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The cis and trans isomers of the HO3
- anion, which are important in proposed mechanisms for ozonization,

are studied computationally. Relative energies, geometries, and normal-mode frequencies are calculated with
anti-Hermitian contracted Schro¨dinger equation (ACSE) and coupled cluster methods. Both the ACSE method
and the coupled cluster method with single and double excitations (CCSD) are applied in a correlation-
consistent polarized double-ú basis set (cc-pVDZ). Using coupled cluster with singles, doubles, and perturbative
triples (CCSD(T)), we treat the problem with larger basis sets than those in previous work, including correlation-
consistent polarized quadruple-ú basis sets with (aug-cc-pVQZ) and without (cc-pVQZ) diffuse functions,
which permit extrapolation of the cis and trans energies to the complete-basis-set limit. The cis isomer is
found to be lower in energy than the trans isomer by-3.5 kcal/mol, which is 50% larger in magnitude than
the best previous result of-2.2 kcal/mol. The bond lengths between the O2 and OH fragments of thecis- and
trans-HO3 are calculated to be 1.713 and 1.857 Å, respectively, where both bond lengths are significantly
longer than the 1.464 Å O-O bond in hydrogen peroxide. In this paper, we extend the ACSE method [Mazziotti,
D. A. J. Chem. Phys.2007, 126, 184101], which computes the two-electron reduced density matrix directly,
to include geometry optimization by a Newton’s method with numerical derivatives. Calculation of thecis-
and trans-HO3

- isomers by the ACSE yields energies, geometries, and frequencies that are closer to those
from CCSD(T) than those from CCSD.

I. Introduction

The reaction of ozone with a substance is known as
ozonization. Ozonization reactions have important roles in the
following areas: (i) the study of air pollution, where ozone can
react with pollutants,1 (ii) the purification and treatment of water
by ozone,2 (iii) the beneficial and toxic effects of ozone in
medicine,3 and (iv) chemical synthesis.4 Of particular importance
are reactions of ozone with saturated organic molecules.
Proposed mechanisms for these reactions1-4 involve the HO3

radical, the HO3- anion, or derivatives of these molecules RO3

and RO3
-, where R represents an organic functional group.

While the HO3 radical has been significantly studied both
theoretically5,6 and experimentally,5,7 much less attention has
been given to the HO3- anion.8-10

An experiment using Fourier rotational spectroscopy in
combination with theoretical calculations has recently shown
that the trans isomer of the HO3 radical is lower in energy than
its cis isomer,5 where the cis and trans refer to the position of
the hydrogen atom relative to the O3 fragment of the molecule.
From experimental rotational constants, the bond length between
the O2 and OH fragments of HO3 is determined to be 1.688 Å,5

which is significantly longer than the 1.464 Å O-O bond in
hydrogen peroxide.11 In this paper, we study computationally
the relative energies, optimized geometries, and normal-mode
frequencies of the cis and trans isomers of the HO3

- anion.
Calculations are performed with methods based on the anti-
Hermitian contracted Schro¨dinger equation (ACSE)12-14 and the

coupled cluster equations.15 Both the ACSE method and the
coupled cluster method with single and double excitations
(CCSD) are applied in a correlation-consistent polarized dou-
ble-ú basis set (cc-pVDZ).16 Using coupled cluster with singles,
doubles, and perturbative triples (CCSD(T)), we treat the
problem with larger basis sets than those in previous work,
including correlation-consistent polarized quadruple-ú basis sets
with (aug-cc-pVQZ) and without (cc-pVQZ) diffuse functions,16

which permit extrapolation of the cis and trans energies to the
complete-basis-set limit.17

The anti-Hermitian contracted Schro¨dinger equation (ACSE)12,13

has recently been solved for the two-electron reduced density
matrix (2-RDM), its energies, and properties, without the many-
electron wave function. In the ACSE, the 3-RDM is recon-
structed as a functional of the 2-RDM by its cumulant
expansion.18,19 In this paper, we extend previous work to
optimize the ground-state energy from the ACSE with respect
to molecular geometry. Molecular geometry optimization is
implemented for the ACSE via a Newton’s method with
numerical gradients and Hessians. Calculations with the cis and
trans isomers of HO3- by the ACSE yield energies and
geometries that are closer to those from CCSD(T) than those
from CCSD.

II. Theory

The formalism for solving the anti-Hermitian part of the
contracted Schro¨dinger equation is presented in section II A,
and a method for performing geometry optimization with the
ACSE as well as the coupled cluster methods is developed in
section II B.
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A. Anti-Hermitian Contracted Schro1dinger Equation. The
anti-Hermitian part of the contracted Schro¨dinger equation
(ACSE)12-14 can be written as

where each indexi represents a spin orbital that is the product
of a spatial orbital and one of the two spin functions,R andâ,
and [ denotes the quantum mechanical commutator. Both the
Hamiltonian operatorĤ and the elements of the two-electron
reduced density operator (2-RDO)2Γ̂ are expressible in terms
of the fundamental fermionic creation and annihilation operators

in which 1K and 2V denote a partitioning of the Hamiltonian
into one- and two-electron operators, and

By rearranging the creation and annihilation operators, we can
express the ACSE, as shown explicitly in ref 13, in terms of
only the two- and three-electron reduced density matrices (2-
and 3-RDMs)

and

where the elements of the 3-RDO are products of three creation
and three annihilation operators

The 2- and 3-RDMs are normalized toN(N - 1)/2 andN(N -
1)(N - 2)/6, respectively.

Solution of the ACSE for the ground-state energy and 2-RDM
can be performed by solving a system of differential equations
in a time-like variableλ.12,13 The system of equations can be
interpreted as minimizing the energy through a sequence of
unitary transformations, ordered byλ, that are applied to a
reference wave functionΨ(0), which can be either a single
determinant, as in this paper, or a combination of determinants.
Although these transformations can be understood in terms of
their action onΨ(0), the differential equations depend only upon
the 2- and 3-RDMs that are representable by aΨ(λ). The
evolution equations for the energy and the 2-RDM are given
by

and

where

and

At eachλ, we select the elements defining theŜ operator to
minimize the energy along its gradient, where theε in eq 10 is
an arbitrarily small number. The right side of eq 10 is the
residual of the ACSE in eq 1, and the right side of eq 8 is the
residual of the ACSE withĤ replaced by the anti-Hermitian
Ŝ(λ). As shown in ref 12, eqs 7-10 can be expressed and
evaluated in terms of their connected parts, the components
which scale linearly with system sizeN.

To remove the indeterminacy of the differential equations
from their dependence on the 3-RDM, we can reconstruct the
3-RDM from the 2-RDM by its cumulant expansion18

where

and the operator∧ denotes the antisymmetric tensor product
known as the Grassmann wedge product. The cumulant (or
connected) partp∆ of a p-RDM vanishes unless allp particles
are statistically dependent, and hence, the amount of information
in each cumulantp-RDM scales linearly with the numberN of
particles in the system. Second-order approximations of the
cumulant 3-RDM in terms of the cumulant 2-RDM have been
proposed by Nakatsuji and Yasuda,20,21 Mazziotti,21,22 and
Valdemoro, Tel, and Perez-Romero.23 All of these reconstruc-
tions are compared in nonminimal basis sets in a recent paper.19

Here, we use the Nakatsuji-Yasuda (NY) formula,20,21 which
can be derived from the Mazziotti correction19

wheresl equals 1 ifl is occupied in the Hartree-Fock reference
and -1 if l is not occupied, and the operatorÂ performs all
distinct antisymmetric permutations of the indices, excluding
the summation indexl. With the 3-RDM reconstruction, the
system of differential equations for the ground-state energy and
the 2-RDM can be evolved inλ without the many-electron wave
function until either (i) the energy, (ii) the least-squares error
of the ACSE, or (iii) the least-squares error of the 1,3-contracted
Schrödinger equation13,14 increases.

B. Geometry Optimization. Optimization of molecular
geometries is implemented for the ACSE through numerical
differentiation. A simple Newton’s method is employed to
update the geometry vectory

where∆y is the change in the molecular geometry andg andH
are the gradient vector and Hessian matrix of the ground-state
energy as a function of the nuclear coordinates. The components
of the gradient are computed by centered finite differences24
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whereei is the unit vector with unity in theith position and
zeros elsewhere, the step sizeshi are

and the functionE(y) yields the energy evaluated with molecular
geometry vectory. The parameterε is the precision of the energy
calculations, which scales eachhi to produce a gradient whose
accuracy is nearly optimal for the precision available. Similarly,
the elements of the Hessian matrix are computed by the first-
order finite-difference formula24

where the step sizeshi are

Evaluation of the gradientg and the Hessian matrixH requires
2n andn(n + 1)/2 + n + 1 energy evaluations (or solutions of
the ACSE or coupled cluster equations), wheren is the number
of independent nuclear coordinates. In general, the Newton’s
method converges the energy within 10-8 in three-five itera-
tions.

III. Applications

The energies, geometries, and normal-mode frequencies of
the cis and trans isomers of singlet HO3

- are explored in this
section through the anti-Hermitian contracted Schro¨dinger
equation (ACSE) method12 with the Nakatsuji-Yasuda (NY)
3-RDM reconstruction19-21, the coupled cluster method with
single and double excitations (CCSD),15 and the coupled cluster
method with single, double, and perturbative triples (CCSD-
(T)).15 The ACSE and CCSD were applied in a correlation-
consistent polarized double-ú (cc-pVDZ) basis set.16 The
CCSD(T) was applied in this basis set, its augmented counter-
part, as well as correlation-consistent polarized triple- and
quadruple-ú basis sets (cc-pVTZ and cc-pVQZ) and their
augmented counterparts (aug-cc-pVTZ and aug-cc-pVQZ).16

Optimizations of the molecular geometries to minimize the
ground-state energies of the isomers were performed in all cases
with the numerical derivatives by the Newton’s method outlined
in section II B. The single-point energy calculations required
by the geometry optimization were implemented by (i) the
author’s code for solving the ACSE by the method outlined in
section II A and (ii) the coupled cluster codes in the PSI 3.3
package for quantum chemistry.25 Electron integrals for the
ACSE method were computed with GAMESS (U.S.A.).26

Table 1 reports the energy gaps between the cis and trans
isomers of HO3

-, Ecis - Etrans. Each of the ACSE, CCSD, and
CCSD(T) energies in Table 1 results from a molecular geometry
optimization that requires approximately 150 single-point energy

calculations. In the cc-pVDZ basis set, the ACSE energies for
both cis and trans isomers are closer to the energies from CCSD-
(T) than those from CCSD. Consequently, the ACSE energy
gap of-7.12 kcal/mol lies between the energy gaps of-8.43
and-5.72 kcal/mol of CCSD and CCSD(T), respectively. These
ACSE results using geometry optimization further corroborate
earlier single-point calculations that the ACSE with a second-
order reconstruction improves upon the energies from CCSD,
with greater improvement in larger basis sets.13 While each of
these methods gives the energy of the cis isomer below the
energy of the trans isomer, we also computed the energy gap
by CCSD(T) in larger basis sets to examine the effect of
increasing basis set size.

As shown in Table 2, geometry optimization calculations with
CCSD(T) were performed in cc-pVXZ and aug-cc-pVXZ basis
sets, where X) D, T, and Q. As the basis set size increased
for cc-pVXZ, the absolute energy gap decreased from 5.72 to
4.48 kcal/mol. Interestingly, as the basis set increased for aug-
cc-pVXZ, the absolute energy gap increased slightly from 3.21
to 3.63 kcal/mol. The addition of augmented functions decreased
the magnitude of the energy gap because the diffuse functions
stabilized the trans isomer more than the cis isomer. This
difference in sensitivity to the diffuse functions is probably due
to the longer bond length found in the trans isomer, as shown
in Figure 1. Complete-basis-set limits can be extrapolated from
these results by fitting them to the following exponential form17

wherex equals 2, 3, and 4 for cc-pVDZ (aug-cc-pVDZ), cc-
pVTZ (aug-cc-pVTZ), and cc-pVQZ (aug-cc-pVQZ), respec-
tively. As x f ∞, the fitted parametera equals the extrapolated
energy. The energy gaps in these two complete-basis-set limits
(cc-pVXZ Ex. and aug-cc-pVXZ Ex.), reported in Table 2, are
-3.54 and-3.52 kcal/mol, respectively.

The optimized geometries of the cis and trans isomers of
HO3

-, described by the distancesrO1O2, rO2O3, andrO3H and the
anglesθO2, θO3, and τ, are shown in Table 3 for the ACSE,

TABLE 1: The Energy Gaps between the Cis and Trans Isomers of HO3-, Ecis - Etrans, Are Reported for the Anti-Hermitian
Contracted Schro1dinger Equation (ACSE) Method with Cumulant Reconstruction of the 3-RDM with the Nakatsuji-Yasuda
Correction, the Coupled Cluster Method with Single and Double Excitations (CCSD), and the Coupled Cluster Method with
Single, Double, and Perturbative Triples (CCSD(T)) in a cc-pVDZ Basis Set and CCSD(T) in an aug-cc-pVQZ Basis Set

method basis set
Ecis

(au)
Etrans

(au)
Ecis - Etrans

(au)
Ecis - Etrans

(kcal/mol)

ACSE cc-pVDZ -225.54489 -225.53355 -0.0113 -7.12
CCSD cc-pVDZ -225.52887 -225.51543 -0.0134 -8.43
CCSD(T) cc-pVDZ -225.55008 -225.54096 -0.00912 -5.72

aug-cc-pVQZ -225.90396 -225.89817 -0.00578 -3.63

hi ) ε
1/3xi (16)

Hj
i )

E(y + hiei + hjej) - E(y + hiei) -
E(y + hjej) + E(y)

hihj
(17)

hi ) ε
1/4xi (18)

TABLE 2: Two Complete-Basis-Set Extrapolations of the
Energy Gaps between the Cis and Trans HO3- Isomers,Ecis
- Etrans, Are Presented from CCSD(T) Calculations with
Double- (cc-pVDZ and aug-cc-pVDZ), Triple- (cc-pVTZ and
aug-cc-pVTZ), and Quadruple-ú (cc-pVQZ and
aug-cc-pVQZ) Basis Sets with and without Augmented
Functions; the Energy Gaps from the Basis Set
Extrapolations (cc-pVXZ Ex. and aug-pVXZ Ex.) are -3.54
and -3.52 kcal/mol, Respectively

basis set
Ecis
(au)

Etrans
(au)

Ecis - Etrans
(kcal/mol)

Ecis - Etrans
(kcal/mol)

cc-pVDZ -225.55008 -225.54096 -0.00912 -5.72
cc-pVTZ -225.80252 -225.79403 -0.00850 -5.33
cc-pVQZ -225.88461 -225.87747 -0.00714 -4.48
cc-pVVXZ Ex. -225.92417 -225.91852 -0.00565 -3.54
aug-cc-pVDZ -225.65765 -225.65253 -0.00512 -3.21
aug-cc-pVTZ -225.84553 -225.83972 -0.00581 -3.65
aug-cc-pVQZ -225.90396 -225.89817 -0.00578 -3.63
aug-cc-pVXZ Ex. -225.93033 -225.92471 -0.00561 -3.52

a + b exp(cx) (19)
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CCSD, and CCSD(T) methods in a cc-pVDZ basis set as well
as for CCSD(T) in an aug-cc-pVQZ basis set. The angleθO2

indicates the angle formed by atom O2 with its two adjacent
atoms; the dihedral angleτ, which is not shown in Table 3, is
equal to 0 and 180° for the cis and trans isomers, respectively.
In the cc-pVDZ basis set, the ACSE geometry parameters have
values between those of CCSD and CCSD(T), which indicates
that the ACSE improves upon the CCSD accuracy in both
energy and geometry. An important aspect of both HO3

- isomers
is the long bond lengthrO2O3, where a similarly longrO2O3bond
length has been observed in the HO3 radical.5 In the aug-cc-
pVQZ basis set, the trans isomer has a slightly smaller distance
rO1O2 than that of the cis isomer, slightly wider anglesθO2 and
θO3, and a significantly longer bond lengthrO2O3. The shorter
bond lengthrO2O3 ) 1.7125 Å of the cis isomer supports its
greater energetic stability. Figure 1 shows the geometries of
the cis and trans isomers in the aug-cc-pVQZ basis set. In
comparison to the results in the largest basis set, the ACSE and
CCSD in the cc-pVDZ basis set underestimaterO2O3, while
CCSD(T) in the cc-pVDZ basis set overestimatesrO2O3.
Calculations in slightly smaller basis sets, aug-cc-pVTZ and
cc-pVQZ, indicate that the optimal geometries in aug-cc-pVQZ
are fairly well converged with respect to basis set size.

The in-plane normal-mode frequencies of the cis and trans
isomers of HO3

- are shown in Table 4 for the ACSE, CCSD,
and CCSD(T) methods in a cc-pVDZ basis set as well as for
CCSD(T) in an aug-cc-pVQZ basis set. Because the Hessian
matrices in the geometry optimization were computed in the
internal coordinates given in Table 3, the normal-mode frequen-
cies were computed by the general method described by Wilson,
Decius, and Cross.27 As with the energies and geometries, the
normal-mode frequencies from the ACSE are between those
from CCSD and CCSD(T) because the ACSE captures some
“higher-excitation” effects that are not contained in CCSD. In

the aug-cc-pVQZ basis set, modes 2-4 have slightly higher
frequencies for the cis than those for the trans, while modes 1
and 5 have slightly lower frequencies for the cis than those for
the trans. The high frequency of mode 1 corresponds to the
strong O-H bond stretch in both the cis and the trans isomers,
while normal modes 4 and 5 with the lowest frequencies have
large contributions from the stretch of the long O2-O3 bond.
The frequency analysis confirms and quantifies the weakness
of the long O2-O3 bonds.

IV. Discussion and Conclusions

Optimization of ground-state electronic energies with respect
to molecular geometries with calculation of the normal modes
has been implemented within the ACSE for computing optimal
geometries and normal-mode frequencies of the cis and trans
isomers of HO3

-. Previous work had developed and imple-
mented the ACSE for energy calculations at a single geometry
or a series of geometries along the Born-Oppenheimer potential
energy surface.12,13 Here, we extended these single-point
calculations to geometry optimization and normal-mode fre-
quency calculation through a Newton’s method with numerical
derivatives. Components of the gradient were computed by
centered finite differences, while components of the Hessian
were computed by forward finite differences. At the optimal
geometry, the normal modes and their frequencies were
computed from the Hessian in internal coordinates by Wilson’s
FG method.27 The resulting geometry optimization method can
be applied to a variety of electronic structure techniques
including, as in the present work, coupled cluster methods. The
energies at the optimal geometries of both the cis and trans
isomers of HO3

- support previous data that the ACSE improves
significantly upon CCSD, especially as the basis set size
increases.13

The energy gap between the cis and trans isomers of HO3
-

was studied by a variety of methods, ACSE, CCSD, and CCSD-
(T). For all methods and basis sets, the cis structure was found
to be lower in energy than the trans structure. Larger basis sets,
cc-pVQZ and aug-cc-pVQZ, than those employed in previous
work9 permitted extrapolation of the cis and trans energies as
well as their energy gap to the complete-basis-set limit.
Extrapolations of energies from CCSD(T) both with and without
diffuse functions gave an absolute energy gap of 3.5 kcal/mol
between the cis (lower) and trans isomers. We obtained a gap
that was 50% larger in magnitude than the 2.2 kcal/mol gap
obtained by CCSD(T) in a smaller basis set in previous work.9

Calculations in ref 9 show that the cis isomer is stable against
dissociation into HO- and singlet O2 (1∆g) by about 15.4 kcal/
mol. Interestingly, the ordering of the cis and trans energies for
HO3

- contrasted with the ordering for the HO3 radical, where
spectroscopy and quantum calculations5 indicate that the trans
structure is energetically more favorable than the cis isomer.
Hence, the addition of an electron to the HO3 radical causes
the relative ordering of the cis and trans energies to switch.

Geometry optimization reveals a long bond length between
the O2 and OH fragments of the HO3- molecule. In the aug-
cc-pVQZ basis set, the cis and trans isomers have 1.7125 and
1.8568 Å O2-O3 bond lengths, respectively. The weakness of
the O2-O3 bond is reflected in the low frequencies of the two
lowest normal modes of HO3-, each of which has a strong
contribution from the stretch of the O2-O3 bond. The present
calculations indicate that the bond length tends to decrease with
the size of the basis set. The bond length of the cis isomer is
shorter than the 1.803 Å O2-O3 bond length obtained in a
smaller triple-ú basis set in previous work,9 where the bond

Figure 1. The geometries of the (a) cis and (b) trans isomers of HO3
-

are shown after geometry optimization by the CCSD(T) method in an
aug-cc-pVQZ. Distances are reported in Å. Both the cis and trans
structures exhibit longrO2O3bond lengths (1.713 and 1.857 Å) between
the fragments O1-O2 and O3-H. In this basis set, the cis isomer is
energetically more stable than the trans isomer by-3.63 kcal/mol. A
previous study9 in a smaller basis set found an energy of-2.2 kcal/
mol, which is 50% smaller in magnitude than the present gap, and a
O2-O3 bond length of 1.803 Å in the cis isomer, which is significantly
longer than the present bond length.
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length was noted to be the longest known for a peroxide.11 The
corresponding O2-O3 bond length in the HO3 radical, also long,
has been shown from experimental rotational constants to be
1.688 Å.5 Despite the long bond length, multireference effects
do not appear to be as important in HO3

- as they are in the
HO3 radical. In the cc-pVDZ basis set, the occupation numbers
of the 1-RDM from the ACSE deviate from 0 and 1 by, at most,
≈0.03, and the absolute value of the largest two-particle
transition amplitude in CCSD is≈0.15. Future work may be
able to address the importance of these effects more completely
through a recent extension of the ACSE method to treat
multireference correlation.28

In summary, the cis and trans isomers of the HO3
- molecule

have been studied in terms of their relative energies, geometries,
and vibrational normal-mode frequencies with both the ACSE
and coupled cluster methods. Importantly, the present work gives
the first molecular geometry optimization by the ACSE method.
The geometry optimization was performed with numerical
derivatives of the ground-state energy with respect to internal
coordinates. The ACSE calculations in this paper are based upon
only the first revision13 of the ACSE code.12 Future revisions
of the code will include (i) further enhancement of efficiency
and memory allocation, (ii) exploitation of molecular symmetry,
and (iii) exploration of analytical derivatives within the geometry
optimization. These advances will enable the treatment of larger
basis sets, such as those treated by CCSD(T) in the present
study, at a computational cost (r6) closer to CCSD (r6) than
CCSD(T) (r7), wherer is the rank of the one-electron basis set.13

As shown in this work, the ACSE provides a new approach to
the study of physical and chemical phenomena via the direct
calculation of the 2-RDM and both its energy and its properties.
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