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The uptake of trace gases such as OH and HO2 radicals, NH3, ClONO2, N2O5, ozone, and many other gases
by water, aqueous solutions of acids, and salts has been reported by numerous investigators using a variety
of techniques. Reported uptake coefficients vary greatly, ranging from 10-8 to 1. This paper describes a new
analysis of uptake data obtained in flow tubes that consolidates data obtained for various flow rates and trace
gas concentrations. Previous analyses, which have been often used, are shown to be limiting cases or special
cases of the analysis outlined here. Of particular emphasis are results for wetted-wall columns and trace gas
uptake by aerosol entrained in flow tubes. In the absence of aerosol, the analysis is shown to predict the
decrease in trace gas concentration due to bulk chemical reaction and/or reaction at the tube wall or gas-
liquid interface. Uptake coefficients for OH and HO2 radicals on water in wetted-wall tubes are shown to
range from 0.01 to 1, and on sulfuric acid, they vary from 0.008 to 0.03. For O3 on a water film doped with
a scavenger, the uptake coefficient is found to be 0.0008. Uptake coefficients determined by different techniques
are compared.

Introduction

Heterogeneous gas-liquid reactions have a significant impact
on atmospheric chemistry involving processes such as the
production of acid rain, ozone depletion, and haze and smog
formation. Because of this influence, numerous studies of the
uptake of trace gases by water droplets, aqueous solutions of
H2SO4, and other aerosols have been reported in the last two
decades, as evidenced by the extensive reviews of Kolb et al.1

and Davidovits et al.2 Several experimental methods have been
used to measure uptake coefficients of trace gases such as
OH3-5 and HO2

3,5-7 radicals, ClONO2,8-11 HCl,8,12,13HOCl,12

NH3,14 N2O5,9,11,15-18 O3,18,19 SO2,20 and others. The most
frequently used technique is the droplet train method in which
a stream of droplets pass through a vertical flow tube maintained
at sub-atmospheric pressure. The concentration of the trace gas
in the gas phase is usually monitored by mass spectrometry or
other methods to determine the uptake. Flow tubes in which a
polydisperse aerosol is entrained in a carrier gas6,12,17and wetted-
wall tubes3,18 have also been used to measure gas uptake by a
liquid. In these systems, the gas flow through the tube is usually
laminar, and diffusive transport of the trace gas to the wall
occurs. Other methods of measuring accommodation coefficients
and uptake coefficients were recently surveyed by Davis.21

There exists a large volume of literature on the use of flow
tubes for reaction kinetics studies since Kaufman22 published
an extensive survey of reactions of oxygen atoms and described
the equations governing diffusion with a first-order homoge-
neous reaction in the gas and heterogeneous reaction at the tube
wall. Later, Howard23 selectively surveyed the chemical kinetics
literature associated with flow tube measurements and pointed
out the need to take into account the effects of concentration
gradients. He stated the relevant convective diffusion equation
but did not develop a solution of it.

A somewhat more general form of the convection/reaction
problem for laminar flow in a circular tube (Poiseuille flow)
than that written by Kaufman is

with boundary conditions at the tube centerline (r ) 0) and
tube wall (r ) R) given by

Here,<VG> is the mean velocity of the gas stream,R is the
tube radius,Ci is the concentration of the reactive gasi, j refers
to the carrier gas,z is the axial coordinate,r is the radial
coordinate,Dij is the gas-phase diffusion coefficient, andkn is
thenth-order reaction velocity constant. In Kaufman’s formula-
tion, n ) 1, that is, the gas-phase reaction is first order, and the
parameterkW takes into account surface recombination of the
reactive species and is given by

Here γ, the so-called uptake coefficient, is the fraction of
molecular collisions with the wall leading to recombination of
the reactive gas, cj/4 arises from the kinetic theory of gases for
the molecular flux, and cj is the mean molecular speed given
by

in which kB is Boltzmann’s constant,T is the absolute temper-
ature, andmi is the molecular mass of the diffusing gas.

When axial diffusion is not negligible, two additional
boundary conditions are needed to solve eq 1, and the difficulty
associated with stating inlet conditions has not been generally
recognized in the literature related to diffusion with chemical
reaction in the tube flow. A more detailed discussion of this
issue is given below.
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Prior to Kaufman’s extensive survey, Krongelb and Strand-
berg24 studied atomic oxygen recombinations and modeled the
combined diffusion and reaction problem assuming a second-
order gas-phase reaction (n ) 2 in eq 1) and neglecting axial
diffusion. They assumed symmetry at the centerline of the tube
and no mass flux at the wall (kW ) 0 in eq 2) and solved the
governing equations with inlet condition

by a finite difference numerical method. They presented
graphical results for the average concentration as a function of
axial distance for various values of the parameterDij/k2Ci,0R2.
Poirier and Carr25 also used numerical methods to solve eq 1
for n ) 1 and 2, neglecting axial diffusion, with boundary
conditions of the form of eq 2. Although numerical solutions
are required forn > 1 in eq 1, the problem forn ) 1 can be
solved analytically, that is, in terms of known special functions.
It is difficult to apply published results using interpolation
methods; therefore, alternate methods are desirable.

Judeikis26 derived a traditional power series solution of the
convective diffusion equation, eq 1 withn ) 1, for the case of
no reaction at the tube wall. He also obtained a solution for the
case of flow in the annular region between two concentric
cylindrical tubes. Donahue et al.27 reported an approximate
method for taking into account radial concentration gradients
in flow reactors used to study free-radical kinetics. They
considered the radicals to be introduced into the laminar flow
at the centerline, forming an approximately Gaussian plume.

Convective diffusion problems of the type of eq 1 and its
boundary conditions are often referred to as Graetz-like or
extended Graetz problems stemming from Graetz’s28 analysis
of the temperature distribution for laminar flow in a heated or
cooled circular tube. There exists a very large amount of
literature related to Graetz-like problems. Although most of the
early work on the solution of Graetz problems involved
numerical methods (e.g., Hsu29 for heat transfer in a tube with
axial conduction), a number of such problems can be solved in
terms of well-known special functions. In the case of plug flow
(uniform velocity), solutions can be obtained in terms of Bessel
functions,30 and for Poiseuille flow, solutions can be written in
terms of the lesser known Kummer function (also called the
confluent hypergeometric function). Abramowitz and Stegun31

provided details of the properties (derivatives, integral repre-
sentations, asymptotic expansions, zeros, etc.) of Kummer
functions and tabulated them.

In studies of aerosol generation by the condensation of vapor
in a flow tube, Nicolaon and his co-workers32,33 obtained
solutions for the temperature field in the cooled tube and the
vapor concentration in terms of Kummer functions, and in 1972,
Gershenzon et al.30,34 solved two problems closely related to
the analysis outlined here. Both solutions were developed in
terms of the Kummer function. In the first problem, they solved
eq 1 for a first-order gas-phase reaction with no wall loss (kW

) 0), and in the second paper, they solved eq 1 withk1 ) 0
using the boundary conditions given by eq 2.

More recently, Orkin et al.35 applied the solution obtained
by Gershenzon et al.30 to estimate the error in the rate constant
of a gas-phase reaction due to the parallel occurrence of a
heterogeneous process.

A widely cited and applied analysis of kinetics measurements
in a flow tube is that of Brown,36 who developed an approximate
solution for the concentration distribution of a reactive gas in a
tubular laminar flow reactor undergoing a first-order reaction
in the bulk gas and gas transport to the wall. He solved eq 1

(with n ) 1) subject to boundary conditions given by eq 2, a
problem previously analyzed by Walker.37 Brown developed a
simplification of Walker’s asymptotic solution (valid for large
z) of the equations using only the first term in an eigenfunction
expansion using a power series inr/a to express the eigenfunc-
tion. He apparently was not aware of the work of Gershenzon
and his co-workers;30,34 therefore, he provided a simple numer-
ical routine to calculate the relevant parameters. Because
Brown’s solution is only valid asymptotically, it cannot take
into account possible radial variations in the inlet concentration
of the reactive species and is not accurate for short tubes (or
large gas flow rates). That is also the case for the solutions of
Gershenzon et al.30,34and Orkin et al.,35 who used only the first
term in the solution of the full problem.

There is an additional difficulty associated with the solutions
of Walker,37 Brown,36 Gershenzon et al.,30,34 and others, who
include axial diffusion in the analysis. These investigators
assumed that at the point of introduction of the reactive gas (z
) 0), the concentration can be specified a priori asCi(r,0). Since
two boundary conditions are required in the axial direction, the
second boundary condition was taken to beCi(r,∞) ) 0. When
axial diffusion is significant, diffusion in the-zdirection distorts
the concentration distribution atz ) 0. Furthermore, the inlet
concentration distribution cannot be accurately represented by
the asymptotic solutions obtained. These issues are addressed
further below.

Additional numerical simulations for flow reactors were
performed by Segatz et al.38 for first-order kinetics in the bulk
and at the wall. They briefly reviewed prior analyses and pointed
out the need to consider the initial stage of the reaction.

In 1973, Davis39 obtained solutions for a fairly wide class of
Graetz-like problems in terms of the Kummer function. The
methodology of Gershenzon et al.30,34and Davis39 is used here
to analyze transport and chemical reaction in tube flow. There
is a need to re-examine the problem because many of the
previous analyses are flawed, only approximate, or do not apply
to short tubes and to inlet concentrations that are not spatially
uniform. Furthermore, the flow field when there is a liquid film
on the tube wall needs to be examined. A generalized solution
in terms of well-known functions has considerable advantage
to the user over numerical solutions carried out for specific
cases.

Utter et al.18 and Hanson et al.3 used wetted-wall tubes to
measure uptake coefficients, and they applied Brown’s solution
to interpret the data. Gershenzon et al.40 also used flow tubes
to measure uptake coefficients of HO2 and CH3O2 on liquid
surfaces of H2SO4-H2O and on salts. One flow tube they used
extensively was a coaxial reactor with the aqueous solution or
salt deposited on the cylinder wall. Magnetic resonance
techniques were used to investigate the uptake. Recently, Aubin
and Abbatt41 reported on the use of a coated-wall flow tube to
study the interaction of NO2 with hydrocarbon soot. Initial
uptake coefficients for three soot substances were found to be
(3.9( 1.9)× 10-5. They compared their results with numerous
previously reported uptake coefficients that ranged from 10-8

to 0.1.
For the liquid film flow, Utter and his co-workers used results

that apply to a thin falling film having no interfacial shear at
the gas-liquid interface, and they estimated the film thickness
based on such a theory. Analysis of their reported experimental
conditions indicates that the gas flow rate was sufficiently large
to produce significant interfacial shear. Consequently, the liquid
film thicknesses were overestimated. It is useful to solve the
co-current gas-liquid flow problem to determine the velocity

Ci(r, 0) ) Ci,0 (5)
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distributions in the gas and liquid phases before analyzing the
gas-phase diffusion problem.

Analysis

For co-current downward laminar flow in a tube of radiusR,
the equations of motion for the gas and liquid flows are given
by Bird et al.42 and reduce to

and

in which ∂p/∂z is the pressure gradient,FG andFL andµG and
µL are the gas and liquid densities and viscosities, respectively,
g is the gravitational acceleration constant, andVG andVL are
the gas and liquid velocities, which are considered to be
functions of radial coordinater only. It is assumed that both
the gas and liquid flow rates are in the laminar flow regime.

The gas and liquid velocities are assumed to be independent
of the axial direction because in trace gas experiments the
concentration of the reacting species is very small compared
with the carrier gas concentrations, and the carrier gases are
not transferred to the liquid film nor the tube wall (in the absence
of a liquid film). For example, in the wetted-wall uptake
measurements of ozone on water reported by Utter et al.,18 the
inlet ozone concentration was∼1011 molecules/cm3, and the
concentration of the carrier gas mixture (helium and water vapor)
was∼3.5× 1017 molecules/cm3. Furthermore, the system was
maintained at constant temperature; therefore, the densities of
the gas and liquid did not change significantly (the pressure
drop through the column was very small).

If the flow system is not isothermal or if the flow at the point
of introducing the trace gas is not fully developed, the analysis
of the flow field is much more complicated than that considered
here. Khalizov et al.43.44 used a computational fluid dynamics
model to compute the flow field in laminar aerosol flow tubes.
They showed that temperature gradients produce convection
currents that lead to poorly defined residence times of the aerosol
in the tube and that the design of the inlet to the flow tube has
a large effect on the flow field.

If the liquid film thickness,δ, is uniform in the axial direction
(neglecting ripples that can occur at higher flow rates), the
boundary conditions are

and

The latter equation, eq 9, arises from the assumption that the
shear stress is continuous across the gas-liquid interface located
at r ) R - δ.

The solutions for this system of equations are

and

where

The liquid volumetric flow rate is given by

This nonlinear equation in the film thickness can be solved to
determine the film thickness when the liquid flow rate is known.
This result is substantially different than the result used by Utter
et al.,18 which is

This equation is based on the flow of a thin film on a surface
under the influence of gravity alone and does not take into
account the axial pressure gradient and the interfacial shear
exerted on the film by the gas flow. Consequently, it overpre-
dicts the film thickness when there is significant interfacial shear.

Whenδ/R is sufficiently small (δ/R , 1), which is the case
in the experiments of Utter et al.18 and Hanson et al.,3 the gas-
phase velocity distribution reduces to the classical Poiseuille
flow velocity distribution

and the mean gas velocity becomes

Thus, in the limit of smallδ/R, the velocity distribution is that
used in the convection term in eq 1. Of course, in the absence
of a liquid film on the wall, the gas flow is Poiseuille flow for
laminar flow conditions.

It is convenient to write the governing equations in nondi-
mensional form by introducing the following variables and
parameters

Here, 〈Ci,0〉 is the inlet trace gas concentration averaged over
the cross-sectional area of the gas, and Pe is the Peclet number
for mass transfer. In the ideal case,〈Ci,0〉 is simply the inlet
concentration, but if the inlet concentration is not radially
uniform, 〈Ci,0〉 must be calculated based on knowledge of the
radial distribution. The Peclet number is a measure of the rate
of axial transport of the trace gas to the axial transport by
molecular diffusion.

The convective diffusion equation for a first-order reaction
in the bulk gas transforms to

in which Da is a Damkohler number defined by
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which is the ratio of the diffusion time to the reaction time (or
a ratio of the chemical reaction rate to the molecular diffusion
rate). If there is no bulk reaction in the gas, Da) 0.

The convective diffusion equation must be solved subject to
appropriate boundary conditions. The boundary conditions at
the centerline and wall given by eq 2 transform to

in which

In most of the previous analyses of diffusion and reaction in
flow tubes, the authors apply an entry condition based on the
assumption of a uniform inlet concentration of reactive gas.
Although this is a reasonable condition for large Peclet numbers,
when axial diffusion cannot be neglected (small Pe), two
boundary conditions in the axial direction are required for a
well-posed problem. For low Pe, axial diffusion affects both
the upstream (ú < 0) and downstream (ú > 0) concentration
distributions. Consequently, the concentration atú ) 0 cannot
be specified a priori. Papoutsakis et al.45,46 and Acrivos47

addressed this issue for the extended Graetz problem associated
with laminar flow heat transfer. Papoutsakis and his co-workers45

solved the constant wall temperature (forú > 0) extended Graetz
problem and the constant wall flux problem,46 and Acrivos
provided the corresponding asymptotic solution for PeH , 1,
where the Peclet number for heat transfer is analogous to the
Peclet number for mass transfer and is defined by PeH ) 2R〈V〉/
RH, in which RH is the thermal diffusivity. In these analyses,
the wall temperature was considered to be uniform forú f ∞.

For low PeH, the temperature distribution (or concentration
distribution in the analogous mass-transfer problem) is signifi-
cantly distorted from a uniform distribution near the wall (η >
0.5), where axial diffusion is more pronounced compared with
the convective transport of the fluid. The results of Papoutsakis
et al.45,46demonstrate that for PeH g 10, the uniform temperature
profile is established within very small negative values ofú.
For example, their results show that for PeH ) 10, it takes only
25% of the tube diameter upstream for the uniform temperature
profile to be established, and they concluded that axial conduc-
tion (or diffusion) is negligible if PeH > 50.

The Peclet numbers associated with the experiments of Utter
et al.18 and Hanson et al.3 generally exceed 50; therefore, axial
diffusion could be neglected. In this case, only one additional
boundary condition is required, which, in general, may be
written as

whereCi(η,0) is the inlet concentration distribution written in
terms of dimensionless radiusη.

For instantaneous reaction at the gas-liquid surface (or wall),
φ(1,ú) ) 0. This problem corresponds to the classical dimen-
sionless Graetz problem28 for heat transfer in fully developed
laminar flow with constant wall temperature. In most texts, the
Graetz problem is solved by applying the method of separation
of variables using numerical methods to obtain the relevant
eigenfunctions, but here, we develop the solution in terms of
Kummer functions.

To solve eq 18, neglecting axial diffusion, letφ(η,ú) be the
productf(ú)g(η), in which f(ú) is an exponential function

andg(η) satisfies the Sturm-Liouville equation

whereE andλ are constants to be determined, and the boundary
conditions become

This system of equations constitutes a Sturm-Liouville problem.
Consequently, there exists an infinite set of orthogonal functions,
gn(η), that satisfies the Sturm-Liouville equation.

In their solution of eq 18 including axial diffusion, Walker,37

Brown,36 and Gershenzon and his co-workers,30,34assumed that
f(ú) is given by eq 23. With this assumption, the product solution
yields

which is not a Sturm-Liouville equation. This has a significant
effect related to satisfying the inlet condition.

Introducing the transformations39

eq 24 transforms to Kummer’s equation31

with

The relevant solution of Kummer’s equation here is the
confluent hypergeometric function (also called the Kummer
function),M(R,â,t), defined by

Only one solution of eq 28 is needed because the transforma-
tions leading to it automatically satisfy the boundary condition
at η ) 0. Consequently, the solution becomes

The confluent hypergeometric function has properties described
by Abramowitz and Stegun31 and numerous mathematical texts
and was tabulated by Abramowitz and Stegun. The most relevant
property needed here is the derivative

If the transformations given by eq 27 are applied to the full
problem including axial diffusion, one obtains the solution for
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gn(η) given by Gershenzon et al.30 for the case of no wall loss,
which is

For large Pe, this reduces to eq 31. They considered only the
smallest positive value ofλn, that is,λ1.

Using eq 31, the boundary condition atη ) 1 and the
derivative property, the eigenvalues,λn, satisfy

If Da/λn is replaced by Da/λn - λn
3/Pe2 andκ ) 0, the solution

of Gershenzon et al.30 is obtained. If there is no bulk reaction
and Da/λn is replaced by-λn

3/Pe2, the second solution consid-
ered by Gershenzon et al.34 is recovered.

By superposition of solutions, the full solution becomes

and the constantsEn are obtained from the initial condition by
applying the orthogonality of the eigenfunctions, that is

where

When the axial diffusion term is not negligible, the functions
gn(η) given by eq 33 are not orthogonal. This was shown by
Davis and Bonano48 for the similar problem of mass transfer to
a laminar falling film and by Papoutsakis and his co-workers45,46

for the extended Graetz problem. Consequently, the following
steps needed to obtain the coefficientsEn in the analysis cannot
be applied unless axial diffusion is negligible.

Using eq 35, the initial condition, eq 22, can be expanded in
an eigenfunction expansion as follows

where the coefficientsEn are obtained by applying orthogonality,
that is

In general, this result cannot be integrated untilCi(η,0) is
specified. For example, Donahue et al.27 assumed the inlet
concentration distribution to be roughly Gaussian.

Utter et al.,18 Hanson et al.,3 Thornton and Abbatt,6 and
Hanson and Ravishankara12 introduced the trace gas through a

glass injector that could be moved in thez direction. An
approximation for the inlet concentration distribution for a
circular tube with inner radiusR having a cylindrical injector
with inner radiusR0 inserted along the centerline can be applied
if the injector flow rate,Q0, the total flow rate in the tube,Q,
and the inlet concentration in the injector,Ci,0, are known. In
this case, the concentration distribution is given by

and the mean inlet concentration due to dilution of the trace
gas in the carrier gas stream becomes

Hanson et al.3 reported the outer diameter of the injector to
be 10 mm (R0 ∼ 4 mm for a 1 mmtube wall thickness) in
reference 18 and 9 mm (R0 ∼ 3.5 mm) in reference 3, and the
flow tube i.d. was 25.4 mm (R ) 12.7 mm), but the flow rate
Q0 was not specified. Thornton and Abbatt6 used a 6 mmo.d.
(R0 ∼ 2 mm) injector in a 60 mm i.d. (R ) 30 mm) flow tube.
They reported the flow rates to beQ0 ) 2500 slpm andQ )
7600 slpm, respectively. In both studies, the inlet concentration
was not measured.

The injector design has two major effects on the interpretation
of data. As discussed above, the first is that the inlet concentra-
tion distribution is spatially nonuniform, and the second is that
the assumed parabolic velocity profile of the carrier gas is
distorted in the region near the injector. This is particularly a
problem with the high flow rate through the small injector used
by Thornton and Abbatt6 because the injector produced a jet of
fluid at the centerline of the flow.

If the concentration distribution given by eq 40 can be applied,
the coefficientsEn are given by

In the absence of detailed information on the inlet concentra-
tion distribution, the assumption of a spatially uniform distribu-
tion is a very rough approximation that can be adapted to analyze
data, provided that the data can be extrapolated to yield an
estimate of the mean inlet concentration. This does not lead to
large error downstream of the inlet region where the concentra-
tion is not sensitive to the inlet value.

Taking the inlet concentration to be uniform at the radial-
average concentration,Ci(η,0)/〈Ci(η,0)〉 ) 1, the coefficients
En become

whereI1 is the integral

which is readily calculated using MatLab or other software. The
zeros of eq 34, the integrals and derivatives involvingM(R,â,t),
were calculated using MatLab in this study. For such computa-
tions, it is useful to write the Kummer function in the form
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whereN is taken to be sufficiently large such that (R + N)t/(â
+ N)N , 1.

Results

In addition to the general case of bulk reaction and wall loss,
two limiting cases are of some interest, as indicated by the
analyses of Gershenzon et al.30,34 and others discussed above;
these are (i) bulk chemical reaction with no wall loss and (ii)
no bulk chemical reaction with instantaneous reaction at the
wall. It is convenient to present graphical results in terms of
the dimensionless mixed mean concentration〈φ(ú)〉 obtained
by averagingφ(η,ú) over the cross-sectional area of the gas to
give

When there is no wall loss, dgn/dη ) 0 at η ) 1. For this
case, Table 1 lists the first five eigenvalues for various values
of the Damkohler number, and Figure 1 shows the effect of Da
on the dimensionless mean concentration. For Da> 3, the
reaction goes to completion within the dimensionless axial
distanceú < 1. Clearly, the Damkohler number has a large effect
on the extent of the reaction.

In the absence of bulk-phase reaction (Da) 0), the decay in
the mean concentration is governed by the dimensionless uptake
parameterκ. Table 2 lists the first five eigenvalues for various
values ofκ.

The application of this analysis to diffusion and reaction in
flow tubes involves several dimensionless parameters; the Peclet
number (Pe), the Damkohler number (Da), and the wall reaction
parameter (κ) appear explicitly in the analysis, and the Sherwood
number (Sh) and Nusselt number (Nu) are determined in the
analyses of mass-transfer and heat-transfer processes. In addi-
tion, the gas and liquid Reynolds numbers, ReG and ReL must
be taken into account in the interpretation of data. Table 3 lists
the various dimensionless groups, their definitions, and their
significance. More extensive lists of dimensionless groups
encountered in various branches of engineering, physics, and
chemistry were published by Boucher and Alves.49,50

Application to Aerosol Flow Tubes.Thornton and Abbatt6

reported data for the uptake of HO2 to Cu(II)-doped H2SO4/
H2O aerosol at 35% relative humidity (RH) and to NH4HSO4/
H2O aerosol at 42% RH. They also performed experiments in
the absence of aerosol to determine if wall losses contributed
significantly to the decay in the HO2 signal and without doping
to determine the effect of the Henry’s law constant on the
uptake. The submicrometer aerosol droplets were entrained in
the flow through a circular tube having a diameter of 6 cm,
and the system was operated at atmospheric pressure (755 Torr)
and room temperature (295 K). The flow system was coupled
to a chemical ionization mass spectrometer to determine the
loss of HO2. They found the wall loss to be very small compared
with the uptake by the aerosol. The gas Reynolds number was
approximately 200,<VG> ≈ 4.5 cm/s, and they took DG )
0.25 cm2/s. This corresponds to a Peclet number of ap-
proximately 100; therefore, axial diffusion can be neglected.

The HO2 concentration was measured relatively far from the
injector inlet, and they reported relative distances. The shortest
distance in each set of measurements was taken 20-30 cm
downstream of the injector inlet. For the calculations discussed
below, the shortest distance was taken to be 25 cm from the
inlet, and the approximate inlet concentration was obtained by
extrapolating the data to the inlet.

Figure 2 compares the data for HO2 decay in the absence of
any aerosol with the analysis developed here assuming a first-
order reaction in the bulk gas and no wall loss. The data

M(R,â,t) )

1 + R
â

t
1 {1 +

(R + 1)

(â + 1)
t
2 [1 +

(R + 2)

(â + 2)
t
3]...(1 +

(R + N)

(â + N)
t
N)}
(45)

〈φ(ú)〉 ) 4 ∑
n)1

∞ En

λn
2

exp(-λn
2ú)[DaI1 -

dgn

dη
(1)] (46)

Figure 1. The effect of the Damkohler number on the axial mean
concentration distribution.

TABLE 1: Eigenvalues for Various Damkohler Numbers
and No Wall Loss (K ) 0) Computed by Finding the Zeros
of Eq 34

Da ) 0.1 0.3 1 3 10

λ1 ) 0.4467 0.7722 1.3998 2.3778 4.1059
λ2 ) 5.0872 5.1265 5.2621 5.635 6.7799
λ3 ) 9.1685 9.1903 9.2664 9.4819 10.2103
λ4 ) 13.2048 13.2199 13.2729 13.4237 13.9449
λ5 ) 17.2260 17.2376 17.2783 17.3942 17.7976

TABLE 2: Eigenvalues for Various Values of K and No
Bulk Chemical Reaction (Da) 0) Computed by Finding the
Zeros of Eq 34

K ) 0.1 1 10 100 1000 ∞
λ1 ) 0.6183 1.6412 2.5168 2.6843 2.7023 2.7043
λ2 ) 5.1169 5.4783 6.3646 6.6432 6.6754 6.679
λ3 ) 9.1889 9.436 10.2707 10.6249 10.6684 10.6733
λ4 ) 13.2211 13.4152 14.2002 14.6116 14.665 14.671
λ5 ) 17.2399 17.4026 18.1437 18.6004 18.6627 18.6698

TABLE 3: Dimensionless Groups Encountered in Heat and
Mass Transfer Associated with Flow Tubes

symbol name definition significance

Da Damkohler
number

kR2/Dij chemical reaction rate/
molecular diffusion rate

Nu Nusselt
number

2Rh/kheat total heat transfer/
conductive heat transfer

Pe mass-transfer
Peclet number

2R〈V〉/Dij bulk transport of mass/
diffusive transport of mass

PeH heat-transfer
Peclet number

2R〈V〉/Rheat bulk transport of heat/
conductive transport of heat

ReG gas-phase
Reynolds number

2RFG〈VG〉/µG inertial force of gas/
viscous force of gas

ReL liquid-phase
Reynolds number

δFL〈VL〉/µL inertial force of liquid/
viscous force of liquid

Sh Sherwood
number

2RK/Dij total mass transfer/
molecular diffusion

κ interfacial reaction
number

Rγcj/4Dij interfacial decomposition rate/
molecular diffusion rate
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correspond to those in Figures 1a and 2 in ref 6. The aerosol-
free data of Figures 1 and 2 of the authors are in very good
mutual agreement in nondimensional parameters, and they best
agree with the analysis for Da) 1, which yields a first-order
reaction rate constantk1 ) 0.028 s-1

. The HO2 decay is seen to
decrease more rapidly than that calculated for a first-order
reaction, which suggests that a first-order reaction is not a
reasonable assumption. Thornton and Abbatt6 considered the
gas-phase decay to be second order in HO2.

Transport to a Tube Wall. The limiting case of an
instantaneous reaction at the wall, which corresponds to the
maximum possible mass flux to the surface, can be illustrated
by computing the interfacial mass flux defined by

whereKG is a gas-phase mass-transfer coefficient and<Ci(z)>
is the bulk mean concentration of the diffusing species. The
zero signifies that the concentration at the interface vanishes
because of the instantaneous reaction. This limiting case
corresponds toγ ) ∞ (κ ) ∞) in Brown’s problem.

In nondimensional form, the mass flux equation is

in which Sh is the Sherwood number (dimensionless mass-
transfer coefficient) defined by

Sinceφ(η,ú), its derivative, and its mean value<φ(ú)> can
be calculated from the solution developed above, the Sherwood
number can be determined. The result is presented in Figure 3.
The Sherwood number decreases from infinity atú ) 0 to an
asymptotic value Sh∞ ) λ1

2/2 ) 3.6568 within a dimensionless
distance ofú ∼ 0.1. This region can be considered to be an
entry region or transition region in which the mass flux varies
significantly with axial distanceú. The asymptotic Sherwood
number is identical to the asymptotic Nusselt number, Nu∞,
obtained for the analogous heat-transfer problem28 and the
Sherwood number reported by Gershenzon et al.7 for a cylindri-

cal reactor. The Nusselt number is defined by Nu) 2Rh/kheat,
in which h is a heat-transfer coefficient analogous to the mass-
transfer coefficient defined by eq 48 andkheat is the thermal
conductivity of the fluid. The asymptotic Nusselt number of
3.6568, which applies for large Pe, can be compared with the
asymptotic Nusselt numbers calculated by Papoutsakis et al.45

for various Pe. For Pe) 5, they obtained Nu∞ ) 3.778, and
for Pe ) 10, they reported Nu∞ ) 3.695. Consequently, the
effect of the Peclet number on the radial transport is not great
for Pe> 10.

For ú < 0.05, the mass flux at the interface is much larger
than the asymptotic value, and in this region, the number of
terms in the series representing the solution forφ(η,ú) increases
as ú decreases. In the region of practical interest, five terms
have been found to be adequate, and in the asymptotic region,
only one term is needed. Note that the solutions of Walker,37

Brown,36 and Gershenzon et al.30,34correspond to using the first
term of eq 35. Forú ) 0.01, the Sherwood number given by
using the full solution is 5.9900 whereas the previous analyses
yield Sh ) 3.6568. Since the mass flux to the wall is
proportional to the Sherwood number, the mass flux is greatly
underestimated using a single term.

Whenκ < ∞, it is not convenient to express results in terms
of a Sherwood number. It is more appropriate to calculate the
mixed mean concentration of the trace gas (either〈Ci(z)〉 or 〈φ-
(ú)〉) that depends on the axial distance. The first step is the
calculation of the eigenvaluesλn, and the eigenvalues listed in
Table 2 have been used to calculate the eigenfunctions and
dimensionless concentrations.

Figure 2. The gas-phase HO2 decay data of Thornton and Abbatt6 from their Figure 1 (0) and Figure 2 (O) compared with this analysis for various
Damkohler numbers.

j|r)a ) -Dij

∂Ci

∂r
(R,z) ) KG[〈Ci(z)〉 - 0] (47)

-∂φ

∂η
(1,z) ) Sh

2
〈φ(ú)〉 (48)

Sh) 2RKG/Dij (49)

Figure 3. The Sherwood number in the transition region (- - -) and
the asymptotic Sherwood number (ss).
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Figure 4 shows how the dimensionless uptake coefficientκ

affects the mixed mean concentration. Forκ > 10, the mean
concentration profile deviates little from the limiting case of
largeκ, but at lower uptake coefficients, the axial distribution
is very sensitive toκ (or γ).

Application to Wetted-Wall Tubes. Utter et al. provided
one complete set of uptake data for O3 uptake on water that
could be analyzed using the method outlined above. Table 4
lists the relevant parameters for an experiment in which Na2-
SO3 was used as a scavenger for the uptake of O3. The gas and
liquid flows were both laminar, but some rippling was encoun-
tered. The effects of ripples have not been taken into account
in the above analysis of the flow fields.

Figure 5 shows a comparison between the data of Utter et
al. and computed results for two values of the uptake coefficient,
γ ) 0.0008 and 0.001 usingDij ) 16 cm2/s, which is the gas-
phase diffusivity reported by the authors. Also shown for
reference is the curve calculated forγ ) 1. The data are in
good agreement with the results forγ ) 0.0008. An independent
calculation of the gas-phase diffusivity for ozone in a mixture
of water vapor and helium using the Chapman-Enskog theory
discussed by Bird et al.42 yieldsDij ) 13 cm2/s. For this lower
value of the diffusivity, the Peclet number is increased, and the
data are shifted to smaller dimensionless axial distances. Utter
et al. reportedγ ) 0.00076 for this set of data using Brown’s

analysis. The agreement between the present analysis and that
of Brown is due to the fact that at the relatively low gas flow
rates (or Peclet numbers) used by the authors, most of the tube
length corresponds to the asymptotic mass-transfer region where
only the first term of the infinite series is needed. That is not
generally the case for the experiments of Hanson and his co-
workers.3

Figures 6-9 compare the wetted-wall data of Hanson et al.3

with the analysis described here. Note that many of the data
points are at dimensionless axial distances lower than those of
Utter et al. because of the much higher gas velocities.
Consequently, much of the data is in the transition region (or
entry region) where Brown’s analysis36 is not accurate. The gas-
phase diffusivities reported by the authors were used for each
calculation of the axial concentration distribution. Each of the
figures has an insert that shows the original graphs and the mean
gas velocities. The dimensionless variables used here tend to
consolidate the data.

Hanson et al.3 plotted their data in terms of a relative position
of the detector. To estimate the position relative to the inlet
and the inlet mean concentration, the data in the various
sets of data were extrapolated to yield the same position
and inlet concentration for each data set. For example, for the
inset of Figure 6 (Figure 1a of the authors), the inlet is estimated
to be at-20 cm based on the relative positions shown in the
figure.

For the OH radical uptake on water shown in Figure 6, the
data scatter about the curve corresponding toγOH ) 1. Also
shown in the plot are the calculated results forγOH ) 0.1, which
nearly fall on the curve forγOH ) 1. The data for the lowest
gas velocity suggest thatγOH could be as low as 0.1. The data
which fall to the left of the curve forγ ) 1 correspond to the
two higher flow rates where more pronounced rippling would
occur. Using Brown’s36 analysis, the authors reportedγOH )
0.0035 for OH on water.

The results for the uptake of OH radicals on H2SO4 presented
in Figure 7 show much more scatter than any of the other data
sets. The data obtained at the highest gas velocity (<VG> )
4220 cm/s) fall near the curve forγOH ) 0.008, and the results
for the lowest gas velocity (<VG> ) 2560 cm/s) agree with
the analysis forγOH ) 0.04. The authors reportedγOH > 0.08
for H2SO4.

The results for HO2 radicals on water shown in Figure 8 are
reasonably well consolidated and fall in the range of 0.01<
γHO2 < 1. The data for HO2 radicals on H2SO4, presented in
Figure 9, show the best consolidation achieved by nondimen-
sionalizing the concentrations and positions, and the data scatter
about the calculated results forγHO2 ) 0.03.

Figure 4. The effects of the dimensionless uptake coefficientκ on
the trace gas mean concentration profile.

TABLE 4: The Parameters Reported by Utter et al. for the
Uptake of Ozone by a Film of Water

temperature
T ) 276 K

total pressure
Ptotal ) 10.85 Torr

length of absorber
L ) 60 cm

tube radius
R ) 1.27 cm

film thickness
δ ) 0.02 cm

inlet ozone concentration
Ci,0 ) 1011 molecules/cm3

mean gas velocity
<VG>) 457 cm/s

gas-phase diffusivity
16 cm2/s

carrier gases
H2O and He

Figure 5. The ozone uptake data of Utter et al.18 compared with the wetted-wall tube analysis forDij ) 16 cm2/s (ν) and 13 cm2/s (λ).
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The authors reportedγHO2 > 0.01 for water andγHO2 > 0.05
for H2SO4, which is consistent with the results found here.
Because the results obtained from the convective diffusion
theory are not very sensitive toγ in the range of 0.05< γ < 1,
experimental measurements cannot be expected to yield highly
accurate results in this range.

Discussion

The analysis of the effects of diffusion on the transport of a
trace gas to a tube wall or liquid interface developed here
effectively consolidates data obtained by varying the gas flow
rate and other experimental parameters. Furthermore, the effect
of a first-order chemical reaction in the bulk gas can be taken
into account. The parametric study represented by Figure 4

shows that the mixed mean concentration distribution is not
sensitive to the dimensionless uptake parameterκ for large
values ofκ, and it is very sensitive to the gas-phase diffusivity
for small κ because of the dependence ofú on the diffusivity.

Rigorous interpretation of flow tube data is hampered by lack
of information on the inlet concentration and the inlet concen-
tration distribution, which depends on the injector design. The
use of small multiple injectors could provide a more uniform
inlet distribution, but the disturbance of the flow field by the
injectors cannot be avoided. It is also desirable to adjust the
flow rate exiting the injector such that the mean velocity of the
injected stream does not differ greatly from the mean velocity
of the total flow. That avoids the disruption of the flow field
by a high velocity jet exiting the injector.

Figure 6. The OH/H2O data of Hanson et al.3 compared with the wetted-wall tube analysis. The inset is a redrawing of the original graph of the
investigators.

Figure 7. The OH/H2SO4 data of Hanson et al.3 compared with the wetted-wall tube analysis. The inset is a redrawing of the original graph of the
investigators.
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Some comparisons among results for uptake coefficients
obtained with wetted-wall columns and those obtained by other
methods can be made. For example, the uptake coefficient for
O3 determined from the data of Utter et al. (γO3 ) 0.0008),
which used 0.8 M Na2S2O3 as a scavenger, is considerably lower
that the uptake coefficients for O3 reported by Magi et al.19 using
NaI as a scavenger in water. Magi et al. obtainedγO3 ) 0.0037-
0.0116 for I- activities in the range of 0.3615-2.889 at 282 K.
However,γO3 for pure water was found to be too small to be
measured by their droplet train technique. Since the Henry’s
law constant for ozone in water is very low, it is possible that
in the Magi experiments, both rapid surface reaction (due
preferential concentration of I- at the interface) and scavenger-
assisted uptake occurred, whereas in the Utter experiments, the
surface reaction may have been slower.

Thornton and Abbatt6 reportedγHO2 < 0.01 for H2SO4/H2O
submicrometer aerosol in the absence of Cu(II), but for Cu(II)-
doped H2SO4, γHO2 ) 0.8 ( 0.3. This result is consistent with
the uptake coefficients shown in Figure 9 (0.03< γHO2 < 1)

based on analysis of the HO2/H2SO4 data of Hanson et al.,3 but
Cooper and Abbatt5 obtainedγHO2 ) 0.025( 0.005 for H2SO4

at 223 K, and Gershenzon et al.40 reportedγHO2 ) 0.2 for H2-
SO4 at 243 K. The calculations performed for Figures 8 and 9
illustrate that the determination ofγHO2 from wetted-wall tube
data is not highly sensitive to the uptake coefficient forγHO2 >
0.05.

For OH radicals on a water surface at 293 K, Takami et al.4

obtainedγOH ) 0.0042( 0.0028 for pH) 5.6,γOH ) 0.0082
( 0.0026 for pH) 1, andγOH ) 0.012( 0.003 for pH) 11
using an impinging flow method. These uptake coefficients are
much lower than the result shown in Figure 6 (γOH g 0.1) based
on the data of Hanson et al.3 for OH uptake by water, but the
effect of ripples on the water film was most likely significant
in the wetted-wall column experiments, particularly at higher
gas flow rates.

There remains considerable variation in the uptake coefficients
for OH on sulfuric acid solutions. Figure 7 indicates that 0.008
e γOH e 0.04 based on the wetted-wall data of Hanson and his

Figure 8. The HO2/H2O data of Hanson et al.3 compared with the wetted-wall tube analysis. The inset is a redrawing of the original graph of the
investigators.

Figure 9. The HO2/H2SO4 data of Hanson et al.3 compared with the wetted-wall tube analysis. The inset is a redrawing of the original graph of
the investigators.

Uptake Coefficient Data Obtained with Flow Tubes J. Phys. Chem. A, Vol. 112, No. 9, 20081931



co-workers. Baldwin and Golden51 reportedγOH ) 0.00049(
0.00005 for 96% H2SO4 at 298 K using a Knudsen cell,
Gershenzon et al.40 obtainedγOH ) 1 for the same conditions,
and Cooper and Abbatt5 reportedγOH > 0.2 for 45-96% H2-
SO4 for temperatures in the ranges of 220-230 and 230-298
K. The Knudsen cell technique of Baldwin and Golden involves
long time scales during which significant surface saturation
effects could arise. Consequently, their results represent a lower
limit for γOH.

The uptake coefficients of OH and HO2 on sulfuric acid can
be expected to vary with the H2SO4 concentration because the
Henry’s law constant and the reactive loss process vary with
the water activity.

Acknowledgment. The author thanks the organizers of the
Accommodation Coefficient Workshop held at the National
University of Ireland, Galway, on April 11 and 12, 2007 for
the opportunity to participate in discussions of the state-of-the-
art topics related to uptake coefficients and accommodation
coefficients of trace gases relevant to atmospheric chemistry.
The author is grateful to the reviewers for pointing out that the
analysis of transport and chemical reaction in flow tubes applies
to a larger class of problems than the determination of uptake
coefficients and that the inlet concentration of the reactive gas
need not be spatially uniform across the tube cross section.

References and Notes

(1) Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Davidovits, P.;
Keyser, L. F.; Leu, M.-T.; Molina, M. J.; Hanson, D. R.; Ravishankara, A.
R.; Williams, L. R.; Tolbert, M. A. InAdVances in Physical Chemistry
Series; Barker, J. R., Ed.; World Scientific: Singapore, 1994; Vol. 3.

(2) Davidovits, P.; Kolb, C. E.; Williams, L. R.; Jayne, J. T.; Worsnop,
D. R. Chem. ReV. 2006, 106, 1323-1354.

(3) Hanson, D. R.; Burkholder, J. B.; Howard, C. J.; Ravishankara, A.
R. J. Phys. Chem.1992, 96, 4979-4985.

(4) Takami, A.; Kato, S.; Shimono, A.; Koda, S.Chem. Phys.1998,
232, 215-227.

(5) Cooper, P. L.; Abbatt, J. P. D.J. Phys. Chem.1996, 100, 2249-
2254.

(6) Thornton, J.; Abbatt, J. P. D.J. Geophys. Res.2005, 110, D08309/
1-12.

(7) Gershenzon, Y. M.; Grigorieva, V. M.; Ivanov, A. V.; Remorov,
R. G. Faraday Discuss.1995, 100, 83-100.

(8) Hanson, D. R.; Ravishankara, A. R.J. Phys. Chem.1992, 96, 2682-
2691.

(9) Robinson, G. N.; Worsnop, D. R.; Jayne, J. T.; Kolb, C. E.;
Davidovits, P.J. Geophys. Res.1997, 102, 3583-3601.

(10) Hanson, D. R.; Lovejoy, E. R.Science1995, 267, 1326-1328.
(11) Hanson, D. R.; Ravishankara, A. R.J. Geophys. Res.1991, 96,

17307-17314.
(12) Hanson, D. R.; Ravishankara, A. R.J. Phys. Chem.1993, 97,

12309-12319.
(13) Watson, L. R.; Van Doren, J. M.; Davidovits, P.; Worsnop, D. R.;

Zahniser, M. S.; Kolb, C. E.J. Geophys. Res.1990, 95, 5631-5638.
(14) Shi, Q.; Davidovits, P.; Jayne, J. T.; Worsnop, D. R.; Kolb, C. E.

J. Phys. Chem. A1999, 103, 8812-8823.

(15) Fried, A.; Henry, B. E.; Calvert, J. G.; Mozurkewich, M.J. Geophys.
Res.1994, 99, 3517-3532.

(16) Hanson, D. R.; Lovejoy, E. R.Geophys. Res. Lett.1994, 21, 2401-
2404.

(17) Thornton, J. A.; Braban, C. F.; Abbatt, J. P. D.Phys. Chem. Chem.
Phys.2003, 5, 4593-4603.

(18) Utter, R. G.; Burkholder, J. B.; Howard, C. J.; Ravishankara, A.
R. J. Phys. Chem.1992, 96, 4973-4979.

(19) Magi, L.; Schweitzer, F.; Pallares, C.; Cherif, S.; Mirabel, P.;
George, C.J. Phys. Chem. A1997, 101, 4943-4949.

(20) Gardner, J. A.; Watson, L. R.; Adewuyi, Y. G.; Davidovits, P.;
Zahniser, M. S.; Worsnop, D. R.; Kolb, C. E.J. Geophys. Res.1987, 92,
10887-10895.

(21) Davis, E. J.Atmos. Res.2006, 82, 561-578.
(22) Kaufman, F.Prog. React. Kinet.1961, 1, 3-39.
(23) Howard, C. J.J. Phys. Chem.1979, 83, 3-9.
(24) Krongelb, S.; Strandberg, M. W. P.J. Chem. Phys.1959, 31, 1196-

1210.
(25) Poirier, R. V.; Carr, R. C., Jr.J. Phys. Chem.1971, 75, 1593-

1601.
(26) Judeikis, H. S.J. Phys. Chem.1980, 84, 2481-2484.
(27) Donahue, N. M.; Clarke, J. S.; Demerjian, K. L.; Anderson, J. G.

J. Phys. Chem.1996, 100, 5821-5838.
(28) Graetz, L.Ann. Phys.1885, 25, 337-357.
(29) Hsu, C. J.Appl. Sci. Res.1968, 17, 359-376.
(30) Gershenzon, Y. M.; Rozenshtein, V. B.; Spasskii, A. I.; Kogan, A.

M. Dokl. Akad. Nauk SSSR1972, 205, 871-874.
(31) Abramowitz, M.; Stegun, I. A.Handbook of Mathematical Func-

tions; National Bureau of Standards Applied Mathematics Series 55; U.S.
Government Printing Office: Washington, 1964.

(32) Nicolaon, G.; Cooke, D. D.; Davis, E. J.; Kerker, M.; Matijevic,
E. J. Colloid Interface Sci.1971, 35, 490-501.

(33) Davis, E. J.; Nicolaon, G.J. Colloid Interface Sci.1971, 37, 768-
778.

(34) Gershenzon, Y. M.; Rozenshtein, V. B.; Spasskii, A. I.; Kogan, A.
M. Dokl. Akad. Nauk SSSR1972, 205, 624-627.

(35) Orkin, V. L.; Khamaganov, V. G.; Larin, I. K.Int. J. Chem. Kinet.
1993, 25, 67-78.

(36) Brown, R. L.J. Res. Natl. Bur. Stand.1978, 83, 1-8.
(37) Walker, R. E.Phys. Fluids1961, 4, 1211-1216.
(38) Segatz, J.; Rannacher, R.; Wichmann, J.; Orlemann, C.; Dreier,

T.; Wolfrum, J.J. Phys. Chem.1996, 100, 9323-9333.
(39) Davis, E. J.Can. J. Chem. Eng. 1973, 51, 562-572.
(40) Gershenzon, Y. M.; Ivanov, A. V.; Kucheryavii, S. I.; Rozenshtein,

V. B. Kinet. Katal.1986, 27, 928-932.
(41) Aubin, D. G.; Abbatt, J. P. D.J. Phys. Chem. A2007, 111, 6263-

6273.
(42) Bird, R. B.; Stewart, E. N.; Lightfoot, E. N.Transport Phenomena,

2nd ed.; Wiley: New York, 2002.
(43) Khalizov, A. F.; Earle, M. E.; Johnson, W. J. W.; Stubley, G. D.;

Sloan, J. J.J. Aerosol Sci.2006, 37, 1174-1187.
(44) Khalizov, A. F.; Earle, M. E.; Johnson, W. J. W.; Stubley, G. D.;

Sloan, J. J.ReV. Sci. Instrum.2006, 77, 033102-1-033102-9.
(45) Papoutsakis, E.; Ramkrishna, D.; Lim, H. C.Appl. Sci. Res.1980,

36, 13-34.
(46) Papoutsakis, E.; Ramkrishna, D.; Lim, H. C.AIChE J.1980, 26,

779-787.
(47) Acrivos, A.Appl. Sci. Res.1980, 36, 35-40.
(48) Davis, E. J.; Bonano, E. J.Chem. Eng. Sci.1979, 34, 439-440.
(49) Boucher, D. F.; Alves, G. E.Chem. Eng. Prog.1959, 55, 55-64.
(50) Boucher, D. F.; Alves, G. E.Chem. Eng. Prog.1963, 59, 75-83.
(51) Baldwin, A. C; Golden, D. M.J. Geophys. Res.1980, 85, 2888-

2889.

1932 J. Phys. Chem. A, Vol. 112, No. 9, 2008 Davis


