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Determining the Energy Gap between the Cis and Trans Isomers of H&Y Using Geometry
Optimization within the Anti-Hermitian Contracted Schro“dinger and Coupled Cluster

Methods’

I. Introduction

The reaction of ozone with a substance is known as
ozonization. Ozonization reactions have important roles in the
following areas: (i) the study of air pollution, where ozone can
react with pollutants,(ii) the purification and treatment of water
by ozoné (iii) the beneficial and toxic effects of ozone in
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The cis and trans isomers of the gfCanion, which are important in proposed mechanisms for ozonization,
are studied computationally. Relative energies, geometries, and normal-mode frequencies are calculated with
anti-Hermitian contracted Schadimger equation (ACSE) and coupled cluster methods. Both the ACSE method
and the coupled cluster method with single and double excitations (CCSD) are applied in a correlation-
consistent polarized doublebasis set (cc-pVDZ). Using coupled cluster with singles, doubles, and perturbative
triples (CCSD(T)), we treat the problem with larger basis sets than those in previous work, including correlation-
consistent polarized quadrupiebasis sets with (aug-cc-pVQZ) and without (cc-pVQZ) diffuse functions,
which permit extrapolation of the cis and trans energies to the complete-basis-set limit. The cis isomer is
found to be lower in energy than the trans isomer-8;5 kcal/mol, which is 50% larger in magnitude than

the best previous result 2.2 kcal/mol. The bond lengths between thea@d OH fragments of theis- and
transHO; are calculated to be 1.713 and 1.857 A, respectively, where both bond lengths are significantly
longer than the 1.464 A ©0 bond in hydrogen peroxide. In this paper, we extend the ACSE method [Mazziotti,

D. A. J. Chem. Phys2007, 126, 184101], which computes the two-electron reduced density matrix directly,

to include geometry optimization by a Newton’s method with numerical derivatives. Calculation cisthe
andtransHO;~ isomers by the ACSE yields energies, geometries, and frequencies that are closer to those
from CCSD(T) than those from CCSD.

coupled cluster equatio&.Both the ACSE method and the
coupled cluster method with single and double excitations
(CCSD) are applied in a correlation-consistent polarized dou-
ble< basis set (cc-pVDZ3€ Using coupled cluster with singles,
doubles, and perturbative triples (CCSD(T)), we treat the
problem with larger basis sets than those in previous work,
including correlation-consistent polarized quadrupleasis sets

medicine? and (iv) chemical synthestOf particular importance with (aug-cc-pVQZ) and without (cc-pVQZ) diffuse functiokfs,

are reactions of ozone with saturated organic molecules.
Proposed mechanisms for these reactiochswolve the HQ
radical, the H@™ anion, or derivatives of these molecules RO
and RQ-, where R represents an organic functional group.
While the HQ radical has been significantly studied both
theoretically-® and experimentally,” much less attention has
been given to the HY anion®10

which permit extrapolation of the cis and trans energies to the
complete-basis-set limit.

The anti-Hermitian contracted Schinger equation (ACSE}3
has recently been solved for the two-electron reduced density
matrix (2-RDM), its energies, and properties, without the many-
electron wave function. In the ACSE, the 3-RDM is recon-
structed as a functional of the 2-RDM by its cumulant

An experiment using Fourier rotational spectroscopy in expansiort819 In this paper, we extend previous work to
combination with theoretical calculations has recently shown optimize the ground-state energy from the ACSE with respect
that the trans isomer of the H@adical is lower in energy than 15 molecular geometry. Molecular geometry optimization is
its cis isomeP, where the cis and trans refer to the position of implemented for the ACSE via a Newton’s method with
the hydrogen atom relative to the;@agment of the molecule.  nmerical gradients and Hessians. Calculations with the cis and
From experimental rotational constants, the bond length betweenyans isomers of HE by the ACSE yield energies and

the O and OH fragments of Hgis determined to be 1.688 A, geometries that are closer to those from CCSD(T) than those
which is significantly longer than the 1.464 A-@D bond in from CCSD.

hydrogen peroxidé! In this paper, we study computationally

the relatiye energiesz optimized ggometries, and normal-mode”_ Theory

frequencies of the cis and trans isomers of thesH@nion. _ _ _ -

Calculations are performed with methods based on the anti- The formalism for solving the anti-Hermitian part of the
Hermitian contracted Schadinger equation (ACSEJ 14 and the contracted Schidinger equation is presented in section Il A,

and a method for performing geometry optimization with the

t Part of the “Giacinto Scoles Festschrift”. ACSE as well as the coupled cluster methods is developed in
* E-mail: damazz@uchicago.edu. section Il B.
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A. Anti-Hermitian Contracted Schro'dinger Equation. The
anti-Hermitian part of the contracted ScHioger equation
(ACSE)?~14 can be written as

W [*Fy,H] W= 0 (1)
where each indekrepresents a spin orbital that is the product
of a spatial orbital and one of the two spin functionsandg,

and [ denotes the quantum mechanical commutator. Both the

Hamiltonian operatoH and the elements of the two-electron
reduced density operator (2-RD@&) are expressible in terms
of the fundamental fermionic creation and annihilation operators

=2 @

in which 'K and?V denote a partitioning of the Hamiltonian
into one- and two-electron operators, and

Waga,+ Y Ve

p.a,st

I = ala/aa, ©)

By rearranging the creation and annihilation operators, we can

express the ACSE, as shown explicitly in ref 13, in terms of
only the two- and three-electron reduced density matrices (2-
and 3-RDMs)

L 1 .
DY) = ST W @)

and
ik = Lotk jwo 5
pas g Toasl ®)
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and

_19E(A +¢)
G0
= WQ)|[T AP ()0

) =

(10)

At each, we select the elements defining tBeoperator to
minimize the energy along its gradient, where ¢ha eq 10 is
an arbitrarily small number. The right side of eq 10 is the
residual of the ACSE in eq 1, and the right side of eq 8 is the
residual of the ACSE witH replaced by the anti-Hermitian
S(A). As shown in ref 12, eqs-710 can be expressed and
evaluated in terms of their connected parts, the components
which scale linearly with system siZé

To remove the indeterminacy of the differential equations
from their dependence on the 3-RDM, we can reconstruct the
3-RDM from the 2-RDM by its cumulant expansién
Dy = Dy A 'DLA TDf + FAY A DEHPAYE (1)

where

Al =D}l ~ "D A D] (12)
and the operaton denotes the antisymmetric tensor product
known as the Grassmann wedge product. The cumulant (or
connected) pafA of a p-RDM vanishes unless afl particles

are statistically dependent, and hence, the amount of information
in each cumulanp-RDM scales linearly with the numbét of
particles in the system. Second-order approximations of the
cumulant 3-RDM in terms of the cumulant 2-RDM have been

proposed by Nakatsuji and Yasu###! Mazziotti 21?2 and

where the elements of the 3-RDO are products of three creationy/5iqemoro. Tel. and Perez-RomeAll of these reconstruc-

and three annihilation operators

37k
Toas

= ala/ajaaa, (6)

The 2- and 3-RDMs are normalized §N — 1)/2 andN(N —
1)(N — 2)/6, respectively.

Solution of the ACSE for the ground-state energy and 2-RDM
can be performed by solving a system of differential equations
in a time-like variablel.12123 The system of equations can be

interpreted as minimizing the energy through a sequence of

unitary transformations, ordered by that are applied to a
reference wave functio®’(0), which can be either a single

determinant, as in this paper, or a combination of determinants.
Although these transformations can be understood in terms of

their action on¥(0), the differential equations depend only upon
the 2- and 3-RDMs that are representable bW@l). The
evolution equations for the energy and the 2-RDM are given

by

e QLD RO ™)
and
2i o
5 = POIPTL S @D ®)
where
§= 3 ’*sidalaa, ©)

ikl

tions are compared in nonminimal basis sets in a recent paper.
Here, we use the Nakatstj¥asuda (NY) formul&®2t which
can be derived from the Mazziotti correctidn

NI
Aq,s,t ~

. 3 SACAGSALL (13)
6

wheres equals 1 ifl is occupied in the Hartree-ock reference
and —1 if | is not occupied, and the operatarperforms all
distinct antisymmetric permutations of the indices, excluding
the summation index. With the 3-RDM reconstruction, the
system of differential equations for the ground-state energy and
the 2-RDM can be evolved ihwithout the many-electron wave
function until either (i) the energy, (ii) the least-squares error
of the ACSE, or (iii) the least-squares error of the 1,3-contracted
Schralinger equatiok?*increases.

B. Geometry Optimization. Optimization of molecular
geometries is implemented for the ACSE through numerical
differentiation. A simple Newton’s method is employed to
update the geometry vectgr

Ay=—-Hg (14)
whereAy is the change in the molecular geometry greshdH
are the gradient vector and Hessian matrix of the ground-state
energy as a function of the nuclear coordinates. The components
of the gradient are computed by centered finite differetfces

_ Ey+he) — E(y, — he)
g = 2h.

(15)
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TABLE 1: The Energy Gaps between the Cis and Trans Isomers of H®", E¢is — Eians, Are Reported for the Anti-Hermitian

Contracted Schradinger Equation (ACSE) Method with Cumulant Reconstruction of the 3-RDM with the Nakatsuji—Yasuda
Correction, the Coupled Cluster Method with Single and Double Excitations (CCSD), and the Coupled Cluster Method with
Single, Double, and Perturbative Triples (CCSD(T)) in a cc-pVDZ Basis Set and CCSD(T) in an aug-cc-pVQZ Basis Set

Ecis Etrans Ecis - Etrans Ecis - Etrans

method basis set (au) (au) (au) (kcal/mol)
ACSE cc-pvDz —225.54489 —225.53355 —0.0113 —=7.12
CCsD cc-pvVDZ —225.52887 —225.51543 —0.0134 —8.43
CCSD(T) cc-pvVDZ —225.55008 —225.54096 —0.00912 —5.72
aug-cc-pvVQZz —225.90396 —225.89817 —0.00578 —3.63

whereg is the unit vector with unity in théth position and EABLE (23 ng Ct:ompletthe-Egjllsis-sdeﬁ_Extra&?tlions of théé

; nergy Gaps between the Cis and Trans somers, Eg;
zeros elsewhere, the step sitgsre — Etrans, Are Presented from CCSD(T) Calculations with *
T Double- (cc-pVDZ and aug-cc-pVDZ), Triple- (cc-pVTZ and

hy = "% (16) aug-cc-pVTZ), and Quadruple< (cc-pVQZ and
aug-cc-pvVQZ) Basis Sets with and without Augmented

and the functiorE(y) yields the energy evaluated with molecular ~Functions; the Energy Gaps from the Basis Set
geometry vectoy. The parameter is the precision of the energy Extrapolations (cc-pVXZ Ex. and aug-pVXZ Ex.) are —3.54

and —3.52 kcal/mol, Respectivel
calculations, which scales eabhto produce a gradient whose P y

accuracy is nearly optimal for the precision available. Similarly, basis set (Eai‘f) %gfj")s %ﬁ;;,,'f{g,”f %ﬁ;;,ﬁ‘gp;
the ele_m_ents. of the Hessmnlzématnx are computed by the first- copVDZ 575 55008 —225.54006 —000912 572
order finite-difference formu cc-pVTZ —225.80252 —225.79403 —0.00850  —5.33
cc-pvQz —225.88461 —225.87747 —0.00714  —4.48
E(y + he + he) — E(y + he) — CC-pVVXZ Ex.  —225.92417 —225.91852 —0.00565  —3.54
A aug-cc-pvVDZ —225.65765 —225.65253 —0.00512  —3.21
i — E(y + he) + E() (17) aug-cc-pVTZ ~ —225.84553 —22583972 —0.00581  —3.65
i hh aug-cc-pvVQZ —225.90396 —225.89817 —0.00578  —3.63
! aug-cc-pVXZ Ex. —225.93033 —225.92471 —0.00561 —3.52

where the step sizes are calculations. In the cc-pVDZ basis set, the ACSE energies for

both cis and trans isomers are closer to the energies from CCSD-

(T) than those from CCSD. Consequently, the ACSE energy

gap of—7.12 kcal/mol lies between the energy gaps-&43

. - and—5.72 kcal/mol of CCSD and CCSD(T), respectively. These

tzhneaggg(g ; (1:2)/5 Teg ilulsfer:eergzaet?/oar::?ti/spzig)trhzorlﬁ::\(zEZrOf ACSE results using geometry optimization further corroborate
P d ’ ,earlier single-point calculations that the ACSE with a second-

o . a1 reconiticon mproves upon e enrges fom CCSD,
tions with greater improvement in larger basis sjét!i_vhlle each of

) these methods gives the energy of the cis isomer below the
energy of the trans isomer, we also computed the energy gap
by CCSD(T) in larger basis sets to examine the effect of

The energies, geometries, and normal-mode frequencies ofincreasing basis set size.

the cis and trans isomers of singlet iCare explored in this As shown in Table 2, geometry optimization calculations with
section through the anti-Hermitian contracted Sdimger CCSD(T) were performed in cc-pVXZ and aug-cc-pVXZ basis
equation (ACSE) methdd with the Nakatsuji-Yasuda (NY) sets, where X= D, T, and Q. As the basis set size increased
3-RDM reconstructiotf 2%, the coupled cluster method with  for cc-pVXZ, the absolute energy gap decreased from 5.72 to
single and double excitations (CCSB)and the coupled cluster  4.48 kcal/mol. Interestingly, as the basis set increased for aug-
method with single, double, and perturbative triples (CCSD- cc-pVXZ, the absolute energy gap increased slightly from 3.21
(T)).*> The ACSE and CCSD were applied in a correlation- to 3.63 kcal/mol. The addition of augmented functions decreased
consistent polarized double-(cc-pVDZ) basis set® The the magnitude of the energy gap because the diffuse functions
CCsSD(T) was applied in this basis set, its augmented counter-stabilized the trans isomer more than the cis isomer. This
part, as well as correlation-consistent polarized triple- and difference in sensitivity to the diffuse functions is probably due
quadrupleg basis sets (cc-pVTZ and cc-pVQZ) and their to the longer bond length found in the trans isomer, as shown
augmented counterparts (aug-cc-pVTZ and aug-cc-pMOZ). in Figure 1. Complete-basis-set limits can be extrapolated from
Optimizations of the molecular geometries to minimize the these results by fitting them to the following exponential f&fm
ground-state energies of the isomers were performed in all cases
with the numerical derivatives by the Newton’s method outlined a-+ bexpcx (29)
in section Il B. The single-point energy calculations required
by the geometry optimization were implemented by (i) the  wherex equals 2, 3, and 4 for cc-pVDZ (aug-cc-pVDZ), cc-
author’s code for solving the ACSE by the method outlined in pVTZ (aug-cc-pVTZ), and cc-pVQZ (aug-cc-pVQZ), respec-
section Il A and (ii) the coupled cluster codes in the PSI 3.3 tively. As x — o, the fitted parametea equals the extrapolated
package for quantum chemisty Electron integrals for the  energy. The energy gaps in these two complete-basis-set limits

h = e (18)

Evaluation of the gradierg and the Hessian matrid requires

lll. Applications

ACSE method were computed with GAMESS (U.S.&.). (cc-pVXZ Ex. and aug-cc-pVXZ EX.), reported in Table 2, are
Table 1 reports the energy gaps between the cis and trans—3.54 and—3.52 kcal/mol, respectively.
isomers of H@™, E¢is — Eyans Each of the ACSE, CCSD, and The optimized geometries of the cis and trans isomers of

CCSD(T) energies in Table 1 results from a molecular geometry HO3™, described by the distancesioz ro2o0s androzy and the
optimization that requires approximately 150 single-point energy anglesfo,, 6oz, andz, are shown in Table 3 for the ACSE,
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the aug-cc-pVQZ basis set, modes4 have slightly higher
frequencies for the cis than those for the trans, while modes 1
and 5 have slightly lower frequencies for the cis than those for
the trans. The high frequency of mode 1 corresponds to the
strong O-H bond stretch in both the cis and the trans isomers,
while normal modes 4 and 5 with the lowest frequencies have
large contributions from the stretch of the long-©23 bond.

The frequency analysis confirms and quantifies the weakness
of the long O2-0O3 bonds.

IV. Discussion and Conclusions

Optimization of ground-state electronic energies with respect
to molecular geometries with calculation of the normal modes
has been implemented within the ACSE for computing optimal
geometries and normal-mode frequencies of the cis and trans
isomers of H@". Previous work had developed and imple-
mented the ACSE for energy calculations at a single geometry
or a series of geometries along the Befppenheimer potential
energy surfacé?1® Here, we extended these single-point
calculations to geometry optimization and normal-mode fre-

Figure 1. The geometries of the (a) cis and (b) trans isomers o HO quency calculation through a Newton S method with numerical
are shown after geometry optimization by the CCSD(T) method in an derivatives. Components of the gradient were computed by
aug-cc-pvVQZ. Distances are reported in A. Both the cis and trans centered finite differences, while components of the Hessian
structures exhibit longozozbond lengths (1.713 and 1.857 A) between were computed by forward finite differences. At the optimal
the fragments O+02 and O3-H. In this basis set, the cis isomeris  geometry, the normal modes and their frequencies were
S:‘:\:igoelg:g,'[g d%’]“; Sg;t;ﬁetrhsgsﬁzesgf?;uﬁgzﬁ"ﬁ’s%)'{‘ig"zm&é 'ﬁ‘ computed from the Hessian in internal coordinates by Wilson's
mol, which is 50% smaller in magnitude than the present gap, and a FG methodz.7 The resulltlng geometry optlmlzatlon method. can
02-03 bond length of 1.803 A in the cis isomer, which is significantly € applied to a variety of electronic structure techniques
longer than the present bond length. including, as in the present work, coupled cluster methods. The
energies at the optimal geometries of both the cis and trans

CCSD, and CCSD(T) methods in a cc-pVDZ basis set as well isomers of HQ™ support previous data that the ACSE improves
as for CCSD(T) in an aug-cc-pVQZ basis set. The arfigle _significantly upon CCSD, especially as the basis set size
indicates the angle formed by atom O2 with its two adjacent increased?
atoms; the dihedral angke which is not shown in Table 3, is The energy gap between the cis and trans isomers ef HO
equal to 0 and 180for the cis and trans isomers, respectively. was studied by a variety of methods, ACSE, CCSD, and CCSD-
In the cc-pVDZ basis set, the ACSE geometry parameters have(T). For all methods and basis sets, the cis structure was found
values between those of CCSD and CCSD(T), which indicates to be lower in energy than the trans structure. Larger basis sets,
that the ACSE improves upon the CCSD accuracy in both cc-pVQZ and aug-cc-pVQZ, than those employed in previous
energy and geometry. An important aspect of bothy HiSomers work® permitted extrapolation of the cis and trans energies as
is the long bond lengthoz03 where a similarly longozosbond well as their energy gap to the complete-basis-set limit.
length has been observed in the H@dical® In the aug-cc- Extrapolations of energies from CCSD(T) both with and without
pVQZ basis set, the trans isomer has a slightly smaller distancediffuse functions gave an absolute energy gap of 3.5 kcal/mol
roiozthan that of the cis isomer, slightly wider angls; and between the cis (lower) and trans isomers. We obtained a gap
0os, and a significantly longer bond length.os The shorter that was 50% larger in magnitude than the 2.2 kcal/mol gap
bond lengthrozos = 1.7125 A of the cis isomer supports its  obtained by CCSD(T) in a smaller basis set in previous Work.
greater energetic stability. Figure 1 shows the geometries of Calculations in ref 9 show that the cis isomer is stable against
the cis and trans isomers in the aug-cc-pVQZ basis set. In dissociation into HO and singlet @ (*Ag) by about 15.4 kcal/
comparison to the results in the largest basis set, the ACSE andmol. Interestingly, the ordering of the cis and trans energies for
CCSD in the cc-pVDZ basis set underestimaggos while HO3~ contrasted with the ordering for the H@adical, where
CCSD(T) in the cc-pvVDZ basis set overestimatesos spectroscopy and quantum calculatfimglicate that the trans
Calculations in slightly smaller basis sets, aug-cc-pVTZ and sStructure is energetically more favorable than the cis isomer.
cc-pVQZ, indicate that the optimal geometries in aug-cc-pvVQZ Hence, the addition of an electron to the H@dical causes
are fairly well converged with respect to basis set size. the relative ordering of the cis and trans energies to switch.
The in-plane normal-mode frequencies of the cis and trans Geometry optimization reveals a long bond length between
isomers of H@™ are shown in Table 4 for the ACSE, CCSD, the & and OH fragments of the HO molecule. In the aug-
and CCSD(T) methods in a cc-pVDZ basis set as well as for cc-pVQZ basis set, the cis and trans isomers have 1.7125 and
CCSD(T) in an aug-cc-pVQZ basis set. Because the Hessian1.8568 A 02-03 bond lengths, respectively. The weakness of
matrices in the geometry optimization were computed in the the O2-O3 bond is reflected in the low frequencies of the two
internal coordinates given in Table 3, the normal-mode frequen- lowest normal modes of HO, each of which has a strong
cies were computed by the general method described by Wilson,contribution from the stretch of the @23 bond. The present
Decius, and Cros¥. As with the energies and geometries, the calculations indicate that the bond length tends to decrease with
normal-mode frequencies from the ACSE are between thosethe size of the basis set. The bond length of the cis isomer is
from CCSD and CCSD(T) because the ACSE captures someshorter than the 1.803 A G203 bond length obtained in a
“higher-excitation” effects that are not contained in CCSD. In smaller triple¢ basis set in previous wotkwhere the bond
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TABLE 3: The Optimized Geometries of the Cis and Trans Isomers of HQ~, Described by the Distance$oioz, o203 and rozm
and the Anglesfo,, 603, and T Are Shown for the ACSE, CCSD, and CCSD(T) Methods in a cc-pVDZ Basis Set as Well as for
CCSD(T) in an aug-cc-pVQZ Basis Set; the ACSE Geometry Parameters Have Values between Those of CCSD and CCSD(T)
in the cc-pVDZ Basis Set, and an Important Aspect of Both HQ@~ Isomers is the Long Bond Lengthrozos

geometry parameters

molecule method basis set ro102 0203 002 ro3H Oos

cis ACSE cc-pvDZ 1.4006 1.6108 103.53 0.97842 85.551
CCSD cc-pvDZ 1.4082 1.5499 103.17 0.97762 87.435

CCSD(T) cc-pvDZ 1.3465 1.7925 106.46 0.97368 81.493

aug-cc-pvQz 1.3431 1.7125 106.89 0.96702 86.905

trans ACSE cc-pvVDzZ 1.3173 1.8225 113.67 0.97302 87.929
CCSD cc-pvDZ 1.3122 1.7744 112.67 0.97054 90.367

CCSD(T) cc-pvDZ 1.3174 1.8848 114.80 0.97318 81.493

aug-cc-pvQz 1.3014 1.8568 111.79 0.96503 90.171

aThe dihedral angle, which is not displayed in the table, is equal to 0 and°1®0 the cis and trans isomers, respectively.

TABLE 4: The In-Plane Normal-Mode Frequencies of the Cis and Trans Isomers of H@~ Are Shown in the Table for the
ACSE, CCSD, and CCSD(T) Methods in a cc-pVDZ Basis Set as Well as for CCSD(T) in an aug-cc-pVQZ Basis Set

frequencies of in-plane normal modes (&in

molecule method basis set 1 2 3 4 5

cis ACSE cc-pvDZ 3564.8 1250.8 881.7 497.2 164.6
CCsD cc-pvDZ 3524.9 1352.1 857.3 596.7 321.8

CCSD(T) cc-pvDZ 3598.6 1127.6 938.4 438.8 253.5

aug-cc-pvVQZz 3619.2 1154.9 924.8 464.9 152.5

trans ACSE cc-pvDz 3597.4 1115.2 873.9 523.9 287.1
CCSsD cc-pvDZ 3639.9 1100.2 906.8 500.9 268.7

CCSD(T) cc-pvDZ 3595.7 1100.9 807.8 486.4 253.3

aug-cc-pvQz 3661.5 1101.5 802.2 449.2 257.9

a As with the energies and geometries, the normal-mode frequencies from the ACSE are between those from CCSD and CCSD(T) because the
ACSE captures some “higher-excitation” effects that are not contained in CCSD. In the aug-cc-pVQZ basis set,-MdumgeXlightly higher
frequencies for the cis than the those for the trans, while modes 1 and 5 have slightly lower frequencies for the cis than those for the trans. The high
frequency of mode 1 corresponds to the strorgHObond stretch in both the cis and the trans isomers, while normal modes 4 and 5 with the lowest
frequencies have large contributions from the stretch of the long@®bond.
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