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Many common kinetic model reduction approaches are explicitly based on inherent multiple time scales and
often assume and directly exploit a clear time scale separation into fast and slow reaction processes. They
approximate the system dynamics with a dimension-reduced model after eliminating the fast modes by enslaving
them to the slow ones. The corresponding restrictive assumption of full relaxation of fast modes often renders
the resulting approximation of slow attracting manifolds inaccurate as a representation of the reduced model
and makes the numerical solution of the nonlinear “reduction equations” particularly difficult in many cases
where the gap in intrinsic time scales is not large enough. We demonstrate that trajectory optimization
approaches can avoid such severe restrictions by computing numerical solutions that correspond to “maximally
relaxed” dynamical modes in a suitable sense. We present a framework of trajectory-based optimization for
model reduction in chemical kinetics and a general class of reduction criteria characterizing the relaxation of
chemical forces along reaction trajectories. These criteria can be motivated geometrically exploiting ideas
from differential geometry and fundamental physics and turn out to be highly successful in example applications.
Within this framework, we provide results for the computational approximation of slow attracting
low-dimensional manifolds in terms of families of optimal trajectories for a six-component hydrogen combustion
mechanism.

1. Introduction

The idea of modeling chemical kinetics is to map reality to
a mathematical description of the system, that is, to describe
its dynamics by differential equations. Here, we consider
homogeneous reacting systems modeled by ordinary differential
equations (ODEs). As these models are often very high-
dimensional, they are inappropriate for efficient spatiotemporal
simulations, in particular, if they involve multiple time scales
causing severe stiffness.

This is where model reduction comes into application. A
central issue of model reduction is to address the discrepancy
between the need to develop detailed high-dimensional multi-
scale models (e.g., in chemical kinetics) and the inefficiency
of their use in computationally demanding numerical simula-
tions. The ultimate goal of all model reduction techniques in
chemical kinetics is to find a low-dimensional approximation
of a reaction mechanism which contains all of the essential
information to still describe the system accurately enough.

This is equivalent to identifying the essential degrees of
freedom with respect to the system properties of interest, which
are often related to long-term dynamics. To construct low-
dimensional approximations, many model reduction techniques
therefore make use of intrinsic multiple time scales. If the long-
term behavior of a system is to be studied, fast transient
dynamical modes are assumed to be relaxed within the reduced
model approximation replacing the original system of differential

equations by one of lower dimension without losing too much
key information about the long-term system dynamics.

However, in simulations of technical processes, usually all
species are relevant for the properties of interest and therefore
have to be considered, not only the ones included in the reduced
mechanism. Hence, the concentrations for the species of the
full mechanism need to be automatically calculated as functions
of the species of the reduced mechanism. This so-called
automatic species reconstruction is implemented in most of the
model reduction algorithms, independently of the concepts on
which the methods are based.

Comprehensive overviews of the most common model
reduction techniques and their underlying concepts can be found
in refs 1 and 2. Most modern model reduction methods are based
on one of the following three general strategies: lumping,3

sensitivity analysis,4-6 and time scale analysis. Model reduction
techniques based on time scale analysis range from the quasi-
steady-state assumption (QSSA)7,8 and the partial equilibrium
approximation (PEA)9 to modern computational methods as
computational singular perturbation (CSP) methods,10,11inertial
manifold approaches,12 intrinsic low-dimensional manifolds
(ILDM) 13-15 and ideas from integer optimization16,17to eliminate
“unnecessary” species and reactions.

Apart from methods making explicit use of time scale
separation, powerful geometrical approaches to simplification
of chemical kinetics have been investigated by Fraser and
Roussel.18-22 Fraser’s algorithm is based on a fixed point
iteration of a functional equation obtained from the underlying
system of differential equations within a phase space formalism.* Corresponding author. E-mail: dirk.lebiedz@biologie.uni-freiburg.de.
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A truncated version of this functional equation has recently been
introduced in order to accelerate the computation of ILDMs.23

Other approaches not explicitly based on time scale separation
are the rate-controlled constrained-equilibrium (RCCE) method
first proposed by Keck and Gillespie24 and later further
developed by Hamiroune et al.25 and the invariant constrained
equilibrium edge pre-image curve (ICE-PIC) method recently
introduced by Ren et al.26,27

Lebiedz28 presented a novel approach to model reduction in
chemical kinetics that is based on the optimization of trajectories
subject to given constraints. The resulting trajectories are
supposed to be maximally relaxed with respect to an optimiza-
tion criterion chosen to be minimal entropy production rate in
ref 28. This approach assures that at least an approximation of
slow attracting manifolds that is “as good as possible” is found
even in regions, where other model reduction methods as for
example the ILDM13 requiring a clear time scale separation fail.

Pursuing Lebiedz’s optimality concept, here, we present a
generalized trajectory-based optimization approach suitable for
the accurate computational approximation of slow attracting low-
dimensional manifolds and its adaptation and application to
realistic kinetic models and higher-dimensional manifolds. In
particular, we develop a novel criterion for the desired maximal
relaxation of forces along reaction trajectories parametrizing the
reduced model. We motivate our criterion on the background
of a geometric interpretation of chemical forces.

2. General Methodology

In this work, the novel model reduction concept for chemical
kinetics first proposed by Lebiedz28 is further developed and
considerably extended. Our conceptual idea is based on finding
optimal criteria related to maximal relaxation of “chemical
forces” along phase space trajectories under given constraints.
This idea is exploited by formulating optimization problems for
the numerical computation of such trajectories and their use as
a representation of a reduced model in terms of slow attracting
manifolds spanned by these trajectories.

An important practical issue of model reduction in chemical
kinetics is the a priori choice of some species as so-called
reaction progress variables which serve as representatives of
the reduced model in terms of a parametrization. In our context
this finds a fully natural realization in terms of initial conditions
of trajectories. For fixed initial values of those progress
variables, both a special trajectory converging toward the
equilibrium point in phase space and the a priori unknown initial
values of the remaining species (species reconstruction) are
calculated at the same time as a solution of the optimization
problem. Our species reconstruction procedure can be interpreted
as the maximal relaxation of “chemical forces” or dynamic
modes of a chemical system under the constraints of fixed
progress variables.

Our trajectory-based optimization approach for model reduc-
tion in chemical kinetics can generally be formulated as

subject to

and subject to conservation relations.ck are the concentrations
of chemical species,Ifixed is the index set that contains the indices
of variables with fixed initial values (the reaction progress
variables). The complete system dynamics, that is, the underly-
ing ODE system, enters the problem formulation as a constraint
via eq 1b. Hence, a solution of problem 1 is always consistent
with the full model. The initial concentrations of the reaction
progress variables are fixed in eq 1c. When approaching the
equilibrium pointceq, the system dynamics becomes infinitely
slow. Therefore, the equilibrium point is approximated in eq
1d within a surrounding of small radiusε for the reaction
progress variables. A priori the end timeT is free and is
determined within the optimization such that eq 1d is fulfilled.
Alternatively, the timeT can be fixed such that the final state
of the system is very close to the chemical equilibrium point,
making eq 1d redundant. The objective functionalΦ(c(t)) in
eq 1a describes an optimization criterion related to the degree
of relaxation of “chemical forces”.

The generality of problem 1 leaves some freedom, and
especially the choice of the criterionΦ(c(t)) affects both success
and degree of accuracy of the resulting method. A suitable
criterion Φ(c(t)) should at least fulfill the following three
requirements: (1)Φ should describe the extent of relaxation
of “chemical forces” in the evolution of trajectories to equilib-
rium; that is, it should be minimal along a trajectory that is as
close to equilibrium as allowed by the initial constraints (1c).
(2) It should consist of easily accessible data (e.g., reaction rates,
chemical source terms and their derivatives). (3) It should be
continuously differentiable along reaction trajectories.

Another desirable, but not necessary property is the following
invariance property: Suppose an optimal trajectory (c̃(t)) has
been computed as a solution of eq 1. Take the concentrations
of the progress variables at some timet1 > 0 as new initial
concentrations and solve eq 1 again. If the resulting trajectory
(ĉ(t)) is the same as the part of the original trajectory that starts
from t1 (i.e., ĉ(t) ) c̃(t + t1) ∀ t), the optimization criterionΦ
is consistent.

This property is a strong demand and will not be fulfilled in
general. However, an invariant manifold can in principle be
constructed without a consistent criterion by solving eq 1 for
initial values ck

0, k ∈ Ifixed on the boundary of the desired
domain and spanning the low-dimensional manifold by the
resulting trajectories.

In the next section, we will discuss possible choices forΦ
by briefly reviewing the criterion of minimal entropy production
chosen by Lebiedz28 and subsequently developing an alternative
but related choice for an optimization criterion which is
motivated by fundamental considerations related to geometric
interpretation of forces as curvature of trajectories.

3. Optimization Criteria

In order to derive a thermodynamic criterion which is related
to maximal relaxation of “chemical forces” along phase space
trajectories, Lebiedz28 considered a generalized concept for the
“distance” of a chemical system from its attractor. Under isolated
conditions, the attractor of a chemical system is the thermody-
namic equilibrium. In Lebiedz’s model reduction approach, a
special trajectory (called minimal entropy production trajectory
(MEPT)) converging toward equilibrium is calculated such that
the sum of affinities of the entropy production rates of single
reaction steps is minimized.28-30 The entropy production rate
is closely related to the concept of chemical affinity which was

min
ck

∫0

T
Φ(c(t)) dt (1a)

dck

dt
) fk(c) k ) 1, ...,m (1b)

ck(0) ) ck
0 k ∈ Ifixed (1c)

|ck(T) - ck
eq| e ε k ∈ Ifixed (1d)
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first introduced by de Donder31 as the driving force of chemical
reactions. For an elementary reaction stepj with the forward
and backward reaction ratesRjf and Rjr, the concept of
chemical affinity can be related to the concept of entropy
production by the following relation:32

where diSj/dt is the entropy production rate for reactionj andR
is the gas constant. Entropy production rates are additive for
several elementary reaction steps. Therefore, the total entropy
production rate (the sum of the entropy production rates of all
n elementary reaction steps) can be computed for an arbitrary
reaction system, if kinetic data are available and a detailed
elementary reaction step mechanism is known.

An intuitive justification for the minimization of the total
entropy production rate in the optimization problem 1 is
provided by relation 2. In partial equilibrium, the entropy
production rate diSj/dt of a single elementary reaction step is
zero, since in partial equilibrium forward and backward reaction
rates are equal. This is equivalent to the thermodynamic driving
force being fully relaxed, which in turn is an equivalent of the
assumption of model reduction techniques based on time scale
separation. There it is assumed that fast reaction modes relax
into partial equilibrium or quasi-steady-states and the whole
system can be satisfactorily described by the slow modes only.
But unlike the methods explicitly based on time scale separation,
it is not necessary in the MEPT approach to actually identify
and analyze the dynamical modes by, for example, numerically
expensive eigenvalue decomposition and solve highly nonlinear
algebraic “reduction equations”. A configuration with as many
elementary reaction steps as possible being close to quasi-
equilibrium in a chemical sense is determined automatically by
the optimization algorithm. The logarithmic ratio of forward
and backward reaction rates in eq 2 has the meaning of a
reaction affinity.32 It is weighted by the absolute difference
between the rates for forward and backward reactions. Thus,
fast processes produce more entropy than slow ones, and the
fast reactions have a stronger weighting factor in the optimiza-
tion problem 1, which is fully natural for our purpose.

In the context of the general optimization problem (1), using
entropy production as an optimization functional means

For isothermal isobaric systems, (negative) Gibbs free energy
instead of entropy is the Lyapunov function. However, as

the minimization of (negative) Gibbs free energy production
rate along a trajectory is realized with the same criterionΦ from
eq 3, making the MEPT approach valid for isothermal isobaric
systems as well.

As stated above, a suitable objective functionalΦ(c(t)) should
characterize the relaxation of “chemical forces”. A more
fundamentally rooted criterion in this context can be derived
on the basis of the concept of curvature of trajectories in phase
space and subsequently be combined with the entropy produc-
tion.33 From a physical point of view, curvature is closely related
to the geometric interpretation of a force. Our aim is to transfer

the principle of “force) curvature” to the field of chemical
systems and look for a corresponding variational principle.

In chemical systems, dissipative forces are active. Slow and
fast dynamic modes result in an anisotropic force relaxation
behavior in phase space. To formally be able to describe this
anisotropy for a chemical system whose dynamics are described
by the ODE c̆ ) f(c), curvature of the trajectoriesc(t) as
geometrical objects in phase space is considered. The following
relations hold:

with J(f) being the Jacobian of the right-hand side of the ODE
c̆(t) ) f(c(t)). Hence, we may define the curvature ofc(t) as the
vector norm

Transferring the fundamental geometric principle of force being
equivalent to curvature mentioned above, we relate the curvature
of trajectories in a kinetic modelc̆ ) f(c) to the forces driving
the chemical system toward equilibrium by subsequent relax-
ation of dynamical modes. In thermodynamic equilibrium, those
chemical forces become zero. In search of a criterion which
characterizes maximal relaxation of chemical forces, it is
tempting to describe the relaxation of the system toward
equilibrium by minimal remaining chemical forces, that is, in
our context by minimal total (“integrated”) curvature of
trajectories defined by the objective function

in the general optimization problem (1).
Interestingly, from a different point of view, the objective

function (7) can also be interpreted as minimizing the length
of a trajectory in a suitable Riemannian metrics.

For any continuously differentiable curveγ(t) on a
Riemannian manifold, the lengthL of γ is defined as

with gγ(t) being a scalar product defined on the tangent space
of the curve in each point. If the Riemannian metricsgγ(t) is
chosen as

the “length-minimizing” objective functional equivalent to eq
7 is now

The solution trajectory of this problem can be interpreted as a
geodesic, that is, a curve which minimizes the length of the
path between two points in a possibly curved manifold. Hence,
the “distance from equilibrium in a chemical sense” can be
formulated here in an explicit mathematical form based on
concepts from differential geometry.

To describe the distance of a chemical system from its
thermodynamic equilibrium in an very general way, the
Riemannian metrics

diSj

dt
) R(Rjf - Rjr) ln(Rjf

Rjr
) (2)

Φ(c(t)) ) ∑
j)1

n diSj

dt
(3)

dG
dt

) -T
diS

dt
(4)

c̈(t) ) d2c

dt2
) dc̆

dt
) dc̆

dc
.dc
dt

) J(c̆(t)).c̆(t) ) J(f(c(t))).f(c(t)) (5)

|c̈(t)| ) |J(f(c(t))).f(c(t))| (6)

Φ(c(t)) ) |J(f(c)).f(c)| (7)

L(γ) ) ∫γ xgγ(t)(γ̆(t),γ̆(t)) dt (8)

min∫0

T xgγ(t)(c̆(t), c̆(t)) dt (10)
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can be considered, whereA is a positive definite matrix. As a
possible choice forA, we propose the diagonal matrix with the
entries

which represents an anisotropic “kinetic weighting” of the phase
space directions by including the entropy production rate. Here,
n is the number of reactions,νkj are the stoichiometric
coefficients describing the degree to which the chemical species
k participates in reactionj, and diSj/dt is the entropy production
rate of reactionj. akk is the sum of the entropy production rates
of all elementary reactions in which speciesk takes part.A is
positive definite since according to the Second Law of Ther-
modynamics diSj/dt > 0 holds for any spontaneous process, and
thereforeakk > 0 for all k ) 1, ...,m.

While this choice forA is highly successful in the described
context, other choices are possible and will be subject to further
considerations.

In particular, the (negative) second differential of entropy
which is used for the so-called Shahshahani metrics34 is a
common choice in different fields. For simple systems,A
reduces to a diagonal matrix of the reciprocals of species
concentrations with that choice. In ref 35, this metrics is used
in the investigation of Darwinian systems for the description
of evolution processes. An application of the Shahshahani
metrics for model reduction purposes can be found in ref 2.

By having a positive definite matrixA in eq 11, an objective
function in the general problem (1) is readily formulated as

which obviously includes the formulation in eq 7 for the choice
A ) Im (identity matrix).

We will demonstrate in the next sections that this criterion
yields highly promising results for the computation of slow
attracting manifolds in our optimization approach.

4. Numerical Methods

For the numerical solution of the boundary value problem
stated in eq 1, elaborate mathematical optimization techniques
exist. In the example applications presented in the following,
the software package MUSCOD-II 36,37 originally developed
for solving large scale optimal control problems for nonlinear
dynamical systems is used for the numerical solution of problem
1. In MUSCOD-II, the direct multiple shooting method36 is
implemented. By discretizing the state variables, the originally
infinite dimensional problem is transformed into a finite
dimensional nonlinear programming problem (NLP), which then
can be solved by a sequential quadratic programming (SQP)
method. The state trajectories are numerically integrated only
on small subintervals of the full time horizon, which are initially
decoupled, using a BDF-type (backward differentiation formu-
las) stiff integrator.38 As a result, for each multiple shooting
interval an initial value problem has to be solved instead of
just one for the whole time horizon. Although the resulting NLP
is much larger than the one resulting from the single shooting
approach, the mathematical structure of the multiple shooting
discretization can be exploited such that the related optimization
problem can be solved with approximately the same effort as
in the single shooting approach.39 However, compared with

single shooting, multiple shooting is much more robust, in
particular, for the computation of derivative information, which
is required for the SQP optimization.

Another significant advantage of the multiple shooting
approach is that neighboring problems can be initialized very
efficiently from the previous optimal trajectory. In the so-called
initial value embedding strategy,40,41 formally, a linear extrapo-
lation prediction of the previous solution is used to calculate
an initial guess for the new solution if the same problem needs
to be solved with just slightly modified initial values. The
incorporation of a priori information about the optimal solution
(trajectory) by setting initial conditions for the state variables
at the multiple shooting nodes generally results in highly
improved and fast convergence to the new solution which
actually makes the solution of parametrized optimization
problems very efficient. This strategy can be efficiently exploited
in model reduction, since reduced models often need to be
computed and tabulated for a whole range of reaction progress
variables.

The initial value embedding strategy is implemented and
successfully exploited for reasons of practical applicability of
a model reduction approach for the first time in this work. For
both, the offline tabulation and the online use in CFD
(computational fluid dynamics) simulations whole families of
optimal trajectories need to be calculated. For a specified range
of the reaction progress variables, these optimal trajectories have
to be calculated on a discrete grid, where neighboring grid points
only slightly differ in the values of the progress variables (see
Figure 1).

These ideas cannot only be used to calculate families of
optimal trajectories spanning two-dimensional manifolds as
demonstrated in this work, but can also easily be extended to
large-scale mechanisms and the calculation of optimal trajec-
tories spanning higher-dimensional manifolds. For most com-
mon model reduction techniques, the calculation of higher-
dimensional manifolds is hardly practicable because of the
immense computational effort that is necessary. Using MUS-
COD-II together with the initial value embedding strategy to
solve the optimization problem set up in our model reduction
approach results in drastically reduced computing times because
of the highly accelerated convergence of the optimization
problem. Therefore, it should even be efficiently applicable to

akk ) ∑
j)1

n

νkj

diSj

dt
(k ) 1,...,m) (12)

Φ(c(t)) ) |Jf|A (13)

Figure 1. Application of the initial value embedding strategy to the
calculation of families of optimal trajectories illustrated for the hydrogen
combustion mechanism (eq 14): For a discrete grid of initial values of
the reaction progress variables H2 and H2O (depicted as cruxes), optimal
trajectories spanning a two-dimensional manifold are calculated (dotted
lines).
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large-scale mechanisms for which reduced models often need
to be represented by higher-dimensional manifolds.

5. Results

To demonstrate the practical success of the proposed model
reduction method, we present results based on the following
example mechanism for H2 combustion.

with the rate constants

The kinetic model for the reaction mechanism is given by

Together with the conservation relations

this mechanism yields a system with four degrees of freedom.
First, we investigate and extend the MEPT approach proposed

by Lebiedz28-30 on the basis of the given mechanism for
hydrogen combustion (eq 14). Although (negative) Gibbs free
energy is the Lyapunov function of this isothermal isobaric
system, we will call the approach MEPT approach as in ref 28.
As stated above, the reduction criterion is the same as the
minimal entropy production criterion. We present results for
the computation of one-dimensional slow attracting manifolds
and demonstrate an extension to two-dimensional manifolds,
which are efficiently computed as families of MEPTs exploiting
initial value embedding (see section 4) for parametric optimiza-
tion in order to compute neighboring optimal trajectories.

By choosing only one reaction progress variable and fixing
its initial concentration, a single trajectory with “maximally
relaxed chemical forces” (here characterized by a minimal total
entropy production rate) can be computed. In Figure 2, the
MEPT for a fixed initial concentration of H2O, cH2O(0) ) 10-4,
and the constantsC1 ) 2.0 andC2 ) 1.0 in the conservation
equations are depicted as a bold black line. The equilibrium
value is (cH2, cH, cO2, cO, cH2O, cOH) ) (0.27, 0.05, 0.135, 0.02,
0.7, 0.01).

As long as there is at least one degree of freedom left in the
system, the problem formulation (1) permits the choice of more
reaction progress variables. To illustrate how the MEPT method
can be applied for model reduction to higher dimensions,
families of MEPTs are calculated using H2O and H2 as reaction
progress variables by applying the initial value embedding
strategy.

First, the initial concentration of H2 is varied from 0.3 to
0.95 with the initial concentration of H2O set to 10-4. Then the
initial concentration of H2 is set to 0.3, and the initial
concentration of H2O is varied from 0.05 to 0.65. In Figure 2,
the trajectories belonging to the family of MEPTs calculated

Figure 2. Minimal entropy production trajectories computed for
reaction mechanism 14 as solution of problem eq 1 forΦ(c(t)) ) ∑j)1

n

diSj/dt: dotted lines represent MEPTs with H2O and H2 as reaction
progress variables, which span a two-dimensional attracting manifold;
the thick black line represents MEPT with only H2O as reaction progress
variable; dashed lines are arbitrary trajectories bundling on the MEPT
manifolds.

H2 w\x
k(1

2H

O2 w\x
k(2

2O

H2O w\x
k(3

H + OH

H2 + O w\x
k(4

H + OH

O2 + H w\x
k(5

O + OH

H2 + O w\x
k(6

H2O (14)

k1 ) 2.0 k-1 ) 216.0

k2 ) 1.0 k-2 ) 337.5

k3 ) 1.0 k-3 ) 1400.0

k4 ) 1000.0 k-4 ) 10800.0

k5 ) 1000.0 k-5 ) 33750.0

k6 ) 100.0 k-6 ) 0.7714 (15)

dcH2

dt
) - k1cH2

+ k-1cH2

2 - k4cH2
cO + k-4cHcOH -

k6cH2
cO + k-6cH2

O

dcH

dt
) 2k1cH2

- 2k-1cH2

2 - k3cH2
cO + k-3cHcOH + k4cH2

cO -

k-4cHcOH - k5cO2
cH + k-5cOcOH

dcO2

dt
) - k2cO2

+ k-2cO
2 - k5cHcO2

+ k-5cOcOH

dcO

dt
) 2k2cO2

- 2k-2cO
2 - k4cH2

cO + k-4cHcOH + k5cHcO2
-

k-5cOcOH - k6cH2
cO + k-6cH2

O

dcH2O

dt
) - k3cH2O

+ k-3cHcOH + k6cH2
cO - k-6cH2O

dcOH

dt
) k3cH2O

- k-3cHcOH + k4cH2
cO - k-4cHcOH +

k5cHcO2
- k-5cOcOH (16)

2cH2
+ 2cH2O

+ cH + cOH ) C1

2cO2
+ cH2O

+ cO + cOH ) C2 (17)
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with two reaction progress variables are depicted as dotted lines.
One can see that those MEPTs span a two-dimensional manifold.
All of them relax to an attracting trajectory, the one-dimensional
manifold (a single MEPT) calculated with just H2O as reaction
progress variable andcH2O(0) ) 10-4. Trajectories with arbitrary
initial concentrations (plotted in Figure 2 as thick, dashed lines)
all first relax to a part of the spanned two-dimensional manifold,
then to the one-dimensional attracting MEPT and finally to
equilibrium illustrating the bundling behavior of trajectories on
the computed MEPT manifolds.

When looking at the MEPTs calculated with two reaction
progress variables H2O and H2 and the manifold they are
spanning, one can see that the MEPTs do not start exactly on
the two-dimensional slow manifold for reaction progress
variables far from their equilibrium values. They themselves
seem to relax first to this manifold. This undesired behavior
suggests to consider a modified optimization criterion represent-
ing relaxation of chemical forces even more accurately also
under conditions far from equilibrium.

By using the criterion (eq 13) based on a suitable “curvature
) force” concept including a weighting with the entropy
production rate, the initial relaxation can be completely elimi-

nated. In Figure 3, the optimal trajectories are depicted. The
fixed initial concentration of H2 is varied between 0.3 and 0.9,
and the initial concentration of H2O is varied between 0.05 and
0.65. Figure 3 shows that the optimal trajectories span the two-
dimensional slow attracting manifold suggesting (eq 13) a good
choice for an accurate reduction criterion of the model mech-
anism (eq 14). The computational results turn out to be largely
independent of the initial values chosen for the numerical
optimization. This is a highly important practical issue since it
allows local species reconstruction without the requirement to
compute the whole slow attracting manifold or the necessity to
use continuation strategies starting near equilibrium.

6. Summary and Discussion

We present a general framework for model reduction in
chemical kinetics using an approach that is based on the
optimization of trajectories related to the relaxation of chemical
forces. In this context, the model reduction task can be described
by a variational boundary value problem related to the mini-
mization of chemical forces, which is in principle solvable for
all feasible conditions. Sophisticated numerical solution strate-
gies exist for variational boundary problems and ensure that
model reduction based on the optimization of reaction trajec-
tories presents an efficient alternative to existing model reduction
approaches. The example application demonstrates promising
success of the concept.

The generality of our concept in principle allows for the use
of other optimization criteria. Besides the search for alternative
criteria, future work will include comparisons of this approach
to other approaches as well as the adaptation and testing for
large-scale reaction mechanisms especially using temperature-
dependent reaction mechanisms at low temperatures, conditions
where purely time scale-based methods like the ILDM13 fail.
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