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Our objective is to assess the accuracy of simulated quantum Monte Carlo electron distributions of atoms
and molecules. Our approach is first to model the exact electron distribution by a linear combination of
gamma distribution functions, with parameters chosen to exactly reproduce highly accurate literature values
for a number of selected moments for the system of interest. In application to the ground-state electron
distributions of helium and dihydrogen, a high level of accuracy of the model was confirmed upon comparing
its predicted moments, not used in the model's parametrization, to those calculated from high-level theory.
Next, we generated electron-electron and electron-nucleus distributions for dihydrogen from electron positions
outputted from a variety of quantum Monte Carlo algorithms. Upon juxtaposition of the simulated distributions
with the putatively exact one that we derived from the model, we quantified the error in simulated distributions.
The most accurate distributions were obtained from no-compromise reptation quantum Monte Carlo, a recently
developed algorithm designed to ameliorate the distributions’ time-step bias. Marginally less accurate
distributions were generated from fixed-node diffusion Monte Carlo with descendant counting and detailed
balance.

Introduction

Decades of research devoted to developing quantum Monte
Carlo methods have firmly established the advantages of this
approach to electronic structure calculations: rapid convergence
with basis-set size, favorable scaling with the number of
electrons, no calculation and storage of large numbers of
integrals, and codes that are naturally suited for parallel
computation. Monographs1,2 and recent reviews,e.g., ref 3, have
been devoted to these issues.

Benchmark calculations suggest that the most commonly
employed variant, fixed-node diffusion Monte Carlo4 (FNDMC),
estimates the energy with accuracy on par with CCSD(T),
although not yet to within chemical accuracy.5 FNDMC samples
the mixed distribution,ΨΦ0, whereΦ0 is “exact”, except for
the incorrect nodes6 imposed by the importance sampling
function,Ψ. This so-called “nodal error” introduces a positive
bias in the simulated energy.7

In addition to this, there is yet another significant source of
error that arises in both FNDMC and the more-recently
developed reptation quantum Monte Carlo8,9 (RQMC) ap-
proach: “time-step bias”. This error is a result of mathematical
moves being made in accordance with the so-called “short-time
Green's function”,G0Gb. This quantity is exact only in the limit
of zero time step: a small interval of imaginary simulation
time.10-12 Although in practice there are elegant ways to improve
the sampling,e.g., refs 13 and 14, and thus reduce the bias, in
principle the time step, and consequently the bias associated
with its use, cannot be reduced to zero. Alternatively, of course,
one may simply reduce the value used for the time step, but
this adversely affects the efficiency of the simulation.15

Normally, expectation values of operators that do no commute
with the Hamiltonian are biased by the inputted importance
sampling function. Nevertheless, both FNDMC and variational
Monte Carlo (VMC) recover expectation values as if they had
been drawn from the “exact” distribution,Φ0

2, by employing
methods of “descendant counting”,e.g., refs 16 and 17, and by
averaging variationally distributed quantities with accumulated
past and future branching factors,e.g., refs 18 and 19,
respectively. On the other hand, RQMC algorithms directly
sample the “exact” distribution, at the middle of the reptile. Here
and above we qualified the word “exact”, as all of these
distributions suffer from time-step and nodal error.

We are presently concerned with assessing the accuracy of
simulated quantum Monte Carlo electron-electron and electron-
nucleus distributions. The normal practice, comparing the
simulated energy and a selection of other properties with
accurate determinations in the literature, is indirect and monitors
only isolated regions of the distributions. Instead, our objective
is to provide a direct assessment of the overall quality of the
simulated distributions. Our approach is first to model the
unknown, truly exact electron distributions by linear combina-
tions of gamma distributions. The model is parametrized to
reproduce literature results for a broad range of moments, and
its efficacy verified by its accurately reproducing literature
values for moments not used in its parametrization. Next, curves
for quantum Monte Carlo-generated distributions are constructed
by spline-fitting histograms of simulated electron positions.
Finally, errors in the simulated distributions are revealed upon
juxtaposition of the simulated distributions with the putatively
exact ones that are derived from the model.

This paper is organized as follows: In the following section
we introduce the gamma distribution model and apply it to
electron-nucleus and electron-electron distributions of ground-
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state helium and dihydrogen. Next, we briefly describe quantum
Monte Carlo algorithms whose electron distributions for dihy-
drogen are assessed by comparison with those of the model.
We conclude with a discussion of our results and suggestions
for further work.

Gamma Distribution Model for Electron Distributions

A random variableX has a gamma distribution if its
probability density function is given by20

and for any positive integerγ, Γ(γ) ) (γ - 1)!.
Moments of the gamma distribution are available analytically

as

This formula also holds for the first and second inverse
moments.

The gamma distribution is useful for describing positively
skewed, non-negative data, such as the electron-nucleus and
electron-electron probability distributions that concern us here.
This is immediately obvious for the electron distribution of 1s
hydrogen, whereγ ) 3 and scale parameter,â, is equal to 2-1

au. Similarly, for the 2p states,γ ) 5 andâ ) 1.0 au. The 2s
state electron distribution is a linear combination of gamma
distributions, withγ ) 3, 4 and 5, andâ ) 1.0 au.

By extension, a model for the electron-electron and electron-
nucleus distributions for ground states of He and H2 is as
follows:

wherer is a shorthand notation for the electron-nucleus and
electron-electron distance variable; each case is considered
separately. The coefficients,{ck}, are chosen to provide aperfect

fit of gamma distribution moments to highly accurate literature
values of〈rn〉.

where

For both the electron-nucleus and electron-electron distribu-
tions of He, we parametrized the model using literature values
for the following moments:n ) -1, 0, ..., 3. For the electron-
nucleus distribution of H2, n ) -1, 0, ..., 3, and for the
electron-electron distribution,n ) -2, -1, 0, ..., 2. These
choices reflect the availability of suitably accurate determina-
tions in the literature.

For the electron-nucleus distributions, the remaining param-
eter,â, was set equal to half the inverse of the orbital exponent
reported in the literature: ref 21 for He and ref 22, with a slight
adjustment, for H2.

Because there is no “orbital exponent” to draw on for the
electron-electron distributions, we selectedâ to fit the delta
function.

For example of application of this formula, the ground-state
hydrogen atom is represented by a single gamma distribution
(c3 )1) with â ) 0.5. Its delta function equals toπ-1.

Model parameters obtained in this manner are reported in
Table 1. Asterisks in Tables 2 and 3 precede literature values
for moments used to parametrize the model for He and H2,
respectively; the model gives an exact fit to these values. The
remaining low- and high-order moments appearing in these
tables were calculated from the gamma distribution model (eqs
4 and 6). These satisfactorily agree with the literature values,
suggesting that we have captured adequately for our purposes
the underlying exact, mutually consistent marginal distributions,
despite their not having been derived from some underlying
parent wave function.

We plotted the electron distributions in Figure 1. Each
distribution is unimodal, the dihydrogen distributions (at the
equilibrium geometry) are more diffuse than its Helium analogs,
as is the electron-electron distribution relative to the electron-
nucleus one. For a chemist, these are not surprising. Our model,
again from which the distributions were independently derived,
reflects these fundamentals quite well.

The model can be extended to account for overlapping
electron shells, for example to first row atoms by taking two
linear combinations of gamma distributions, each with different
scale parameters:23

Quantum Monte Carlo Algorithms

Variational Monte Carlo 1 (VMC). In VMC one moves
electrons mathematically (not physically) in imaginary time by
the processes of drift and diffusion. The size of the moves,
performed for a set of configurations (or walkers), depends on
the time step,τ, as follows:

Figure 1. Gamma electron-nucleus (en, solid lines) and electron-
electron (ee, dashed lines) distribution model for ground-state helium
and dihydrogen.
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where Ri,j is the positions of then electrons for thejth
configuration on theith iteration,∇ implies partial derivatives
with respect to all the coordinates,Ψ is a specified trial function,
andø is a 3n-dimensional vector with independent components
drawn from a 3n-dimensional standard normal distribution.

These moves simulate the Green’s function:

generating the “variational” distribution of walkers,Ψ2, albeit
with a time-step bias.

Fixed-Node Diffusion Monte Carlo with Physical Branch-
ing4 (FNDMC). To simulate the remaining factor in the short-
time Green’s function,Gb, during each iteration we either
replicate or delete the moved configurations with probability
proportional to their so-called “branching factors”:

whereET is a constant, which is approximately equal to the
exact energy, and

This algorithm samples the mixed distribution,Φ0Ψ, and is
biased both by the incorrect nodes imposed on the distribution
by Ψ and by the time step.

By evoking detailed balance (DB), a Metropolis-type decision,
in principle, one may ameliorate, but not completely eliminate,
the time-step bias. Here one accepts a move given by (8) with
probability

where

Fixed-Node Diffusion Monte Carlo with Descendent
Counting16,17 (FNDMC-DC). To sample the desired “exact”
distribution,Φ0

2, albeit still with time-step and nodal error, one
may engage in descendent counting. Here one counts the number
of descendents in the far-future for each configuration in the
logical recent iteration. This quantity is proportional toΦ0/Ψ.24

When it is used as a weight for averaging quantities of interest
in the logical recent iteration, one can estimate expected values
had they been drawn from the “exact” distribution.

Variational Monte Carlo with Past -Future Weighting18

(VMC-W). One may perform VMC and accumulate branching
factors from distant-past (p) through to far-future (f) iterations,
for use as weights when averaging in the logical-presentith
iteration. The accumulated branching factors are given by

with L chosen proportional toτ -1.
This accumulation of branching factors is proportional toΦ0

2/
Ψ2. Performing a weighted-average of variationally distributed
quantities in the present iteration estimates expectation values
had they been drawn from the exact distribution,Φ0

2. This
algorithm may be employed with detailed balance (12).

VMC-W is akin to appending future-walking to the so-called
“pure diffusion Monte Carlo” algorithm,25 with the advantage
of allowing one to use a limited number of weights to control

TABLE 1: Model Parametersa (au) for Electron-Nucleus (en) and Electron-Electron (ee) Distributions of Ground-State
Helium and Dihyrodgen

system (distribution) c3 c4 c5 c6 c7 â

He (en) 1.177 350 -0.613 920 0.616 241 3 -0.237 051 5 0.057 380 4 0.296 30
He (ee) 0.096 586 05 0.383 196 69 0.672 770 02 -0.182 801 10 0.030 248 34 0.330 612
H2 (en) 0.369 871 -0.077 795 0 1.289 321 1 -0.754 359 1 0.172 961 8 0.394
H2 (ee) 0.021 479 8 0.095 962 4 0.120 431 2 0.515 799 0 0.246 337 7 0.369 525

a Equation 3.

TABLE 2: Calculated and Literature Values of Moments for Electron-Nuclear (en) and Electron-Electron (ee) Distributions
for Ground-State He Atoma

en (this workb) en (literature) ee (this workb) ee (literature)

〈δ(r )〉 1.800 822 1.810 429 29 0.106 345 4 0.106 345 374
〈r-2〉 6.011 462 6.017 408 8662 1.464 641 1.467 709 2349
〈r-1〉 / 1.688 316 800 717 / 0.945 818 448 800
〈r1〉 / 0.929 472 294 874 / 1.422 070 255 566
〈r2〉 / 1.193 482 995 021 / 2.516 439 312 836
〈r3〉 / 1.967 948 106 70 / 5.308 009 640 84
〈r4〉 3.975 588 3.973 564 9319 12.981 729 12.981 271 359

a An asterisk means the literature value was used to parametrize the gamma function model, eq 3. The literature values are moments derived
from variationally optimized, explicitly correlated wave functions; ref 32. All entries are in atomic units.b Equations 4 and 6.

TABLE 3: Calculated and Literature Values of Moments
for Electron-Nuclear (en) and Electron-Electron (ee)
Distributions for Ground-State Hydrogen Moleculea

en (this workb) en (literature) ee (this workb) ee (literature)

〈δ(r )〉 0.240 615 0.2300(2.5)c 0.0163 0.016 84(3)c

〈r-2〉 1.594 09 1.608(5)d / 0.5244(8)d

〈r-1〉 / 0.911 902e / 0.587 365 91f

〈r1〉 / 1.548 269e / 2.168 952 8f

〈r2〉 / 3.037 186e / 5.632 389 5f

〈r3〉 / 7.175 786e 16.93155 16.885(8)d

〈r4〉 19.8668 19.867 215 5e

a An asterisk means the literature value was used to parametrize the
gamma function model, eq 3. All entries are in atomic units.b Equations
4 and 6.c Variational Monte Carlo; ref 33.d Variational Monte Carlo;
ref 22. e Full CI; ref 34. f Variational theorem with explicitly correlated
wave function; ref 35.

Ri+1,j ) Ri,j + τ∇Ψ(Ri,j)/Ψ(Ri,j) + xτ ø (8)

G0(Ri,jfRi+1,j,τ) )

(2πτ)-3n/2 exp(-[Ri+1,j - Ri,j - τ∇Ψ(Ri,j)/Ψ(Ri,j)]
2/2τ) (9)

bi,j ) e-(Eloc(Ri,j)-ET)τ (10)

Eloc(Ri,j) )
ĤΨ(Ri,j)

Ψ(Ri,j)
(11)

A(Ri,jfRi+1,j) ) min(1,W(Ri+1,j,Ri,j)) (12)

W(Ri+1,j,Ri,j) )
|Ψ(Ri+1,j)|2G0(Ri+1,jfRi,j,τ)

|Ψ(Ri,j)|2G0(Ri,jfRi+1,j,τ)
(13)

wi,j
(p,f) ) ∏

k)i-L+1

i

bk,j ∏
k)i

i+L-1

bk,j (14)
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any numerical instabilities that may arise when crude trial
functions are employed.26

Reptation Quantum Monte Carlo8,9 (RQMC). One may
again perform VMC but now employ accumulated past- and
future-branching factors in a Metropolis-type decision to accept
or reject moves taken in the distant past or far future. This is
the basis of the so-called “reptation quantum Monte Carlo”
algorithm.

A set of consecutive VMC iterations,e.g., N of them,
describes a path through imaginary simulation time. This defines
“reptile” Xj. One accumulates the local energies as follows:

With probability1/2, a new reptile is generated by removingM
iterations from the original reptile’s head and addingM new
ones to its tail. Alternatively, again with probability1/2, M
iterations are removed from the tail and replaced by the same
number of new ones that are added to its head.

One accepts the new reptile,Yj, with probability

This essentially amounts to performing a Metropolis-type
decision done on the ratio of VMC-W past-future weights (14).

Described above is a typical Metropolis-Hastings type
algorithm,9 here denoted by RQMC-MH. It generates the
same distribution as its well-studied RQMC counterpart,8

which is not reversible yet still converges to the intended
distribution.

For our purposes it is only the middle of a reptile that is
important. At this position, analogous to the logical-present
in the VMC-W algorithm, we are able to sample from the
exact distribution. However, unlike VMC-W, RQMC-MH
allows us to directly sample this distribution, rather than
doing so indirectly,Via weighted averages of the quantities of
interest.

Unfortunately, the algorithm's failure to meet the assumed
criterion of microscopic reversibility causes the time-step bias
to accumulate at the middle of the reptile. To alleviate this
problem, there is an alternative algorithm, “no-compromise
reptation quantum Monte Carlo”9 (RQMC-NC). When the
assumption of microscopic reversibility is relaxed, this algorithm
is designed to stabilize the middle of each reptile. This involves
modifying the acceptance probabilities as follows:

As before, with probability1/2, generate the new reptile by
removingM iterations from the head with the same number of
new ones to be added to the tail. The new reptile is accepted
with probability

Otherwise, removeM iterations from the reptile’s tail, replaced
by M new ones added to its head. This proposed reptile is
accepted with probability

Both RQMC-MH and RQMC-NC converge very quickly in the
following application to dihydrogen, and consequently there is
no need to randomize the choice of M as in the original RQMC
algorithm.8

In practice, one observes reptiles that grow “stale”, failing
to change or move over a large number of iterations. To
ameliorate this, we improved the sampling by incorporating a
“bounce”.27 During the first iteration with probability1/2 one
assigns to each reptile the location at which a new segment
will be added,i.e., its head or tail. That location is retained for
further iterations until a proposed reptile is rejected, at which
point the opposite location is used during the next iteration and
all subsequent ones until a move is again rejected.

Errors in Simulated Electron Distributions for
Dihydrogen

We performed ten independent quantum Monte Carlo simula-
tions on the ground state of dihydrogen, a nodeless system. The
form of the trial function employed here was energy- and
geometry-optimizedΨ3, taken from ref 28, a high-quality,
explicitly correlated LCAO-MO type wave function, whose
variational energy accounted for 93% of the electron correlation
energy. Simulations were performed at a small value of the time
step,τ ) 0.05 au, which is still large enough to expect a bias
in the simulated electron distributions to be visible. Electron
distributions were constructed by spline-fitting histograms (1/18

au-sized bins) of simulated electron positions, weighted by the
number of descendants or by past-future weights (14), for
FNDMC-DC and VMC-W, respectively. Runs with these
algorithms were done both with and without detailed balance
(12). Distributions were also constructed from middle-of-the-
reptile electron positions for RQMC-MH and -NC, positions
whereΦ0

2 is sampled. In addition, VMC runs, which sample
Ψ2, here with a time-step bias, for the sake of comparison.
(VMC simulations commonly reported in the literature employ
Metropolis sampling, thereby sampleΨ2 without a time-step
bias.)

All of the simulated electron distributions suffer from the
use of a finite time step as well as some further errors, which
are mentioned in the discussion. To visualize these, we
compared the simulated electron-nucleus and electron-electron
distributions (PMC) with their gamma distribution counterparts
(Pγ), taking the gamma distributions to be truly exact; Figure
2. In Table 4 we report the integrated absolute error in the
simulated distributions:∫|PMC - Pγ| dr.

As is to be expected, errors in the variational (VMC)
distributions are relatively large, particularly for the electron-
electron distribution, due to its time-step bias and the error that
is introduced by the trial function itself. The variational error
is reduced in the other algorithms by virtue of physical- or
weight-branching and better sampling of configuration space;
the more the error is reduced, the more effective are these
algorithmic details.

Employing detailed balance (DB) with FNDMC-DC dramati-
cally reduces the error both in the simulated electron-nucleus
and in electron-electron distributions but does not improve upon
the VMC-W distributions. Notably, for both distributions the
no-compromise reptation algorithm is more accurate than its
Metropolis-Hastings analog, closely followed in accuracy by
RNDMC-DB-DC. Overall, the distributions listed in order of
decreasing accuracy are as follows: RQMC-NC, FNDMC-DB-
DC, RQMC-MH, VMC-W, VMC-W-DB, FNDMC-DC, and
VMC.

S(Xj) ) τ(12 Eloc(R1,j) + ∑
i)2

N-1

Eloc(Ri,j) +
1

2
Eloc(RN,j)) (15)

A(XjfYj) ) min(1,exp(-S(Yj))/exp(-S(Xj))) (16)

A0(XjfYj) ) min

(1,
G0(xN/2+1fxN/2;τ)...G0(xN/2+MfxN/2+M-1;τ)Ψ(xN/2+M)2 exp(-S(Yj))

G0(xN/2+M-1fxN/2+M;τ)...G0(xN/2fxN/2+1;τ)Ψ(xN/2)
2 exp(-S(Xj))

)

A1(XjfYj) ) min

(1,
G0(xN/2-1fxN/2;τ)...G0(xN/2-MfxN/2-M+1;τ)Ψ(xN/2-M)2 exp(-S(Yj))

G0(xN/2-M+1fxN/2-M;τ)...G0(xN/2fxN/2-1;τ)Ψ(xN/2)
2 exp(-S(Xj))

)
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Discussion and Conclusions

The commonly used procedure of comparing the simulated
energy and other physical properties with their accurate values,
determined from either experiment or high-level theory, provides
an indirect assessment of the quality of quantum Monte Carlo-
simulated distributions. To our knowledge, the present paper is
the first attempt to directly ferret out their quality.

Ground-state dihydrogen has no electron exchange nodes, for
which the fixed-node approximation introduces an uncontrolled

approximation.29 However, there are other algorithmic errors
affecting the quality of the generated electron distribution, albeit
smaller ones than the time-step bias, such as those arising from
the use of a finite number of walkers (or reptiles) and method
(or lack) of population control. Furthermore, our Hamiltonian
is in error by its fixing the positions of the nuclei and ignoring
relativistic effects, in common practice with standard quantum
chemistry approaches.

Although of a compact form, our trial function is of high
quality, representative of that used in the literature nowadays.
Algorithms more sophisticated than VMC, namely those
described above, are known to improve the variational energy
and other physical properties. Indirectly, this suggests an
improvement of the underlying electron distributions. Focusing
here on them directly, we quantified the extent to which the
simulated distributions were improved over that of a drift-
diffusion algorithm (time-step-biased VMC), on an algorithm-
by-algorithm basis. The nominally best choice, no compromise
reptation quantum Monte Carlo, reduces the variational electron-
nuclear distribution error by 40%, and the electron-electron
distribution error by 80%. Marginally less accurate distributions
were generated from fixed-node diffusion Monte Carlo with
descendant counting and detailed balance, which thus can be
taken as a viable alternative.

It should be noted that, although extensive, our choice of
algorithms was not exhaustive. Those not considered include
bilinear quantum Monte Carlo30 and path integral quantum
Monte Carlo methods (e.g., ref 31).

In addition, employing a gamma distribution model employed
to assess the overall accuracy of quantum Monte Carlo-generated
distributions, as we did in this paper, is an approach that may
aid in the development and testing of improved density
functionals. Unfortunately, applications to more complex sys-
tems rests on the availability of highly accurate moments, and
these are not routinely reported in the literature. We hope our
paper will inspire theoreticians to remedy this deficiency.
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