible if there are three
or more compartments in a cycle1 (in the current model, this
means that there also would be a connection between1* and
3*), which is not the case here.

3. Identifiability via Similarity Transformation

In the deterministic identifiability analysis, one examines as
to whether or not the parameters of a given model are uniquely
defined under error-free observations, given that the model is
completely specified.1-3 Therefore, the identification study of
a specific model for excited-state processes investigates if it is
possible to find alternative realizations of the fluorescence
δ-response functionfij(t), say (Ah , bh i, cjj), in addition to the true
realization (A, bi, cj) that satisfy eq 11.

In other words, the fluorescenceδ-response function should be
the same for the true (A, bi, cj) and the alternative (Ah , bh i, cjj)
model parameter sets. The realizations (A, bi, cj) and (Ah , bh i, cjj)
are said to be similar, that is, they are related via similarity
transformation (see further).

There are three possible outcomes to the identifiability
analysis. (1) A model is uniquely (or globally) identifiable if
the parameters of the assumed model can be uniquely deter-
mined from the idealized experiment. In that case, a single set
of model parameters is obtained:Ah ) A, bh i ) bi, andcjj ) cj.
(2) If there is a finite number of alternative parameter estimates
for some or all of the model parameters that fit the data, the
model is locally identifiable: there is a limited set of alternative
Ah , bh i, andcjj. (3) An unidentifiable model is found when there
is an infinite number of alternativeAh , bh i, andcjj.

Here, we choose the similarity transformation approach1,2,17,18

for carrying out the identification analysis because it offers an
excellent method of constructing another (i.e., alternative)
realization (Ah , bh i, cjj) of fij(t) and of determining if the model is
uniquely or locally identifiable or not identifiable at all. An extra
bonus of the similarity transformation approach is that the
relationships between the true and the alternative model
parameters are explicitly provided.

The realizations (A, bi, cj) and (Ah , bh i, cjj) are related as in eq
12:1,2,17,18

whereT is a constant, invertible (or nonsingular) matrix (i.e.,
det T * 0) having the same dimension (i.e., 3) as matrixA:

The set of eqs 12 should be satisfied for each experimental
condition5 (differentλi

ex, ∆λj
em, and analyte concentration [M]).

Therefore,T should be independent ofλi
ex, ∆λj

em, and [M].
Performing the matrix multiplications in eq 12a leads to the

following nine parts of eq 14:

Because the set of eqs 14 must be valid for all values
(including zero) of [M], their right-hand sides should be equal
to zero. From eq 14c (withk21 * 0), it follows then thatt13 )
0. Analogously, from eq 14i (withk32 * 0), we havet23 ) 0,
and hence, from eq 14c, it follows thatt12 ) 0. Now, eq
14a,b,e,f,i reduces to eq 15a,b,c,d,e, respectively. Equation 14c
does not contain any information anymore, whereas eq 14d,g,h
remain unchanged.

â1k ) -(a33 - γk)[b1q1k + a12(b2 - b3

q3k

a32
)] (10a)

â2k ) -(a33 - γk)(a11 - γk)[-b1

q1k

a12
- b2 + b3

q3k

a32
] (10b)

â3k ) -(a11 - γk)[a32(b1

q1k

a12
+ b2) - b3q3k] (10c)

qnk ) ∏
m)1
m*k

3

(ann - γm)/(a11 - a33) n ) 1, 3 (10d)

fij(t, A, bi, cj) ) fij(t, A, bi, cj) (11)

A ) T-1 A T (12a)

bi ) T-1 bi (12b)

cj ) cj T (12c)

T ) (t11 t12 t13

t21 t22 t23

t31 t32 t33
) (13)

t11(k01 - k01) + t21k12 ) [M][ t11(k21 - k21) + t12k21] (14a)

t22k12 + t12(k02 + k12 - k01) - t11k12 )

[M]( t12k21 + t13k32 - t12k32) (14b)

t23k12 + t13(k03 + k23 - k01) - t12k23 ) [M] t13k21 (14c)

t31k23 + t21(k01 - k02 - k12) )

[M][ t22k21 - t11k21 + t21(k32 - k21)] (14d)

t32k23 + t22(k02 + k12 - k02 - k12) - t21k12 )

[M][ t23k32 - t12k21 + t22(k32 - k32)] (14e)

t33k23 + t23(k03 + k23 - k02 - k12) - t22k23 )
[M]( t23k32 - t13k21) (14f)

t31(k01 - k03 - k23) ) [M]( t32k21 - t31k21 - t21k32) (14g)

-t31k12 + t32(k02 + k12 - k03 - k23) )

[M]( t33k32 - t32k32 - t22k32) (14h)

t32k23 - t33(k03 + k23 - k03 - k23) ) [M] t23k32 (14i)

t11(k01 - k01) + t21k12 ) [M] t11(k21 - k21) (15a)

t22k12 - t11k12 ) 0 (15b)

t32k23 + t22(k02 + k12 - k02 - k12) - t21k12 )

[M] t22(k32 - k32) (15c)

t33k23 - t22k23 ) 0 (15d)
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Elementt11 cannot be zero, becauset12 and t13 are already
zero. If t11 ) 0, then the first row ofT is zero leading to detT
) 0. Similarly, the conditionst22 ) 0 or t33 ) 0 also lead (via
eq 15b,d withk12 * 0 andk23 * 0) to a singular matrixT,
which is not a valid transformation matrix. Hence, all of the
diagonal elements ofT must be different from zero:t11 * 0,
t22 * 0, andt33 * 0.

Equation 15a fort11 * 0 produceskh21 ) k21. Analogously,
eq 15c fort22 * 0 yieldskh32 ) k32.

From eq 14g, we havet31 ) 0. Equation 14h witht31 ) 0
leads tot32 ) 0, t33kh32 ) t22k32, and hencet22 ) t33. Now eq
15d giveskh23 ) k23. Equation 15e witht32 ) 0 andkh23 ) k23

yields kh03 ) k03. Equation 14d witht31 ) 0 leads tot21 ) 0,
t22kh21 ) t11k21, and hencet11 ) t22. Equation 15a giveskh01 )
k01 and eq 15b yieldskh12 ) k12. Finally, from eq 15c follows
that kh02 ) k02.

To summarize: the photophysical system depicted in Scheme
1 is uniquely identifiable in terms of the rate constants:{kh01 )
k01, kh02 ) k02, kh03 ) k03, kh12 ) k12, kh23 ) k23, kh21 ) k21, andkh32

) k32} with T ) t11I3, whereI3 stands for the unit matrix of
order three. Now the alternativebh i andcji can be calculated from
eq 12b,c, respectively, withT ) t11I3. It is straightforward to
show that

In eq 16a,b̃i is the 3× 1 vector containing the normalized
true b̃mi (m ) 1-3) defined by

b̃h i is the 3× 1 vector with the normalized alternativeb̃hmi (m
) 1-3):

Analogously, in eq 16b,c̃j and c̃hj represent the 1× 3 vectors
with the normalized truec̃mj and alternativec̃hmj (m ) 1-3),
respectively:

To conclude, the photophysical system with successive
complexation as shown in Scheme 1 is uniquely identifiable in
terms of the rate constants of de-activation and exchange in
the excited state and the normalized spectral factors related to
excitation (b̃i) and emission (c̃j).

4. Controllability and Observability

It is known that the identifiability analysis based on similarity
transformation (section 3) leads to reliable conclusions only for
controllable and observable systems.19,20

The time-invariant system described by eq 1 is controllable
if and only if the 3× 3 controllability matrixR(A, bi) of A
andbi,2,21 defined in eq 19, is of full rank 3 (requiring that det
R(A, bi) * 0).

The controllability matrixR ) R(A, bi) can be represented
in terms of its elements:

whereamn are the elements of matrixA (eq 2) andbmi are the
elements of vectorbi (eq 3). To determine the rank of matrix
R, we calculate its determinant:

with

The photophysical system studied is controllable if rankR ) 3
and, hence, if detR * 0. Conversely, if detR ) 0, the
photophysical system is non-controllable.

The criterion for observability in terms of the matrices of
the system is analogous to that of controllability. The same
photophysical system is observable if and only if the 3× 3
observability matrixO(A, cj) of A andcj,2,21 defined in eq 22,
is of full rank 3 (requiring that detO(A, cj) * 0).

The observability matrixO ) O(A, cj) can be written in terms
of its elements:

with cmj defined in eq 4. The determinant of matrixO is

t32k23 - t33(k03 + k23 - k03 - k23) ) 0 (15e)

b̃h i ) b̃i (16a)

c̃hj ) c̃j (16b)

b̃mi ) bmi/∑
m)1

3

bmi (17a)

b̃hmi ) bmi/∑
m)1

3

bmi (17b)

c̃mj ) cmj/∑
m)1

3

cmj (18a)

c̃hmj ) cmj/∑
m)1

3

cmj (18b)

R(A, bi) ) (bi, Ab i, A2bi) (19)

R )

[b1i b1ia11 + b2ia12 b1i(a11
2 + a12a21) +

b2ia12(a11 + a22) + b3ia12a23

b2i b1ia21 + b2ia22 + b3ia23 b1ia21(a11 + a22) +
b2i(a12a21 + a22

2 + a23a32) +
b3ia23(a22 + a33)

b3i b2ia32 + b3ia33 b1ia21a32 + b2ia32(a22 + a33) +
b3i(a23a32 + a33

2)
]

(20)

detR ) a21
2a32b1i

3 - [(d12 + d13)a32b2i + (p12 - 2p23 -

d13d23)b3i]a21b1i
2 - [(p12 + p23 - d12d13)a32b2i

2 -
(d12p12 + d23p23 - d12d13d23)b3ib2i + (2p12 - p23 +

d12d13)a23b3i
2]b1i + [d13a32b2i

3 + (p12 + p23 -

d13d23)b3ib2i
2 - (d13 + d23)a23b2ib3i

2 - a23
2b3i

3]a12 (21a)

d12 ) a11 - a22, d13 ) a11 - a33, d23 ) a22 - a33, p12 )
a12a21, p23 ) a23a32 (21b)

O(A,cj) ) (cj

cjA

cjA
2) (22)

O )

[c1j c1ja11 + c2ja21 c1j(a11
2 + a12a21) +

c2ja21(a11 + a22) + c3ja21a32

c2j c1ja12 + c2ja22 + c3ja32 c1ja12(a11 + a22) + c2j(a12a21 +
a22

2 + a23a32) + c3ja32(a22 + a33)
c3j c2ja23 + c3ja33 c1ja12a23 + c2ja23(a22 + a33) +

c3j(a23a32 + a33
2)

]T

(23)
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with d12, d13, d23, p12, andp23 given by eq 21b.
The photophysical system is observable if rankO ) 3 and,

hence, if detO * 0. Conversely, if detO ) 0, the photophysical
system is non-observable.

Note that detO (eq 24) is “symmetrical” compared with
det R (eq 21): one has to substitute allbi for cj and invert all
indices fora (i.e., amn becomesanm). Hence, the conditions for
non-observability are symmetrical with those for non-con-
trollability (switch the indicesm andn in amn and substitutebi

for cj.).
In this paper, it is not our aim to give a detailed analysis of

all cases where the investigated photophysical system is non-
controllable or non-observable. It suffices to note that the
photophysical system becomes non-controllable if some transfer
coefficientsamn and some spectral excitation factors (b1i, b2i,
b3i) in eq 20 are equal to zero. For example, non-controllable
systems are found when (i)b1i ) 0 anda12 ) 0, (ii) b3i ) 0
anda32 ) 0, (iii) b2i ) 0 anda21 ) a23 ) 0, (iv) b1i ) b2i ) 0
anda23 ) 0, (v) b2i ) b3i ) 0 anda21 ) 0, and (vi)b1i ) b3i

) 0 anda12 ) a32 ) 0. Similarly, non-observability can be
achieved if some transfer coefficientsamn and some spectral
emission factors (c1j, c2j, c3j) are set to zero in eq 23. For
example, non-observable systems are found when (i)c1j ) 0
anda21 ) 0, (ii) c3j ) 0 anda23 ) 0, (iii) c2j ) 0 anda12 ) a32

) 0, (iv) c1j ) c2j ) 0 anda32 ) 0, (v) c2j ) c3j ) 0 anda12

) 0, and (vi)c1j ) c3j ) 0 anda21 ) a23 ) 0. A non-controllable
or non-observable photophysical system always leads to a single-
or biexponentialfij(t) instead of the triple-exponentialfij(t)

anticipated for the controllable and observable system under
investigation.
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