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We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method
for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the
wave functionΨ by minimizing the least-squares error in the function (ĤΨ - EΨ), whereE is the desired
scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving
the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using
the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to
minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of
iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the
KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for
other methods, by matching the wave function in the interaction region to the correct asymptotic states at the
specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented
accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy.
This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There
are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed,
and the Chebyshev basis set is a good alternative in such situations.

1. Introduction

Scattering problems in quantum mechanics have been ap-
proached by a range of computational methods, which may be
divided into two main categories, time-independent (TI) and
time-dependent (TD), depending on which version of the
Schrödinger equation is solved. In a TI method, one specifies
the scattering energy, and then finds the wave function that
corresponds to it. From this, the state-to-state resolved dif-
ferential cross sections may be extracted; this information is
implied by theS matrix at the given energyE. This allows a
direct comparison to experiments, which obtain these scattering
amplitudes at a known energy. Also, experiments measuring
photon emission or absorption by colliding molecules require
for their interpretation a detailed knowledge of the wave function
at a particular energy. In a TD method, the output contains a
superposition of many energies, and one thus obtains a scattering
spectrum in an energy window. This method also allows for
comparison with experiments obtaining, for example, spectro-
scopic information.

Computational methods for scattering have been reviewed
recently by Althorpe and Clary.1 This review contains a clear
summary of various approaches, together with many tests against
gas-phase experiments.

In the present paper, we describe a new TI method, using
Chebyshev polynomials as a basis set, which allows one to avoid
some of the common limitations of TI methods while retaining
the advantage of using a TI method to obtain state-to-state
scattering amplitudes, which are less conveniently available and
often less accurate when obtained by a TD method. This use of
Chebyshev functions as a spatial basis set is not to be confused

with their use to describe the time dependence of the wave
function.1,2 In order to show the Chebyshev basis set in context,
we discuss several computational aspects of the scattering
calculation (but for more general details, see ref 1). We illustrate
the present method by solving an example two-dimensional
problem, the Secrest-Johnson model for H2 + He vibrationally
inelastic scattering.3,4

The most important numerical features of any computation
are the scaling of computer time with problem size and the
accuracy of the final answer. The Chebyshev basis set5-8 has
implications for both.

Concerning scaling, a TD method involves a matrix-vector
multiplication for some number of time steps. This method
scales asO(N2) per step, whereN is the number of basis
functions (or grid points), with a prefactor that includes the
number of time steps needed. The matrix is based on the
Hamiltonian operator and is usually sparse; therefore, the above
scaling is an upper bound to the actual scaling obtained. A TI
method involves either a direct matrix inversion, which scales
as O(N3), or a residual minimization method (RMM), which
scales asO(N2) (or less) per iterative step but might require
many steps to converge. If results at several energies are desired,
the prefactor includes the energy resolution.

With a Chebyshev basis set, applying the Hamiltonian to the
wave function scales as onlyO(N log N) instead ofO(N2)
because an analogy with cosine functions allows us to use the
fast Fourier transform in its cosine form (the FCT).9 Also, the
very large Hamiltonian matrix need not be stored in memory.
This means that the Chebyshev method can be extended
efficiently to systems with several degrees of freedom. However,
the grid must still be “rectangular” because we have an outer
product of functions of one variable (see section 3), whereas* To whom correspondence should be addressed.
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in, for example, discrete variable representation (DVR) methods,
a “pruned” grid may be used, with grid points placed only where
the potential energy is not too high.10 The need for a rectangular
grid is a disadvantage in high-dimensional cases since the
number of grid points becomes large; for a 6D problem and
with N ) 32 grid points in each dimension, the wave function
would have∼109 entries.

No strict minimum principle is known for scattering states.11

Variational principles do exist, for example, several varieties
of the Kohn variational principle (KVP),12 particularly theS
matrix KVP.10,13-28 Using the KVP requires finding a stationary
point (a saddle point) of a functional of the wave function, and
this typically means a (slow) matrix inversion. There are also
instabilities associated with this approach, for example, spurious
resonances.29-31

Instead of the KVP, we use a RMM-type method,32-42 in
which the residual,HΨ - EΨ, is driven to zero by iterative
minimization of the least-squares error

For clarity, we call the present method a minimum error method
(MEM).

We also use theR matrix description of scattering amplitudes
rather than theS matrix; these and the scattering phase shifts
contain the equivalent information,43 but theR matrix uses real
numbers, and theSmatrix uses complex numbers, giving some
computational advantage to the former. Also, theR matrix is
symmetric and thus allows for a test of the method because,
for example, the (1,2) and (2,1) elements are obtained in
different calculations and should come out the same if the
method is accurate. TheR matrix appears to be unstable within
the KVP but is amenable to treatment by a RMM.

The iterative method is only better than a direct matrix
inversion if the number of steps required to converge is not too
large (and is not proportional to the number of grid points).
The matrix in the RMM contains the Hamiltonian squared (see
eq 1) and thus the d/dx operator to the fourth power, which
makes it ill-conditioned (i.e., its eigenvalues span a wide range).
Attempting to iteratively solve an ill-conditioned problem will
take a very large number of steps, and worse, the answer
obtained will be inaccurate. This happens because the steps taken
eventually involve extremely small changes in the trial wave
function, and at some point, these changes fall below the level
of the computer’s round-off error. At this point, the trial wave
function stops changing, and even though a very accurate wave
function does exist, this solution cannot be reached.

Avoiding this problem requires preconditioning (PC), which
reduces the apparent condition number of the matrix by applying
a fast, approximate inversion of the matrix.6,7,44,45PC has been
used in scattering calculations.40,46For the Chebyshev basis set,
we have developed a good preconditioner,47 which we use in
the present work. The accuracy obtained is determined by (1)
the boundary conditions (BC) and (2) the quality and compat-
ibility of the differentiation and integration methods.

For scattering calculations, the BC are especially problematic
because the wave function at an outer boundary should not
approach zero; instead, it should become a linear combination
of asymptotic scattering states. If no BC are supplied, the wave
function will scatter off of the boundaries of the grid, giving
fictitious results. Thus, for TD10,48 and some TI49 methods, a
“complex absorbing potential” (CAP)50,51 is used at the bound-
aries. The CAP requires extra grid points, across which the wave
function is damped smoothly to zero while altering it only
slightly inside of the main interaction region. Still, there is

usually weak scattering off of the boundaries, and components
of the wave function at different energies respond to the CAP
differently,52,53making the final answer often dependent on the
particular CAP used. If the basis set is accurate enough to give
an error in the wave function of, for example, 10-4, then any
scattering off of the boundary above this amount will dominate
the total error of the calculation.

A TI method contains only one energy, which makes accurate
scattering results easier to achieve, especially in the case of
resonances (long-lived scattering states that have enough energy
to escape),54 for which it may be problematic within a TD
method to propagate the wave function long enough to resolve
the resonance (see ref 1). The asymptotic scattering states are
known (see below), and we can make the Chebyshev represen-
tation of the wave function match exactly the asymptotic states
at the outer boundary of the grid. This match is achieved by a
vector projection, which requires negligible CPU time and no
extra grid points. This is possible because the Chebyshev basis
set describes a smooth function, which may take arbitrary values
at the boundaries, and gives accurate derivatives up to and
including the boundary points; this is a consequence of the
nonuniform Gauss-Lobato grid, which is dense near the
boundaries.6-8 As a result, fictitious scattering off of the BC
does not occur in the present method.

In the past,14,15,17-19 a power series (the set of polynomials
{1, x, x2, ...}) has been used as a basis set. These functions do not
oscillate and thus have trouble describing oscillations. Although
they are isomorphic to the Chebyshev basis set (both are poly-
nomials), the coefficients typically become very large and lead
to inaccuracy, and the positions of the grid points also matters. In
our earlier work,47 we found that the power series basis set, with
a uniform grid, does not converge; see Boyd for discussion.7

On the other hand, Chebyshev polynomials oscillate “uni-
formly” throughout thex interval [-1,1], which makes the
expansion of a function numerically stable. They form a
complete and orthogonal basis set and thus give results that
converge to a definite limit as the number of basis functions
increases. A Fourier-type transform exists for the Chebyshev
polynomials, which allows fast derivative calculations with the
accuracy of a Fourier series but without the implied periodicity
of the Fourier functions.6,7 They are thus more accurate than a
finite difference (FD) definition of the derivative, for the same
number of grid points. Integration (quadrature) is done naturally
by integrating the basis functions; thus, differentiation and
integration are compatible with each other.

Also commonly used in scattering calculations are various
DVR methods,10,41,46,55,56which we do not summarize here.
Those that use a uniform grid may expect to have trouble with
the derivative near the boundaries, in common with uniform-
grid FD methods,7,57 and Fourier methods applied to discontinu-
ous functions.58 Some nonuniform grid calculations for scat-
tering have been described,59,60 which may allow for more
accurate handling of the boundary conditions.

2. The Model

As a test problem, we use the Secrest-Johnson model of a
collinear three-atom collision (a scatterer hitting a diatomic
molecule), as illustrated in Figure 1.

The Hamiltonian in the Secrest-Johnson form is

F[Ψ] ) 〈HΨ - EΨ|HΨ - EΨ〉 (1)

Ĥ ) - 1
2m ( ∂

2

∂x̃2) - 1
2 ( ∂

2

∂ỹ2) + 1
2

(ỹ - ỹeq)
2 +

V0 exp[-γ(x̃ - ỹ)] (2)
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Here,Ĥ andx̃ andỹ are in atomic units, andm is a mass ratio,
which applies to thex̃ (i.e., scattering) coordinate and is defined by

Here,mA is the mass of the scatterer, andmB andmC are the
masses of the molecule. For H2 + He scattering,m ) 2/3 and
γ ) 0.3 in eq 2.V0 determines the distance of the classical
turning point of the collision from the oscillator in the interaction
potential. This only shifts thex̃ coordinate and has no physical
consequences; we useV0 ) 12.0 for convenience. The energy
E of the scattering state is also measured in atomic units

wherekn is the wave vector that describes the kinetic energy of
scattering from thenth vibrational level of the diatomic molecule
having energyεn according to eq 5.

E is fixed throughout the scattering event, and thus, a higher
translational kinetic energy of the scatterer is associated with a
lower vibrational state of the molecule and vice versa.Nvib is
the highest vibrational state of energy less thanE, which
therefore may be excited during the scattering event. Thekn is
found from eqs 4 and 5 afterE andn are specified; a scattering
channel (indexed byn) is called open if the resultingkn is real,
that is,n e Nvib, and channels with imaginarykn are closed.
We perform calculations for two cases,E ) 3 and 6, with three
and six open channels, respectively.

The “physical” coordinatesx̃ andỹ have ranges [0,x̃max] and
[0,ỹmax]. In this paper, these arex̃max ) 20 andỹmax ) 16, with
ỹeq ) 8. However, in the Chebyshev representation, we need
new coordinates (x,y) in the range of [-1,1]. We scale every
function into this range as described in our previous work.47

Rewriting the Hamiltonian in the Chebyshev coordinates

3. The Representation of the Wave Function

The wave functionΨ(xi,yj) (two-dimensional throughout) is
defined at grid points{xi,yj} with i ) 0, ...,N andj ) 0, ...,M,
and the values on the boundary are fixed (to zero). The variables
in the problem are thusΨ(xi,yj) for i ) 1, ...,N - 1 andj ) 1,
..., M - 1 and the elements in one column of theR matrix,
which describe the phase of the asymptotic part of the wave
function. These are varied to minimize the error,F, in eq 1.

The trial wave function is

where f(x) and g(x) are cutoff functions,ΨI(x,y) is the wave
function in the region where the projectile and the target interact,
andΨa(x,y) is the wave function in the asymptotic region (no
interaction).

If the system is initially in the ground vibrational state,n )
0, and the incoming wave vectorki is such that only three
channels are open (i.e., the vibrational quantum number after
the collision could ben ) 0, 1, 2), then the asymptotic wave
function Ψa is

and k1 and k2 are the wave vectors, after the collision, if the
oscillator is excited to the vibrational staten ) 1 or 2, respec-
tively. R00, R01, and R02 are the unknown elements of theR
matrix for the incoming wave vectorki and the initial oscillator
staten ) 0. Theæn(y) is a harmonic oscillator eigenstate

whereHn(y) is a Hermite polynomial.
Computations with theR matrix asymptotic wave functions

are easier than those using theS matrix because real number
arithmetic is used. TheR matrix obtained from the functional
minimization is used to calculate theS matrix and transition
probabilities; these quantities are connected to each other by
exact relationships.43 The R matrix is real and symmetric.

If the oscillator is initially in an excited state (e.g.,n ) 1),
then the asymptotic wave function is The variational calculation

of (R00, R01, R02) is independent from that of (R10, R11, R12).
However, since theR matrix is symmetric,Rij andRji obtained
in independent calculations must be equal. Checking this
equality is a test of the stability of the numerical method.

It is important to choose the correct cutoff functions in eq 7.
First,g(x) conveys a fraction of the asymptotic wave functions
into the interaction region and can be any function that goes to
zero at smallx (the closed boundary). This is because whatever
g(x) is, the correctΨτ(x,y) can always be obtained by choosing
ΨI(x,y) correctly, and by driving the error to zero, we achieve
this. Intuitively,f(x) should approach zero at the open boundary,
but surprisingly, this makes the convergence worse. If a cutoff
function f(x) is used, then some of the variablesΨI(xi,yj) near
the open boundary get multiplied by a small number, for
example, 10-6, and this unbalanced situation slows down the
convergence and also reduces the final accuracy. In fact, we do
not need a cutoff function forΨI(x,y) because the BC at the
open boundary are set exactly by matchingΨt(x,y) to Ψa(x,y)
there by a method described below. This matching is accurate
and efficient for Chebyshev polynomials and leaves no work
for the cutoff function to do.

Therefore, we use

Figure 1. Reduced coordinates of the Secrest-Johnson model.

m )
mAmC

mB(mA + mB + mC)
(3)

E )
kn

2

2m
+ εn (4)

εn ) n + 1/2 n ) 0, 1, 2, ...,Nvib (5)

Ĥ ) - 1
2m ( 2

x̃max
)2( ∂

2

∂x2) - 1
2 ( 2

ỹmax
)2( ∂

2

∂y2) + 1
2 (ỹmax

2 )2

y2 +

V0 exp[-γ(x̃max

2
x -

ỹmax

2
y - ỹeq)] (6)

Ψt(x,y) ) f(x) ΨI(x,y) + g(x) Ψa(x,y) (7)

Ψa(x,y) ) ki
-1/2[sin(kix) + R00 cos(kix)]æ0(y)

+ k1
-1/2R01cos(k1x) æ1(y)

+ k2
-1/2R02cos(k2x) æ2(y) (8)

æn(y) ) (π1/22n-1n!)-1/2Hn(y) exp[-y2/2] n ) 0, 1, ...
(9)

Ψa(x,y) ) k0
-1/2R10cos(k0x) æ0(y)

+ ki
-1/2[sin(kix) + R11cos(kix)]æ1(y)

+ k2
-1/2R12 cos(k2x) æ2(y) (10)

f(x) ) 1
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We found, as expected, that the choices

were less efficient.
At the inner boundary, the total wave function (hence also

ΨI(x,y)) obeys the scaling law

wherel ) 0 for s-wave scattering. At some point,xmax, beyond
which the interaction is zero, we must have

which means that for all values ofy

We impose eqs 15 and 17 and the corresponding requirements
at theymin and ymax by settingΨI(x,y) ) 0 at each boundary
point. In addition, we must impose the condition

which is equivalent to

This ensures that the flux is entirely accounted for by the
asymptotic form of the wave function. Failure to achieve this
would result in an incorrectR matrix. The boundary condition
eq 18 is implemented by a method that we developed (see
Appendix B).

We represent the wave function in the interaction region,ΨI-
(x,y), by a sum of products of Chebyshev polynomials. The
Chebyshev representation of a function is written in the literature
in a variety of forms. The form used here is shown below. A
function f(x), with x ∈ [-1,1] is expanded in coefficients{bn}

with

Tn(x) is a Chebyshev polynomial of the first kind, which may
be written as

We use a Gauss-Lobato grid7,8

and the coefficients{bn} are calculated fromf(x) by

Using eqs 20 and 24 allows one to move back and forth
between the two representations off(x), either sampled atN +
1 grid points or expanded asN + 1 Chebyshev coefficients. In
practice, this is done not with eqs 20 and 24, which would
requireO(N2) operations, but with a fast Chebyshev transform
(FCT), which requiresO(N log N) operations. The FCT is
operationally identical to the fast cosine transform.9 The
generalization to two dimensions is straightforward.

4. The Conjugate Gradient Minimization

To find the correct wave function, we minimize the functional
F in eq 1. In the asymptotic region, we satisfyĤΨ ) EΨ by
making the correct choice ofΨa, which leavesF to be integrated
throughout the interaction region. Scaling the variables to bring
them into the range of [-1,1] brings a constant in front of the
integral, which we drop because all we need fromF is the wave
function which minimizes it. We then have

Now, the integrandg(x,y) ) [(Ĥ - E)Ψt(x,y)]2 is a function
of x and y, and we expand both dimensions in Chebyshev
polynomials

where we have used eq 20 twice, and the last equality follows
from

Using eq 24 for each dimension, we can rewrite cRâ in eq 26 in
terms ofg(xi,yj). The result, after rearrangement, is

where the subscripti,j means that the quantity in the square
bracket must be evaluated at the grid point (xi,yj) determined
by eq 23. The integration weights in thex coordinate are

To calculate{wj} for they coordinate, replaceN with M andxi

with yj in eq 29. These weights need to be calculated only once.

g(x) ) 1
2
(1 + tanh[â(x - γ)]) â ) 0.5,γ ) 15 (11)

f(x) ) exp(-Rx) R ) 0.5 withg(x) ) 1 - f(x) (12)

f(x) ) 1 - 1
2

{1 + tanh[â(x - γ)]}

â ) 0.5,γ ) 15 withg(x) ) 1 - f(x) (13)

f(x) ) 1 with g(x) ) 1 - exp(-Rx) R ) 0.5 (14)

Ψt(x,y)98
xf0

xl+1 (15)

Ψt(x,y)98
xfxmax

Ψa(x,y) (16)

ΨI(xmax,y) ) 0 (17)

dΨI

dx |
x)xmax

) 0 (18)

dΨt

dx |
x)xmax

)
dΨa

dx |
x)xmax

(19)

f(xi) )
b0

2
T0(xi) + ∑

n)1

N-1

bnTn(xi) +
bN

2
TN(xi) ≡ ∑

n)0

N

ηnbnTn(xi)

(20)

ηn ) {1/2 if n ) 0 orN
1 otherwise } (21)

Tn(x) ) cos(n arccos(x)) (22)

xi ) cos(iπ/N) i ) 0, 1, ...,N (23)

bn )
2

N
∑
i)0

N

ηiTn(xi) f(xi) (24)

F ) ∫-1

1 ∫-1

1
dx dy [(Ĥ - E)Ψt(x,y)]2 (25)

F ) ∫-1

1 ∫-1

1
dx dy g(x,y)

) ∑
R)0

N

∑
â)0

M

cRâ∫-1

1 ∫-1

1
dx dy TR(x) Tâ(y)ηRηâ

) ∑
R)0

N

∑
â)0

M

cRâ

2

1 - R2

2

1 - â2
ηRηâ R, â even

(26)

∫-1

1
dx TR(x) ) 2

1 - R2
R even

) 0 R odd (27)

F ) ∑
i)0

N

∑
j)0

M

[(Ĥ - E)Ψt] i,jwiwj[(Ĥ - E)Ψt] i,j (28)

wi )
2

N
∑
R)0

N

ηiηR

2

1 - R2
TR(xi) (29)
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The desired wave function is obtained by minimizingF in
eq 28 with respect to each of its variables, which we collect
into a single “vector”z

We explain here the procedure for an example where the
oscillator is in the lowest energy state, for which theR matrix
elements are (R00, R01, ...,R0m), wherem is the number of open
channels. The use of the wave function at the grid points as
unknown quantities allows an easy implementation of the
boundary conditions; the values of the wave functions at the
border are kept equal to those required by the boundary
conditions. If we used the coefficients of the Chebyshev
expansion as the variables, the boundary conditions would
require the additional work of solving a system of (2N + 2M)
linear equations at every iteration step in the minimization
algorithm.

To find the value ofz that minimizesF(z), we use the
conjugate gradient (CG) procedure.9 Since the literature contains
many implementations, we describe briefly the one used here
in Appendix A. Appendix B explains a new method for the
efficient implementation of the requirement that the derivative
of ΨI(x,y) should be zero whenx ) xmax. The implementation
of the CG method requires an efficient evaluation ofF(z). The
only part here that is not straightforward is the accurate
evaluation of the terms containing the kinetic energy in [(Ĥ -
E)ΨI] i,j when we know the values ofΨI(x,y) at a set of grid
points. We have developed an efficient procedure for performing
this calculation, which is explained in Appendix C. The efficient
evaluation of the gradient ofF(z) requires some care, and a
new method for performing it is explained in Appendix D.
Finally, the gradient is preconditioned using a method explained
in our previous work.47

5. Results

5.A. The Transition Probabilities and the R Matrix. We
have tested the method described above for the inelastic
scattering problem of Secrest and Johnson3,61 for the collinear
He-H2 system.

The minimization procedure gives theR matrix, and we
calculate theS matrix by

whereI is the unit matrix and the denominator implies a matrix
inverse. The transition probabilities, from initial statei to final
statej, are

We compare our results with those obtained by the KVP23

and with the results of the numerical integration by Miller and
Jansen op de Haar14 and by Secrest and Johnson.4 Unfortunately,
there are no exact results for this model, and the accuracy of
the numerical calculations is not known. The two numerical
methods14,23 to which we compare our results differ from each
other. However, these differences do not exceed the accuracy
expected in scattering experiments.

The calculated transition probabilities are shown in Tables 1
and 2. In Table 1, the MEM achieves the closest values to the
exact calculation withN ) M ) 32, meaning there are 332 )
1089 grid points. In Table 2, the KVP performs the best, while
the MEM also attains reasonably good results. In these calcula-

tions, the KVP uses a shorter scattering range (x̃max ) 10 au)
than ours (x̃max ) 20 au). Using a smaller range requires fewer
basis functions and grid points, but it is important to consider
where the interaction potential really becomes negligible. Hence,
we took x̃max ) 20 au to make sure that there is no interaction
in the asymptotic region.

Each row of theR matrix is solved independently. With this
approach, we can test whether theR matrix is symmetric. In
Tables 3 and 4, we show theR matrices for the two energies.
Rij andRji approach each other as we increase the basis set size.
N ) M ) 32 grid points are sufficient for the case of three
open channels (see Table 3), butN ) M ) 64 grid points are
needed in the case of six open channels (see Table 4). This is
not surprising; the higher energy means the wave function varies
more rapidly in the interaction region. Tables 3 and 4 also show
the number of iteration steps that the conjugate gradient
minimization takes with and without preconditioning.

5.B. The Convergence and Numerical Stability of Con-
jugate Gradient Minimization. Since the functionalF is
quadratic in the unknown quantities, taking derivatives and
setting them to zero leads to a set of linear equations. The matrix
in this system is very ill-conditioned; we have calculated its
eigenvalues numerically and found them to differ by 7 orders
of magnitude, indicating that a straightforward attempt to
minimize F will converge very slowly. Therefore, some
preconditioner is needed.

A preconditioner, in general, is designed to accelerate the
convergence by improving the condition number of the
matrix. There is no general method for preconditioning, and
each specific problem must be treated separately.6 We have used
here an adaptation of the preconditioning that we applied
earlier to a one-dimensional problem,47 as explained in Appendix
E.

z ) {ΨI(1,1), ...,ΨI(N - 1, M - 1), R00, ...,R0m} (30)

S ) I + iR
I - iR

(31)

Pij ) |Sij|2 (32)

TABLE 1: Transition Probabilities for the Secrest-Johnson
Model with an Incident Energy of E ) 3.0 au and Three
Open Channelsa

MEM-Cheb
(this work)

SKVP
(ref 23)

numerical
(ref 14)

exact
(ref 3)

P12 0.25× 10-1 0.30× 10-1 0.30× 10-1 0.22× 10-1

P23 0.13× 10-2 0.15× 10-2 0.16× 10-2 0.09× 10-2

P13 0.90× 10-5 0.87× 10-5 1.13× 10-5 NA

a The minimum error method with a Chebyshev representation and
preconditioned conjugate gradient minimization (MEM-Cheb) usesN
) M ) 32 grid points; theS matrix KVP usesN ) 18 basis functions.

TABLE 2: Same as Table 1, butE ) 6.0 aua

MEM-Cheb
SKVP
(ref 23)

numerical
(ref 14)

exact
(ref 3)

P12 0.38 0.39 0.39 0.39
P25 0.41× 10-3 0.41× 10-3 0.39× 10-3 NA
P34 0.22 0.23 0.23 0.23
P36 0.32× 10-5 0.19× 10-5 0.20× 10-5 NA

a There are six open channels, andN ) M ) 64 grid points are used
in MEM-Cheb. TheS matrix KVP usesN ) 25 basis functions.

TABLE 3: Elements of the R Matrix Shown for
MEM-Cheb, with E ) 3.0 au andN ) M ) 32 Grid Points,
and F, the Minimum Error for Each Row Minimization a

column 1 column 2 column 3 F A B

row 1 0.48 -0.10 -8.66× 10-4 3.54× 10-5 466 2873
row 2 -0.11 0.65 2.49× 10-2 4.61× 10-4 455 2615
row 3 -1.61× 10-4 1.94× 10-2 -0.25 7.34× 10-3 353 2153

a Columns A and B give the number of CG iterations required with
and without preconditioning.
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As seen in the Tables 3 and 4 and Figures 2 and 3, the number
of conjugate gradient iteration steps decreases dramatically when
the preconditioner is applied. Preconditioning finds a usually
more accurate solution with substantially fewer iterations. The
evolution ofF with the number of iterations is shown in Figures
2 and 3.

5.C. The Wave Function.Previous work47 has shown that
the KVP might not give accurate results for the wave function
throughout the interaction region. Since the KVP has been
designed to compute scattering cross sections and these can often
be more accurate than the wave function itself, this is not a
fatal flaw. There are however a few problems where the wave
function in the interaction region is needed. The MEM is
designed specifically to make the wave function accurate at all
grid points. Since we do not have exact wave functions for this
model, we test the accuracy of the wave function by calculating
the value of ĤΨ - EΨ at the grid points. The results of such
calculations are shown in Figures 4 and 5 for the three- and the
six-open-channel calculations, respectively.

In the case of the six-open-channel problem (Figure 5), the
error occurs mainly at the open boundary, meaning that the

crossover between the interaction and asymptotic wave function,
eqs 7 and 11, is the source of the remaining error. However,
the errors are very small (on the order of 10-6). In the three-
channel calculation (Figure 4), because a coarser grid was used,
the error is larger, and the dominant error occurs at the border
of the grid.

In Figures 6 and 7, we show the wave function itself for the
three- and six-open-channel problems for the wave function that
describes transitions from the ground state to the excited states
(the top row of theR matrix). These figures show that the wave
function is not visibly erroneous near the borders (it goes
smoothly to zero except at the open boundary, where it is well-
behaved). The error in Figure 4 comes instead from the tendency
of the Chebyshev method for calculating derivatives (hence the
kinetic energy in Hˆ Ψ) to concentrate the error at the ends of
the interval.7,8 If necessary, this error can be decreased by
increasing the basis set, as can be seen in Figure 5 for the six-
channel case.

TABLE 4: Same as Table 3, butE ) 6.0 au andN ) M ) 64a

column 1 column 2 column 3 column 4 column 5 column 6 F A B

row 1 1.13 -0.63 -4.50× 10-3 -2.58× 10-2 -9.97× 10-4 3.60× 10-2 6 × 10-12 2186 104

row 2 -0.63 -7.76× 10-3 -0.52 -7.08× 10-2 -1.15× 10-2 8.11× 10-4 2 × 10-9 1816
row 3 -4.56× 10-3 -0.52 -0.72 -0.41 -2.49× 10-2 4.30× 10-3 3 × 10-9 2117
row 4 -2.59× 10-2 -7.08× 10-2 -0.40 -0.51 -0.22 -7.54 10-3 6 × 10-7 1740
row 5 -8.43× 10-4 -1.16× 10-2 -2.48× 10-2 -0.22 0.82 0.16 2× 10-5 1626
row 6 -3.96× 10-5 3.61× 10-3 6.33× 10-3 -9.09× 10-3 0.15 2.12 8× 10-3 953

a We show the minimization without preconditioning only for the first row of theR matrix.

Figure 2. The convergence of the error for the system with three open
channels andN ) M ) 32 as a function of the number of CG iterations,
with and without preconditioning.

Figure 3. Same as that for Figure 2 but for the system with six open
channels andN ) M ) 64.

Figure 4. The magnitude of (Hˆ - E)Ψt at the grid points for the three-
channel problem andN ) M ) 32.

Figure 5. The magnitude of (Hˆ - E)Ψt at the grid points for the six-
channel problem andN ) M ) 64.

Figure 6. The wave function in the interaction region forE ) 3.0 au
andN ) M ) 32.
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5.D. The Energy Dependence of the Cross Section.Several
studies62-64 have shown that the KVP with theR matrix form
of the asymptotic wave functions is numerically unstable at
certain energies and sometimes produces false resonances. For
this reason, we check whether the MEM gives a reasonable
energy dependence of the transition probabilities. For this
purpose, we use an attractive Lennard-Jones potential for the
He-H2 interaction, with coordinates as those in eq 2

together with a harmonic oscillator potential for the internal
motion of H2

Resonances occur at certain energies when the incoming atom
forms a temporary bound state with the molecule. At these
energies, the phase shifts (R matrix elements) tend to change
rapidly with energy.65 We show the resonances for a problem
with three open channels in Figure 8. There are no instabilities
at any of the energies used in this calculation, and the error
converges to very small values.

6. Conclusions

We have proposed a new method for implementing the
minimum error method using a pseudospectral representation
of the wave function based on Chebyshev polynomials and a
preconditioned conjugate gradient minimization of the error
functional. Unlike the Kohn variational principle, the present

method experiences no instability at any boundary conditions.
The use of Chebyshev polynomials allows a fast and accurate
calculation of the derivatives. The basis set is orthonormal and
complete, and therefore, we are guaranteed to improve the
accuracy as we increase the basis set. Also, because the present
method involves searching for a minimum rather than a saddle
point, a preconditioned conjugate gradient method is used
instead of a matrix inversion, which allows the use of larger
basis sets.
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Appendix A

The Implementation of the Conjugate Gradient Minimi-
zation. The iterative minimization scheme starts with a guess
z(0) for the values of the components of the vectorz in eq 30,
and generates a sequencez(0), z(1), ..., z(k),..., which converges
to a value that minimizesF(z). Each iteration starts with known
(but approximate) values ofz. This allows us to calculateF(z)
and the gradient ofF at this particular value ofz

The calculation ofF(z) is explained in Appendix C and that of
∇F(z) in Appendix D.

One can show thatF is bilinear inz

whereA is a positive definite matrix, and that this matrix is
ill-conditioned; forN ) M ) 32, its largest eigenvalue exceeds
the smallest by 7 orders of magnitude. Therefore, precondition-
ing the gradient is essential for the efficient convergence of the
conjugate gradient search. Preconditioning requires that we find
a similarity transformation that turns this matrix into one whose
eigenvalues are of comparable magnitude with each other. There
is no systematic prescription for doing this; preconditioning is
an art form, with various recipes offered for different specific
situations.6 We use a method described in our previous work47

and adapted to two dimensions. We write the preconditioned
vector as

where P̂the preconditioning operator and-∇F(k) is the steepest
descent direction at the pointz(k).

Now, we use the present guessz(k) and the previous search
direction d(k-1) to generate the new guessz(k+1). First, we
calculate a new search directiond(k) using

andâ(k) is calculated with

Equation A5 is based on the standard formula9 but altered in
order to include preconditioning. Next, we set

Figure 7. The wave function in the interaction region forE ) 6.0 au
andN ) M ) 64.

Figure 8. The dependence of theR matrix elements (R00, R01, R02) on
the incident energy for a system with several resonances (see text for
details).

VI(x̃,ỹ) ) 20[-( 6
x̃ - ỹ)6

+ ( 6
x̃ - ỹ)12] (33)

V12(ỹ) ) 1
2

(ỹ - ỹeq)
2 (34)

∇F ) { ∂F
∂Ψ1,1

, ...,
∂F

∂ΨN-1,M-1
,

∂F
∂R0,0

, ...,
∂F

∂R0,m
} (A1)

F ) zTAz + bTz + c (A2)

G(k) ) P̂(-∇F(k)) (A3)

d(k) ) G(k) + â(k)d(k-1) (A4)

â(k) ) ∇F(k)‚G(k)

∇F(k-1)‚G(k-1)
(A5)

z(k+1) ) z(k) + R(k)d(k) (A6)

2734 J. Phys. Chem. A, Vol. 112, No. 12, 2008 Temel et al.



whereR(k) is the distance to the line minimum ofF(z) along
the search directiond(k), that is, we chooseR(k) to minimize
Fnew in the formula

while holding the vectorsz(k) andd(k) fixed. This line minimiza-
tion is accomplished using Brent’s method.9

The iteration scheme is initialized by guessing the values of
Ψt(1,1), ...,Ψt(N - 1,M - 1), R01, ...,R0m. We do this by setting
ΨI(x,y) ) 0 in eq 7 and by giving (R00, ..., R0m) physically
reasonable values. The efficiency of the scheme is not very
sensitive to the initial guess.

Appendix B

How To Impose Efficiently the Condition (dΨI /dx)|x)xmax

) 0. Imposing the boundary conditions is a delicate matter
which is simplified considerably by using the values of the wave
function as arguments inF. This allows us to fix the values of
the wave function on the borders of the grid to satisfy the
boundary conditions throughout the minimization iteration
process. This means that we only need to optimize the values
of the wave function inside of the grid, which reduces the
number of variables in the minimization problem. Had we used
the Chebyshev coefficients as the unknown quantities, we would
have had to solve 2N + 2M linear equations for each CG
iteration in order to obtain the correct boundary conditions.

Implementing the condition

in eq 18 is more difficult and is done by a new procedure which
is explained below.

Each new iteration (see Appendix A) produces numerical
values forΨI(xi,yj) inside of the grid (the values at the border
of the grid are kept fixed). To calculate the derivative with
respect tox, at the pointx ) 1, we consider the Chebyshev
expansion ofΨI(xi,yj), take (∂/∂x), and then setx ) 1, with y
fixed. The result is

where{cR(yj)} are the coefficients of the Chebyshev expansion
of ΨI.

Next, we define the functionu(x), whose Chebyshev coef-
ficients areR2

Then, one can show that

with

Note thatuj(xi) needs to be calculated only once. The boundary
condition eq B1 is imposed by replacingΨI(xi,yj) with a new
function Ψh I(xi,yj) which obeys eq B1. The new function is
constructed by

Now Ψh I(xi,yj) has a zero derivative at the open boundary (at all
values ofy) since it makes the sum in eq B4 equal to zero. In
addition, it remains zero on the borders of the interval since
uj(xi) and ΨI(xi,yj) are zero on the border.Ψh I(xi,yj) satisfies
therefore all boundary conditions and will be used as input in
the next CG iteration. The same method is used on the steepest
descent direction and the preconditioned vector,-∇F(k) andG(k),
before they are used in eqs A3-A5.

Appendix C

The Evaluation of the Error Functional F. The only
subtlety in evaluating theF is the efficient calculation of the
derivatives in the kinetic energy operator when we know the
values of the wave function on the grid. We illustrate briefly
here the procedure by showing how we evaluate the derivative
∂Ψ(x,yj)/∂x at the pointx ) xi. We represent first the function
as a Chebyshev sum

The coefficients{cR(yj)} are calculated from eq 24 with a FCT,
in O(N log N) operations. Then, the coefficients{dR(yj)} of the
derivative

are obtained from the recursion relation

which requiresO(N) operations, and an inverse FCT gives the
values of the derivative at each grid point{xi}. For the second
derivative in the kinetic energy operator, we apply eq C3 twice
and then the inverse FCT.

Appendix D

The Evaluation of the Gradient of F. To minimize the
functionalF given by eq 28, we must take the derivative ofF
with respect toΨI(xn,ym) and the elements of theR matrix for
some guess of these values, written as the vectorz in eq 30.F
is a bilinear function of these variables, and this should make
taking the derivative a simple matter. Unfortunately, the kinetic
energy contains terms such as [∂2Ψt(x,yj)/∂x2]x)xi, and taking
the derivative of this number with respect toΨI(xn,ym) must be
done with care, especially because efficiency and accuracy are

Fnew ) F(z(k) + R(k)d(k)) (A7)

dΨI(x,yj)

dx |
x)1

) 0 (B1)

[∂ΨI(x,yj)

∂x ]
x)1

) ∑
R)0

N

cR(yj)[dTR(x)

dx ]
x)1

ηR

) ∑
R)0

N

cR(yj)R
2ηR (B2)

u(xi) ) ∑
R)0

N

ηRR2TR(xi) (B3)

[∂ΨI(x,yj)

∂x ]
x)1

) ∑
i)0

N

uj(xi)ΨI(xi,yj) (B4)

uj(xi) ) {(2/N)u(xi) 0 < i < N
0 i ) 0 orN

(B5)

Ψh I(xi,yj) ) ΨI(xi,yj) - uj(xi)

∑
p)0

N

uj(xp)ΨI(xp,yj)

∑
p)0

N

uj(xp)uj(xp)

(B6)

Ψt(x,yj) ) ∑
R)0

N

ηRcR(yj)TR(x) (C1)

[∂Ψt(x,yj)

∂x ]
x)xi

) ∑
R)0

N

ηR dR(yj)TR(x) (C2)

dN(yj) ) 0 dN-1(yj) ) NcN(yj)

dR(yj) ) dR+2(yj) + 2kcR+1(yj) R ) N - 2, ..., 0
(C3)
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important. We present here a method that avoids matrix
multiplication (it involvesO(N log N) operations notO(N2))
and is very accurate.

Taking the derivative ofF in eq 28 leads to

with

The difficult part in evaluating eq D1 is the derivative of the
terms containing the kinetic energy. We will explain how this
calculation is done for the term

which is present when eq D1 is expanded. Let us assume for
the moment that we can write

whereDip are the elements of a matrix which is independent of
yj (to be determined shortly). Successive applications of eq D4
give

Using eq D5, we can write eq D3 as

Taking the derivative through the last two summation signs and
referring to the wave function expansion described by eqs 7
and 11 gives a Kronecker delta (a contribution of zero unlessn
) p andm ) j) and leads to

where (DD)ni
T is the (n,i) element of the transpose of the

matrix productDD.
We show next that the matrixD, defined by eq D4, exists,

and then, we will present an iterative procedure that evaluates
the sum in eq D5 much more efficiently than matrix multiplica-
tion.

To prove eq D4 and thus define the matrixD, we use eqs C1
and C2. The recurrence relation in eq 24 is equivalent to

and eq D8 defines implicitly a matrixM such that

The matrixM does not depend ony. Introducing this into eq
D7 and using also, in eq D9, the inversion formula eq 24 gives

Therefore, the matrixD exists, and it is defined by eq D10.
This could be used to evaluateD and then in eq D7 to calculate
A(n,m). However, this would not be an efficient procedure since
matrix multiplication is slow. It is possible to calculateA
through several steps each performed inO(N) operations. For
this, we use the following recipe. To evaluate an expression of
the form

representf(xi,ym) by the Chebyshev sum

Then,φ(xn,ym) is given by

with coefficients (hâ(ym)} obtained from {gR(ym)} by the
following recursion relations

Applying this recursion twice givesA(n,m) in eq D7 inO(N)
operations. A formal proof of this recurrence relation is very
tedious and will not be given here. One can verify numerically
that the scheme works.

The functional derivatives of the other terms involving kinetic
energy are calculated similarly. The terms that do not involve
the kinetic energy and those involving derivatives ofF with
respect to theR matrix elements are straightforward to calculate.
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