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Two sets of orbitals are derived, directly connected to the Nalewajski-Mrozek valence and bond-multiplicity
indices: Localized Orbitals from the Bond-Multiplicity Operator(LOBO) and theNatural Orbitals for Chemical
Valence(NOCV). LOBO are defined as the eigenvectors of the bond-multiplicity operator. The expectation
value of this operator is the corresponding bond index. Thus, the approach presented here allows for a discussion
of localized orbitals and bond multiplicity within one common framework of chemical valence theory. Another
set of orbitals discussed in the present work, NOCV, are defined as eigenvectors of the overall chemical
valence operator. This set of orbitals can be especially useful for a description of bonding in transition metal
complexes, as it allows for separation of the deformation density contributions originating from the ligandf
metal donation and metalf ligand back-donation.

Introduction

The concepts such as orbital hybridization, localized orbitals,
chemical valence, and bond multiplicity are among those
essential for chemistry. These quantities are related to the
“classical” Lewis electron-pair picture1 and the structural
formulas of molecules, and as such they provide a link between
rigorous description of electronic structure by quantum mechan-
ics, and the language of chemistry. In the case of both the
localized orbitals and bond indices, a number of definitions/
methods have been proposed in the literature. The invariance
of a single-determinantal wave function with respect to a unitary
transformation of orbitals2 allows one to apply different
localization criteria, leading to the same wave function and total
electron-density distribution. Alternative definitions of the
localized orbitals have been widely used in chemical interpreta-
tions, starting from the solid-state Wannier functions,3 through
Coulson,4 Lennard-Jones and Pople,5-7 Boys,8 Ruedenberg,9-12

and Pipek-Mezey13 up to the bond-order orbitals defined by
Jug14-16 and the related natural-bond orbitals (NBO) by Wein-
hold et al.17-21

It was noticed by Ruedenberg22 that the canonical MO
representation is especially useful for a comparison of different
states of the same system, and the localized orbital description
facilitates a comparison of different systems in the same state.
The utility of localized orbitals was also demonstrated in the
NMR interpretation23-25 as well as in the analysis of response
properties.26 Recently, it has been also shown that the localized
orbitals can lead to better CI convergence than the Lo¨wdin
natural orbitals.27

As in the case of localization schemes, a few alternative
definitions of various valence and bond-multiplicity measures
have been proposed, starting from Pauling,28 Coulson,29 and
Wiberg,30 through Jug14 and Gopinathan,31 Mayer,32 Ciosłowski
and Mixon,33 up to the recently developed two- and three-

electron indices of Nalewajski, Ko¨ster, Jug, and Mrozek,34-40

and the Nalewajski information-theory-based concepts.41,42

It is worth pointing out that the localization methods which
are commonly used nowadays have been developed indepen-
dently from the most popular bond-multiplicity measures. Due
to their obvious interpretational connections, it would be desired
to have them unified within one theoretical framework. The first
successful attempt of such an unification was presented by
Jug.14-16 It was as well the first contribution where the natural
orbitals were used in the theory of chemical valence.

The main purpose of this study was to introduce bond orbitals
that are linked to the Nalewajski and Mrozek valence and bond-
multiplicity approach. Two sets of orbitals are investigated in
the present work:Localized Orbitals from the Bond-Multiplicity
Operator (LOBO), and theNatural Orbitals for Chemical
Valence(NOCV). The latter are as well directly connected with
the differential density (deformation density), another quantity
commonly used in a description of chemical bonding.

Theory and Computational Details

Nalewajski and Mrozek Valence and Bond-Multiplicity
Appraoch. Two-electron valence indices have been originally
defined by Nalewajski, Ko¨ster, and Jug;34 the modified version
was later developed by Nalewajski and Mrozek.35 These indices
were derived by considering changes in the pair-diagonal part
of the two-electron density matrix (i.e., two-electron probab-
lilities) due to formation of the molecule from isolated atoms
(promolecule). For a single-determinantal wave-functions they
can be expressed in terms of the changes in the molecular and
promolecularcharge-and-bond-order(CBO) matrix (first-order
density matrix),∆P ) P - P0.34,35

In addition to modified valence indices of ref 35, two
alternative sets of Nalewajski-Mrozek indices were proposed
and explored in a series of articles.36-40 They comprise the
one- and two-center contributions, both including the
covalent (V(1),cov, V(2),cov) as well as ionic (V(1),ion, V(2),ion) parts.
Within each set, the sum of all valence indices is preserved,
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i.e., all three sets give rise to the same value of theoVerall
Valence:

The overall valence corresponds to the total number of
chemical bonds in the molecule.38-40 Thus, to construct bond-
multiplicity indices one has to express the overall valence solely
in terms of diatomic contributions:

This was done by splitting the one-center index of an atom
among the bonds that this atom forms. Thus, the bond-
multiplicity index was calculated as a sum of the relevant two-
center part and weighted contributions from one-center indices
of the two atoms:38-40

The way of dividing one-center terms is somewhat arbitrary.
The proportional weighting factors

were used in all the previous applications.38-40 They have been
shown to give bond-multiplicity values in agreement with the
chemical intuition.

It was demonstrated39 for the spin-restricted case that

Thus, the right-hand side of eq 5 allows one to formally
identify the overall valenceV as the expectation value of the
valence operatorV̂:39

From eq 6 it may be deduced that the matrix form of the
valence operator can be

Localized Orbitals from the Partitioning of the Valence
Operator. To define localized orbitals related to the Nalewajski
and Mrozek bond multiplicities, we split the valence operator
into the diatomic contributions (“bond-multiplicity operators”),
in analogy to eq 2:

and respectively for the matrix form,

The diatomic matrices∆PAB are constructed in such a way
that they contain the nonzero atomic and interatomic blocks
for two atoms, A and B; the other elements vanish. Thus, in
analogy to eqs 2,3 for bond multiplicities, the atomic blocks
are split between the “bonds”:

The way to split one-center blocks is certainly arbitrary. We
propose here to use the same proportional weighting factors as
for bond multiplicities (eq 4) to have a direct correspondence
between bond orbitals and bond indices.

The localized orbitalsψ describing the bond between the
atoms A and B can be then obtained from diagonalization of

Figure 1. LOBO for ammonia molecule.
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Figure 2. LOBO for ethylene molecule, C2H4.

Figure 3. LOBO for acrylonitrile molecule, CH2dCH2-CN.

V ) 1/2∑
A<

∑
B

∆PAB (9)

∆PAB ) [wA
AB∆PAA

∆PBA 0...
∆PAB wB

AB∆PBB 0...
0 0 0...] (10)

1934 J. Phys. Chem. A, Vol. 112, No. 9, 2008 Michalak et al.



the ∆PAB matrix. Thus, they are eigenvectors of the operator
V̂AB:

Further, it is straightforward to show (see the Appendix) that
the bond multiplicity (eq 3) for the bond A-B is the expectation
value of the operatorVhAB:

Therefore, we will refer to this set of orbitals asLocalized
Orbitals from the Bond-Multiplicity Operator(LOBO).

In conclusion, it should be noticed that the definition of the
bond-multiplicity operator relies on the arbitrary partitioning
of one-center terms between the bonds. It is important to
emphasize, however, that all the methods referring to the bonds
in molecules have some inherent arbitrariness. This is similar
to the definitions of atoms-in-molecules.43

Natural Orbitals for Chemical Valence (NOCV). Another
set of orbitals directly related to the theory of chemical valence
can be obtained from diagonalization of the overall∆P matrix.
TheNatural Orbitals for Chemical Valence(NOCV) are defined
as the eigenvectors of the valence operatorV̂:

The eigenvalueVi describes the contribution from theith NOCV
to the global valence:

Let us consider the differential density (deformation density),
∆F, commonly used for visualization of chemical bonds,
expressed in the terms of atomic orbitalsø:

In the NOCV representation the differential density can be
written as

From normalization condition∫∆F(r) dr ) 0 and∫|æi(r)|2 dr
) 1, and from eq 16 it follows that

Figure 4. LOBO describing theσ- andπ-components of the selected
C-C and C-N bonds in the adenine molecule.

Figure 5. LOBO for selected C-C bond in fullerene C60 (panel a).
Panel b demonstrates LOBO describing the middle C-C bond and a
neighboring C-H bond in thetrans polyacetylene model (C20H22).
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Figure 6. NOCV for ammonia molecule in the atomic resolution (panel
a) and the differential density∆F ) Fmol - ΣFat (panel b).
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Let us now consider the formation of one single bond (or
more precisely: one component, e.g.,σ, π, δ), with bond
multiplicty equal 1. In contrary to other orbital-based approaches
(molecular orbitals, localized orbitals), it is not possible to
describe such a bond with a single NOCV. It follows im-
mediately from eq 14 and the normalization condition of eq 17
that at least two orbitals are required, with nonzero eigenvalues;
in the case considered here the eigenvalues are+1 and-1.
For a fractional bond-multiplicitya, the corresponding eigen-
values are equal to+a1/2 and-a1/2.

In the molecular systems with many bonds and/or multiple
bonds, NOCV can be grouped in pairs of complementary orbitals
corresponding to the same eigenvalue with the opposite sign:

It is important that only few pairs of NOCV exhibit nonzero
eigenvalues, i.e., describe a formation of chemical bond; the
remaining orbitals do not contribute to∆F.

It should be emphasized that this very property, i.e., pairing
of the eigenfunctions corresponding to the opposite-sign eigen-
values, is also characteristic to Jug’s bond-order orbitals,14 as
well as to the Inter-Reactant-Modes (the charge-flow channels
describing changes in atomic populations) defined within the
Charge Sensitivity Analysis by Nalewajski et al.44

In the case of NOCV this property is especially useful.
Namely, using eq18 the differential density can be expressed
in terms of pair contributions:

Interpretation of NOCV follows from eq 19: an eigenvalue
Vk corresponds to a fraction of electron density that is being
transferred from theæ-k orbital to theæk orbital, when the
molecule is created from the pro-molecule.

Computational Details.In all the calculations the Amsterdam
Density Functional (ADF) program45-49 was used. The Becke-
Perdew exchange-correlation functional50-52 was applied. A
standard double-ú STO basis with one set of polarization
functions was used for main-group elements (H, C, N, O), and
a standard triple-ú basis set was employed for nickel. The 1s
electrons of C, N, O, as well as the 1s-2p electrons of Ni were
treated as frozen core. Auxiliary s, p, d, f, and g STO functions,
centered on all nuclei, were used to fit the electron density and
obtain accurate Coulomb potential in each SCF cycle; a fitting
procedure applied in ADF is described in refs 45 and 46.

Results and Discussion

Localized Orbitals from Bond-Multiplicity Operator
(LOBO). Figures 1-3 present examples of the Localized
Orbitals from the Bond-Multiplicity Operator, determined for
ammonia, ethylene, and acrylonitrile. These orbitals were
obtained inatomic resolution,i.e., for the promolecule resulting
from the isolated atoms placed in the same positions as in the
molecule.

The orbital contours shown in Figures 1-3 clearly demon-
strate a localized character of the LOBO. For the ammonia
molecule (Figure 1) we have obtained three equivalent orbitals
describing three N-H bonds and an additional orbital describing
the lone pair on the nitrogen atom. For ethylene (Figure 2),
there are two components of the C-C double bond, aσ-orbital
and aπ-orbital. The orbitals describing the four C-H bonds
are again equivalent.

It should be pointed out that the orbitals that characterize
different components of the same bond, i.e., the same pair of
atoms, are mutually orthogonal (e.g., the ethyleneσ- and
π-orbitals for C-C bond). The orbitals determined for different
atom-pairs are not orthogonal (e.g., ethylene C-C and C-H
bond orbitals). However, the whole set may be orthogonalized,
if required.

Another example set of localized orbitals determined for the
acrylonitrile molecule is shown in Figure 3. It includes three
typical σ-orbitals for the three C-H bonds, three components
of the C-N triple bond (aσ- and two π-orbitals), and two
components for each of the two C-C bonds (aσ- and a
π-orbital). It is worth mentioning that theπ-components are
obtained for both C-C bonds, C1-C2 and C2-C3, formally
considered as “double” and “single” bonds, respectively. The

Figure 7. Structure of the ethyleneπ-complex with the Ni-
anilinotropone catalyst for olefin polymerization.

Figure 8. NOCV for the ethyleneπ-complex with the Ni-anili-
notropone catalyst for olefin polymerization. Only the orbitals partici-
pating in bonding are shown (|V| > 0.1). The numbers denote NOCV
eigenvalues (V) and their populations (n).V̂æ-k ) -Vkæ-k V̂æk ) Vkæk k ) 1, ...,N/2 (18)

∆F(r) ) ∑
k ) 1

N/2

Vk[-æ-k
2(r) + æk

2(r)] ) ∑
k)1

N/2

∆Fk(r) (19)

1936 J. Phys. Chem. A, Vol. 112, No. 9, 2008 Michalak et al.



contributions to the bond multiplicities of the two bonds
(calculated as the LOBO contributions to Tr(P∆PAB); eq 12),
originating from theπ-component are 0.88 and 0.25. The total
bond multiplicities (includingσ- andπ-components) are 2.08
and 1.18, for C1-C2 and C2-C3, respectively. For the “triple”
C-N bond the calculated bond multiplicity is 3.13.

Thus, this example shows that one of the prospective
applications of LOBO can be the assessment of alternative
resonance structures and their relative importance.

To demonstrate the applicability of LOBO in a description
of larger molecules as well as to assess the extent of their
localization, we have determined LOBO for selected bonds in
adenine, C60 fullerene, and the C20H22 molecule as a model for
trans-polyacetylene chains,-[CHdCH]n-, with n ) 10. The
results are presented in Figures 4 and 5.

In the case of adenine, the example orbitals describing the
σ- and π-components of selected C-C and C-N bonds are
shown in Figure 4. It is clearly seen that LOBO for this system
demonstrate strictly localized, two-center character. The same
is true for the C-C bonds in C60 as well as in C20H22. Figure
5 presents the LOBO contours for just one example ofσ- and
π-components for a C-C (and a C-H bond) for each molecule;
for the other bonds the extent of localization is roughly the same.
Thus, these examples demonstrate usefulness of LOBO even
for the molecules containing aromatic rings or strongly conju-
gatedπ-electron bonds.

Natural Orbitals for Chemical Valence (NOCV). The
differential nature of the chemical valence operator requires a
definition of the promolecular reference state. The most natural
choice is theatomic reference state, i.e., a promolecule built
from isolated atoms, placed in the same positions as in the
molecule. However, one can as well consider amolecular-
fragment reference state, i.e., a promolecule built from larger,
multiatomic, noninteracting fragments, positioned as in the
molecule. In the following we will discuss the properties of
NOCV in atomicand fragmentresolution.

In Figure 6 are displayed NOCV for ammonia molecule,
based on atomic reference state. The corresponding differential
density plot is shown in Figure 6b. Only those orbitals that

correspond to nonzero eigenvalues are shown. For eight of these
orbitals, four are characterized by positive and four by negative
eigenvalues, to fulfill the normalization condition of eq 17. Six
orbitals (three pairs) correspond to|V| ) 1, and one pair is
characterized by eigenvalues of|V| ) 0.57. The orbitals with
negative eigenvalues exhibit “antibonding” character, and those
corresponding to positive eigenvalues are mostly “bonding”.
However, NOCV obtained here are to a large extent delocalized.
This comes from the fact that three pairs of orbitals, character-
izing three equivalent N-H bonds, correspond to the same value
of |V|. Thus, any linear combination of those orbitals will
correspond to the same eigenvalue. This has the consequence
that within the set of degenerate NOCV corresponding to the
same |V| (æ-1, æ-2, æ-3, æ1, æ2, æ3), it is not possible to
uniquely select pairs of complementary NOCV (eqs 18 and 19).
Therefore, only the contribution to∆F from all those orbitals
has a physical meaning.

This example shows that in atomic resolution, in which the
valence operator “describes” formation of many bonds, NOCV
leads to a delocalized picture with degenerate pairs of orbitals.
However, this set of orbitals may be very useful in a resolution
of two fragments, i.e., when the corresponding valence operator
“describes” formation of only one bond between the fragments.

To illustrate the utility and interpretation of NOCV in the
fragment resolution we have determined NOCV for a ethylene
complex with the Ni-anilinotroponeR-olefin polymerization
catalyst,53 shown in Figure 7. In this case we consider two
fragments: ethylene and the organometallic fragment, containing
the metal with the anilinotropone and propyl ligands. Thus, the
NOCV will describe a bond between the organometallic
fragment and ethylene.

Two pairs of complementary NOCV for this system are
shown in Figure 8; the remaining NOCV correspond to
eigenvalues|V| < 0.1, and thus they practically do not participate
in the bonding. The contours shown in Figure 8 clearly
demonstrate that all four NOCV are localized in the bond region.
As in the previous case, the orbitals with negative eigenvalues
exhibit antibonding character, and those corresponding to the
positive eigenvalues are bonding orbitals. A pair of orbitals

Figure 9. The NOCV back-donation (∆F1) and donation contributions (∆F2) to the deformation density (∆F) calculated for the ethylene complex
with Ni-anilinotropone catalyst. The|∆F| ) 0.01 au contours are shown.
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characterized by|V| ) 0.64 (æ-1, æ1) describes a formation of
a π-bond between ethylene antibonding MO and the metald
orbital. Second pair of NOCV characterized by|V| ) 0.62 (æ-2,
æ2) corresponds to aσ-component of the ethylene-metal bond.

It should be pointed out that both orbitals from each pair of
NOCV are partially occupied in molecule and promolecule. The
populations of NOCV in molecule (n) are shown in Figure 8.
As we have already mentioned, the interpretation of NOCV
follows from eq 19. In the process of bond formationVk electrons
are transferred from theæ-k to the æk orbital. In the case of
ethylene-Ni-anilinotropone complex, the populations ofæ-1

and æ1 in the promolecule (fragments) are 1.32 and 0.68 e,
respectively, and in the final complex they “exchange” their
occupations: 0.68 and 1.32 e. Similarly foræ-2 and æ2 the
populations are 1.31 and 0.69 e in promolecule, and 0.69 and
1.31 e in the final complex.

Figure 9 shows the deformation density∆F ) F(complex)-
F(ethylene)- F(Ni-fragment) and the corresponding contribu-
tions from the complementary pairs of NOCV. It is clearly seen
that the contribution from first pair,æ-1 and æ1, describes
transfer of electron from the metal to ethylene. The second pair
of NOCV describes the electron donation: ethylenef metal.
Thus, this example shows that NOCV allows for a discussion
of bonding in transition metal complexes in terms of the
“classical” Dewar-Chatt-Duncanson model54,55 of the ligand
f metal donation and the metalf ligand back-donation.

Concluding Remarks

In the present study we have investigated two sets of orbitals
directly linked to the Nalewajski-Mrozek valence and bond-
multiplicity indices. It was demonstrated that localized orbitals
can be obtained from the partitioning of the chemical valence
operator into diatomic contributions. It was shown that LOBO,
defined as theeigenVectors of the bond-multiplicity operator,
have the general features of localized orbitals. It was shown in
addition that the bond-multiplicity indices can be obtained as
the expectation values of the corresponding bond-multiplicity
operators. Thus, the approach presented here allows for a
discussion of localized orbitals and bond indices within one
common framework of chemical valence theory.

Another set of orbitals discussed in the present work are the
Natural Orbitals for Chemical Valence. NOCV are defined as
eigenVectors of the oVerall chemicalValence operator. It was
shown that this set of orbitals applied in the two-fragments
resolution allows for a separation and quantitative assessment
of the contributions to the deformation density from donation
(ligandf metal) and back-donation (metalf ligand) electron-
transfer processes. Thus, it is especially useful in a description
of bonding in transition metal complexes.
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Appendix

Let us assume the spin-restricted case for simplicity. The
expectation value of the bond-multiplicity operator,V̂AB, given
by 1/2Tr(P∆PAB) may be decomposed into atomic and diatomic
terms as

From the definition of∆PAB (eq 10) follows that all terms
containing X, Y* A, B vanish. What survives are two atomic
terms (A and B) and one diatomic term (AB):

which gives bond multiplicity for the bond A-B, as defined
by eq 3
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