Unimolecular Reactions of Chemically Activated CF₂BrCF₂CH₃ and CF₂BrCF₂CD₃: Evidence for 1,2-FBr Interchange

Carmen E. Lisowski,[†] Juliana R. Duncan,[†] George L. Heard,[†] Donald W. Setser,[‡] and Bert E. Holmes^{*,†}

Department of Chemistry, University of North Carolina Asheville, One University Heights, Asheville, North Carolina 28804-8511, and Department of Chemistry, Kansas State University, Manhattan, Kansas 66506

Received: July 24, 2007; In Final Form: October 16, 2007

Vibrationally excited CF₂BrCF₂CH₃ and CF₂BrCF₂CD₃ molecules were prepared with 96 kcal mol⁻¹ energy at room temperature by the recombination of CF₂BrCF₂ and CH₃ (CD₃) radicals. The observed unimolecular reactions are 1,2-BrF interchange to give CF₃CFBrCH₃ (CD₃) molecules and 2,3-FH (FD) elimination; the rate constants are 2.2 × 10⁵ (1.5 × 10⁵) s⁻¹ and 2.0 × 10⁵ (0.75 × 10⁵) s⁻¹, respectively. The CF₃CFBrCH₃ (CD₃) molecules rapidly, relative to the reverse reaction, eliminate HBr or DBr to give the observed product CF₃CF=CH₂ (CD₂). Density functional theory at the B3PW91/6-311+G(2d,p) level was used to obtain vibrational frequencies and moments of inertia of the molecule and transition states for subsequent calculations of statistical rate constants for CF₂BrCF₂CH₃ and CF₂BrCF₂CD₃. Matching experimental and calculated rate constants gave threshold energies of 62 and 66 kcal mol⁻¹ for 1,2-BrF interchange and 2,3-FH elimination, respectively. The BrF interchange reaction is compared to ClF interchange from CF₂ClCF₂CH₃ and CF₂-ClCHFCH₃.

I. Introduction

The unimolecular interchange of Cl and F atoms located on adjacent carbon atoms in fluorochloroalkanes has been experimentally demonstrated for CF₂ClCF₂CH₃,¹⁻³ CF₂ClCHFCH₃,¹ and CF₂ClCHFC₂H₅⁴ with \sim 95 kcal mol⁻¹ energy. The Cl/F interchange reaction also exists for several vibrationally excited hydrochlorofluoroethanes.⁵⁻⁷ These interchange reactions are in competition with unimolecular elimination of HCl and HF. In the present study we wish to report the unimolecular interchange of Br and F atoms in the CF₂BrCF₂CH₃ molecule activated by recombination of CF₂BrCF₂ and CH₃ radicals. The results for CF₂BrCF₂CH₃ were confirmed by experiments with CD₃ radicals to generate CF₂BrCF₂CD₃. The interchange reaction generates CF₃CFBrCH₃ (CD₃), which rapidly eliminates HBr (DBr), and $CF_3CF=CH_2$ (CD₂) is the observed product from the interchange reaction. The 2,3-FH elimination reaction is in competition with the 1,2-FBr reaction. The bromine atom dissociation reaction is not important relative to the other two processes. The CF₂BrCF₂CH₃ class of molecules is of some interest for fire-retardant and refrigeration applications.⁸

Experimental rate constants for CF₂BrCF₂CH₃ (CD₃) were obtained from plots of the ratio of decomposition (D_i) to collisionally stabilized (*S*) products vs pressure⁻¹. These rate constants measured for molecules with 96 kcal mol⁻¹ energy are compared to RRKM (Rice–Ramsperger–Kassel–Marcus) calculated values that are based on molecular and transitionstate models obtained from electronic structure calculations from density functional theory (DFT). We used the B3PW91/6-311+G(2d,p) level for consistency with previous work.^{9–12} This methodology has been developed to assign threshold energies for a series of chlorofluoroethanes, -propanes, and -butanes.^{1,4,9–11} In the present work threshold energies are assigned for 2,3-FH (FD) elimination and 1,2-FBr interchange; the latter has the lower threshold energy. In the near future¹³ we will examine other computational methods and other basis sets for unimolecular reactions of haloalkanes involving a bromine atom.

The Br-F interchange in CF₂BrCF₂CH₃ can be contrasted with Cl-F interchange in CF₂ClCF₂CH₃.¹⁻³ Given their similarity and the common occurrence of Cl-F interchange reactions in fluorochloroalkanes, unimolecular Br-F interchange reactions in vibrationally excited bromofluoroalkanes may be generally expected, if the Br and F atoms are on adjacent carbon atoms.

The CF₂BrCF₂ radical was produced by photolysis of CF₂-BrCF₂I and CH₃ (CD₃) radicals were produced from photolysis of CH₃I (CD₃I) at room temperature. The photochemistry of CF₂BrCF₂I is of current interest,^{14–16} and the experimental methods for these experiments are described in detail.

II. Experimental System and Procedures

The CF₂BrCF₂ radical has a classical structure with D(Br- C_2F_4 = 20 ± 4 kcal mol⁻¹, and the radical is stable to dissociation at room temperature.¹⁴⁻¹⁶ Lee and co-workers¹⁶ showed that photolysis of CF2BrCF2I at 308 nm gave CF2BrCF2 + $I({}^{2}P_{3/2})$ or $I({}^{2}P_{1/2})$. The excited $I({}^{2}P_{1/2})$ channel was favored (77%) relative to the ground-state (23%) channel. All of the CF_2BrCF_2 radicals associated with the $I(^2P_{1/2})$ pathway were stable, and only 35% of the CF₂BrCF₂ radicals associated with $I({}^{2}P_{3/2})$ formation had enough vibrational energy to dissociate. The authors concluded that 90% of the CF₂BrCF₂ radicals were stable from 308 nm photolysis of CF₂BrCF₂I. In our experiments we photolyzed 2:1 mixtures of CH₃I and CF₂BrCF₂I in Pyrex vessels with a 200 W high-pressure Hg lamp. The effective wavelength range of ≥ 280 nm corresponds to the long wavelength limit of the $n \rightarrow n^*$ absorption band. The observed products at high pressure from our photolysis experiments are consistent with the expected recombination and disproportion-

[†] University of North Carolina Asheville.

[‡] Kansas State University.

TABLE 1: Mass Spectral Fragmentation Data at 70 eV (m/e, Relative Abundance (RA), and Assignment)

CF_2BrCF_2Br		$CF_2BrCF_2CF_2CF_2Br$			
m/e	RA	assignment	m/e	RA	assignment
179	100	$C_2F_4^{79}Br^+$	131	100	$CF_2^{81}Br^+$
181	97	$C_2F_4^{81}Br^+$	129	84	$CF_{2}^{79}Br^{+}$
129	41	$CF_2^{79}Br^+$	69	60	CF_3^+
131	37	$CF_2^{81}Br^+$	31	50	CF^+
31	32	CF^+	100	44	$C_2F_4^+$
100	24	$C_2F_4^+$	279	36	$C_4 F_8^{79} Br^+$
50	15	CF_2^+	191	35	$C_{3}F_{4}^{79}Br^{+}$
	CF ₂ BrCF=CH ₂	2		CF ₂ BrCF=CD ₂	2
m/e	RA	assignment	m/e	RA	assignment
95	100	$C_3F_3H_2^+$	97	100	$C_3F_3D_2^+$
69	45	CF_3^+	69	41	CF_3^+
45	17	$C_2FH_2^+$	47	17	$C_2FD_2^+$
129	16	$CF_2^{79}Br^+$	31	11	CF^+
131	15	$CF_2^{81}Br^+$	76	6	$C_3F_2D^+$
31	9	$C\bar{F^+}$	129	4	$CF_2^{79}Br^+$
75	7	$C_3F_2H^+$	131	4	$CF_2^{81}Br^+$
	CE D-CE CU			CE D-CE CD	

$CF_2BrCF_2CH_3$			$CF_2BrCF_2CD_3$		
m/e	RA	assignment	m/e	RA	assignment
65	100	$C_2F_2H_3^+$	68	100	$C_2F_2D_3^+$
115	60	$C_{3}F_{4}H_{3}^{+}$	118	27	$C_{3}F_{4}D_{3}^{+}$
45	29	$C_2FH_2^+$	47	18	$C_2FD_2^+$
51	18	CF_2H^+	52	11	CF_2D^+
26	6	$C_2H_2^+$	31	9	CF^+
95	6	$C_3F_3H_2^+$	131	4	$CF_2^{81}Br^+$
44	5	C_2FH^+	129	4	$CF_{2}^{79}Br^{+}$

ation reactions of CF_2BrCF_2 and CH_3 radicals; the asterisk denotes vibrational excitation.

$$CF_2BrCF_2 + CH_3 \rightarrow CF_2BrCF_2CH_3^*$$
 (1a)

$$\rightarrow CH_3Br + C_2F_4 \tag{1b}$$

$$2CF_2BrCF_2 \rightarrow CF_2BrCF_2CF_2CF_2Br^*$$
 (2a)

$$\rightarrow CF_2BrCF_2Br + C_2F_4$$
 (2b)

$$2CH_3 \longrightarrow C_2H_6^*$$
(3a)

The CF₂BrCF₂CF₂CF₂Br* and C₂H₆* molecules are collisionally stabilized at the pressures of our experiments; however, CF₂-BrCF₂CH₃* has two unimolecular reaction pathways that compete with collisional deactivation at reduced pressures.

$$CF_2BrCF_2CH_3^* \rightarrow CF_3CFBrCH_3^*$$
 (4a)

$$\rightarrow CF_2BrCF = CH_2 + HF \quad (4b)$$

$$k_{\rm M}$$
 [M] CF₂BrCF₂CH₃ (4c)

The CF₃CHFCH₃* molecules acquire about 3 kcal mol^{-1} additional energy in the rearrangement (4a), and HBr elimination occurs before stabilization by collision.

$$CF_3CFBrCH_3^* \rightarrow CF_3CF = CH_2 + HBr$$
 (5)

Although calibrations were not done for C_2F_4 or CH_3Br , the apparent yields were consistent with the expected contributions from (1b) and (2b), and no evidence was found for the decomposition of CF_2BrCF_2 from excess vibrational energy from primary photolysis or from secondary photolysis.

Experiments with pressures ranging from 1.0 to 0.025 Torr were done at room temperature in Pyrex vessels with volumes ranging from 34.7 to 2021.0 cm³ containing between 0.20 and

5.0 μ mol of CH₃I or CD₃I and between 0.10 and 2.0 μ mol of CF₂BrCF₂I, plus small amounts of mercury and mercury(I) iodide. The photolysis lamp was a high-pressure Oriel 6137 arc lamp operating with a 200 W mercury bulb. The presence of the mercury(I) iodide in the vessels during photolysis aids formation of the methyl and 1-bromo-1,1,2,2-tetrafluoroethyl radicals.¹⁷ Photolysis times between 3 and 25 min gave about 10% conversion of the reactants to products. All of the gas samples were prepared on grease-free vacuum lines, and a MKS 270C signal conditioner was used to measure pressures. The CH₃I and CF₂BrCF₂I were purchased from Aldrich and PCR, respectively; they were transferred to the vacuum line after several freeze—thaw pump cycles.

Identification of the products were based on mass spectral fragmentation patterns from a Shimadzu QP50000 GC/MS analysis; see Table 1. An authentic sample of CF₃CF=CH₂ was available for confirmation, but CF₂BrCF₂Br, (CF₂BrCF₂)₂, CF₂-BrCF₂CH₃, and CF₂BrCF=CH₂ and the deuterated analogues were identified by mass spectrometry. A Rtx-5 105 m column with a diameter of 0.25 mm was used in the GC/MS analyses. The temperature program began with a temperature of 30° for 20 min followed by heating at a rate of 2 deg/min until 100 °C was obtained; then the rate was increased by 4 deg/min until a final temperature of 200 °C was reached.

Analysis of the reaction mixtures to obtain ratios of decomposition to stabilization products were conducted on the Shimadzu gas chromatograph GC-14A with a flame ionization detector (FID) and a Shimadzu CR5A Chromatopac Integrator. A Rtx-5, 0.53 mm × 105 m, column was used. The GC-14A oven was programmed to hold a constant column temperature of 35 °C for a period of 20 min; thereafter, the temperature was increased at a rate of 12 deg/min until 190 °C was reached. The temperature of the flame detector housing was 200 °C. The average retention times of the products of interest were as follows: CF₃CF=CH₂ at 7.8 min; CF₂BrCF₂CH₃ at 14.5 min; CF₂BrCF=CH₂ at 15.2 min; CH₃I at 18.9 min; CF₂BrCF₂Br at

Figure 1. Plots of CF₂BrCF=CH₂/CF₂BrCF₂CH₃ (\Box) and CF₃CF= CH₂/CF₂BrCF₂CH₃ (\bullet) vs pressure⁻¹. The slopes and intercepts for the CF₂BrCF=CH₂ data are 0.0155 \pm 0.0014 Torr and 0.0004 \pm 0.02, respectively, and for the CF₃CF=CH₂ data are 0.0163 \pm 0.0007 Torr and -0.029 \pm 0.014, respectively.

20.1 min; CF_2BrCF_2I at 31.0 min; $CF_2BrCF_2CF_2CF_2Br$ at 32.3 min. Deuterated products had retention times similar to those of undeuterated products. The retention times for the QP-5000 GC/MS analysis were similar to those just summarized for the Shimadzu GC-14A.

Since samples of $CF_2BrCF=CH_2$ and $CF_2BrCF_2CH_3$ were not available, we assumed that the responses of the FID to the product olefins and to $CF_2BrCF_2CH_3$ were the same. This assumption has been tested and confirmed in our laboratory^{1,3,4,9-11} for several haloalkane and haloalkene pairs that differ from one another by loss of HCl, HF, or HBr.

III. Experimental Results

The experimental data consist of ratios of CF₂BrCF=CH₂/ CF₂BrCF₂CH₃ and CF₃CF=CH₂/CF₂BrCF₂CH₃ and the corresponding ratios for the CF₂BrCF₂CD₃ system measured at various pressures. These results are summarized in Figure 1 for CF₂BrCF₂CH₃ and in Figure 2 for CF₂BrCF₂CD₃. The CF₃-CF=CH₂ product is a surrogate for CF₃CFBrCH₃, since the latter decomposes by 2,3-BrH elimination at all pressures employed in these experiments. The slopes of these D_i/S plots give unit deactivation rate constants for reactions 4a and 4b, because the data points extend only to $D_i/S \leq 0.6$ for efficient bath gases. The least-squares linear fits to the data points pass close to the origin with correlation coefficients of about 0.95. The slopes of these plots have uncertainties on the order of ±10%.

The four rate constants derived from the slopes of the plots in Figures 1 and 2 are listed in Table 2. The rate constants for 1,2-BrF interchange (0.016 Torr) and 2,3-FH elimination (0.015 Torr) are the same to within experimental uncertainty. Since the kinetic isotope effect is larger for HF/DF elimination than for BrF interchange, the BrF interchange rate constant is 2 times larger than that for 2,3-FD elimination for CF₂BrCF₂CD₃. The kinetic isotope effects are 2.80 \pm 0.42 and 1.44 \pm 0.22 for HF elimination and interchange, respectively. These kinetic isotope effects are in the range expected^{3,4,10} for these processes at

Figure 2. Plots of CF₂BrCF=CD₂/CF₂BrCF₂CD₃ (\Box) and CF₃CF=CD₂/CF₂BrCF₂CD₃ (\bullet) vs pressure⁻¹. The slope and intercepts for the CF₂CF=CD₂ data are 0.0055 ± 0.0004 Torr and -0.066 ± 0.005, respectively, and for the CF₃CF=CD₂ data are 0.0113 ± 0.0007 Torr and -0.000008 ± 0.010872, respectively.

energies of 96 kcal mol^{-1} . Given the modest experimental uncertainties and the self-consistent kinetic isotope effects, the rate constants of Table 2 should be reliable.

The rate constants in Torr units were converted to s⁻¹ using the collision constant, k_M , which was calculated using the collision diameters and ϵ/k values given in footnote *a* of Table 2. Since the collision diameters and ϵ/k values have not been measured for CF₂BrCF₂CH₃ and CF₂BrCF₂I, they were estimated by considering the probable changes in these values used for CF₂ClCHFCH₃ and CF₂ClCFHI and for CF₂ClCF₂CH₃ and CF₂ClCF₂I. The conversion to s⁻¹ units increases the uncertainty of the experimental rate constants, and we assigned ±25% as the overall uncertainty of the rate constants in s⁻¹ units listed in Table 2. This uncertainty also includes the possible error associated with the lack of direct calibration of the GC/FID for the measurements of the CF₂BrCF₂CH₃ and CF₂BrCF=CH₂ products.

IV. Calculated Results

A. Average Energy of CF₂BrCF₂CH₃ and CF₃CFBrCH₃. The average energy of the CF₂BrCF₂CH₃ molecule is mainly determined by the CF₂BrCF₂-CH₃ bond dissociation energy. Since the $\Delta H^{\circ}_{f}(CF_2BrCF_2CH_3)$ and $\Delta H^{\circ}_{f}(CF_2BrCF_2)$ are not known with accuracy, we decided to adopt the average energy assigned to CF₂ClCF₂CH₃ formed by recombination of CF₂-ClCF₂ and CH₃ radicals. This assumption is equivalent to assuming that D(CH₃-CF₂CF₂Cl) and D(CH₃-CF₂CF₂Br) are the same. In our previous analysis for CF₂ClCF₂CH₃, we adopted $\langle E \rangle = 98$ kcal mol⁻¹ based upon $\Delta H^{\circ}_{f,298}(CF_2ClCF_2)$ $= -164.4 \pm 4$ kcal mol⁻¹. This value was derived from a study of the F + CF₂ClCF₂-Cl reaction, which employed D_{298} (CF₂- $ClCF_2-Cl) = 78 \pm 2 \text{ kcal mol}^{-1} \text{ and } \Delta H^\circ_{f,298}(CF_2ClCF_2Cl) =$ -212.6 kcal mol⁻¹ from estimations by Rodgers.^{20a} Subsequently Buckley and Rodgers^{20b} favored $\Delta H^{\circ}_{f,298}(CF_2ClCF_2-$ Cl) = -215.2 ± 0.9 kcal mol⁻¹ based upon experimental studies of chlorination of C_2F_4 .^{20c,d} If -215.2 kcal mol⁻¹ for $\Delta H^{\circ}_{f,298}(C_2F_4Cl_2)$ is used with $D_{298}(CF_2ClCF_2-Cl)$ from Foon and Tait,¹⁹ then $\Delta H^{\circ}_{f,298}(CF_2ClCF_2)$ becomes -166 ± 4 kcal mol⁻¹. Although the uncertainty in $\Delta H^{\circ}_{f,298}(CF_2ClCF_2)$ is ± 4 kcal mol⁻¹, it seems prudent to use -166 kcal mol⁻¹, which lowers $\langle E(CF_2ClCF_2CH_3) \rangle$ to 96 kcal mol⁻¹. The $D_{298}(CF_2 ClCF_2$ -Cl) value of 78 kcal mol⁻¹ is strongly supported by DFT calculations of Ihee and co-workers.¹⁵ Thus, (E(CF₂BrCF₂-

TIDLE 2. Experimental Nate Constants	TABLE 2:	Experimental	Rate	Constants ^{a,}
--------------------------------------	----------	--------------	------	-------------------------

	CF_2	$CF_2BrCF_2CH_3$		$CF_2BrCF_2CD_3$		
reaction	Torr	s^{-1}	Torr	s^{-1}		
BrF interchange FH elimination	$\begin{array}{c} 0.016 \pm 0.001 \\ 0.015 \pm 0.001 \end{array}$	$\begin{array}{c} (2.18\pm 0.54)\times 10^5 \\ (2.04\pm 0.51)\times 10^5 \end{array}$	$\begin{array}{c} 0.011 \pm 0.001 \\ 0.0055 \pm 0.0004 \end{array}$	$(1.50 \pm 0.37) \times 10^5$ $(0.75 \pm 0.19) \times 10^5$		

^{*a*} Collision diameters (and ϵ/k) values for CF₂BrCF₂CH₃, CH₃I, and CF₂BrCF₂I were 5.6 Å (430 K), 4.6 Å (405 K), and 5.4 Å (390 K); $k_M = \pi d^2_{AM}(8kT/\pi\mu_{AM})^{1/2}\Omega^{22}(T^*)$. These choices were based on the values used for the CF₂ClCHFCH₃ system.¹ ^{*b*} The uncertainty in the rate constants in s⁻¹ units was increased to ±25% because of the uncertainty in the collision cross sections.

 $(CH_3)\rangle = 96 \text{ kcal mol}^{-1}$ was used for the purpose of matching calculated and experimental rate constants. The average energy of CF₂BrCF₂CD₃ increases to 96.3 kcal mol⁻¹. The energy of CF₃CFBrCH₃ is that of CF₂BrCF₂CH₃ plus the enthalpy change of the interchange reaction. According to the DFT calculations, the enthalpy change is $-3.3 \text{ kcal mol}^{-1}$ and $\langle E(CF_3CFBrCH_3) \rangle$ is 99.3 kcal mol⁻¹.

B. Vibrational Frequencies and Moments of Inertia. We have used density functional theory (DFT) at the B3PW91 level with 6-31G(d',p') and 6-311+G(2d,p) basis sets to calculate vibrational frequencies and movements of inertia (from the structures) for fluorochloralkanes and their transition states for HF and HCl elimination and for Cl-F interchange.1-4,9-12 These calculated results have been tested against experimental structural data, and they have been judged satisfactory as input requirements to calculate rate constants from transition-state theory.^{1,9–11} In the present work, we have continued this strategy to obtain vibrational frequencies for CF2BrCF2CH3 and the two transition states from B3PW91/6-311+G(2d,p) calculations. In the future¹³ we will do a more systematic study of DFT calculations for the C2H5Br and C3H7Br reactions for which experimental data are available for properties of the molecule and for its unimolecular reaction. Based upon the conclusions of the early work of Toto, Pritchard, and Kirtman,²¹ extension of the B3PW91/6-311+G(2d,p) calculations to CF₂BrCF₂CH₃ should provide satisfactory estimates for structures and frequencies of the molecule and the two transition states. Identification of transition-state geometries followed the procedure summarized earlier.^{2,3,12} The presence of the heavy Br atom may make the calculated threshold energies from the 6-311+G(2d,p)basis set somewhat less reliable than for fluorochloropropanes, although the results below seem quite reasonable. The vibrational frequencies and moments of inertia of the three conformers for the molecule and for the FH transition state were averaged. Two of the molecular conformers actually have the same geometry. The most stable conformer has the Br atom and the CH₃ group in trans positions, but the other conformer is only 0.6 kcal mol^{-1} higher in energy, see Figure 1 in the Supporting Information. The average vibrational frequencies and moments of inertia used for CF2BrCF2CH3 and CF2BrCF2CD3 and the HF elimination and BrF interchange transition states are listed in a table in the Supporting Information. The structures of the two transition states are shown in Figure 3. All calculations were done with the Gaussian 03 suite of codes.²²

An alternate mechanism to FBr interchange with subsequent HBr elimination that would form $CF_3CF=CH_2$ is 1,3-HBr elimination that forms $CF_2CF_2CH_2$ as a diradical intermediate. We used a variety of DFT methods but could not locate a transition state for 1,3-HBr elimination. While we cannot rule out the existence of the 1,3-pathway, we think it is unlikely for two reasons. First, the F on the central carbon of the CF_2CF_2 -CH₂ diradical could migrate to either of the end carbons forming $CF_3CF=CH_2$, which was observed, or $CF_2=CFCH_2F_2$, which was not observed. Second, the H/D kinetic isotope effect for

Figure 3. Diagrams of the calculated structures for CF₂BrCF₂CH₃, the 1,2-BrF interchange and the 2,3-FH elimination transition states. Note that the C–Br distance in the approximately symmetric bridged transition state has increased from 1.94 Å in the CF₂Br group to 2.52 and 2.48 Å; the C–F distance increased from 1.36 to 1.87 and 1.89 Å. The structure of the 2,3-FH elimination transition state is normal; see ref 10. Carbons 1 and 2 of the interchange transition state are nearly sp² hybridized because the angle between the triangular plane defined by the CF₂ and the C–C is 178.7° and the corresponding angle for the triangular plane defined by the F–C–CH₃ at C-2 is 177.8°. Carbons 2 and 3 of the HF elimination transition state must have substantial sp² character because the angle defined by the CH₂ triangular plane and the C–C bond is 154.7° and the corresponding angle for C-2 is 164.9°.

1,3-HBr/1,3-DBr elimination would probably be close to 3.0, the value observed^{3,10,11} for the 1,2-hydrogen halide elimination pathway, rather than the 1.5 measured for $CF_2BrCF_2CH_3/CF_2$ -BrCF₂CD₃.

TABLE 3: Comparison of Calculated and Experimental Rate Constants

molecule	k_{expt} (s ⁻¹)	k_{calc}^{a} (s ⁻¹)	E_0 (kcal mol ⁻¹)	preexponential factor ^{b} (s ⁻¹)
CF2BrCF2CH3				
1,2-BrF	$(2.2 \pm 0.5) \times 10^5$	2.9×10^{5}	62 ± 2	1.2×10^{13}
2,3-FH	$(2.0 \pm 0.5) \times 10^5$	2.3×10^{5}	66 ± 2	5.2×10^{13}
CF ₂ BrCF ₂ CD ₃				
1,2-BrF	$(1.5 \pm 0.4) \times 10^5$	1.6×10^{5}	62 ± 2	1.2×10^{13}
2,3-FD	$(0.75 \pm 0.19) \times 10^5$	0.63×10^{5}	67 ± 2	4.6×10^{13}
CF ₂ ClCF ₂ CH ₃ ^c				
1,2-ClF	$(0.43 \pm 0.06) \times 10^5$	0.47×10^{5}	66 ± 2	1.1×10^{13}
2,3-FH	$(6.5 \pm 1.0) \times 10^5$	7.0×10^5	64 ± 2	4.1×10^{13}

^{*a*} The calculated values are for $\langle E \rangle = 96.0$ and 96.3 kcal mol⁻¹ for CF₂BrCF₂CH₃ and CF₂BrCF₂CD₃, respectively. ^{*b*} In partition function form at 1000 K with inclusion of the reaction degeneracy factors. ^{*c*} These experimental and calculated results are described in refs 3 and 1, respectively. The calculated rate constants have been adjusted to $\langle E \rangle = 96$ kcal mol⁻¹ for the (2d,p) basis set.

The transition state for 2,3-FH elimination from CF₂BrCF₂-CH₃ can be compared to that from CF₂ClCF₂CH₃.¹ The geometries of the two four-centered rings are nearly identical with r(C-H) = 1.321 and 1.315 Å, r(F-H) = 1.28 and 1.29 Å, r(C-F) = 1.93 and 1.96 Å, and r(C-C) = 1.39 and 1.39 Å for CF₂BrCF₂CH₃ and CF₂ClCF₂CH₃, respectively. The calculated threshold energies, relative to the most stable conformers, for 2,3-FH elimination from CF2BrCF2CH3 and CF2ClCF2CH3, are 61.6 and 63.8 kcal mol⁻¹, and the overall preexponential factors at 1000 K (and in partition function form) are 5.2 \times 10^{13} and 4.1×10^{13} s⁻¹, respectively. The other two conformers of the transition state, which are associated with the CF2Br and CF₂Cl rotors, are 2-3 kcal mol⁻¹ above the lowest energy conformer. Except for a few lower frequencies and larger moments of inertia from substitution of the Cl atom by a Br atom, the transition states are very similar for 2,3-FH elimination from CF₂ClCF₂CH₃ and CF₂BrCF₂CH₃.

The BrF interchange transition state from CF₂BrCF₂CH₃ can be compared to the ClF interchange transition state from CF₂ClCF₂CH₃.^{1–3} Both are bridged structures with halogen atoms roughly equidistant from the two carbon atoms, which have a nearly sp² structure. The average of the C–F distances (1.88 Å) is the same for the two transition states. The C–Br distance is longer than C–Cl; however, the fractional extensions (29 and 31%, respectively) of the C–Br and C–Cl bonds are nearly the same. The calculated preexponential factors for the 1,2-BrF and 1,2-ClF unimolecular reactions are 1.2×10^{13} and 1.1×10^{13} s⁻¹, respectively, at 1000 K, and the calculated threshold energies are 58.4 and 62.5 kcal mol⁻¹, respectively, from the 6-311+G(2d,p) basis set.

Since the experimental rate constant for HBr elimination could not be measured, because no CF₃CFBrCH₃ was detected, no rate constant calculations were done for either HBr or HF elimination reactions from CF₃CFBrCH₃. The branching ratio¹⁰ was 8.7 in favor of HCl over HF elimination from CF₃CFClCH₃, and HBr elimination from CF₃CFBrCH₃ would be expected to dominate over HF elimination by more than an order of magnitude. The calculated E_0 for HBr loss from CF₃CFBrCH₃ was 47.8 kcal mol⁻¹ using the 6-311+G(2d,p) basis set compared to an E_0 of 61.6 kcal mol⁻¹ for HF elimination and 58.4 kcal mol⁻¹ for FBr interchange in CF₂BrCF₂CH₃. Thus, collisional quenching of CF3CFClCH3 would occur in a pressure region approximately 3 orders of magnitude higher^{1,11a} than suitable for observing the elimination or interchange reactions of CF₂BrCF₂CH₃. Consequently, stabilized CF₃CFClCH₃ would never be observed in the present system.

C. Assignment of Threshold Energies. Rice-Ramsperger-Kassel-Marcus (RRKM) rate constants were calculated from the models obtained from DFT calculations. The molecules have two hindered internal rotors and each transition state has one hindered internal rotor, and the torsionsal frequencies were replaced by symmetric hindered rotors for the calculation of the sums and densities of states in eq 6.

$$k_{\rm E} = \left(s^{\dagger}/h\right) \left(I^{\dagger}/I\right)^{1/2} \left(\sum P^{\dagger}(E - E_0)/N_{\rm E}^{*}\right)$$
(6)

The reaction path degeneracies, s^{\dagger} , are 2 for 1,2-BrF interchange and 6 for 2,3-FH elimination. Evaluation of the sums of states, $\sum P^{\dagger}(E - E_0)$, for the transition state and the density of states, $N_{\rm E}^*$, for the molecule were done with the Multi-well code.²³ The overall rotations are considered to be adiabatic, and the ratio of three overall moments of inertia, (I^{\ddagger}/I) , is about 1.2. The calculation requires the reduced moment of inertia and the barrier height for each "symmetric" internal rotation. Since the barriers are not experimentally known, they were estimated from the maximum in the torsional potentials, which were 3.0 kcal mol^{-1} for $-CH_3$ and 5.2 and 6.4 kcal mol^{-1} for $-CF_2Br$; see Figure 1 in the Supporting Information. We selected an average barrier of 5.5 kcal mol⁻¹ for $-CF_2Br$, which was treated as a symmetric rotor. The I_{red} values were calculated by the method of Pitzer, and the average values are 3.16 (6.25) and 65.3 (70.1) amu Å² for the CH₃(CD₃) and CF₂Br groups, respectively. The I^{\dagger}_{red} values for the transition states were 3.17 (6.32) amu Å² for CH₃(CD₃) and 72.5 (75.9) amu $Å^2$ for CF₂Br. The barrier heights that were used for the molecule also were employed for the transition states. Rate constants were calculated for a range of E_0 with $\langle E \rangle = 96$ kcal mol⁻¹, and the preferred E_0 was selected by matching $k_{\rm E}$ to the experimental rate constant.

The assigned threshold energies are listed in Table 3; the uncertainties are expected to be ± 2.0 kcal mol⁻¹. The threshold energy for 2,3-FH elimination, 66 kcal mol^{-1} , is equal to that from CF₂ClCF₂CH₃, 64 kcal mol⁻¹, to within the combined uncertainties. However, the 3-fold smaller experimental rate constant for CH₂BrCF₂CH₃, relative to CH₂ClCF₂CH₃, does require a higher threshold energy for the former, because substitution of one Br for one Cl does not significantly change the sum of states to density of states ratio in eq 6 for the same E_0 . Since the transition state for 1,2-BrF interchange has a smaller entropy than that for 2,3-FH elimination, $E_0(1,2-BrF)$ = 62 kcal mol⁻¹ is 4 kcal mol⁻¹ lower than $E_0(2,3-\text{FH})$ even though the rate constants are similar. The E_0 values that were assigned to CF₂BrCF₂CD₃ are in accord with those for CF₂- $BrCF_2CH_3$, since the expected changes in E_0 are 1.0 and 0.07 kcal mol⁻¹ for HF (DF) elimination and BrF interchange, respectively, according to zero-point-energy differences. The BrF interchange reaction certainly has a lower threshold energy than the corresponding 1,2-CIF interchange reaction¹ of CF₂- $ClCF_2CH_3$, with an $E_0 = 66$ kcal mol⁻¹. It should be noted that lowering the $\langle E(CF_2ClCF_2CH_3) \rangle$ from 98 to 96 kcal mol⁻¹ results in a reduction of the E_0 assigned earlier¹ by 1 kcal mol⁻¹.

What are the limitations beyond the assumption behind RRKM theory and selection of the collision cross sections that could affect the E_0 assignments? The $\sum P^{\ddagger}(E - E_0)/N_{\text{E}}^{\ast}$ ratio in eq 6 is not sensitive to changes in frequencies provided that the same trend exists for the molecule and the transition state. For example, we tested for the difference between using frequencies of just the lowest energy conformers vs the average of all three conformers (associated with the CF₂Br group) for the HF elimination, and the rate constants differed by less than 20%. Nevertheless, the presence of three conformers means that the assigned value for an E_0 is an average weighted toward the lowest barrier separating reactants and products, and this is one reason that the uncertainty^{11a} in E_0 values was quoted as 2 kcal mol⁻¹ rather than 1.5 kcal mol⁻¹. One untested assumption is our choice for $V(CH_3)^{\dagger}$ and $V(CF_2Br)^{\dagger}$. Provided that the barriers are similar in the transition states and molecule, the actual values do not strongly affect $k_{\rm E}$. For example, the calculated rate constants for free-rotor models were very similar (20%) to those of hindered rotor models. The barrier for internal rotation of CH₃ groups is usually close to 3 kcal mol⁻¹ and, even if $V(CH_3)^{\ddagger}$ changed by ± 1 kcal mol⁻¹, the effect on the rate constant would be minor. If $V(CF_2Br)^{\ddagger}$ was considerably smaller in the 2,3-FH transition state than in the molecule, the calculated rate constant could increase by as much as a factor of 2 (for a free CF₂Br rotor). Such a large difference seems unlikely, but the assumption of $V(CF_2Br) \approx V(CF_2Br)^{\ddagger}$ is untested. As with all chemical activation systems, the uncertainty in the average energy of the activated molecules contributes to the uncertainty in the assigned E_0 values.^{11a} For CF₂ClCF₂CH₃ and CF₂BrCF₂CH₃ this may be the largest contribution to the ± 2 kcal mol⁻¹ uncertainty.

As previously noted, the structure of the transition state shown in Figure 3 for BrF interchange is similar to the bridged structure for CIF interchange in CF₂ClCF₂CH₃. In both cases the rearranged product, CF₃CFBrCH₃* or CF₃CFClCH₃*, acquires \approx 3 kcal mol⁻¹ additional energy and 2,3-BrH or 2,3-ClH elimination gives the observed CF₃CF=CH₂ product without collisional stabilization of CF₃CFBrCH₃* or CF₃CFClCH₃*. Although the B3PW91/6-311+G(2d,p) method has not been tested for molecules (or transition states) containing Br atoms, it is worth comparing the calculated threshold energies to the experimentally based assignments. As might be expected based on previous comparisons for HF elimination,^{1,4,9-11} the calculated $E_0(2,3-\text{FH})$ of 62 kcal mol⁻¹ is below the experimentally assigned value of 66 kcal mol⁻¹. The calculated value for E_0 -(1,2-BrF) is 58.4 kcal mol⁻¹, and it has a similar discrepancy with the experimentally assigned value. This discrepancy also existed for the calculated $E_0(1,2-ClF)$ values for CF₂ClCF₂CH₃ and CF₂ClCHFCH₃.⁷ Although further work¹³ is needed to find the best theoretical method and the best basis set for treating unimolecular reactions of molecules in which Br atoms are involved in the reaction coordinate, the results from the B3PW91/6-311+G(2d,p) method provided a respectable framework for interpretation of the CF₂BrCF₂CH₃ data.

V. Conclusions

The 1,2-BrF interchange reaction has been demonstrated for $CF_2BrCF_2CH_3$ (CD₃) molecules formed with 96 kcal mol⁻¹ vibrational energy from the recombination of CF_2BrCF_2 and CH_3 (CD₃) radicals. The BrF interchange reaction is in competition with 2,3-FH (FD) elimination. There was no evidence for a significant C–Br rupture pathway.²⁴ Matching calculated RRKM rate constants to experimental rate constants gave threshold energies of 62 and 66 kcal mol⁻¹ for BrF interchange and HF elimination, respectively. The kinetic isotope effects

for both reaction channels support these threshold energy assignments. Comparison with reactions of CF₂ClCF₂CH₃⁴ shows that the threshold energy for 1,2-BrF interchange is \approx 4 kcal mol⁻¹ lower than for 1,2-ClF interchange. Given the low threshold energy, the interchange of Br and F atoms, or Br and Cl atoms,²⁵ that are located on adjacent carbon atoms can be expected to be important for vibrationally excited bromofluoroand chlorobromoalkane molecules, provided that competing HBr elimination or C–Br rupture pathways are not dominant. The threshold energies for 2,3-FH elimination (64–66 kcal mol⁻¹) are similar for CF₂BrCF₂CH₃ and CF₂ClCF₂CH₃, as well as for CF₃CF₂CH₃.⁹ It should be remembered that the assigned *E*₀ values for FH elimination from CF₂ClCF₂CH₃ and CF₂BrCF₂-CH₃ are average values for three conformers of the transition state.

DFT calculations at the B3PW91/6-311+G(2d,p) level for the lowest energy conformers gave a threshold energy for 2,3-FH elimination of 61.6 kcal mol⁻¹, which is somewhat below the experimental assignment, as has been found for several other 2,3-FH elimination reactions.²⁶ The calculated threshold energy for BrF interchange also is too low, as was the case for ClF interchange in CF₂ClCF₂CH₃ and CF₂ClCHFCH₃. However, the calculations do give the correct difference between E_0 (ClF) and E_0 (BrF). Further exploration of methods and basis sets is needed to find the best computational method for the threshold energies of halogen atom interchange reactions; however, the current DFT calculation seemed to define a realistic structure of the transition state for Br-F interchange.²⁷

The photolysis of CF_2BrCF_2I at ≥ 280 nm from a highpressure Hg lamp provided a satisfactory source of gas-phase CF_2BrCF_2 radicals at room temperature.

Acknowledgment. Financial support was provided by the National Science Foundation under Grants CHE-0239953, CHE-0647582, and MRI-0320795. Ms. Calla Olson conducted some of the initial Gaussian calculations.

Supporting Information Available: Table 1 lists the frequencies, overall moments of inertia, and the reduced moments of inertia and shows the geometries for (a) all rotomers for $CF_2BrCF_2CH_3$, (b) all rotomers for $CF_2BrCF_2CD_3$, (c) the rotomers for the 2,3-FH transition states, (d) the rotomers for the 2,3-DF transition states and (e) the FBr interchange transition states. Figure 1 shows the barrier heights for internal rotation and reduced moments of inertia for $CF_2BrCF_2CH_3$ and $CF_2-BrCF_2CD_3$ calculated using DFT method with B3PW91/6-311g-(2d,p) level of theory and basis set. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) (a) Burgin, M. O.; Simmons, J. G., Jr.; Heard, G. L.; Setser, D. W.; Holmes, B. E. *J. Phys. Chem. A* **2007**, *111*, 2283. (b) For the reasons given in the text, $\langle E(CF_2CICF_2CH_3) \rangle$ was lowered from 98 to 96 kcal mol⁻¹, which results in a reduction of the E_0 values for CF₂ClCF₂CH₃ given in (a) by 1 kcal mol⁻¹.

(2) Heard, G. L.; Holmes, B. E. J. Phys. Chem. A 2001, 105, 1622.

(3) Burgin, M. O.; Heard, G. L.; Martell, J. M.; Holmes, B. E. J. Phys. Chem. A **2001**, 105, 1615.

(4) Beaver, M. R.; Simmons, J. G., Jr.; Heard, G. L.; Setser, D. W.; Holmes, B. E. J. Phys. Chem. A **2007**, 111, 8445.

(5) Beaver, M. R.; Heard, G. L.; Holmes, B. E. Tetrahedron Lett. 2003, 44, 7265.

(6) Dolbier, W. R., Jr.; Romelaeer, R.; Baker, J. M. *Tetrahedron Lett.* **2002**, *43*, 8075.

(7) Holmes, B. E.; Heard, G. L. To be published.

(8) Patten, K. O.; Li, Z. J.; Wuebbles, D. J. Geophys. Res.: Atmos. 2000, 105, 11625.

(9) Ferguson, J. D.; Johnson, N. L.; Kekenes-Husker, P. M.; Everett, W. C.; Heard, G. L.; Setser, D. W.; Holmes, B. E. *J. Phys. Chem. A* **2005**, *109*, 4540. The question of the value of the threshold energy for CF₃CH₂-CH₃ has been resolved in favor of a higher value near 68-69 kcal mol⁻¹; see ref 11.

(10) Zhu, L.: Simmons, J. G., Jr.; Burgin, M. O.; Holmes, B. E.; Setser,
D. W. J. Phys. Chem. A 2006, 110, 1506.

(11) (a) Holmes, D. A.; Holmes, B. E. J. Phys. Chem. A **2005**, 109, 10726. (b) The calculated rate constant for 1,2-FH elimination listed in Table 2 for CF₃CHFCH₃ should be 2.8×10^4 s⁻¹, and the calculated kinetic isotope effect for CF₃CHFCD₃ is 2.2 as quoted in the text.

(12) Martell, J. M.; Beaton, P. T.; Holmes, B. E. J. Phys. Chem. A 2002, 106, 84871.

(13) Heard, G. L.; Holmes, B. E. Submitted for publication in J. Phys. Chem. A.

(14) Rasmussen, M.; Tarnovsky, A. N.; Pascher, T.; Sundström, V.; Åkesson, E. J. Phys. Chem. A **2002**, 106, 7090.

(15) Ihee, H.; Kun, J.; Goddard, W. A., IV; Zewail, A. H. J. Phys. Chem. A 2001, 105, 3623.

(16) Nathanson, G. M.; Minton, T. K.; Shane, S. F.; Lee, Y. T. J. Chem. Phys. **1989**, *90*, 6157.

(17) Holmes, B. E.; Paisley, S. D.; Rakestraw, D. J.; King, E. E. Int. J. Chem. Kinet. **1986**, 18, 639.

(18) McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493.

(19) Foon, R.; Tait, K. B. J. Chem. Soc., Faraday Trans. 1 1972, 68, 1121.

(20) (a) Rodgers, A. S. J. Phys. Chem. **1967**, 71, 1996. (b) Buckley, G. S.; Rodgers, A. S. J. Phys. Chem. **1983**, 87, 126. (c) Cox, J. D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds; Academic Press: New York, 1970. (d) Lacher, J. R.; McKinney, J. J.; Snow, C. M.; Michel, L.; Nelson, G.; Park, J. D. J. Am. Chem. Soc. **1949**, 71, 1330.

(21) Toto, J. L.; Pritchard, G. D.; Kirtman, B. J. Phys. Chem. 1994, 98, 8359.

(22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kuden, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Bega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratman, R. E.; Yazyev, O.; Austen, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewksi, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malik, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.

(23) Barker, J. R. Int. J. Chem. Kinet. 2001, 33, 232.

(24) Setser, D. W.; Murazov, A. A.; Rengarajan, R. J. Phys. Chem. A **2004**, *108*, 3745. The competition between HBr elimination and C–Br rupture is discussed for bromohaloethanes with 103 kcal mol⁻¹ energy.

(25) Holmes, B. E. To be published, 2008; experiments with CH_2BrCD_2 -Cl demonstrate rapid interchange of Cl and Br atoms.

(26) Calculations with the 6-31G(d',p') basis set typically give better agreement with the experimentally assigned $E_0(\text{HF})$ values; see refs 1 and 9–11.

(27) McGrath, M. P.; Rowland, F. S. J. Phys. Chem. A **2002**, 106, 8191. Electronic structure calculations for elimination of HBr from C_2H_5Br are presented and discussed.