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Physical Chemistry, Department of Chemical and Biological Engineering, Chalmers UniVersity of Technology,
SE-412 96 Go¨teborg, Sweden

Jens A. Poulsen
Physical Chemistry, Department of Chemistry, Go¨teborg UniVersity, SE-412 96 Go¨teborg, Sweden

ReceiVed: June 22, 2007; In Final Form: December 5, 2007

Quantum effects in the scattering and desorption process of a water molecule from a graphite surface are
investigated using the linearized path integral model. The graphite surface is quantized rigorously using the
fully quantum many-body Wigner transform of the surface Boltzmann operator, while the water molecule is
treated as rigid. Classical dynamics with these quantized initial conditions show that quantizing the surface
at 100 and 300 K results in markedly different results, compared to a fully classical analysis. The trapping
probability (defined as the probability of multiple encounters with the surface) is not sensitive to the choice
of dynamical treatment, but the residence time on the surface is much shorter in the quantum case. At 300
K the transiently trapped molecules desorb from the surface with a rate constant which is 60-70% larger
than the corresponding classical value. Lowering the surface temperature to 100 K decreases the quantum
rate constant by approximately a factor of 3 while all trapped molecules stick to the surface in the classical
case. The stability of the quantum initial state for the highly anisotropic graphite crystal is discussed in detail
as well as the dynamical consequences of energy redistribution during the scattering process. The graphite
surface application demonstrates that the Boltzmann operator Wigner transform for a system with 900 degrees
of freedom can be obtained by the so-called gradient implementation [Poulsen et al.J. Chem. Theory Comput.
2006, 2, 1482] of the underlying Feynman-Kleinert effective frequency theory, an implementation that only
requires a force and potential routine for the system at hand, and hence is applicable to any molecule-
surface collision problem.

1. Introduction

Many important chemical processes in the environment and
in industrial applications occur at surfaces. Examples include
reactions on ice particles in the atmosphere and the interstellar
medium, heterogeneous catalysis, epitaxial growth and corro-
sion. Theoretical studies of the dynamics of such processes are
very important in order to obtain a detailed understanding of
the chemistry and physics involved. Dissociative adsorption of
molecules on surfaces is a key step in heterogeneous catalysis.
The dissociative adsorption of H2 on metals can be considered
as a prototype reaction and has been studied extensively. Over
the past decade advances in computer technology and, in
particular, the development of efficient computational techniques
have made quantum dynamical studies of hydrogen scattering
from metal surfaces possible.1-11 These impressive calculations,
which include all six molecular H2 degrees of freedom, have
provided detailed information regarding sticking and dissociation
probabilities and how these quantities depend on the magnitude
and direction of the incident velocity and the vibrational and
rotational excitation of the impinging H2 molecule. The studies
mentioned above all assume a rigid surface, i.e., there is no
energy transfer to the substrate. This approximation is motivated
by the large mass difference between the hydrogen molecule
and the metal atoms.3,8 Although not dominant, thermal effects

have been observed experimentally12 and have also been
accounted for approximately in quantum dynamical studies.13

To rigorously include the effect of the phonons and allow
for energy dissipation in a quantum dynamical study of a
realistic surface scattering problem is a very demanding task
usually requiring approximations.14 In one approach the density
matrix is propagated using the Liouville-von Neumann equa-
tion.15 Usually one considers open systems (and the reduced
density matrix) where the Liouvillian is written as a sum of a
Hamiltonian and a dissipative part. The dissipative part may
bedescribedusingtheso-calleddynamicalsemi-groupformalism16-20

or using a perturbative approach (“Redfield theory’’).21-25 A
coupled wave vector description of the density matrix has been
developed relaxing the requirements of weak coupling and rapid
bath relaxation.26,27Surface scattering problems have also been
treated using quantum mechanical mean field methods,28,29

classical30 and semi-classical31 generalized Langevin schemes
or other mixed quantum-classical approaches.32-34 Estimates
of trapping and sticking probabilities can also be obtained using
nondissipative low-dimensional quantum35 or classical models.36

Our previous surface scattering work has been focused on
scattering of atoms,37 polyatomic molecules38,39 and large
clusters40-42 from graphite surfaces. The simulations were
carried out in cooperation with experimentalists in order to
interpret results from molecular beam studies. In these calcula-
tions we used a stochastic trajectory method. All surface atoms* Corresponding author. E-mail: nikola@chalmers.se.
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were treated classically. The first (bottom) layer of the graphite
crystal was held fixed. For atoms in the second layer the
equations of motion were modified by adding stochastic and
friction forces related to the Debye temperatures (θD,x ) θD,y

) 2400 K,θD,z ) 1200 K) relevant for our graphite potential.37,38

The model has performed well, and we have been able to
simulate experimental results over a wide range of initial
conditions. The choice of a classical description was rather
natural for these studies where many different sets of initial
conditions had to be considered and a large crystal was required
since the collision energy was quite high in some cases. In
addition, it turned out that multiple collisions were important
leading to long propagation times.

The scattering studies mentioned above have been carried
out at surface temperatures in the rangeTs ) 300-1400 K, but
most of the calculations have been for rather hot surfaces. For
low surface temperatures quantum effects may be significant
due to the high Debye temperatures for graphite. The purpose
of the present work is to investigate the importance of quantum
effects when the graphite surface is at low or intermediate
temperatures. For this purpose the classical Wigner (CW)
model43-48 is used.

The CW model is conceptually very simple. It utilizes
Wigner’s celebrated phase-space formulation of quantum me-
chanics.49 Quantum dynamical problems are dealt with by CW
in a manner that strongly resembles that of ordinary classical
mechanics. A CW calculation can be divided into a two-step
procedure: (i) sample position and momenta, (q,p)’s, from the
quantum phase-space Wigner transform of the relevant system
density operator; (ii) then, using the (q,p)’s, perform classical
dynamics and compute the relevant dynamical quantities. Hence,
CW differs from a pure classical treatment only by the initial
conditions. In the present problem, the appropriate quantum
initial conditions for the surface atoms are sampled from
Wigner’s phase-space distribution of the graphite surface
Boltzmann operator.

The CW method can be derived from a linearization of a
Feynman path integral representation43 of the quantity of interest.
Hence, the method is therefore also referred to as the linearized
path integral (LPI) approximation. In the following, the two
acronyms CW and LPI will be used interchangeably, as they
are formally equivalent.

The classical dynamical treatment is obviously a great
simplification, leading to the exclusion of dynamical quantum
effects. The implication of this is the well-known fact that LPI
is only accurate for short times (see, e.g., ref 50 for a classic
example). It is, however, exact for harmonic systems and in
the high-temperature limit. An efficient method to generate the
initial conditions (given by the Boltzmann operator) is still
required if the scheme should be practical. In ref 43 Poulsen
and co-workers demonstrated that an approximate but still quite
accurate Boltzmann operator Wigner transform could be ob-
tained, by applying the effective frequency variational theory
due to Feynman and Kleinert (FK). The resulting method, which
combines the FK Boltzmann Wigner transform with LPI
dynamics, is referred to as FK-LPI.

The FK-LPI methodology has recently been applied for
computing velocity correlation functions (CF)’s and Van Hove
CFs for a number of nontrivial condensed phase problems (see
ref 47 and references therein). The results have been very
encouraging and show that the FK-LPI method is able to
compute the early time-dynamics of the CF’s with a reasonable
accuracy. One should note that, in condensed phase, the CF’s

decay to zero typically after a few picoseconds and hence the
LPI method is then only required to be a reasonable short time
theory.

In this paper we apply FK-LPI to collision processes where
molecules are trapped on a surface for up to several tens of
picoseconds. The application of a short-time theory to this type
of problem is obviously problematic. In particular the residence
time of transiently trapped molecules is sensitive to the precise
energy distribution of the surface atoms, but as we shall see, a
desorption-like rate constant may still be extracted from the
short-time behavior of the trapping probability.

The FK-LPI method is in the present paper implemented in
two ways, which differ in the way the surface Wigner transform
is calculated. First, we adopt the general so-called gradient
sampling implementation47 which only requires a standard force
routine to work. The results of this method are compared to a
more approximate, but faster method, and we show that the latter
is indeed accurate enough for the present application. The system
considered in the present work is a reasonably realistic model
of a rigid water molecule scattering from a graphite surface39

previously treated classically in connection with an experimental
study.

The LPI and Feynman-Kleinert effective frequency theory
are presented in section 2. In section 3 we then proceed and
consider the graphite model, the sampling of the initial phase-
space conditions and the dynamical calculations. Our results
are presented and discussed in section 4. The main conclusions
are finally summarized in Section 5.

2. Theory

The basic idea behind the classical Wigner (CW) approxima-
tion to quantum dynamics was essentially first presented by
Heller.51 He suggested the idea of propagating nonstationary
Wigner phase-space distributions by running a swarm of
classical trajectories. More recently,43,52,53 the same idea has
been used to formulate the calculation of correlation functions
(CF’s), 〈Â(0)B̂(t)〉, where the CW approximation reads

which follows directly from the exact path integral (PI)
expression by carrying out the linearization procedure.43 Equa-
tion 1 may be interpreted/implemented as follows: Phase-space
points (q,p) are sampled from the Wigner transform of exp(-
âĤ)Â, the transform (Ĉ)W[x,p] being defined for an arbitrary
operatorĈ by

In eq 1 (q,p) are evolved classically according to the Hamiltonian
H(q,p) to (qt,pt) which serve as the phase-space arguments of
(B̂)W[qt,pt]. 3N is the dimensionality of the problem.

In the present study, we will not be interested in CF’s, but
instead, for instance, we want to know the fraction of water
molecules that stay on the surface after a timet. The quantity
of interest still follows from eq 1, if we make the substitutions

and

〈Â(0)B̂(t)〉 ≈
1

(2πp)3N∫∫dq dp
Z

(exp(-âĤ)Â)W[q,p](B̂)W[qt,pt] (1)

(Ĉ)W[x,p] ≡ ∫-∞

+∞
dη exp(-ipη/p)〈x + 1

2
η|Ĉ|x - 1

2
η〉 (2)

Â f 1, exp(-âĤ) f exp(-âĤC) × F̂H2O
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whereĤC andF̂H2O are the graphite Hamiltonian and free water
molecule density operator, respectively.

2.1. Feynman-Kleinert Approximation to the Wigner
Transform. A practical route to the Wigner transform of the
operator exp(-âĤ)Â for complex systems is required to
implement LPI.43 The approach we use is based on combining
the effective frequency variational theory of Feynman and
Kleinert (FK)54 with the quasi-density operator formalism of
Jang and Voth.55 The approach exploits the classical centroid
phase-space variables (xc,pc), where

andpc is a similarly defined centroid momentum. Presented in
formal terms, in one dimension, one may approximate the
Boltzmann operator by43

whereFFK(xc,pc) is the FK approximation to the centroid phase-
space density,

and W1(xc) is the corresponding FK approximation to the
centroid potential. Equation 5 is very practical, since the
operatorsδ̂FK(xc,pc) have a simple Wigner transform, see below.
The Wigner transform of exp(-âĤ) may then be obtained by
sampling Wigner transforms of operatorsδ̂FK(xc,pc). Hence the
computational scheme involves a Monte Carlo walk in the
variables (xc,pc) with weight functionFFK(xc,pc), thereby gen-
erating a sequence ofδ̂FK operators. The operatorδ̂FK(xc,pc) is
the so-called effective frequency quasi-density operator (QDO):

whereR is a function of theeffectiVe frequency,Ω(xc), through
the relation

and the quantityR is related to thesmearing width a2(xc)54

through

This width measures the thermal quantum “smearing’’ around
the classical-like positionxc. To close the equations, the effective
frequency is given by the mass-weighted classical Hessian
averaged over the lengtha2(xc):

This FK prescription gives the best local harmonic description
of the potential surface, based on a system free energy
criterion.54 To obtainΩ2(xc) and a2(xc), eqs 8-10 are solved
iteratively.47 W1(xc) can then be calculated onceΩ2(xc) anda2-
(xc) are converged,47 and the only remaining effort is an
evaluation of the smeared potential,Va2(xc),

which is needed in the expression for the centroid potential:43

Wigner-transforming eq 5 then amounts to transformingδ̂FK,
eq 7, which can be done analytically:

As is evident from eqs 5-7, the variablepc may be integrated
out analytically from these equations. This leads to the following
overall Wigner transform of the Boltzmann operator:

Equation 14 constitutes our basic Wigner transform implemen-
tation to be used in this work. For the multidimensional version
of these equations, we refer to ref 47.

2.2. Gradient Sampling: The General Boltzmann Opera-
tor Wigner Transform Implementation. For a realistic model
of a graphite surface, we cannot expect the potential function
to be simple (e.g., pairwise). Equations 10 and 11 must then be
evaluated numerically. We have recently put forth a method
for doing this.47

This procedure only requires a routine that provides the
potential and its gradient. These are available in any molecular
dynamics code. To derive this method, we first consider eq 10
in the multidimensional case:

(B̂)W[qt,pt] ) {1 qt is on surface
0 otherwise

(3)

xc ) 1
âp

∫0

âp
dτ x(τ) (4)

exp(-âĤ) ≈ ∫∫dxc dpc FFK(xc,pc) δ̂FK(xc,pc) (5)

FFK(xc,pc) ) 1
2πp

exp(-â
pc

2

2M) exp(-âW1(xc)) (6)

δ̂FK(xc,pc) ) ∫∫dx dx′ xMΩ(xc)

πpR
|x′〉〈x| ×

exp{i
pc

p
(x′ - x) -

MΩ(xc)

pR (x + x′
2

- xc)2
-

MΩ(xc)R
4p

(x′ - x)2} (7)

R ) coth(Ω(xc)pâ
2 ) - 2

Ω(xc)pâ
(8)

a2(xc) ) pR/2MΩ(xc) (9)

Ω2(xc) ) 1
M∫dy

1

x2πa2(xc)
V′′(xc + y) exp(- 1

2
y2/a2(xc))

(10)

Va2(xc) ) ∫dy
1

x2πa2(xc)
V(xc + y) exp(- 1

2
y2/a2(xc)) (11)

W1(xc) ) kBT ln(sinh(pΩ(xc)

2kBT )
pΩ(xc)

2kBT
) + Va2(xc) - 1

2
Ma2(xc) Ω2(xc)

(12)

(δ̂FK(xc,pc))W[q,p] ) 2
R

exp(-
MΩ(xc)

pR
(q - xc)

2 -

1
MΩ(xc)Rp

(p - pc)
2) (13)

(exp(-âĤ))[q,p] ≈

∫ dxc

2πp
exp(-âW1(xc)) x MRπ

â
2

coth(pΩ(xc)â/2)
×

2
R

exp(-
MΩ(xc)

pR
(q - xc)

2 -
tanh(pΩ(xc)â/2)

MΩ(xc)p
p2) (14)

Ω2(zbc) ) ∫dzb 1

x||2πA(zbc)||
M-1/2H(zb)M-1/2 ×

exp(- 1
2
(zb - zbc)

TA(zbc)
-1(zb - zbc)) (15)
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whereH(zb) is the Hessian matrix. We start by integrating eq 15
by parts, which leads immediately to

where

Hence, the scheme for calculating the smeared Hessian requires
sampling vectorszb aroundzbc, and averaging to obtain the (3N)2

quantities

The (i,j)’th element of the smeared Hessian is then given by

In practice, due to statistical errors in any finite sampling
sequence,Ω i,j

2(zbc) will not be symmetric, and this can be
enforced by a “symmetrization’’ procedure:

Equation 11 is evaluated by direct sampling of vectorszbaround
zbc as determined by the Gaussian weight function

3. The Water-Graphite System and Details of the
Simulation

3.1. Water-Graphite System.Both the graphite and water-
graphite potentials are taken from our previous study of water
scattering from graphite.39 The interaction within the graphene
layers was described using Brenner’s empirical potential,56 and
the interplanar forces were modeled using Morse functions.38

A detailed discussion of the properties of the graphite model is
given in ref 37. Three graphene layers with 150 carbon atoms
in each were used to model the graphite crystal. In ref 39 five
layers was used, but after repeating some of the calculations it
was found that three layers was sufficient for the collision
energies considered in the present study. Another difference is
that stochastic and friction forces were not included in the
present study. A detailed comparison of results from classical
calculations with and without stochastic and friction forces
showed only insignificant deviations. These tests were carried
out for a surface temperature of 300 K, an incident angle of
30° and collision energies in the range 0.02 to 0.20 eV, i.e., the
same initial conditions considered in the present study. By not
including stochastic and friction forces the classical results can
be compared directly to the results obtained using the FK-LPI
method.

The water-graphite potential used in the present study is the
potential denoted “Potential 1” in ref 39. The potential consists
of Lennard-Jones contributions (O-C and H-C) and electro-
static contributions between point charges in H2O and point

quadrupoles centered on the carbon atoms. The potential is
smoothly switched off as the water-carbon separation ap-
proaches 10 Å. The water molecule is treated as rigid with
geometry and charge distribution taken from the RWK2 model.57

The classical binding energy to a zero Kelvin graphite surface
is 125 meV using this model.

3.2. Construction of Graphite FK Wigner Transform. We
have in sections 2.1 and 2.2 described how to calculate the
centroid potential defined for the multidimensional positionzbc.
As already described,zbc is sampled from the classical-like
centroid density, exp(-âW1(zbc)), by Metropolis Monte Carlo,58

and one thus needs a way of generating trial configurations.
We adopt a trial step scheme formulated in terms of the classical
graphite normal modes evaluated at the classical equilibrium
geometry. Then, trial displacements are obtained as

whereηi is theith classical normal mode,ê is a random number
between zero and one,Ωi is the frequency of normal modei,
ands is an overall scaling factor which is adjusted to ensure a
reasonable overall acceptance ratio of the generated trial steps.
Once a new trial normal mode vector is computed, the
corresponding change in centroid geometry,δzbc, is determined
by a standard linear transformation,δzbc ) Uδηb, whereU is
fixed and defined via the classical normal modes at the
equilibrium geometry of the graphite surface.

The number of iterations of the FK equations was 5 and 4
for T ) 100 K andT ) 300 K, respectively. To converge the
smeared Hessian and potential, given by eqs 10 and 11,
respectively, 30000 vectorszb were sampled aroundzbc in both
equations. The averaging over these vectors was distributed over
16 processors using a parallel implementation of the gradient
sampling routine.

At T ) 300 K, the surface was considered to be equilibrated
after approximately 6600 centroid MC steps, see Figure 1. Then,
a further 6000 centroid MC steps were performed and, for each
30th centroid position, ten phase-space points were sampled
from eq 14 as initial conditions for classical dynamics. In theT
) 100 K case, equilibration was achieved after some 9000 MC
steps and afterward 3600 steps were performed and, again, for
each 30th centroid position, ten phase-space points were
sampled.

The rather small number of MC steps are sufficient since the
colliding water molecule hits the surface at random positions.
Hence, locally, the graphite surface atoms need not explore all
possible phase-space configurations. Also, the lower temperature
one considers, the less does the classical-like centroid coordinate
zbc move, and eventually, atT ) 0 K, only one centroid
coordinate contributes to eq 14.

3.3. An Approximate FK Sampling. A more approximate
but significantly faster implementation of the FK Wigner
transform theory is to (i) replace the smeared Hessian, eq 10,
by its classical counterpart, and (ii) replace the centroid potential
in eq 12 by the classical potential. Then only a subroutine
providing the surface Hessian is required and iterations are no
longer necessary. From eq 10, it is obvious that approximation
(i) is valid if the smearing width matrix is small. For an atom
in the top layer, its 3× 3 dimensional “self-part’’ of the total
3N × 3N dimensional smearing width matrixA(zbc) is found to
be approximately diagonal, with entries of sizeaxx

2 ) 0.005
bohr2, ayy

2 ) 0.005 bohr2 and azz
2 ) 0.009 bohr2. These

smearing values are quite small: in fact they are more than an
order of magnitude smaller than the values found in typical
liquid applications,47 which may be ascribed to the rather high

Ω2(zbc) ) ∫dzb 1

x||2πA(zbc)||
M-1/2∆(zb,zbc)M

-1/2 ×

exp(- 1
2
(zb - zbc)

TA(zbc)
-1(zb - zbc)) (16)

∆ij(zb,zbc) ) {∑
k)1

3N

{A-1}kj(zk - zc,k)} × ∂

∂zi

V(zb) (17)

Γij ) 〈(zi - zc,i)
∂

∂zj
V(zb)〉 (18)

Ωi,j
2(zbc) ) mi

-1/2mj
-1/2 ∑

k)1

3N

{A-1}kjΓki (19)

Ωi,j
2(zbc) f (Ωi,j

2(zbc) + Ωj,i
2(zbc))/2 (20)

1

x||2πA(zbc)||
exp(- 1

2
(zb - zbc)

TA(zbc)
-1(zb - zbc)) (21)

δηi ) ηi
new - ηi

old ) s(2ê - 1)/Ωi, i ) 1, 3N (22)
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surface frequencies which makea2(xc) small, see eq 9. One
should therefore expect that approximation (i) is well justified
in the graphite case. Approximation (ii) is valid for high
temperatures and for harmonic systems. In the latter case, the
centroid potential and classical potential are identical except
for an immaterial additive constant. In the following we will
denote the simpler method, based on simplifications (i) and (ii),
by approximate FK-LPI (AFK-LPI).

The AFK-LPI method is implemented by running classical
dynamics for the surface and, for a given sampling interval,
one calculates the instantaneous Hessian of the surface and
construct the local QDO Wigner transform.

3.4. Dynamical Calculations.Molecular dynamics calcula-
tions have been carried out for rigid water molecules scattering
off a graphite (0001) surface with a temperature of 100 or 300
K. Periodic boundary conditions were imposed in thex andy
directions (the surface plane). The molecule was initially located
outside the range of the gas-surface potential with its orientation
and (x,y) position chosen at random. The parallel and perpen-
dicular velocity components were chosen such that the molecule
would hit the surface with an angle of 30° with respect to the
surface normal and with the parallel velocity component in the
(112h0) direction. Fixed translational energies in the range 0.02-
0.20 eV were considered. The rotational energy of the molecule
was sampled from a Boltzmann distribution at 200 K. The initial
conditions for the surface atoms were in the classical case
sampled from an equilibrated graphite crystal. In the FK-LPI/
AFK-LPI cases the initial carbon positions and momenta were
read from a file generated as described in sections 3.2-3.3.
The equations of motion for the surface atoms were integrated
using the velocity Verlet method, and the twelve equations of
motion for the molecular degrees of freedom were solved using
the Gear fourth order predictor-corrector scheme. The time step
used was∆t ) 0.50 fs. The trajectory was propagated until the
water molecule was again outside the range of the potential or
until the maximum time-limit (100 ps) was reached. For more
details on the molecular dynamics calculations the reader is
referred to ref 39.

4. Results and Discussion

Before discussing the scattering results, the properties of the
FK-sampled graphite crystal will be considered. In Figure 2 the

distribution of normal-mode frequencies obtained using the FK
and AFK methods are compared. The AFK results at 100 and
300 K are based on 1000 and 4000 centroids, respectively. The
accurate FK frequency distributions, obtained from single
centroids, show considerably less structure due to the smearing
of the potential in this case. Averaging over several centroids
would make the FK distributions even smoother. Imaginary
frequencies (shown as negative in the figure) appear for both
the FK and AFK methods at 300 K, but the contribution from
imaginary frequencies is much larger in the accurate FK case.
At 100 K the AFK method yields only real frequencies. Overall

Figure 1. Equilibration of 300 K graphite surface. Centroid energy,W1, of total graphite surface as a function of number of Monte Carlo steps.

Figure 2. Frequency distribution for the graphite crystal at 100 and
300 K. Solid line, accurate FK; dashed line, approximate FK.
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the contribution to the spectra from imaginary frequencies is
small compared to what has been observed previously for
fluids.43

A general concern when using the classical Wigner method
is the stability of the sampled quantum initial state (“conserva-
tion of ensemble’’). In the present case the kinetic energy of
the atoms in the top layer is of particular interest since they
interact directly with the scattering molecule. In Figure 3 results
are shown from a thermalized graphite surface (Ts ) 100 K)
propagated during 100 ps. No water molecule collides with the
surface, i.e., the effects observed are only due to internal energy
redistribution in the crystal. The large zero-point energy for
graphite results in an average kinetic energy of 84 meV per
atom compared to the classical value of 13 meV. This value is
constant during the simulation which indicates that the kinetic
energy is in equilibrium with the potential energy. The motion
in the plane (x,y) is, however, not in equilibrium with the motion
perpendicular (z) to the graphene layers. A considerable transfer
of energy between parallel and the perpendicular motion occurs
during the first 25 ps of the simulation. The deterioration of
the initial quantum distribution will affect long-lived molecule-
surface interactions. The growing kinetic energy in the perpen-
dicular direction (from 15 to 28 meV) will increase the
difference between the classical and quantum dynamics, in
particular for long-lasting interactions. The difference between
the classical and quantum kinetic energies in thez-direction is,
however, large already att ) 0 (4.3 and 15 meV, respectively),
implying that the effect of the changing energy distribution is
quantitative and not qualitative. No difference is observed
between the accurate and approximate FK sampling schemes.

Figure 4 shows results for H2O molecules at 0.20 eV
scattering from a graphite surface at 300 K. The angular

distributions are very similar. The classical distribution is
somewhat broader, and the corresponding final kinetic energy
is lower. The differences between classical and quantum results
become much more pronounced at lower translational energy,
as shown in Figure 5 corresponding to 0.02 eV. Going from
0.20 to 0.02 eV increases the trapping probability (i.e., the
probability of a molecule to experience multiple collisions with
the surface) from about 0.54 to 0.85 irrespective of the
dynamical treatment. The average residence time on the surface
is, however, almost 2.5 times as long in the classical case
compared to the quantum case, which explains the broader
angular distribution. The results at a surface temperature of 100
K are very different, as is shown in Figure 6 for a collision
energy of 0.20 eV. In this case the classical sticking probability
is 0.54, i.e., 54% of the classically sampled trajectories are
trapped at the surface for at least 100 ps. Of the remaining
trajectories 85% correspond to direct scattering, i.e., they have
only experienced a single collision with the surface, which
explains the narrow angular distribution. An alternative com-
parison between classical and quantum angular distributions is
shown in Figure 7 where the classical distribution now is a
superposition of the inelastic distribution from Figure 6 with
weight 0.46 and an equilibrium cosine law distribution with
weight 0.54. In this way all trajectories are accounted for but
with the assumption of complete thermalization of trajectories
that are trapped for more than 100 ps. This type of two-
component angular distribution has been observed experimen-
tally for other systems.59

The expected effect on the angular distribution from an
increased motion of the surface atoms due to inclusion of zero-
point energy is a broadening. For the present system where a
large fraction of the molecules experience multiple collisions

Figure 3. The time-dependence of the total kinetic energy (a) and the
x-, y- and z-components (b) for atoms in the top layer. Solid lines,
accurate FK-LPI; dashed lines, approximate FK-LPI.Ts ) 100 K.
Average over 10 trajectories.

Figure 4. Angular distributions for H2O scattering from graphite and
average final kinetic energy as a function of the scattering angle. Initial
conditions: Ts ) 300 K, Etr ) 0.20 eV. Solid lines, accurate FK-LPI;
dashed lines, approximate FK-LPI; dotted lines, classical.
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with the surface a difference in residence time also becomes an
important factor, which explains why the FK-LPI distributions
in Figures 4 and 5 are more narrow than the classical
distributions. The residence time is much longer in the classical
case, leading to a more complete thermalization.38 At 100 K,
however, most of the trapped molecules stick to the surface in
the classical case leading to a narrow distribution corresponding
essentially to direct scattering. From Figure 8 it is clear that
classical or quantum mechanical sampling of the surface initial
conditions does not affect the probability of direct scattering
but has a large effect on the time the transiently trapped
molecules spend on the surface.

We have previously observed that the number of molecules
remaining on the surface as a function of time follows first-
order kinetics.37,39The molecules are only partially equilibrated
to the surface temperature,38 but the equilibration for the
translational motion in the surface normal direction is fast,
leading to a desorption-like process. This behavior is observed
in Figure 9a for a surface temperature of 300 K and a collision
energy of 0.02 eV when classical sampling is used. Molecules
with a surface residence time longer than 2.5 ps (and more than
three collisions with the surface) have been included in the
analysis. A desorption rate coefficient equal to 3.6× 1010 s-1

is obtained from a linear fit to the data. This value differs
somewhat from the result presented in ref 39. The main reason
is the much better statistics in the present case (7814 trajectories
compared to 794), but the different crystal size and initial
conditions probably also contribute.

The difference between the classical and the FK-LPI results
is striking. In Figure 9a, we observe that the FK-LPI trapping
probability is a nonexponential function of time, i.e., not

following simple rate kinetics. Why? Since the LPI model
employs classical dynamics, we expect the FK-LPI desorption
rate at some timet to (just as in a normal classical simulation)
increase with growing instantaneous kinetic energy in the normal
direction. However, from Figure 3b we have already seen that
this kinetic energy increases (a similar behavior is seen forTs

) 300 K).
The extraction of a rate constant from the FK-LPI results

may be done in two ways. First we consider a polynomial fit
procedure. Since FK-LPI is accurate for short times, one may
fit the early FK-LPI curve in Figure 9a to a polynomial int
and extract the linear slope whent f 0. The curve should be
linear at early times if the rate obeys simple kinetics. By fitting
the data between 2.5 and 10 ps in Figure 9a to a polynomial of
second degree, a rate coefficient equal to 6.4× 1010 s-1 is
obtained when extrapolating tot ) 0. Hence, the slope at short
times reflects the (correct) desorption rate coefficient before the
Wigner distribution has degraded significantly.

Next, we try extracting the rate coefficient from a rate
equation analysis. Thez-component of the kinetic energy is in
classical terms proportional to thez-component of the temper-
ature. From a graph similar to Figure 3b, but representing the
T ) 300 K case, the time-dependence of the kinetic energy in
the normal direction can rather accurately be described using
the equation

with T∞ ) 710 K, b ) 0.3183 andc ) 0.1349 ps-1. If the
instantaneous desorption rate,k(t), follows a phenomenological
type of Arrhenius equation, thenk(t) should depend on the

Figure 5. Angular distributions for H2O scattering from graphite and
average final kinetic energy as a function of the scattering angle. Initial
conditions: Ts ) 300 K, Etr ) 0.02 eV. Solid lines, accurate FK-LPI;
dashed lines, approximate FK-LPI; dotted lines, classical.

Figure 6. Angular distributions for H2O scattering from graphite and
average final kinetic energy as a function of the scattering angle. Initial
conditions: Ts ) 100 K, Etr ) 0.20 eV. Solid lines, accurate FK-LPI;
dashed lines, approximate FK-LPI; dotted lines, classical.

T(t) ) T∞(1 - be-ct) (23)
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kinetic energy in the normal direction in the following classical
manner:

whereD ) 0.125 eV is the binding energy (section 3.1), and
T(t) is the instantaneous kinetic energy rephrased in terms of
temperature. The desorption kinetics may now be simulated
using the equation

Figure 7. Angular distribution for H2O scattering from graphite. Initial conditions:Ts ) 100 K, Etr ) 0.20 eV. Solid line, accurate FK-LPI (from
Figure 6); dotted line, classical. The classical distribution is a superposition of the inelastic distribution from Figure 6 and a thermal desorption
cosine distribution.

Figure 8. The probability of multiple H2O-surface encounters and
average residence time for transiently trapped molecules as a function
of collision energy. Surface temperature: 300 K. Solid lines, accurate
FK-LPI; dashed lines, approximate FK-LPI; dotted lines, classical.

k(t) ) k(0) exp[- D
kB

( 1
T(t)

- 1
T(0))] (24)

Figure 9. (a) The logarithm of the fraction of molecules trapped on
the surface as a function of time forTs ) 300 K, Etr ) 0.02 eV. (b)
The same data plotted on a linear scale together with results from the
simple desorption model described in the text (dotted curves).

- dN
dt

) k(t)N (25)
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which can easily be integrated from given initial conditions (N/
N0 at t0 ) 2.5 ps) providedk(0) is known. The results shown as
dotted curves in Figure 9b have been obtained by finding the
k(0)-values that minimize the difference between the original
data and the solution to eq 25. In the classical case (for which
k is time-independent) we obtaink ) 3.8× 1010 s-1. The small
difference compared with the linear fit reflects the sensitivity
to the initial condition. In the FK-LPI case the best fit is obtained
for k(0) ) 6.2× 1010 s-1. This rate equation analysis yields an
estimate which agrees quite well with the polynomial fit
procedure. It shows that the nonlinear Arrhenius plot can be
explained with the increase in surface kinetic energy in the
normal direction.

For a surface temperature of 100 K and using classical
sampling almost all trapped molecules stick to the surface and
a desorption rate coefficient cannot be determined. This is
expected since the half-life in this case is increased from less
than 20 ps to approximately 0.3µs. The rate coefficient in the
FK-LPI case obtained as described above is approximately a
factor of 3 smaller at 100 K compared to 300 K, see Table
1.The redistribution of zero-point energy from in-plane to out-
of-plane motion will also affect the angular distributions, in
particular for low collision energies where the available energy
is small and the trapping probability large. We expect the effect
on the intensity to be rather small: more surface kinetic energy
broadens the distribution but simultaneously reduces the resi-
dence time which narrows the distribution. The average final
kinetic energy will increase due to the energy redistribution,
and the increasing energy in the surface normal direction may
also manifest itself as zero-point energy leakage from the surface
to the molecule.

The effect on the distributions in Figures 4 and 6 is expected
to be small due to the rather high collision energy (0.20 eV).
Energy transfer is from molecular translation and rotation to
the surface degrees of freedom in these cases. The average de-
excitation is about 100 meV using classical sampling and 10-
20 meV lower in the quantum case. At 300 K and 0.02 eV,
Figure 5, the water molecule (rotation plus translation) is excited
by 27 meV when classical sampling is used and by 53 meV in
the FK-LPI case. At this temperature the thermal energy is 183
meV per surface atom (13 meV larger than the zero-point
energy), i.e., the observed excitation is not unreasonable. If only
trajectories with one collision with the surface are considered,
the FK-LPI result is reduced by 50% to 26 meV while the
classical result is reduced by only 30% to 20 meV. It turns out
that the average excitation increases approximately linearly with
the number of surface collisions up toN ∼ 10 but the increase
is about five times faster in the FK-LPI case. Increased kinetic
energy in the normal direction due to energy redistribution
within the graphite crystal is likely part of the explanation for
the difference observed between classical and FK-LPI sampled
trajectories. It should be noted, however, that the erroneous
kinetic energy increase is much smaller at 300 K (47%)
compared to the 100 K case shown in Figure 3b (81%).

The most critical case regarding zero-point energy leakage
is the result at 100 K and 0.02 eV. Results using these initial
conditions are presented in Table 1 in the form of desorption
rate coefficients corrected for energy redistribution within the
crystal. Under these conditions the energy transfer must be from
the molecule to the surface since essentially no thermal surface
energy is available. As mentioned above we cannot obtain
classical results in this case due to almost complete sticking.
Using the approximate FK-LPI method the average excitation
after one collision was indeed found to be very close to zero (2
meV), i.e., the zero point energy (ca. 170 meV per surface atom)
is essentially conserved. Most trajectories are transiently trapped
under these conditions (92%) and the trapped trajectories stay
on the surface for 16 ps on average, resulting in a broad angular
distribution. The average energy transfer for all trajectories was
47 meV.

In order to obtain a crude estimate of the effect of energy
redistribution, we repeated the calculation with artificial scaling

TABLE 1: Desorption-like Rate Coefficients for Scattering
at 0.02 eV from Graphite at 100 and 300 Ka

k(T)/1010 s-1

Ts/K classical FK-LPI

100 1.7
300 3.8 6.2

a The rate coefficients are estimated using the rate equation approach
described in the text.

Figure 10. Angular distribution for H2O scattering from graphite. Initial conditions:Ts ) 100 K, Etr ) 0.02 eV. Solid line, FK-LPI; dashed line,
velocity-scaled FK-LPI (see text); dotted line, a cosine distribution.
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of the surface atom velocities after each integration step in order
to conserve the kinetic energies in thex -, y- andz-directions.
The angular distribution does not change qualitatively but
becomes broader, Figure 10. The peak is still at roughly 20°
and both the “scaled’’ and the FK-LPI distribution clearly
deviate from the cosine form expected in the purely classical
case if thermal desorption is assumed.

The final average speed decreases, in particular for scattering
in the normal direction. The total energy transfer from the
surface to molecular translation plus rotation decreases from
47 to 27 meV despite the fact that the residence time on the
surface for trapped trajectories increases to 39 ps. Only a small
fraction of the collisions are direct (5%) but these are essentially
elastic (average molecular de-excitation: 0.3 meV).

No quantitative conclusions can be drawn from the crude
“velocity-scaled’’ calculations described above, but the results
indicate that a large part of the zero-point energy leakage
observed for the lowest temperature and collision energy is
caused by the energy redistribution within the graphite crystal.
This increases the final average speed but has a rather small
effect on the angular intensity distribution.

5. Conclusions

We have applied the linearized path integral (LPI) ap-
proximation in order to include quantum effects into the
simulation of the scattering and trapping process of a water
molecule colliding with a graphite surface. The system was
studied for rather low collision energies (0.02-0.20 eV) where
the probability of trapping, defined as multiple collisions with
the surface, is high. The trapping probability was not affected
by quantizing the surface initial conditions.

The surface was studied at temperatures of 100 and 300 K.
At 300 K and 0.02 eV collision energy the FK-LPI angular
distribution was found to be more narrow than the corresponding
classical distribution. The reason is that the transiently trapped
molecules remain on the surface for a considerably shorter time
in the quantum case. The equilibration to the surface temperature
is less complete, leading to a more peaked angular distribution.
At 100 K a large difference between results corresponding to
quantum and classical initial conditions was observed also for
the higher collision energy of 0.20 eV. The classical distribution
is now more narrow since almost all molecules experiencing
multiple collisions stick to the surface in the classical case. The
classical distribution is therefore dominated by direct scattering
while the quantum distribution still has a large contribution from
transiently trapped molecules. We cannot compare directly with
the experimental results from ref 39 since either the surface
temperature or the collision energy was too high for quantum
effects to significantly affect the angular distributions. Such a
detailed comparison would also require a more accurate potential
than we have used in the present study.

It was shown that the LPI results, when corrected for the
redistribution of kinetic energy between parallel and perpen-
dicular motion of the surface atoms, are consistent with a simple
kinetic model, predicting a desorption rate constant at 300 K
being more than 60% larger than the classical prediction. At
100 K, the LPI desorption rate constant has decreased by a factor
of 3 while a classical simulation is unable to produce a rate
constant due to indefinite sticking of the water molecules.

Finally, results from a crude velocity rescaling implementation
of the FK-LPI method, which conserves the initial surface atom
kinetic energy partitioning, suggests that the angular intensity
distributions are not severely affected by the kinetic energy

redistribution even in cases where the effect on the average final
speed is significant.

The largest problem with the LPI approximation was in the
present application the drift in kinetic energy in the direction
normal to the surface. This is due to the well-known fact that
the LPI dynamics does not “conserve the ensemble’’. The drift
is in the case of graphite particularly pronounced since the force
constants of the graphite surfacein the planeare much larger
than the constants characterizing theout of planemovements.
Hence, more zero point motion is added in plane and, when
doing the approximate classical dynamics, energy will then flow
from in plane to out of plane movements. In surfaces where
the force constants in plane and out of plane are similar, e.g.,
metals or diamond, this drift problem will be expected to be
very small.

We end by noting that the gradient implementation of the
Feynman-Kleinert Wigner transform47 depends on the particular
system at hand only through a standard MD force routine. Hence
one may easily simulate other surfaces by just replacing the
“black-box’’ force routine by another.
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