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The zone-center phonon spectra of phase-I ammonia and deuterated ammonia have been obtained from plane-
wave DFT molecular dynamics and localized basis set harmonic lattice dynamics simulations. These data
have proved to be excellent for benchmarking the two approaches. Significant changes to the assignments of
the experimental low-frequency lattice modes are proposed on the basis of the calculated data. The magnitude
of the splitting of the longitudinal and transverse optical modes has been determined and is shown to be
significant in some cases. The high-frequency internal mode region of the spectrum has also been obtained
and is shown to be in excellent agreement with the results of previous studies. The symmetry coordinates and
Davydov splittings of the internal modes are fully analyzed.

1. Introduction

The phonon spectrum of a molecular solid typically comprises
a region dominated by the high-frequency internal vibrations
of molecules (i.e., bond stretches, angle bends, etc.) along with
the low-frequency external vibrations of the system (i.e., motions
of the molecules relative to each other). Phonon spectra often
prove quite difficult to interpret and assign correctly because,
whereas an isolatedN-atom molecule possesses 3N - 6 normal
modes of vibration, the unit cell of a molecular crystal typically
contains multiple molecules, the vibrations of each of which
combine with the external motions to form the larger set of
lattice modes. The system upon which this paper focuses,
phase-I ammonia, provides an excellent example of the dif-
ficulties encountered. The NH3 molecules condense into a cubic
structure (P213 space group) with a lattice constant of 5.1305-
(8) Å at 160 K.1 The unit cell contains four molecules, and the
Γ-point phonon spectrum comprises 48 modes,2 as compared
with the 6 modes obtained for the isolated molecule. Taking
account of the degeneracy of the modes leads us to expect 19
distinct peaks in the experimental spectra. While a wealth of
literature2-7 spanning nearly 60 years has been devoted to the
study of the vibrational properties of this material, no clear and
full assignment has been forthcoming.

The confusion over the ammonia phonon spectrum arises
mainly in the lattice mode region of the spectrum. Brinbrek
and Anderson3 provided the original assignments for the
symmetries of the lattice modes based upon infrared (IR) and
Raman spectroscopy. Righini et al.4 performed empirical model
calculations with the aim of reproducing the experimental modes
as closely as possible in order to explore the dynamics of the
system further. This latter study resulted in significant variations
in the symmetry assignments from those proposed by Brinbrek

and Anderson. The experimental studies also include an
application of coherent inelastic neutron scattering (C-INS) to
deuteroammonia by Powell et al.,5 which also suggested changes
to the assignments made by Brinbrek and Anderson but did not
agree completely with the theoretical assignments of Righini
et al. Our group has recently conducted a study of the low-
frequency modes in ammonia based on constrained molecular
dynamics (MD) simulations.2 A method of extracting the
eigenvectors of a particular mode from the MD trajectory was
applied, permitting us to examine selected atomic displacement
patterns and to reassign tentatively some of the previously
accepted mode symmetries.

The disagreements in the experimental assignments of the
phonon spectrum are not unexpected for each of the techniques
applied suffers from its own inherent set of difficulties. The
observability of certain modes in IR and Raman spectroscopy
is often limited by the effects of the selection rules and by the
weak coupling of certain motions to the probe radiation. The
existence of combination and overtone bands can lead to
considerable confusion, as can the erroneous assignment of split
longitudinal (LO) and transverse optical (TO) modes in polar
compounds. This latter effect arises from the lifting of the
degeneracy of some of the modes at theΓ-point due to long-
range electrostatic interactions, leading to the appearance of
more peaks in the spectrum than would be expected from the
group theory analysis alone. It is also possible that the
introduction into the lattice of defects such as vacancies or
interstitials may produce localized modes that appear in
measured spectra. Given these potential complications, it is now
common practice to augment the experimental observations with
a theoretical determination of the spectra. While isolated
molecule calculations can be of use in this regard, solid-state
approaches are to be preferred, the most commonly applied of
which are the molecular and lattice dynamics methods.

Molecular dynamics (MD) simulations furnish a continuous
trajectory for a system by integration of the atomic equations
of motion at a series of discrete time steps. MD simulations
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can provide an extensive range of physical properties for a
material, including thermodynamic functions, diffusion constants
and elastic properties, and so forth. In the current application,
we calculate the velocity autocorrelation function8 (VAF), which
may be Fourier transformed to obtain the normal modes of
motion of a material. MD simulations based upon the forces
obtained from density functional theory (DFT) have recently
become much more commonplace. Alongside of the natural
incorporation of anharmonic effects in the MD approach in
general, such DFT-MD simulations offer the further advantage
of including the instantaneous changes in the electronic structure
and bonding of a material due to atomic motion. The inclusion
of both of these effects has been shown to be important if close
agreement with experimental data is sought. However, DFT-
MD calculations are generally computationally intensive and
may, as a consequence, be capable of providing only short
trajectories, whereas obtaining adequate spectral resolution of
low-frequency modes usually requires long sampling times. This
problem can be partially overcome by convolution of the VAF
with a windowing function9 prior to Fourier transformation, in
effect limiting the error due to the finite extent of the data set.
Non-ergodicity of the system can also be a problem in short
simulations, but this can be addressed by use of thermostats
that effectively enforce the proper equipartitioning of the energy.
We note also that the extraction of frequency-specific eigen-
vectors from MD simulations is an uncommon practice10-12 and
that the assignment of the symmetry of the motions, which must
currently be done by hand, might become a difficult task in
large, complex systems.

Lattice dynamics calculations approach the problem of
obtaining the normal modes from a different perspective
altogether and seek to solve the strictly harmonic atomic
equations of motion by direct diagonalization of the dynamical
matrix.13 Density functional perturbation theory or frozen-
phonon methods can both be generally applied to determine
theΓ-point modes and also the full phonon dispersion relations
throughout the reciprocal space zone.14 The method offers a
number of advantages over MD simulations, among the most
useful of which is the implicit inclusion of crystal symmetry
and the provision of correctly symmetrized eigenvectors for each
mode that require no assignment. Further, no issues relating to
the sampling of low-frequency modes or ergodicity arise, and
the calculations are typically much less intensive than compa-
rable MD simulations on the same system. The technique may
be efficiently implemented alongside of any total energy
calculation scheme that provides numerically accurate gradients,
freeing us to apply any Hamiltonian we choose to the task of
calculating the phonon spectra. In the current study, we make
use of this fact and compare the modes obtained from various
pure and hybrid DFT functionals. Lattice dynamics calculations
can also be readily extended to include the LO-TO splitting
effect through the addition to theΓ-point dynamical matrix of
a correction term that depends in a nontrivial manner on the
lattice polarity and the high-frequency dielectric constant tensor,
ε∞. MD simulations can also capture at least a part of the
splitting, but the long-range nature of the electrostatic interac-
tions involved mandates the use of large supercells. Such large
supercells are also required for MD simulations to probe non-
Γ-point modes. Alongside of the strengths of the method,
however, we emphasize again that lattice dynamics calculations
are rooted within a strictly harmonic approximation and that
this may be a poor representation of the true potential energy
surface underlying some motions. Any deficiencies due to this
effect are most likely to manifest themselves in the nitrogen-

proton stretching modes in the current study. We note also that
the lattice modes are also particularly sensitive to inaccuracies
in the calculation of the dynamical matrix.

The current work focuses upon the phase-I ammonia structure,
the compact cell of which makes it well-suited to simulations
and for which a large number of experimental studies of the
vibrational properties exist. We seek, in particular, to estimate
the size of the LO-TO splitting for it has often been invoked
in previous experimental assignments of the modes.3,4 The
isotopic frequency shifts have also previously assisted in the
interpretation of the experimental spectra5 and, in particular,
provide a means by which the low-frequency modes can be
classified into librational and translational types (as discussed
in section 3.3). We obtain comparable theoretical values for
both methods from simulations of the fully protonated (NH3)
and deuterated (ND3) lattices. Section 2 gives details of the
computational techniques applied, while the equilibrium geom-
etries obtained from the various methods are presented in section
3.1. The results for the low-frequency region of the protonated
spectrum are presented in section 3.2 along with a mode-by-
mode assignment. The corresponding region of the deuterated
lattice spectrum is discussed in section 3.3. Finally, we discuss
the internal mode region of both isotopic forms.

2. Theoretical Methods

2.1. Molecular Dynamics Calculations.The geometry of
the ammonia unit cell was optimized from the initial experi-
mental structure15 within the CASTEP plane-wave pseudopo-
tential DFT code.16 The PW91 GGA-type exchange-correlation
functional was used, together with a plane-wave cutoff energy
of 400 eV. Core-valence interactions were represented by
standard ultrasoft pseudopotentials, and the reciprocal space zone
was sampled upon a 2× 2 × 2 Monkhorst-Pack grid. A mesh
of this density suffices to converge the atomic forces and
maximum stress tensor component in a trial distorted geometry
to better than 0.001 in 0.172 eV Å-1 and 0.02 in 0.93 GPa,
respectively. Variable volume geometry optimizations were
pursued until the energy change per atom, maximum atomic
force, and maximum stress component fell below tolerances of
5 × 10-7 eV, 1 meV Å-1, and 0.02 GPa, respectively. The
subsequent NVE ensemble molecular dynamics simulation was
performed within the NH3 unit cell and proceeded from this
initial geometry. The initial temperature of 155 K quickly
equilibrated to a steady 77 K. The position and velocity of, and
force acting upon, each atom in the cell were obtained at
intervals of 0.5 fs, where this time step was chosen to ensure
adequate sampling of the high-frequency N-H stretching
motions. Data were collected for 30 ps in total. A comparable
MD simulation for ND3 was also performed with the same
parameters, save that a longer time step of 0.8 fs was used,
reflecting the fact that a lower stretching frequency was
anticipated for the N-D bond. This run also maintained a steady
temperature of 77 K after equilibration, and data were again
collected for 30 ps.

The eigenvalues of the phonons were extracted from the NH3

and ND3 trajectories via the standard VAF method, and the
associated eigenvectors were obtained as described in our
previous work.2 The Fourier transform of the VAF is sensitive
to both the finite length of the data set and to the amplitudes of
the modes being extracted, but we counter these problems by
application of various Blackman windowing functions9 with
widths of 10, 7.5, and 5 ps. Wider windows lead to greater errors
in the small amplitude modes (i.e., the internal vibrations) but
allow better resolution of the low-frequency modes.

The Phonon Spectrum of Phase-I Ammonia J. Phys. Chem. A, Vol. 112, No. 6, 20081323



2.2. Lattice Dynamics Calculations. The geometry of
phase-I ammonia at equilibrium was determined within a range
of Hamiltonians and localized basis sets by optimizations using
the CRYSTAL06 code.17 Optimizations continued until the
changes in total energy fell below 2× 10-7 eV, and the root-
mean-squared (rms) gradients and displacements were below
2.6 meV Å-1 and 2.5× 10-4 Å, respectively. The tolerances
for individual components of the gradients and displacements
were set at 1.5 times the respective rms thresholds. SCF
convergence tolerances were set at 3× 10-8 eV per cell, while
reciprocal space was sampled with an 8× 8 × 8 Monkhorst-
Pack grid, the inexpensive nature of the LD calculations
permitting a much more dense mesh to be applied than was the
case in the MD simulations. The convergence of forces and
stresses with respect to the sampling mesh is therefore superior
to that of the MD simulations, but we note that the accuracy of
the latter was already more than sufficient. The optimized
geometries being obtained, the normal modes of the lattice were
determined within these cells by a series of finite displacement
calculations, in which a subset of the atoms in the cell was
translated by 0.003 Å along each of the Cartesian axes.18,19The
point group symmetry of the lattice was used to generate the
full force constant matrix from an irreducible set of atomic
displacements. In the primitive cell of ammonia, this amounts
to the shift of one hydrogen atom along thex, y, andz axes and
the shift of one nitrogen atom along thex axis. The external
mode frequencies obtained from test calculations with tighter
optimization and SCF tolerances differed by 1.2 cm-1 at most
from the values produced by the procedure detailed above.
Furthermore, forcing strict adherence to the sum rule through a
direct normalization of the dynamical matrix resulted in only
negligible variations in the frequencies. The dynamical charges
of the lattice were determined by a Wannier localization
procedure, and the LO-TO splitting correction term was added
to the Γ-point dynamical matrix determined at the B3LYP/6-
311G** level of theory. Splittings were calculated for values
of ε∞ ranging from 1.3 to 2.3, bracketing the experimental value
of 1.9 obtained in the liquid phase.20 A similar determination
of the LO-TO splitting was also made for the fully deuterated
lattice.

3. Results and Discussion

3.1. Optimized Structures of Phase-I NH3. Plane-WaVe
Basis Set.The optimized structure of ammonia determined in
the plane-wave (PW) calculations with the PW91 functional is
presented in Table 1. The asymmetric unit of phase-I ammonia
consists of a single H/D atom and one-third of a N atom. Note
that the equilibrium structures of NH3 and ND3 are identical as
the atomic forces and cell stresses are independent of the nuclear
masses. The theoretical cell vector, which is formally obtained
at 0 K, is 1% longer than the 160 K experimental value.
Similarly, the calculated N-H bond is 2% longer than that
measured at 160 K, while the closest H‚‚‚N distance is nearly
3% shorter than the experimental value.

Localized Basis Sets.The optimized structures obtained from
our initial calculations using localized basis sets are presented
in Table 2. The TZP basis set splits s and p shells, whereas
6-311G** uses more computationally convenient but less
flexible sp shells in which the s and p primitive functions share
a common set of exponents. Despite the use of different basis
sets and correlation functionals, the three B3 (i.e., 20% Hartree-
Fock exchange) hybrid calculations provide similar geometries,
with N-H and H‚‚‚N bond lengths that are within 1.0 and 1.4%
of the experimental values, respectively. The PW91 bond lengths
show larger differences from experiment of 1.8 and 3.1%,
respectively. The larger cell vectors obtained from the B3LYP
and B3PW91 calculations as compared with the PW91 values
are due to small reorientations of the molecules. Finally, we
note that the substitution of the less constrained TZP basis for
the 6-311G** set lowers the energy of the optimized cell by
0.41 eV, so that the former represents the closest approach to
the variational minimum achieved within the current study.

3.2. Phase-I NH3 Lattice Modes.MD Trajectory.The time-
averaged fractional coordinates of the asymmetric unit of NH3

are presented in Table 3. In evaluating these positions, the first
4 ps of the trajectory have been discarded to allow for
equilibration of the system. Figure 1 shows the lattice mode
region (0-650 cm-1) of the mass-balanced NH3 phonon
spectrum determined by Fourier transformation of the convolu-
tion of the VAF with the three different Blackman windowing

TABLE 1: The Optimized Fractional Coordinates of
Phase-I Ammonia as Determined by PW91/PW Calculations,
Together with the Optimized Lattice Constant, aopt (Å), and
N-H and H‚‚‚N Distances (Å)

Hx 0.3460
Hy 0.2714
Hz 0.0910
Nx 0.1935
aopt 5.1846
r(N-H) 1.0347
r(H‚‚‚N) 2.336

Figure 1. The lattice mode region of the NH3 phonon spectrum as
obtained from the MD trajectory using three Blackman windowing
functions of different widths.

TABLE 2: The Optimized Lattice Constant, aopt (Å), and
N-H and H‚‚‚N Distances (Å) Obtained from Various
Electronic Hamiltonians and Basis Sets, Together with the
160 K Experimental Values

method
basis

B3LYP
TZP

B3LYP
6-311G**

B3PW91
6-311G**

PW91
TZP expta

aopt 5.2562 5.2418 5.2354 5.1408 5.1305
r(N-H) 1.019 1.020 1.020 1.028 1.010
r(H‚‚‚N) 2.401 2.377 2.365 2.324 2.398

a Ref 1.

TABLE 3: The Fractional Coordinates of the Asymmetric
Unit in NH 3 Averaged over the 30 ps PW-DFT MD
Trajectory

Hx 0.3518
Hy 0.2698
Hz 0.0965
Nx 0.1972
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functions. All three spectra show nine distinct peaks, as expected
from the group theory analysis of the equilibrium structure.

The eigenvectors for each mode were extracted, and the
symmetry was assigned by observation of the corresponding
atomic motions. In particular, we discriminate between modes
that preserve the 3-fold axis of the system (A symmetry) or the
2-fold axes (E symmetry). The remaining modes are then
assigned as havingF symmetry. We validate these assignments
by comparison with the results of the harmonic lattice dynamics
calculations. The resultant MD peak positions and assignments
are tabulated together with the comparable experimental data
in Table 4.

Lattice Dynamics Calculations.The lattice dynamics results
obtained with a variety of Hamiltonians and basis sets are also
presented in Table 4. The optimized structures appropriate to
each method are used, as presented in Table 2. The frequencies
of the acoustic modes are imaginary (i.e., negative) but are
reasonably close to zero in each case, and neither tighter
convergence tolerances nor normalization of the dynamical
matrix improves upon these values. The best agreement between
the MD normal modes and lattice dynamics frequencies is
obtained with the B3LYP/TZP combination, whereas the PW91/
TZP frequencies are apparently shifted to a higher frequency
by 15-30 cm-1.

The LO-TO split frequencies obtained from B3LYP/6-
311G** calculations with anε∞ value of 1.9 are presented in
Table 5, along with the IR intensities calculated from the
dynamical charge tensors, the scalar magnitudes of which are
Z*(N) ) -0.817 e andZ*(H) ) +0.272 e. We see immediately

that some of the calculated intensities are very low, which may
explain the experimental difficulties encountered in trying to
resolve and assign these peaks. Further, it should be noted that
the IR probe beam is not expected to couple to the LO modes,
whereas both polarizations are, in principle, observable by
Raman spectroscopy. The results indicate that it is only the last
two external modes that show any significant LO-TO splitting,
amounting to 56 and 10 cm-1 respectively. The splittings
obtained for other values ofε∞ are presented in Table 6; though
there is some variation, we note that the overall distribution of
the modes does not change, supporting the use of the liquid-
phase value.

Final Lattice Mode Assignments.A significant number of
differences have arisen between the theoretical and experimental
assignments of the irreducible representations of the modes. We
split the low-frequency spectrum into separate regions and
discuss each in detail.

Modes from 0 to 200 cm-1. The positions of the MD phonon
modes in this region coincide reasonably well with those of
the experimentally observed bands. However, the theoretical
symmetry assignments differ notably from the experimental
ones. The first three modes in this region are assigned asE, A,
and F, respectively, by both the MD and lattice dynamics
simulations. However, the previous experimental assignments
have includedA (107 cm-1), E (138 cm-1), andF (138 cm-1)
by Binbrek and Anderson,3 A (98.6 cm-1), E (98.6 cm-1), and
F (131 cm-1) from C-INS,5 and finally,E (122 cm-1), F (130
cm-1), andA (143 cm-1) from the atom-atom model calcula-
tions.4 The final mode in this region is found at 175 cm-1 in
the MD spectrum and, in line with the lattice dynamics and all
previous experimental and theoretical work, is assigned to the
F symmetry. We note again that the frequencies obtained from
the B3LYP/TZP and B3LYP/6-311G** lattice dynamics cal-
culations are slightly shifted to high frequency with respect to
the MD results but are in reasonable agreement overall. The
PW91/TZP lattice dynamics frequencies are shifted by 15-30
cm-1 in comparison with the B3LYP/6-311G** and MD results.

Mode at 260 cm-1. Several experiments have suggested the
presence of a fundamental mode at 260 cm-1, but the assign-
ments have generally been made on the basis of very weak
peaks3 or have been derived indirectly from observations in
deuteroammonia5 or from combination bands.6 The observation7

of a peak at around 280 cm-1 at a temperature of 187.6 K may
originate from the modes found at around 300 cm-1 in other
experiments. It is clear that no mode in the region of 260 cm-1

is obtained from either the MD or lattice dynamics calculations,

TABLE 4: The Character, C (T ) Translational, L ) Librational), Irreducible Representation, I, IR and Raman Activities ( x
) Active, × ) Inactive), and Frequencies (cm-1) of the External Motions Obtained from Lattice Dynamics Calculations and the
MD Velocity Autocorrelation Function, along with Experimental Frequencies and Assignments

lattice dynamics calculated frequencies MD VAF experimental

mode C I IR Raman
B3LYP

TZP
B3LYP

6-311G**
B3PW91
6-311G**

PW91
TZP frequency I frequency I

1 T F x x -9.4 -9.0 -8.8 -7.9 - - -
2 T E × x 98.1 99.7 93.8 111.2 98 E 107a A
3 T A × x 121.6 113.4 120.2 142.2 125 A 138a E
4 T F x x 130.9 132.6 127.5 144.9 136 F 138b F
5 T F x x 174.8 177.0 174.5 191.5 175 F 181b F

- - - - - - - - - - - 260a/258b F
- - - - - - - - - - - 298a A
6 L F x x 322.0 321.8 331.3 365.4 320 F 310a E
7 L A × x 353.5 348.5 357.8 399.8 356 A 358a/361b F
8 L E × x 355.2 354.4 360.8 387.7 367 E - -
9 L F x x 449.8 455.3 464.2 485.6 457 F 426a F

10 L F x x 616.4 619.4 625.6 651.4 605 F 532b F

a Ref 3. b Ref 5.

TABLE 5: The Character, C (T ) Translational, L )
Librational), Irreducible Representation, I, IR and Raman
Activities (x ) Active, × ) Inactive), Frequencies,ω
(cm-1), and IR Absorption Intensities, Int (km mol -1) of the
External Modes in the Ammonia Phase-I B3LYP/6-311G**
Calculation. Frequencies and Intensities of the LO and TO
Components Are Presented Separately, Where Appropriate

mode C I IR Ram ω(LO) ω(TO) Int(LO) Int(TO)

1 T F x x -9.0 0.4
2 T E × x 99.7 0.0
3 T A × x 113.4 0.0
4 T F x x 134.3 132.6 (5.1) 10.4
5 T F x x 177.7 177.0 (3.3) 6.2
6 L F x x 321.9 321.8 (0.9) 2.4
7 L A × x 348.5 0.0
8 L E × x 354.4 0.0
9 L F x x 511.8 455.3 (765.8) 997.9

10 L F x x 628.9 619.4 (255.9) 142.1
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in agreement with the results of our previous rigid molecule
MD simulations.2 We note further that combining the results
from each of the experimental studies, as in Table 4, yields
more than the total of nine low-frequency modes that would be
anticipated for the ideal material. We suggest therefore that the
modes in the vicinity of 260 cm-1 may originate from regions
of the crystal in which the local coordination of molecules differs
from that of the perfect phase-I lattice due, perhaps, to the
presence of lattice defects or to domains of the metastable and
amorphous forms that have manifested themselves previously.21

Modes from 290 to 320 cm-1. The current study obtains a
single mode in this region at approximately 320 cm-1. The
experimental studies suggest modes at 298 and 310 cm-1,3 as
did the previous rigid molecule MD simulations.2 An analysis
of the MD eigenvectors suggests that this mode possessesF
symmetry, in contrast with theE (310 cm-1) assignment for
the nearby experimental mode. The lattice dynamics calculations
also provide only one band in this region (at 322 cm-1 in the
B3LYP/6-311G** and B3LYP/TZP methods and at 331 cm-1

in B3PW91/6-311G**), and all of the calculations concur upon
the assignment ofF symmetry to this mode. We note, though,
that the previous rigid molecule MD simulation used a 2× 2
× 2 supercell of ammonia and that this could conceivably lead
to the incorporation of some fraction of the LO-TO splitting
if it were present. Furthermore, the two experimental peaks at
298 and 310 cm-1 were obtained from a Raman measurement,
which would be expected to detect both optical polarizations.
However, the current lattice dynamics calculations suggest that
there is only a very small (∼0.1 cm-1) splitting of this mode.

Modes from 350 to 500 cm-1. Three modes are observed in
the MD spectrum in this region, with symmetry assignments
of A (356 cm-1), E (367 cm-1), andF (457 cm-1). The lattice
dynamics calculations also predict three modes in this region
at 348, 354, and 455 cm-1 (B3LYP/6-311G**) with A, E, and
F symmetries, respectively, except in the PW91/TZP method,
which yields the orderE (387 cm-1), A (399 cm-1), andF (487
cm-1). The experimental observations in this region vary.
Binbrek and Anderson found one LO-TO split F mode in this
region at 358 (TO) and 426 cm-1 (LO).3 The current MD
simulation used a single unit cell, which does not include any
of the long-range electrostatic interactions. Turning to the lattice
dynamics calculations, we find only one mode in the range of
400-500 cm-1, namely, a TO peak at 455 cm-1. The Raman
measurements produced a wide band in the range of 325-375
cm-1,6 which may correspond to the two peaks obtained at 356
and 367 cm-1 in the present work. Given the absence of LO-
TO splitting in the MD simulations, we conclude that it is very

likely that the experimental peaks reported by Binbrek and
Anderson at 358 and 426 cm-1 are two separate modes and not
a single LO-TO split F mode as previously assigned.

Lattice Mode above 500 cm-1. The final lattice mode is
observed in experiments at 532 cm-1.3 The MD simulation
shows a peak at 605 cm-1, while the lattice dynamics results
are higher still at 625 (B3LYP/6-311G**) or 651 cm-1 (PW91/
TZP). All theoretical methods agree with the experimental
assignment ofF symmetry. The LO-TO splitting calculations
in the B3LYP/6-311G** method do suggest that there is a LO
branch of the 455 cm-1 mode at 512 cm-1. The peak is quite
close to the experimental value for the final mode, and it is
possible that it may have been incorrectly assigned. The only
experimental evidence for a higher-frequency lattice mode
emerges from the C-INS study, in which anF band (574 cm-1)
is inferred from the scaling of a deuteroammonia peak.5

It should be noted that the comparable experimental studies
have been performed at a range of temperatures, which will
inevitably lead to some variations in peak positions as compared
with our MD simulations obtained at 77 K. Given these
limitations, we find that some of our peak positions agree
extremely well with the experiment data, and we note that the
calculations obtain the correct number of modes for each
symmetry type (i.e., 2A + 2E + 5F).

3.3. Phase-I ND3 Lattice Modes. The nine lattice modes in
ND3 have also been determined from MD and lattice dynamics
calculations. The time-averaged structure determined from the
MD trajectory is presented in Table 7.

Table 8 compares the NH3 and ND3 lattice modes obtained
from the MD and lattice dynamics calculations and tabulates
the ratios of their frequencies. The LO-TO splittings obtained
from B3LYP/6-311G** calculations are presented in Table 9.
We can see that the trend in the values is similar to that observed

TABLE 6: The External Mode LO -TO Splittings (cm-1)
Obtained for Different Values of the Optical Dielectric
Constant, E∞

LO-TO splitting

mode ε∞ ) 1.3 ε∞ ) 1.5 ε∞ ) 1.7 ε∞ ) 1.9 ε∞ ) 2.1 ε∞ ) 2.3

4 2.15 1.96 1.81 1.68 1.56 1.46
5 1.01 0.92 0.84 0.78 0.73 0.68
6 0.17 0.16 0.15 0.14 0.13 0.12
9 75.56 68.01 61.73 56.46 51.98 48.15

10 16.07 13.12 11.05 9.53 8.37 7.46

TABLE 7: The Fractional Coordinates of the Asymmetric
Unit in ND 3 Averaged over the 30 ps PW-DFT MD
Trajectory

Dx 0.3520
Dy 0.2697
Dz 0.0965
Nx 0.1974

TABLE 8: NH 3 and ND3 Lattice Mode Frequencies (cm-1)
and Ratios of Frequencies as Determined from the MD
Velocity Autocorrelation Function and Lattice Dynamics
Calculations at the B3LYP/TZP Level of Theory

NH3 lattice mode ND3 lattice mode ratio of frequencies

MD lattice dynamics MD lattice dynamics MD lattice dynamics

98 98 88 89 1.11 1.10
125 121 114 110 1.09 1.10
136 130 122 120 1.11 1.09
175 174 164 163 1.07 1.08
320 322 225 228 1.42 1.41
356 353 260 257 1.36 1.37
367 355 266 260 1.38 1.37
457 449 326 323 1.40 1.39
605 616 445 448 1.36 1.38

TABLE 9: The Character, C (T ) Translational, L )
Librational), Irreducible Representation, I, IR and Raman
Activities (x ) Active, × ) Inactive), Frequencies,ω(cm-1),
and IR Absorption Intensities, Int (km mol -1) of the
External Modes in the ND3 B3LYP/6-311G** Calculation.
Frequencies and Intensities of the LO and TO Components
Are Presented Separately, Where Appropriate

mode C I IR Ram ω(LO) ω (TO) Int(LO) Int(TO)

1 T F x x -8.2 0.31
2 T E × x 90.5 0.0
3 T A × x 103.1 0.0
4 T F x x 123.2 121.6 (4.5) 9.3
5 T F x x 165.4 164.6 (3.1) 6.2
6 L F x x 228.3 228.1 (0.7) 1.7
7 L A × x 253.4 0.0
8 L E × x 259.3 0.0
9 L F x x 365.6 326.3 (385.0) 494.2

10 L F x x 457.3 450.6 (126.9) 76.0
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in the protonated material, although the sizes of the splittings
are generally reduced, particularly for the librational modes. The
general reduction in the IR intensities is in keeping with the
smaller amplitudes of motion expected for vibrations in the
deuterated material.

The effects of deuteration on the translational mode frequen-
cies can be rationalized within a simple intermolecular bond-
stretching model, assuming that the molecules undergo rigid
displacements. The total masses of the protonated and deuterated
molecules at 17.024 and 20.045 amu, respectively, leading to
reduced masses for stretching motions,µp andµd, of 8.512 and
10.022 amu, respectively, and a ratio of protonated (ωp) and
deuterated (ωd) harmonic frequencies is given by

in good agreement with the ranges of 1.08-1.10 and 1.07-
1.11 obtained from B3LYP/TZP lattice dynamics and MD
calculations, respectively. Similarly, the effects of deuteration
upon the librational mode frequencies can be modeled within
an approximation in which these modes are assumed to involve
small torsional oscillations of rigid molecules. In this case, the

harmonic frequencies vary asI -1/2, where the moment of inertia,
I ) ∑ miri

2, clearly scales linearly with the mass of the rotating
particles. Thus, the frequency ratio depends directly upon the
proton and deuteron masses,mp andmd, respectively, and varies
as

which is also in good agreement with the ranges of 1.37-1.41
and 1.36-1.42 obtained from the B3LYP/TZP lattice dynamics
and MD calculations, respectively. We conclude that the first
four modes possess translational character, while the remaining
five modes are librational. The small range in the frequency
ratios is likely due to deviations from purely rigid molecule
motion.

3.4. NH3 and ND3 Internal Modes. The lattice dynamics
calculations also allow us to define unambiguously a set of
symmetry coordinates with which to describe the internal
motions of the system. These modes can be envisaged as being
composed of various in-phase and out-of-phase combinations
of the A andE symmetry vibrations that are obtained for the
isolated molecule. The symmetry coordinates are presented in

TABLE 10: Frequencies (cm-1), Symmetry Coordinates, Type of Motion, and Irreducible Representation, I, for theΓ-Point
Internal Vibrations in NH 3 as Determined from Lattice Dynamics Calculations; See Figures 2 and 3 for Descriptions of the
Coordinates Used

frequency symmetry coordinates motion I

1 3539 A(R2 + R3 - R1) + B(R3 + R1 - R2) + C(R3 - (R1 + R2)) + D(R1 - (R2 + R3)) asym. stretch F
2 3539 A(R3 - (R1 + R2)) + B(R1 + R2 - R3) + C(R1 - (R2 + R3)) + D(R1 + R3 - R2) asym. stretch F
3 3539 A(R1 + R3 - R2) + B(R1 - (R2 + R3)) + C(R2 - (R1 + R3)) + D(R1 + R2 - R3) asym. stretch F
4 3524 A(R1 - (R2 + R3)) + B(R2 - (R1 + R3)) + C(R3 - (R1 + R2)) + D(R1 - (R2 + R3)) asym. stretch E
5 3524 A(R2 - (R1 + R3)) + B(R1 - (R2 + R3)) + C(R2 - (R1 + R3)) + D(R3 - (R1 + R2)) asym. stretch E
6 3522 A(R1 - R3) + B(R3 - R2) + C(R1 - R3) + D(R1 - R2) asym. stretch F
7 3522 A(R1 - R2) + B(R1 - R2) + C(R3 - R2) + D(R3 - R1) asym. stretch F
8 3522 A(R3 - R2) + B(R3 - R1) + C(R2 - R1) + D(R3 - R2) asym. stretch F
9 3416 [A- B - C + D](R1 + R2 + R3) sym. stretch F

10 3416 [A- B + C - D](R1 + R2 + R3) sym. stretch F
11 3416 [A+ B - C - D](R1 + R2 + R3) sym. stretch F
12 3403 [A+ B + C + D](R1 + R2 + R3) sym. stretch A
13 1732 A(â3 - (â1 + â2) + R2 - (R1 + R3)) + B(â2 - (â1 + â3) + R1 - (R2 + R3)) +

C(â1 + â2 - â3 + R1 + R3 - R2) + D(â3 + â2 - â1 + R1 + R2 - R3)
asym. bend F

14 1732 A(â1 + â3 - â2 + R3 + R2 - R1) + B(â3 - (â1 + â2) + R2 - (R1 + R3)) +
C(â2 + â3 - â1 + R1 + R 2 - R3) + D(â3 - (â1 + â2) + R1 - (R2 + R3))

asym. bend F

15 1732 A(â1 - (â2 + â3) + R3 - (R2 - R1)) + B(â2 + â3 - â1 + R1 + R2 - R3) +
C(â1 + â3 - â2 + R2 + R3 - R1) + D(â1 + â2 - â3 + R2 - (R1 + R3))

asym. bend F

16 1699 A(â1 - â3 + R3 - R2) + B(â2 - â1 + R1 - R3) + C(â2 - â1 + R1 - R2) +
D(â1 - â3 + R3 - R2)

asym. bend F

17 1699 A(â1 - â2 + R3 - R1) + B(â1 - â3 + R3 - R2) + C(â1 - â2 + R3 - R1) +
D(â2 - â3 + R1 - R3)

asym. bend F

18 1699 A(â2 - â3 + R1 - R2) + B(â2 - â3 + R1 - R2) + C(â3 - â2 + R2 - R3) +
D(â2 - â1 + R1 - R3)

asym. bend F

19 1679 A(â2 + â3 - â1 + R2 - R3) + B(â2 + â3 - â1 + R1 -R3) +
C(â1 + â3 - â2 +R2 - R1) + D(â1 + â2 - â3 + R3 -R2)

asym. bend E

20 1679 A(â2 - (â2 + â3) +R3 - (R1 + R2)) + D(â2 - (â1 + â3) + R2 - (R2 + R3)) asym. bend E
21 1210 [A+ B + C + D](R1 + R2 + R3) inversion A
22 1170 [A- B - C + D](R1 + R2 + R3) inversion F
23 1170 [A- B + C - D](R1 + R2 + R3) inversion F
24 1170 [A+ B - C - D](R1 + R2 + R3) inversion F

TABLE 11: Assignments and Frequencies (cm-1) of the Internal Modes of NH3 and ND3 as Determined from MD Simulations
Together with Experimental Results

NH3 ND3

assignment MD simulation experimentala MD simulation experimentala

asymmetric stretches 3506 3375 2602 2511
symmetric stretches 3384 3210 2424 2342
angle bends 1612-1646 1650 1191 1195
inversions 1087-1117 1057 820 813

a Ref 21.

ωp

ωd
) xµd

µp
) 1.085

ωp

ωd
) xmd

mp
) 1.414
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Table 10 together with the lattice dynamics frequencies deter-
mined at the B3LYP/TZP level. The normal modes are described
in terms of the nine symmetry coordinates (R1-3, â1-3, andR1-3)
of the NH3 molecule, as defined in Figure 2. The four molecules
in the phase-I unit cell are labeled A-D and occupy the
positions shown in Figure 3. The corresponding internal mode
region of the NH3 MD phonon spectrum is show in Figure 4.
We note in particular the Davydov (or factor group) splittings
of the modes; these are the small differences in frequency that
separate vibrations in which the individual molecules undergo
essentially identical internal motions.

The resolution in this region of the MD phonon spectrum
and of the experimental results is too low to enable us to
discriminate each separate mode, though we note that some
separate peaks are visible in Figure 4. We can easily assign the
peaks in the various regions of the MD phonon spectrum, and
these data are presented in Table 11 for ND3 and NH3, along
with the comparable experimental results. The frequencies of
the bending and inversion modes are in good agreement with
the experimental values, whereas the stretching frequencies are
consistently overestimated. It is common practice to scale
theoretical bond-stretching frequencies by a factor that depends
upon the Hamiltonian used but which is typically in the range
of 0.90-0.99.22 We note that a scaling of this magnitude would
bring our values into close agreement with experiment. The
lattice dynamics stretching frequencies greatly overestimate the
experimental values, but this is to be expected given that they
are obtained within a harmonic approximation. We can attempt
to treat the anharmonicity of these modes by first obtaining the
potential energy curve for a representative N-H stretching
motion and then solving the associated one-dimensional Schro¨-
dinger equation by numerical integration.23,24 The totally sym-
metric stretch (mode 12 in Table 10) is a particularly convenient
choice for it can be modeled without a reduction in lattice
symmetry. The potential was determined as a sixth-order
polynomial fit to the total energies obtained at seven N-H bond
lengths, yielding a fundamental anharmonic absorption that is
much closer to experiment at 3304 cm-1 and a first overtone
band at 6445 cm-1. A comparison of this result with the
frequencies in Table 10 yields an anharmonic correction for
the symmetric stretching modes on the order of 100 cm-1. It is
reasonable to assume that all of the harmonic asymmetric
stretching frequencies are in error by similar amounts.

4. Conclusions

The complete zone-center phonon spectrum of ammonia has
been obtained from a combined MD and lattice dynamics
approach. The symmetry of each peak has been assigned using
both methods, resulting in significant changes to the previous
experimental and theoretical assignments of the lattice mode
region. The frequencies of the internal modes have also been
calculated and are found to be in good agreement with
experiment.

The work highlights the benefits of applying a combination
of theoretical approaches to the calculation of the vibrational
properties of a material. The lattice mode eigenvalues obtained
from the PW-DFT MD simulations are in excellent agreement
with experimental frequencies, despite the fact that the trajec-
tories were limited to a 30 ps length. The lattice dynamics
calculations also provide a reasonably accurate estimate of the
eigenvalues, but we observe that the values are shifted to high
frequencies with respect to the MD and previous experimental
results. In general, though, the two methods provide mode
assignments that are in good agreement. The inclusion of the
LO-TO splittings obtained from the lattice dynamics approach
is shown to be necessary if a full comparison with the
experimental spectra is sought, and we note that MD simulations
cannot easily access these values. The methods are also shown
to complement each other in the high-frequency internal mode
region of the spectrum. Again, the MD eigenvalues are generally
closer to experiment, but the ability of the lattice dynamics
calculations to resolve the closely spaced frequencies of the
Davydov split modes is extremely useful and allows us to make
an unambiguous assignment of each internal mode in terms of
a set of symmetry coordinates.

Figure 2. The symmetry coordinates of a single NH3 molecule. Black
and white spheres represent nitrogen and hydrogen atoms, respectively.

Figure 3. The unit cell of phase-I ammonia, showing the labels of
hydrogen atoms (1-3) and molecules (A-D).

Figure 4. Internal mode region of the NH3 phonon spectrum as
determined from the MD velocity autocorrelation function.
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