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The detailed geometrical structures of zigzag and armchair type single-walled carbon nanotubes (SWCNTs)
with infinite tubular length were investigated using localized Gaussian type orbital-periodic boundary
condition-density functional theory (LGTO-PBC-DFT) method. The structures of (n, 0) zigzag SWCNTs
were optimized forn ) 5-21, (n, n) armchair SWCNTs forn ) 3-12. For comparison, the optimized
geometry of a two-dimensional graphite sheet was also calculated. It was found that the optimized structures
of the SWCNTs showed two C-C bond lengths that decrease with an increase in the tubular diameter. More
specifically, the two bond lengths converged with those found in the two-dimensional graphite sheet. We
also found a degeneracy in the highest occupied crystal orbitals if identical bond lengths were employed for
the zigzag SWCNTs and the two-dimensional graphite sheet. This implies that the two different bond lengths
found in the zigzag SWCNTs and the two-dimensional graphite sheet are probably due to the Jahn-Teller
effect. The armchair SWCNTs show two slightly different bond lengths if the diameter is less than 12 Å;
otherwise they are almost identical, approaching the longer bond length of the two-dimensional graphite
sheet. This can be due to the fact that the armchair SWCNTs do not have degeneracy in occupied crystal
orbitals for identical C-C bond lengths. The crossing point of the conducting and valence bands of each
armchair SWCNT were also calculated and show a diameter dependence in which the deviation from 2π/3a
decreases as diameter increases.

1. Introduction

Carbon nanotubes have attracted considerable attention
because of their unique physical properties (elasticity, stiffness,
and deformation) and applications in various materials (semi-
conducting, H2 storage, and the probes).1-6 Almost 20 years
ago, Smalley et al. discovered a truncated-icosahedral C60 carbon
cluster by laser vaporization of graphite in a high-pressure
supersonic nozzle.7 In 1991, Ijima detected multiwalled carbon
nanotubes in a plasma arc discharge apparatus.8 Two years later,
single-walled nanotubes (SWCNTs) were achieved by Iijima
and Bethune. Later, a large-scale purification process was
established and the SEM, TEM, and STM characterization of
SWCNTs was obtained.9-11 Although, much scientific interest
focused on the physical and electronic properties and com-
mercial applications of these new materials,11-13 there have been
no experimental structural data sufficiently accurate to generate
the geometrical structure of isolated SWCNTs. In order to
understand the physical properties of SWCNT, theoretical
analysis is needed to determine the real nature of SWCNTs and
specify their properties.

The geometrical structure of SWCNT is a rolled-up 2-D
graphite sheet as a hollow cylindrical shape or a one-by-one

layered cyclic carbon array shape as a 1-D tubular axis infinity
extension.14 Defect-free SWCNTs have various types of cylin-
drical shapes with respect to the array of benzenoids in carbon
nanotubes. According to geometrical analysis, there exist
armchair, zigzag, and chiral tubules among SWCNTs.

Recently, theoretical and experimental work have predicted
that the infinity length SWCNTs areπ-bonded aromatic
molecules that can be either semiconducting or metallic depend-
ing upon the tubular diameter and helical angle.15,16 In 1992,
Saito and Hamada used the tight binding model to generate the
band structure of SWCNTs.17 Almost the same year, Nakamura
et al. predicted the infinite length (5, 5) and (6, 6) armchair
SWCNT using DFT calculation with plane wave.18 Recently,
the extended tight-binding approximation has been applied to
prediction of the optical spectra of SWCNT by Bachilo et al.19,20

Later, Dresselhaus et al. found that the photoluminescence
behavior of SWCNT depends on tube diameter.21

For the quantum chemistry calculations, Brus et al. calculated,
using DFT, the HOMO-LUMO gaps of finite systems ranging
from C20H20 to C210H20. They extrapolated (5, 5) armchair
SWCNT of infinite length from these finite systems. They
concluded that (5, 5) armchair SWCNT should show a narrow
Eg (energy gap) having a metallic property at infinite length.15

In a previous work, the semiempirical PM3 method was used
to determine the electronic and optimized structures of zigzag
and armchair SWCNT with several finite lengths and various
tubular diameters.22

In order to investigate the infinite system with a periodic unit,
the periodic boundary condition (PBC) model has been pre-
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sented that could solve the discrete MO model into continuous
bands.23-26 Thus, one can generate a finite SWCNT segment
by using DFT calculation with a Gaussian type molecular orbital
and extend it to an infinite length SWCNT model. In 1998,
Scuseria et al. used PBC-DFT with localized Gaussian type
orbitals (LGTO) to optimize the geometrical structure and to
generate the energies of (5, 0) zigzag SWCNTs.23 Quite recently,
Scuseria et al. reported applications of this method with
fluorinated SWCNT studies.27,28Subsequently, Scuseria’s group
presented PBC-DFT results of optical transitions in both
metallic and semiconducting SWCNTs.16,29 Thus, the PBC
model with LGTO demonstrated a possibility for applications
to SWCNTs. Although applications were reported, a more
detailed basic structural analysis of SWCNTs is still necessary
for a better understanding of the material properties. As far as
we know, effects of diameter on a SWCNT structure with high
level geometry optimization have not been reported so far. With
limited computational resources, most studies used small basis
sets such as STO-3G which is a minimal basis set in quantum
chemistry calculation. However, it should be important to obtain
the geometric details of SWCNTs even for larger diameter tubes
using larger basis sets. It is also important to investigate how
the diameter depends on geometrical parameters such as the
C-C bond lengths and some of the dihedral angles of SWCNTs.
In addition, Lin et al. has reported the importance of the effects
of curvature and strain of the structure of SWCNTs on the
electronic structures using analytic formulation.30 For a better
understanding of the electronic structure of SWCNTs, it is
important to obtain a more realistic geometrical structure.
Quantum chemistry calculation methods based on LGTO have
been established for providing reliable structural information
on many molecular systems. Since the SWCNT consists of
carbon atoms, LGTO-PBC-DFT is a suitable approach.
Therefore, LGTO-PBC-DFT should be performed to deter-
mine geometrical and electronic structures of SWCNTs with
higher basis sets.

In the present study, we focused on the zigzag and armchair
SWCNTs. For comparison, the geometry of two-dimensional
graphite sheets was also optimized. LGTO-PBC-DFT calcula-
tions were performed on these systems at pure DFT functionals
(PBE, VSXC, etc.) levels with 6-31G(d) basis sets after test
calculations were carried out using several functionals including
hybrid functionals and basis sets. The present paper is organized
as follows. In Section 2, we briefly mention the computational
details. In Section 3, optimized structures, band structures, and
band gaps of the zigzag and those of the armchair SWCNTs
are discussed. Our calculated results provide large scale DFT
method developers (such as tight-binding DFT) with reliable
information and calculation conditions on various zigzag and
armchair SWCNTs. Section 4 concludes the present study.

2. Brief Theoretical Background and Calculation Details

The geometrical structure of SWCNT can be described by a
chiral vector CBh on a two-dimensional graphite sheet whereCBh

) nab1 + mab2 with n and m being integers. Hereab1 and ab2

represent the unit vectors of the hexagonal honeycomb lattice.
SWCNT is a one-dimensional system so that the lattice vector
TB can be defined along the tubule axis and normal to the chiral
vectorCBh. Conveniently, SWCNT is presented by a (n, m) pair
of numbers; (n, 0) and (n, n) that designate the zigzag and
armchair types SWCNTs, respectively. The carbon atoms of
the zigzag SWCNT are arranged ascis-polyenes with a single
circular of carbon atoms. On the other hand, the armchair
SWCNT is obtained by rolling up hexagons in aσV symmetry

plane such that the carbon atoms are arranged astrans-polyenes
with a single circular plane of carbon atoms. For the zigzag
type SWCNT, n denotes the number of benzenoids in the
circumference of the tube, and the translation axis is thetrans-
polyene rings along the tubular length. The tubular diameter
(dtub) of (n, 0) zigzag SWCNT can be determined:dtub ) 2r
cos(π/6)/sin(π/n) wherer is the length of the C-C bond in the
SWCNT. For the (n, n) armchair SWCNT,dtub ) r/sin(π/3n).

For the PBC-DFT calculation of SWCNTs, we started with
the single layer for the unit cell and extended it along the tubular
axis to infinite length by the PBC model. Panels a and b in
Figure 1 show the atomic arrangement of the unit cell for zigzag
and armchair SWCNTs, respectively. For example, the unit cell
of (5, 0) SWCNT contains 20 carbon atoms for a single
circumference; thus, we used these 20 carbon atoms for the
starting unit, extending to the infinite tube in this calculation.
Note that in each panel in Figure 1 two distinctive carbon-
carbon bonds are shown. The PBC-DFT method was imple-
mented in the Gaussian 03 revision C.02 program package.31

The PBC model in the Gaussian 03 package is based on
Gaussian type orbitals (GTOs)25 that are transformed “crystalline
orbitals (CO)” by employing the Bloch function,32 and then the
energy per unit cell can be computed by several algo-
rithms.23,24,33,34In the Gaussian 03 program, a redundant internal
coordinate algorithm for optimization of periodic systems was
developed by Kudin et al.35 For high precision geometry
optimization, extremely tight optimization convergence criteria
was used, and ultrafine was chosen for the integral grid option,
i.e., (99, 590) grid.

Similar to the HOMO and LUMO of a finite system, the
highest occupied crystalline orbital (HOCO) and the lowest
unoccupied crystalline orbital (LUCO) can be defined. In this
case, the energy gap between the energy of HOCO and that of
LUCO corresponds to the band gap, and thus we use the
definition given byEg ) ELUCO - EHOCO.

We carried out several test calculations to examine the
performance and efficiency of various functionals and basis sets

Figure 1. A definition of C-C bonds in (n, 0) zigzag and (n, n)
armchair SWCNTs. Panels a and b show the unit structures of the zigzag
and armchair SWCNTs, respectively. In each panel two C-C bonds
are indicated.
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with the LGTO-PBC-DFT method. For this purpose, we
optimized the geometry of (10, 0) zigzag SWCNT with various
types of functionals (LSDA, PBE, PW91, BLYP, VSXC,
B3LYP, etc.) using 6-31G(d) basis set, and the corresponding
total energy and band gap energies were computed. Figure 2
shows the calculated results. Panels a and b in Figure 2 show
that the VSXC36 functional gives the lowest total energy and a
relatively larger energy gap compared with those calculated with
LSDA,37PBEPBE,38PW91PW91,39BLYP,40,41VSXC,OPBE,38,42

OPW91,39,42 OLYP,41,42 B3LYP,41,43 O3LYP,44 and PBE0.45

B3LYP and OPW91 functionals predict a total energy quite
close to that calculated with VSXC, but the band gap by B3LYP
is different from the other functionals as shown in Figure 2(b).
The optimized bond lengths for various functionals are shown
in panels c and d in Figure 2. It is obvious that there are two
different bond lengths in (10, 0) SWCNT. Functionals PBEPBE,
PW91PW91, OLYP, and VSXC predict similar bond lengths
among them while B3LYP, OPBE, and OPW91 form another
group. BLYP and LSDA predict quite different bond lengths;
BLYP somehow gives the largest bond length and LSDA the
smallest.

The basis set effects were also examined using eight basis
sets: STO-3G, 3-21G, 6-31G, 6-31G(d), 6-311G, 6-311G(d),
6-31+G(d), and 6-311+G(d) with VSXC functional. The
geometry of (10,0) SWCNT was optimized with each basis set.

The computed results are shown in Figure 3. The total energy
shows a strong basis set dependence while the band gap energy
convergence is achieved at 6-31G(d) as shown in panels a and
b in Figure 3. The calculated bond lengths of varies basis sets
are also shown in panels c and d in Figure 3. We find that the
bond length difference is also converged at the 6-31G(d) basis
set. Basis sets larger than 6-31G(d) consume considerable
computational resources. Thus, we adopted 6-31G(d) as a more
reasonable choice for tradeoff of the computing resources for
the following calculations. Note that the geometrical structure
optimized using STO-3G largely deviates from the others.
Compared with 6-31G(d), STO-3G-calculated results show a
1.3% deviate in the average bond lengths and the rest are
(0.2%.

From the above calculation results together with Scuseria’s
report,23 we used the VSXC functional and 6-31G(d) basis set
for the geometry optimization and band structure calculations
of the zigzag and armchair SWCNTs. We also examined effects
of k-points on the band gap and geometrical structure of
SWCNTs. The calculated results show that the number of
k-points has no effect on the band gap or structure of the zigzag
SWCNTs. Thus, the 79k-points (G03 package autosetting value)
are used in all calculations for the zigzag SWCNT. The band
gaps of the armchair SWCNTs, on the other hand, depend
strongly on the number ofk-points. After several tests, we set

Figure 2. Functional dependency of the calculated properties of (10, 0) zigzag SWCNT. Panels a, b, c, and d show the relative total energy, band
gap energy, bond length, and bond length deviation related to the two bond lengths shown in panel c, respectively. The relative energy is defined
as the difference between a calculated total energy of the current method and the lowest total energy in all used methods. Panel c and d clearly show
that there are two apparently different bond lengths in the (10, 0) zigzag SWCNT.
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2192 k-points (137× 16, where 137 is the G03 package
autosetting value) for armchair SWCNTs.

3. Results and Discussion

3.1. Zigzag Type SWCNT.On the basis of the structure
analysis, we consider the zigzag SWCNT to consist ofn number
of benzenoids in the circumference of the tube. Thus, the
minimum unit contains one-layer benzenoid structure in the
circumference of the tube. We optimized geometries of zigzag
SWCNTs for various tubular diameters from (5, 0) to (21, 0)
and computed their corresponding band structures.

Table 1 presents the geometrical parameters and tubular
diameter calculated using PBC-DFT for the infinite length
zigzag SWCNTs. The calculated tubular diameters increase from
4.022 Å for (5, 0) SWCNT to 16.545 Å for (21, 0) SWCNT;
there is nearly a 0.8 Å tubular diameter difference between any
two neighboring SWCNTs.

Although tight-binding methods with LDA methods were
employed to investigate large size SWCNTs, they assumed that
SWCNT has the same C-C bond length in the entire nanotube
system.17,46 In the present study, the C-C bond lengths of
SWCNT were optimized to two different values that are
probably closer to a real carbon tube structure than other
methods. According to Table 1, (6, 0) SWCNT has two different
C-C bond lengths: 1.449 Å and 1.413 Å. As the diameter

increases, the two C-C bond lengths of the optimized structure
becomes very close; for example, the (13, 0) SWCNT has 1.430
Å and 1.427 Å. The difference between the two lengths is almost
constant for the (14, 0) through (21, 0) SWCNTs. This tendency
can be easily seen in Figure 4 in which bond length deviation
(%) ) bond length difference/bond length average× 100 is
calculated for variousn. Figure 4 clearly shows that the bond
length has an oscillatory feature with a period of 3. Our
computational results imply that an increase in the tubular
diameter of the infinite zigzag SWCNTs leads to more delo-
calization ofπ electrons so that the tubular diameter does not
affect the C-C bond length larger than (13, 0) SWCNT. Thus,
the SWCNTs (n g13) can be regarded as a nearly rolled-up
graphite sheet. We will discuss this feature later with armchair
SWCNTs. Furthermore, the calculated geometric structure of
(5, 0) SWCNT shows a distorted structure from cylinder
symmetry. In this case, we found that the bond lengths are
distributed in a wide range so that the bond length average of
C1-C2 or C2-C3 is less significant. For example, the standard
deviations of the C1-C2, and C2-C3 bond lengths are the largest
among all calculated zigzag SWCNTs and they are 0.02581 and
0.02103, respectively, while the corresponding standard devia-
tions of (6, 0) SWCNT, for example, are 0.00040 and 0.00073.

Table 1 also lists the calculatedEg of an infinite length (n,
0) zigzag SWCNT. The calculatedEg exhibits oscillation

Figure 3. Basis set dependences of the calculated properties of (10, 0) zigzag SWCNT. Panels a, b, c, and d show the relative total energy, band
gap energy, bond length, and bond length deviation, respectively. Panel b and d show the energy gap and the bond lengths are converged at
6-31G(d) basis set.
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properties with the repeat unit havingn ) 3m, 3m + 1, and 3m
+ 2, wherem is 2, 3, 4, 5, 6 (for all series), and 7 (only forn
) 3m series). One can see that the largest band gap is obtained
for the (n ) 3m + 2, 0) SWCNTs while the (n ) 3m, 0)
SWCNTs have the smallest in each∆n ) 3 section. The
calculatedEg values for the (6, 0), (9, 0), (12, 0), (15,0), (18,
0), and (21, 0) SWCNTs are 0.0002 eV, 0.1467 eV, 0.0678
eV, 0.0387, 0.0228, and 0.164 eV, respectively. For the (7, 0),

(10, 0), (13, 0), (16, 0), and (19, 0) SWCNTs, the calculatedEg

are 0.2044 eV, 0.7645 eV, 0.6353, 0.5429, and 0.4668 eV,
respectively. Thus, our calculation results at this level indicate
that (n, 0) SWCNTs withn being a multiple of 3 have a small
band gap energy very close to those experimentally observed.47

Obviously, the others have a semiconducting character. The
calculation results also suggest that (8, 0), (11, 0), (14, 0), (17,
0), and (20, 0) SWCNTs have the largest band gap in each∆n
) 3 section.

We compared our results with the other calculation results.
For this purpose, we chose (7, 0) and (13,0) SWCNTs whose
Eg are 0.2044 and 0.6353 eV in the present study, respectively.
Ito et al. reportedEg ) 0.1304 eV for GGA (PW91) and 0.1943
eV for LDA with plane wave functions.46 Very early, the
calculatedEg by the tight-binding model was reported to be
0.14 eV for this SWCNT.17 Our calculation is much closer to
that of the LDA results. Hamada et al. used the tight-binding
model to calculateEg for (13, 0) SWCNT, and the value is 0.697
eV,17 which is also consistent with the present study.

It is informative to show the band structures of the zigzag
SWCNTs. Panel a in Figure 5 presents the calculated HOCO
and LUCO energies atΓ point and the corresponding band gap
energies. For example, the calculated HOCO and LUCO bands
for (10, 0) SWCNT are-4.3603 eV and-3.5960 eV, and the
energy gap is 0.7643 eV. Panel b in Figure 5 shows the band
structures calculated for the (5, 0), (6, 0), (8, 0), (10, 0), (16,
0), and (21, 0) zigzag SWCNTs.

3.2. Armchair Type SWCNT. Table 2 lists the optimized
geometrical parameters, calculated HOCO and LUCO energies,
and energy gap (Eg) of armchair SWCNTs. Note that the
calculated tubular diameters vary from 4.122 Å for (3, 3) to

TABLE 1: Calculated Geometrical Parameters and Electronic Structures (HOCO, LUCO, andEg) for (n, 0) Zigzag SWCNTS
by VSXC/6-31G(d) Calculation Level with PBC Method

(n, 0) n ) diameter (Å) C1-C2 (Å)a C2-C3 (Å)a HOCO LUCO Eg (eV)

5 4.022 1.459 1.409 -4.8534 -4.8532 0.0002b

6 4.792 1.449 1.413 -4.0890 -4.5331 0.0014b

7 5.557 1.440 1.422 -4.4539 -4.2495 0.2044
8 6.345 1.439 1.420 -4.5061 -3.8664 0.6398
9 7.127 1.436 1.422 -3.9827 -3.8360 0.1467

10 7.902 1.433 1.425 -4.3604 -3.5959 0.7645
11 8.693 1.433 1.424 -4.3823 -3.4192 0.9632
12 9.475 1.432 1.425 -3.9757 -3.9079 0.0678
13 10.256 1.431 1.426 -4.2926 -3.6573 0.6353
14 11.046 1.431 1.425 -4.3112 -3.5662 0.7450
15 11.830 1.430 1.426 -3.9793 -3.9405 0.0388
16 12.612 1.430 1.427 -4.2534 -3.7104 0.5429
17 13.402 1.430 1.426 -4.2597 -3.6565 0.6032
18 14.187 1.430 1.426 -3.9819 -3.9591 0.0228
19 14.970 1.429 1.427 -4.2167 -3.7499 0.4668
20 15.760 1.429 1.427 -4.2260 -3.7162 0.5098
21 16.545 1.429 1.427 -3.9871 -3.9707 0.0164

a The position of carbon atoms shown in Figure 1(a).b k-points) 1264.

TABLE 2: Calculated Geometrical Parameters and Electronic Structures (HOCO, LUCO, andEg) for (n, n) Armchair
SWCNTs by VSXC/6-31G(d) Calculation Level with PBC Method

(n, n) n ) diameter (Å) C1-C2 (Å)a C2-C3 (Å)a HOCO LUCO Eg

3 4.122 1.440 1.437 -3.9182 -3.8889 0.0294
4 5.480 1.435 1.433 -3.8926 -3.8887 0.0040
5 6.837 1.432 1.431 -3.9138 -3.9121 0.0017
6 8.196 1.431 1.430 -3.9325 -3.9292 0.0033
7 9.559 1.430 1.429 -3.9467 -3.9445 0.0022
8 10.921 1.430 1.429 -3.9554 -3.9551 0.0003
9 12.282 1.429 1.429 -3.9643 -3.9633 0.0010

10 13.643 1.429 1.429 -3.9705 -3.9696 0.0009
11 15.006 1.429 1.428 -3.9760 -3.9744 0.0016
12 16.368 1.428 1.428 -3.9812 -3.9799 0.0013

a The position of carbon atoms shown in Figure 1(b).

Figure 4. Calculated bond length deviation for (n, 0) zigzag SWCNTs
(5 e n e 21). In order to see a periodicity in bond length deviation (or
bond length), the bond length deviations are plotted as a function of
the integerm with which (n, 0) zigzag SWCNTS are presented as (3m
- 1, 0), (3m, 0), and (3m + 1, 0).
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16.368 Å for (12, 12). There are almost no differences between
two C-C bond lengths in armchair SWCNTs whenn > 4. For
the (3, 3) armchair SWCNT, the smallest tube diameter causes
the bond length slightly longer to maintain the tubular geometry.
This leads the properties of this SWCNT to be slightly different
from other armchair series. For the (4, 4) armchair SWCNT,
two slightly different bond lengths 1.435 Å and 1.433 Å are
found in the optimized structure. Apparently, the difference of

the two C-C bond lengths decreases with increasingn,
approaching an identical bond length (1.42788 Å) at the (12,
12) SWCNT.

Figure 6 compares the bond lengths of the zigzag and
armchair SWCNTs. The zigzag SWCNTs clearly show an
oscillatory feature in the bond lengths with a period of 3 as
mentioned earlier while the armchair SWCNTs do not exhibit
such a trend. In addition, the two bond lengths of the zigzag
SWCNTs show drastic changes as the diameter increases; the
shorter one increases and the longer one decrease. On the other
hand, the two bond lengths of each armchair SWCNT decrease
with increasing diameter even after the two become identical.
The results shown in Figure 6 suggest that zigzag and armchair
SWCNTs may have an identical bond length at much larger
diameters.

For comparison, we optimized the geometry of the two-
dimensional graphite sheet. It was found that two different bond
lengths exist in the optimized structure, and they are 1.42719
Å and 1.42788 Å. It is very interesting that the two bond lengths
of the zigzag SWCNTs approach these two bond lengths at
larger diameters. Now a question arises: why do the C-C bond
lengths of a zigzag SWCNT with a large diameter (>16 Å)
approach those of the two-dimensional graphite sheet while an
armchair conveys identical bond lengths? In the limiting case
in which the diameter is infinitely long, can the C-C bonds of
the zigzag and armchair SWCNTs asymptotically be regarded
as those of a graphite sheet? To answer this question, we
examined if there was any degeneracy in the crystal orbitals of
these systems. We found that there is degeneracy in the highest
occupied crystal orbitals for of a two-dimensional graphite sheet
if identical bond lengths are used. Interestingly, a similar
degeneracy was also found in the highest occupied crystal
orbitals of the zigzag SWCNTs if identical bond lengths are
employed. Note that the symmetrical structures of the SWCNTs
and graphite sheet are not the optimized geometries. Moreover,
there is no degeneracy in the occupied crystal orbitals of the
armchair SWCNT ((12, 12) for instance) with a symmetrical
geometry. The optimized structure is almost symmetric; standard
deviations of bond lengths and dihedral angles are less that
0.0001 and 0.25, respectively. The above-mentioned results
imply that the two different bond lengths found in the zigzag
SWCNTs and the two-dimensional graphite sheet are probably
due to the Jahn-Teller effect while armchair SWCNTs can
allow very symmetric structures at larger diameters.

Figure 5. Calculated HOCO and LUCO energies, band gaps, and band
strictures of zigzag SWCNTs. HOCO and LUCO energies and band
gaps of (n, 0) zigzag SWCNTs (5e n e 21) are shown in panel a, and
band structures of (5,0), (6,0), (8,0) (10,0), (16,0), and (21,0) zigzag
SWCNTs are presented in panel b. (5,0) and (6,0) zigzag SWCNTs
are shown because they deviate from the series shown in the lower
figure in panel a.

Figure 6. Comparison of the calculated bond lengths of various sizes
of zigzag and armchair SWCNTs. The calculated bond length of a two-
dimensional graphite sheet is also shown as the limiting case.
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It is also informative to examine the band structures of the
armchair SWCNTs based on the optimized structures and the
HOCO and LOCO energies crossing the point alongk ) |kB|
since each armchair SWCNT with a different radius has different
optimized geometrical parameters. In this case, the crossing
points should depend on the geometries. We definekc as the
value at which the HOCO and LOCO energies have a crossing
point. Panel a of Figure 7 showskc as a function of the diameter
of the optimized armchair SWCNT. As is anticipated,kc exhibits
a diameter dependence, and in addition, we also find that the
value approaches 2/3× π/a that is obtained for an armchair
SWCNT with homogeneous C-C bond lengths and lattice
constanta. The band structures of (3, 3), (5, 5), (8, 8), and (12,
12) armchair SWCNTs are also presented in panel b of Figure
7 as examples of the results.

4. Conclusion

In this study, we investigated the geometrical and electronic
structures of zigzag and armchair types of SWCNT with the
infinite tubular length using LGTO-PBC-DFT method at
VSXC level with 6-31G(d). The major difference in the bond
lengths of the optimized zigzag and armchair SWCNTs is that
the C-C bonds of the zigzag SWCNTs at a large diameter can
be regarded as those of a two-dimensional graphite sheet while
those of the armchair SWCNTs cannot. The occupied crystal
orbital analysis suggests that the Jahn-Teller effect probably
plays an important role in the difference.

It is well-known experimentally that the tubular diameters
of SWCNTs can vary, ranging from 10 Å to 16 Å with a peak
maximum at 12 Å.48 The present calculation shows that the
diameters of (15, 0), (16, 0), and (9, 9) SWCNTs are around
12 Å; thus, these can be the most possible products. The
geometrical properties calculated in this work provide important
information needed for a design of new nanoelectronic devices
or a detailed understanding of excited states of SWCNTs.
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