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We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method
for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the
wave function® by minimizing the least-squares error in the functiehl{ — EW), whereE is the desired
scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving
the SecrestJohnson model of two-dimensional inelastic scattering, which has been studied previously using
the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to
minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of
iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the
KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for
other methods, by matching the wave function in the interaction region to the correct asymptotic states at the
specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented
accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy.
This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There
are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed,
and the Chebyshev basis set is a good alternative in such situations.

1. Introduction with their use to describe the time dependence of the wave

. . . function2In order to show the Chebyshev basis set in context,
Scattering problems in quantum mechanics have been ap-

hed b f tational methods. which b we discuss several computational aspects of the scattering
proached by a range of computational metnods, which may be .5c,jation (but for more general details, see ref 1). We illustrate
divided into two main categories, time-independent (TI) and

time-dependent (TD), depending on which version of the the present method by solving an example two-dimensional
Schralinger equation is solved. In a TI method, one specifies problem, the Secresiohnson model for - He vibrationally

. ) X inelastic scattering?
the scattering energy, and then finds the wave function that . g . )
corresponds to it. From this, the state-to-state resolved dif- 1 N€ MOst important numerical features of any computation

ferential cross sections may be extracted; this information is &€ the scaling of computer time with problem size and the
implied by theS matrix at the given energg. This allows a  accuracy of the final answer. The Chebyshev basfs Séts
direct comparison to experiments, which obtain these scattering'Mplications for both.

amplitudes at a known energy. Also, experiments measuring Concerning scaling, a TD method involves a matiwector
photon emission or absorption by colliding molecules require multiplication for some number of time steps. This method
for their interpretation a detailed knowledge of the wave function scales asO(N?) per step, whereN is the number of basis

at a particular energy. In a TD method, the output contains a functions (or grid points), with a prefactor that includes the
superposition of many energies, and one thus obtains a scatteringiumber of time steps needed. The matrix is based on the
spectrum in an energy window. This method also allows for Hamiltonian operator and is usually sparse; therefore, the above
comparison with experiments obtaining, for example, spectro- scaling is an upper bound to the actual scaling obtained. A Tl
scopic information. method involves either a direct matrix inversion, which scales

Computational methods for scattering have been reviewed as O(N®), or a residual minimization method (RMM), which
recently by Althorpe and Clary/This review contains a clear ~ scales aO(N?) (or less) per iterative step but might require
summary of various approaches, together with many tests againsmany steps to converge. If results at several energies are desired,
gas-phase experiments. the prefactor includes the energy resolution.

In the present paper, we describe a new Tl method, using With a Chebyshev basis set, applying the Hamiltonian to the
Chebyshev polynomials as a basis set, which allows one to avoidwave function scales as onl@(N log N) instead of O(N?)
some of the common limitations of TI methods while retaining because an analogy with cosine functions allows us to use the
the advantage of using a Tl method to obtain state-to-statefast Fourier transform in its cosine form (the FCTAlso, the
scattering amplitudes, which are less conveniently available andvery large Hamiltonian matrix need not be stored in memory.
often less accurate when obtained by a TD method. This use ofThis means that the Chebyshev method can be extended
Chebysheyv functions as a spatial basis set is not to be confuseafficiently to systems with several degrees of freedom. However,
the grid must still be “rectangular” because we have an outer
*To whom correspondence should be addressed. product of functions of one variable (see section 3), whereas
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in, for example, discrete variable representation (DVR) methods, usually weak scattering off of the boundaries, and components
a “pruned” grid may be used, with grid points placed only where of the wave function at different energies respond to the CAP
the potential energy is not too highThe need for a rectangular  differently >253making the final answer often dependent on the
grid is a disadvantage in high-dimensional cases since theparticular CAP used. If the basis set is accurate enough to give
number of grid points becomes large; for a 6D problem and an error in the wave function of, for example, 20then any
with N = 32 grid points in each dimension, the wave function scattering off of the boundary above this amount will dominate

would have~1Q° entries. the total error of the calculation.

No strict minimum principle is known for scattering statés. A Tl method contains only one energy, which makes accurate
Variational principles do exist, for example, several varieties scattering results easier to achieve, especially in the case of
of the Kohn variational principle (KVPY particularly theS resonances (long-lived scattering states that have enough energy

matrix KVP10.13-28 Using the KVP requires finding a stationary to escape}? for which it may be problematic within a TD
point (a saddle point) of a functional of the wave function, and method to propagate the wave function long enough to resolve
this typically means a (slow) matrix inversion. There are also the resonance (see ref 1). The asymptotic scattering states are
instabilities associated with this approach, for example, spuriousknown (see below), and we can make the Chebyshev represen-
resonance&’ 3! tation of the wave function match exactly the asymptotic states
Instead of the KVP, we use a RMM-type methBd?? in at the outer boundary of the grid. This match is achieved by a
which the residualH¥ — EW, is driven to zero by iterative  vector projection, which requires negligible CPU time and no

minimization of the least-squares error extra grid points. This is possible because the Chebyshev basis
set describes a smooth function, which may take arbitrary values
F[W] = HY — EW[HWY — EWD 1) at the boundaries, and gives accurate derivatives up to and

) o including the boundary points; this is a consequence of the
For clarity, we call the present method a minimum error method nonuniform GaussLobato grid, which is dense near the

(MEM). . o _ _ boundarie$:8 As a result, fictitious scattering off of the BC
We also use th& matrix description of scattering amplitudes  does not occur in the present method.
rather than thes matrix; these and the scattering phase shifts | the pasf4 151719 g power series (the set of polynomials

contain the equivalent informatiddbut theR matrix uses real 11 x x2 ..1) has been used as a basis set. These functions do not
numbers, and th8 matrix uses complex numbers, giving some  gscillate and thus have trouble describing oscillations. Although
computational advantage to the former. Also, Bhenatrix is they are isomorphic to the Chebyshev basis set (both are poly-
symmetric and thus allows for a test of the method because, nomjals), the coefficients typically become very large and lead
for example, the (1,2) and (2,1) elements are obtained in tg jnaccuracy, and the positions of the grid points also matters. In
different calculations and should come out the same if the oy earlier worki? we found that the power series basis set, with
method is accurate. THe matrix appears to be unstable within 5 yniform grid, does not converge; see Boyd for discus&ion.
the KVP but is amenable to treatment by a RMM. _ On the other hand, Chebyshev polynomials oscillate “uni-
The iterative method is only better than a direct matrix formly” throughout thex interval [-1,1], which makes the

inversion if the number of steps required to converge is not too expansion of a function numerically stable. They form a

large (and is not proportional to the number of grid points). complete and orthogonal basis set and thus give results that
The matrix in the RMM contains the Hamiltonian squared (see ¢onyerge to a definite limit as the number of basis functions
eq 1) and thus the ddoperator to the fourth power, which  jycreases. A Fourier-type transform exists for the Chebyshev
makes it ill-conditioned (i.e., its eigenvalues span a wide range). noynomials, which allows fast derivative calculations with the
Attempting to iteratively solve an ill-conditioned problem will  5ccyracy of a Fourier series but without the implied periodicity
take a very large number of steps, and worse, the answerqt the Fourier function§” They are thus more accurate than a
obtained will be inaccurate. This happens because the steps takefjte difference (FD) definition of the derivative, for the same
eventually involve extremely small changes in the trial wave nmper of grid points. Integration (quadrature) is done naturally

function, and at some point, these changes fall below the level ,y integrating the basis functions; thus, differentiation and
of the computer’s round-off error. At this point, the trial wave integration are compatible with each other.

function stops changing, and even though a very accurate wave
function does exist, this solution cannot be reached.

Avoiding this problem requires preconditioning (PC), which
reduces the apparent condition number of the matrix by applying
a fast, approximate inversion of the matfi%#*45PC has been
used in scattering calculatiof&?6For the Chebyshev basis set,
we have developed a good preconditioffewhich we use in
the present work. The accuracy obtained is determined by (1)
the boundary conditions (BC) and (2) the quality and compat-
ibility of the differentiation and integration methods. 2 The Model

For scattering calculations, the BC are especially problematic
because the wave function at an outer boundary should not As a test problem, we use the Secrekthnson model of a
approach zero; instead, it should become a linear combinationcollinear three-atom collision (a scatterer hitting a diatomic
of asymptotic scattering states. If no BC are supplied, the wave molecule), as illustrated in Figure 1.
function will scatter off of the boundaries of the grid, giving The Hamiltonian in the Secresfohnson form is
fictitious results. Thus, for TE48 and some T° methods, a
“complex absorbing potential” (CAP)5is used at the bound- | 1 (8 1 8 1. .o
aries. The CAP requires extra grid points, across which the waveH = “om (T) 2 (T) + > (2 yeq) +
function is damped smoothly to zero while altering it only 0% 3)'2 L
slightly inside of the main interaction region. Still, there is Vo exp[=y(x = 9] (2)

Also commonly used in scattering calculations are various
DVR methodsi041:46.5556which we do not summarize here.
Those that use a uniform grid may expect to have trouble with
the derivative near the boundaries, in common with uniform-
grid FD methodg;%” and Fourier methods applied to discontinu-
ous function$® Some nonuniform grid calculations for scat-
tering have been describ&4® which may allow for more
accurate handling of the boundary conditions.
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Figure 1. Reduced coordinates of the Secrelthnson model.
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Here,H and% and¥ are in atomic units, anth is a mass ratio,
which applies to th& (i.e., scattering) coordinate and is defined by

_ MM
Mg(My + Mg + mg)

®)

Here,ma is the mass of the scatterer, amg andmc are the
masses of the molecule. Fop H He scatteringm = 2/3 and
y = 0.3 in eq 2.V, determines the distance of the classical
turning point of the collision from the oscillator in the interaction
potential. This only shifts th& coordinate and has no physical
consequences; we usg = 12.0 for convenience. The energy
E of the scattering state is also measured in atomic units

K
En:n+1/2 nZO, 11 2' ""NVib (5)

wherek, is the wave vector that describes the kinetic energy of
scattering from thath vibrational level of the diatomic molecule
having energy, according to eq 5.
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wheref(x) and g(x) are cutoff functionsW(x,y) is the wave
function in the region where the projectile and the target interact,
andW4(x,y) is the wave function in the asymptotic region (no
interaction).

If the system is initially in the ground vibrational state=
0, and the incoming wave vectds is such that only three
channels are open (i.e., the vibrational quantum number after
the collision could ben = 0, 1, 2), then the asymptotic wave
function W, is

W (xy) = k" qsin(kx) + Ryo COSKX)]1¢o(y)
+ k1_1/2R01 cosk,x) ()

~112
+ K, MRy, CSKX) @(Y) (8)
andk; andk, are the wave vectors, after the collision, if the
oscillator is excited to the vibrational state= 1 or 2, respec-
tively. Roo, Ro1, and Ry, are the unknown elements of tie
matrix for the incoming wave vectdy and the initial oscillator
staten = 0. Thegn(y) is a harmonic oscillator eigenstate

= (@2" )" (y) exp[-y¥2] n=0,1,...

ny)
v ©

whereH(y) is a Hermite polynomial.

Computations with th&® matrix asymptotic wave functions
are easier than those using t8amatrix because real number
arithmetic is used. Th® matrix obtained from the functional
minimization is used to calculate ttf& matrix and transition
probabilities; these quantities are connected to each other by

E is fixed throughout the scattering event, and thus, a higher exact relationship®® The R matrix is real and symmetric.

translational kinetic energy of the scatterer is associated with a

lower vibrational state of the molecule and vice vensa, is
the highest vibrational state of energy less tHanwhich
therefore may be excited during the scattering event. kylig
found from egs 4 and 5 afté& andn are specified; a scattering
channel (indexed by) is called open if the resultinig, is real,
that is,n < N,ip, and channels with imaginat, are closed.
We perform calculations for two casds= 3 and 6, with three
and six open channels, respectively.

The “physical” coordinate andy have ranges [maq and
[0,9maxd- In this paper, these ad@ax = 20 andymax = 16, with

If the oscillator is initially in an excited state (e.qn,= 1),
then the asymptotic wave function is The variational calculation

W (xy) = kg Ry5COSKX) @ofY)
+ ksin(kX) + Ry, coskx)]@s(y)
+k, YRy, cosioX) @yy) (10)

of (Roo, Ro1, Rop) is independent from that oR{o, Ri1, Rio).
However, since th® matrix is symmetricR; andR; obtained

Yeq = 8. However, in the Chebyshev representation, we needin independent calculations must be equal. Checking this

new coordinatesx(y) in the range of £1,1]. We scale every
function into this range as described in our previous wWark.
Rewriting the Hamiltonian in the Chebyshev coordinates

i )5 [y} -5
v, exp[_y(xmax G

X —
2 y
3. The Representation of the Wave Function

A=

yeq)] (6)

The wave functiort?(x;,y;) (two-dimensional throughout) is
defined at grid point§x;y;} withi =0, ...,Nandj =0, ...,M

equality is a test of the stability of the numerical method.

It is important to choose the correct cutoff functions in eq 7.
First, g(x) conveys a fraction of the asymptotic wave functions
into the interaction region and can be any function that goes to
zero at smalk (the closed boundary). This is because whatever
a(x) is, the correct,(x,y) can always be obtained by choosing
W (x,y) correctly, and by driving the error to zero, we achieve
this. Intuitively, f(x) should approach zero at the open boundary,
but surprisingly, this makes the convergence worse. If a cutoff
function f(x) is used, then some of the variabMs(x;y;) near
the open boundary get multiplied by a small number, for
example, 10%, and this unbalanced situation slows down the
convergence and also reduces the final accuracy. In fact, we do

and the values on the boundary are fixed (to zero). The variablesnot need a cutoff function fol(x,y) because the BC at the

in the problem are thud/(x,y;) fori =1, ..,N— 1 andj = 1,
..., M — 1 and the elements in one column of tRematrix,

open boundary are set exactly by matchiHgx,y) to W4(X,y)
there by a method described below. This matching is accurate

which describe the phase of the asymptotic part of the wave and efficient for Chebyshev polynomials and leaves no work

function. These are varied to minimize the erréy,in eq 1.
The trial wave function is

Wi(xy) = f(x) W (xy) + 9 Wxy) @)

for the cutoff function to do.
Therefore, we use

() =1
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909 = 1+ tanhB(x— ) f=05 =15 (11)

We found, as expected, that the choices

f(X) =expax) o =0.5withg(x)=1—f(x) (12)

) =1— %{1 + tanhBx — )}
B=05,y=15withg() = 1 — f(x) (13)
fx) =1withg(X) =1—exp—ox) a=0.5 (14)

were less efficient.
At the inner boundary, the total wave function (hence also
W (x,y)) obeys the scaling law
I+1
Wi(xy) 75 X (15)
wherel = 0 for s-wave scattering. At some pointax beyond
which the interaction is zero, we must have

WY)Wy (16)
which means that for all values gf
W\ (Xmaxy) =0 17)

We impose egs 15 and 17 and the corresponding requirements

at theymin and ymax by setting®(x,y) = 0 at each boundary
point. In addition, we must impose the condition

ikl 18
W bt (18)
which is equivalent to
dw, _dw, 19
I P M (19)

This ensures that the flux is entirely accounted for by the
asymptotic form of the wave function. Failure to achieve this
would result in an incorredR® matrix. The boundary condition
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X =cosfn/N) i=0,1,..N (23)
and the coefficient§bn} are calculated fronf(x) by
2 N
b, = N 1 Ta(%) f(x) (24)

Using egs 20 and 24 allows one to move back and forth
between the two representationsf), either sampled atl +
1 grid points or expanded &+ 1 Chebyshev coefficients. In
practice, this is done not with eqs 20 and 24, which would
requireO(N?) operations, but with a fast Chebyshev transform
(FCT), which requiresO(N log N) operations. The FCT is
operationally identical to the fast cosine transfénThe
generalization to two dimensions is straightforward.

4. The Conjugate Gradient Minimization

To find the correct wave function, we minimize the functional
F in eq 1. In the asymptotic region, we satishjP = EW by
making the correct choice &, which leaves- to be integrated
throughout the interaction region. Scaling the variables to bring
them into the range of1,1] brings a constant in front of the
integral, which we drop because all we need frieiis the wave
function which minimizes it. We then have
F= [ [Ldxay[(A - D&Y (25)
Now, the integrangj(x,y) = [(H — E)W(x,y)]? is a function
of x andy, and we expand both dimensions in Chebyshev
polynomials

F= /", )7 dxdygxy

N M
- ZD AZD Cap .fjl fjl dx dy To(x) Ts(W)na114

=§o§o%ﬁ

where we have used eq 20 twice, and the last equality follows

2 2
7

1-o?1-p

o, 5 even
(26)

eq 18 is implemented by a method that we developed (seefrom

Appendix B).

We represent the wave function in the interaction regiBp,
(xy), by a sum of products of Chebyshev polynomials. The
Chebyshev representation of a function is written in the literature
in a variety of forms. The form used here is shown below. A
functionf(x), with x € [—1,1] is expanded in coefficien{d,}

bo N-1 bN N
f0) = B To6) + ) byT(x) + Py TNOG) = ) 7P To(%)
"~ "~ (20)
with
_J1/2 ifn=00rN
h= { 1 otherwise } (21)

Tn(X) is a Chebyshev polynomial of the first kind, which may
be written as
T,(X) = cosf arccosk)) (22)

We use a Gausds.obato grid-8

2
1—0o?
a odd

ff s dx T,(x) = o even

=0 (27)
Using eq 24 for each dimension, we can rewriigio eq 26 in
terms ofg(x;,y;). The result, after rearrangement, is

N M
F= ; 1; [(H = B, ww[(H - E)W]; (28)

where the subscriptj means that the quantity in the square
bracket must be evaluated at the grid poixty() determined
by eq 23. The integration weights in thkeecoordinate are

2

2 N
W =— % ni,— Ta(X) (29)
N aZO 1-o?

To calculate{w;} for they coordinate, replachl with M andx;
with y; in eq 29. These weights need to be calculated only once.
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The desired wave function is obtained by minimiziRgn
into a single “vector”z
z={¥,(11),..W(N-1,M—1),Ry, ... Ry} (30)
We explain here the procedure for an example where the

oscillator is in the lowest energy state, for which Renatrix
elements areRpo, Roy, ..., Rom), Wwheremis the number of open

Temel et al.

TABLE 1: Transition Probabilities for the Secrest—Johnson
eq 28 with respect to each of its variables, which we collect Model with an Incident Energy of E = 3.0 au and Three

Open Channels

MEM-Cheb SKVP numerical exact

(this work) (ref 23) (ref 14) (ref 3)
P, 025x10!' 0.30x10' 0.30x10! 0.22x10*
P,; 0.13x102 0.15x102 0.16x 102 0.09x 1072
Pi; 090x 105 087x10°% 1.13x10° NA

a2 The minimum error method with a Chebyshev representation and

channels. The use of the wave function at the grid points as preconditioned conjugate gradient minimization (MEM-Cheb) dses
unknown quantities allows an easy implementation of the =M = 32 grid points; theS matrix KVP useN = 18 basis functions.
boundary conditions; the values of the wave functions at the

border are kept equal to those required by the boundary TABLE 2: Same as Table 1, butE = 6.0 af

conditions. If we used the coefficients of the Chebyshev SKVP numerical exact
expansion as the variables, the boundary conditions would MEM-Cheb (ref 23) (ref 14) (ref 3)
require the additional work of solving a system oN(zZ- 2M) P,  0.38 0.39 0.39 0.39
linear equations at every iteration step in the minimization Ps  041x10°  041x10°  039x10° NA
algorithm. Pu 022 0.23 0.23 0.23
Ps3s 0.32x 10°® 0.19x 10°° 0.20x 10°° NA

To find the value ofz that minimizesF(z), we use the
conjugate gradient (CG) proceddr8ince the literature contains

2 There are six open channels, ade= M = 64 grid points are used

many implementations, we describe briefly the one used herein MEM-Cheb. TheS matrix KVP usesN = 25 basis functions.

in Appendix A. Appendix B explains a new method for the
efficient implementation of the requirement that the derivative
of W\(x,y) should be zero wher = Xnax The implementation

of the CG method requires an efficient evaluatior=¢f). The
only part here that is not straightforward is the accurate
evaluation of the terms containing the kinetic energy k f
E)W]i; when we know the values d¥,(x,y) at a set of grid
points. We have developed an efficient procedure for performing
this calculation, which is explained in Appendix C. The efficient
evaluation of the gradient df(2) requires some care, and a
new method for performing it is explained in Appendix D.
Finally, the gradient is preconditioned using a method explained
in our previous work?

5. Results
5.A. The Transition Probabilities and the R Matrix. We

TABLE 3: Elements of the R Matrix Shown for
MEM-Cheb, with E = 3.0 au andN = M = 32 Grid Points,
and F, the Minimum Error for Each Row Minimization 2

column 1 column 2 column 3 F A B
rowl 0.48 —0.10 —8.66x 1074 3.54x 1075 466 2873
row 2 —0.11 0.65 2.49% 1072 4.61x 1074 455 2615

row3—1.61x 104 1.94x 102 —0.25 7.34x 1073 353 2153

a Columns A and B give the number of CG iterations required with
and without preconditioning.

tions, the KVP uses a shorter scattering rarigex(= 10 au)
than ours ¥max = 20 au). Using a smaller range requires fewer
basis functions and grid points, but it is important to consider
where the interaction potential really becomes negligible. Hence,
we tookXmax = 20 au to make sure that there is no interaction
in the asymptotic region.

have tested the method described above for the inelastic Each row of theR matrix is solved independently. With this

scattering problem of Secrest and Johri$éfior the collinear
He—H, system.

The minimization procedure gives tHe matrix, and we
calculate theS matrix by

I +iR

S=I TR

(31)

wherel is the unit matrix and the denominator implies a matrix
inverse. The transition probabilities, from initial state final
statej, are
2
Py = 1§l (32)
We compare our results with those obtained by the RVP

and with the results of the numerical integration by Miller and
Jansen op de Hadand by Secrest and Johnsbidnfortunately,

approach, we can test whether tRematrix is symmetric. In
Tables 3 and 4, we show thie matrices for the two energies.

R;j andR;; approach each other as we increase the basis set size.
N = M = 32 grid points are sufficient for the case of three
open channels (see Table 3), But= M = 64 grid points are
needed in the case of six open channels (see Table 4). This is
not surprising; the higher energy means the wave function varies
more rapidly in the interaction region. Tables 3 and 4 also show
the number of iteration steps that the conjugate gradient
minimization takes with and without preconditioning.

5.B. The Convergence and Numerical Stability of Con-
jugate Gradient Minimization. Since the functionalF is
guadratic in the unknown quantities, taking derivatives and
setting them to zero leads to a set of linear equations. The matrix
in this system is very ill-conditioned; we have calculated its
eigenvalues numerically and found them to differ by 7 orders

there are no exact results for this model, and the accuracy ofof magnitude, indicating that a straightforward attempt to

the numerical calculations is not known. The two numerical
method&*23to which we compare our results differ from each

minimize F will converge very slowly. Therefore, some
preconditioner is needed.

other. However, these differences do not exceed the accuracy A preconditioner, in general, is designed to accelerate the

expected in scattering experiments.
The calculated transition probabilities are shown in Tables 1

convergence by improving the condition number of the
matrix. There is no general method for preconditioning, and

and 2. In Table 1, the MEM achieves the closest values to the each specific problem must be treated separétélg. have used

exact calculation witiN = M = 32, meaning there are 33-
1089 grid points. In Table 2, the KVP performs the best, while

here an adaptation of the preconditioning that we applied
earlier to a one-dimensional probléras explained in Appendix

the MEM also attains reasonably good results. In these calcula-E.
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TABLE 4: Same as Table 3, butE = 6.0 au andN = M = 642

column 1 column 2 column 3 column 4 column5s column 6 F A B
row 1 1.13 —0.63 —450x 10°% —258x 102 —9.97x10* 3.60x 102 6x101 2186 10
row2 —0.63 —7.76x 10°% —0.52 —7.08x 102 —1.15x 1072 8.11x 10* 2x10° 1816
row3 —456x10°% —0.52 -0.72 —-0.41 —2.49x 1072 430x 10°% 3x10° 2117
row 4 —2.59x 102 —7.08x 102 —0.40 —0.51 —0.22 —7.54103 6x 107 1740
row5 —843x10*% —-1.16x102 —2.48x102 —-0.22 0.82 0.16 X 10° 1626
rowé —3.96x 10° 3.61x 103 6.33x 10°% —9.09x 10°3 0.15 2.12 8x 1073 953

aWe show the minimization without preconditioning only for the first row of Renatrix.

As seen in the Tables 3 and 4 and Figures 2 and 3, the numbeicrossover between the interaction and asymptotic wave function,
of conjugate gradient iteration steps decreases dramatically whereqs 7 and 11, is the source of the remaining error. However,
the preconditioner is applied. Preconditioning finds a usually the errors are very small (on the order of 80 In the three-
more accurate solution with substantially fewer iterations. The channel calculation (Figure 4), because a coarser grid was used,
evolution ofF with the number of iterations is shown in Figures the error is larger, and the dominant error occurs at the border
2 and 3. of the grid.

5.C. The Wave Function.Previous work” has shown that In Figures 6 and 7, we show the wave function itself for the
the KVP might not give accurate results for the wave function three- and six-open-channel problems for the wave function that
throughout the interaction region. Since the KVP has been describes transitions from the ground state to the excited states
designed to compute scattering cross sections and these can oftefthe top row of theR matrix). These figures show that the wave
be more accurate than the wave function itself, this is not a function is not visibly erroneous near the borders (it goes
fatal flaw. There are however a few problems where the wave smoothly to zero except at the open boundary, where it is well-
function in the interaction region is needed. The MEM is behaved). The error in Figure 4 comes instead from the tendency
designed specifically to make the wave function accurate at all of the Chebyshev method for calculating derivatives (hence the
grid points. Since we do not have exact wave functions for this kinetic energy in F) to concentrate the error at the ends of
model, we test the accuracy of the wave function by calculating the interval’® If necessary, this error can be decreased by
the value of HP — EW at the grid points. The results of such increasing the basis set, as can be seen in Figure 5 for the six-
calculations are shown in Figures 4 and 5 for the three- and thechannel case.
six-open-channel calculations, respectively.

In the case of the six-open-channel problem (Figure 5), the

error occurs mainly at the open boundary, meaning that the 002

without PC X 0.0l
— — — — with PC (H-EN¥

Figure 4. The magnitude of (H- E)W; at the grid points for the three-
channel problem antl = M = 32.
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# of iteration steps @Ey °
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Figure 2. The convergence of the error for the system with three open -110

channels an®l = M = 32 as a function of the number of CG iterations, 210"
with and without preconditioning.

without PQ R
102k - — — — withPC Figure 5. The magnitude of (H- E)W, at the grid points for the six-
| | channel problem antl = M = 64.
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Figure 3. Same as that for Figure 2 but for the system with six open Figure 6. The wave function in the interaction region fér= 3.0 au
channels andN = M = 64. andN = M = 32.



2734 J. Phys. Chem. A, Vol. 112, No. 12, 2008

1

06 e o
& LR
02 O Y ({\\

'

wave
function -0.2

-0.6

Figure 7. The wave function in the interaction region fér= 6.0 au
andN =M = 64.

T T T T T T T T T

2.6

E (au)
Figure 8. The dependence of the matrix elementsRoo, Ro1, Roz) on

Temel et al.

method experiences no instability at any boundary conditions.
The use of Chebyshev polynomials allows a fast and accurate
calculation of the derivatives. The basis set is orthonormal and
complete, and therefore, we are guaranteed to improve the
accuracy as we increase the basis set. Also, because the present
method involves searching for a minimum rather than a saddle
point, a preconditioned conjugate gradient method is used
instead of a matrix inversion, which allows the use of larger
basis sets.
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Appendix A

The Implementation of the Conjugate Gradient Minimi-
zation. The iterative minimization scheme starts with a guess
70 for the values of the components of the vectan eq 30,
and generates a sequers®, Zb, ..., Z¥,..., which converges
to a value that minimizeB(2). Each iteration starts with known
(but approximate) values af This allows us to calculate(z)
and the gradient of at this particular value of

UF = { oF oF  oF  OF
811Jl,l’ o Z)IIINfiL,Mfl, 8RO,O, o 8RO

The calculation of(2) is explained in Appendix C and that of
VF(2) in Appendix D.
One can show thék is bilinear inz

(A1)

F=ZAz+b'z+c (A2)

the incident energy for a system with several resonances (see text for

details).

5.D. The Energy Dependence of the Cross SectioBeveral
studie§2-%4 have shown that the KVP with tHe matrix form
of the asymptotic wave functions is numerically unstable at

certain energies and sometimes produces false resonances. F
this reason, we check whether the MEM gives a reasonable
energy dependence of the transition probabilities. For this
purpose, we use an attractive Lennard-Jones potential for the

He—H, interaction, with coordinates as those in eq 2

oo _ o[ 6 \° 6 \!
w9 = 2025 + (=5 |
together with a harmonic oscillator potential for the internal
motion of H

(33)

Vi) =3 5= %eo? (34)

whereA is a positive definite matrix, and that this matrix is
ill-conditioned; forN = M = 32, its largest eigenvalue exceeds
the smallest by 7 orders of magnitude. Therefore, precondition-
ing the gradient is essential for the efficient convergence of the

é:ronjugate gradient search. Preconditioning requires that we find

a similarity transformation that turns this matrix into one whose
eigenvalues are of comparable magnitude with each other. There
is no systematic prescription for doing this; preconditioning is
an art form, with various recipes offered for different specific
situations® We use a method described in our previous Wbérk
and adapted to two dimensions. We write the preconditioned
vector as

GY = P(—vFY) (A3)
where Pthe preconditioning operator arevF® is the steepest
descent direction at the poizb.

Now, we use the present guez8 and the previous search
direction d&=1 to generate the new gueg&™. First, we

Resonances occur at certain energies when the incoming atomg|culate a new search directiof using

forms a temporary bound state with the molecule. At these

energies, the phase shiffR fnatrix elements) tend to change
rapidly with energy?®> We show the resonances for a problem

with three open channels in Figure 8. There are no instabilities and 800
at any of the energies used in this calculation, and the error

converges to very small values.

6. Conclusions

We have proposed a new method for implementing the
minimum error method using a pseudospectral representation
of the wave function based on Chebyshev polynomials and a

preconditioned conjugate gradient minimization of the error
functional. Unlike the Kohn variational principle, the present

d(k) — G(k) + ﬁ(k)d(k_l) ( A4)
is calculated with
®,~®
o= (A5)

VF(kfl).G(kfl)

Equation A5 is based on the standard forrfddat altered in
order to include preconditioning. Next, we set

2440 = A9 4 gHgw (A6)
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wherea® is the distance to the line minimum &{2) along
the search direction®, that is, we choose® to minimize
Frew in the formula
Frew= F(@9 + a®d®) (A7)

while holding the vectorg® andd® fixed. This line minimiza-
tion is accomplished using Brent's methdd.

The iteration scheme is initialized by guessing the values of
Py(1,1), ...,.¢(N— 1M — 1), Roy, ..., Rom. We do this by setting
W (xy) = 0 in eq 7 and by givingRoo, ..., Rom) physically
reasonable values. The efficiency of the scheme is not very
sensitive to the initial guess.

Appendix B

How To Impose Efficiently the Condition (dW/dX)|x=xax
= 0. Imposing the boundary conditions is a delicate matter
which is simplified considerably by using the values of the wave
function as arguments iR. This allows us to fix the values of
the wave function on the borders of the grid to satisfy the
boundary conditions throughout the minimization iteration
process. This means that we only need to optimize the values
of the wave function inside of the grid, which reduces the
number of variables in the minimization problem. Had we used
the Chebyshev coefficients as the unknown quantities, we would
have had to solve® + 2M linear equations for each CG
iteration in order to obtain the correct boundary conditions.

Implementing the condition

d¥,(xy;)

dx (B1)

x=1

in eq 18 is more difficult and is done by a new procedure which
is explained below.

Each new iteration (see Appendix A) produces numerical
values for®(x;,y;) inside of the grid (the values at the border
of the grid are kept fixed). To calculate the derivative with
respect tox, at the pointx = 1, we consider the Chebyshev
expansion of¥(x.y;), take @/dx), and then sex = 1, with y
fixed. The result is

O (X,y) N dT,(%)
oX x=1 B QZO Ca(yj) dx x=1’7a
N
= Zbcawj)azna (B2)

where{c,(y;)} are the coefficients of the Chebyshev expansion
of W,.

Next, we define the functioni(x), whose Chebyshev coef-
ficients areo?

N
u(x) = Zonaazmm (B3)

Then, one can show that
il | R B4
szl—;u(&) (%6.Y5) (B4)

with

J. Phys. Chem. A, Vol. 112, No. 12, 2008735
(2IN)u(x) 0<i<N

U()9):{0 i=00rN

Note thatti(x)) needs to be calculated only once. The boundary
condition eq B1 is imposed by replacing(x;,y;) with a new
function W|(x,y;)) which obeys eq B1. The new function is
constructed by

(BS)

N

) U)W (%))
W) = W 04) — T05) —
20 T(X)U(X,)
£

Now W (x,y;) has a zero derivative at the open boundary (at all
values ofy) since it makes the sum in eq B4 equal to zero. In
addition, it remains zero on the borders of the interval since
U(x) and W (x,y;) are zero on the bordetV|(x,y;) satisfies
therefore all boundary conditions and will be used as input in
the next CG iteration. The same method is used on the steepest
descent direction and the preconditioned vectorF® andG®,
before they are used in eqs A35.

(B6)

Appendix C

The Evaluation of the Error Functional F. The only
subtlety in evaluating thé& is the efficient calculation of the
derivatives in the kinetic energy operator when we know the
values of the wave function on the grid. We illustrate briefly
here the procedure by showing how we evaluate the derivative
dWP(xy;)/ox at the pointx = x. We represent first the function
as a Chebyshev sum

N
IIIt(xlyj) = Z{) 77(JLC(JL(yj)Ton(x) (Cl)

The coefficientq c,(y;)} are calculated from eq 24 with a FCT,
in O(N log N) operations. Then, the coefficiertd,(y;)} of the
derivative

e
" — . X
X X=X OLZQ e Gl T
are obtained from the recursion relation
dy(y) =0 dy-1(¥;) = Nay(y,)
dy () = dyo(y:) + 2K, (V) a=N-2,..0
J +2\Jj +1\Uj (C3)

which requiresO(N) operations, and an inverse FCT gives the
values of the derivative at each grid po{m}. For the second
derivative in the kinetic energy operator, we apply eq C3 twice
and then the inverse FCT.

Appendix D

The Evaluation of the Gradient of F. To minimize the
functional F given by eq 28, we must take the derivativeFof
with respect ta¥,(xn,ym) and the elements of thie matrix for
some guess of these values, written as the vextitoeq 30.F
is a bilinear function of these variables, and this should make
taking the derivative a simple matter. Unfortunately, the kinetic
energy contains terms such aBW¥(x,y;)/0x%x=x, and taking
the derivative of this number with respectd§(xn,ym) must be
done with care, especially because efficiency and accuracy are
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important. We present here a method that avoids matrix
multiplication (it involvesO(N log N) operations noO(N?)) ds(y) = Zo Mg, C,(Y) (D9)
and is very accurate. =

Taking the derivative of in eq 28 leads to

N M
B‘P(xnyrr) 2020 (w,

with

The matrixM does not depend oyn Introducing this into eq
D7 and using also, in eq D9, the inversion formula eq 24 gives

ym)((F'_E)lpt)i,j 2 N N
e PP RLE S

Therefore, the matriP exists, and it is defined by eq D10.
v — W [(F] — y This could be used to evaludieand then in eq D7 to calculate
fqy) = wwl(H = B (2) A(n,m). However, this would not be an efficient procedure since
matrix multiplication is slow. It is possible to calculat®
through several steps each performediiN) operations. For
this, we use the following recipe. To evaluate an expression of
the form

The difficult part in evaluating eq D1 is the derivative of the
terms containing the kinetic energy. We will explain how this
calculation is done for the term

N M R NS N
A(n,m) = fy)|———— (D3) Vo) =Y D/ f(x, D11
;; e v (%Y (SYA) (D11)

which is present when eq D1 is expanded. Let us assume forrepresenf(x,ym) by the Chebyshev sum
the moment that we can write

N
dlpt(xyyj) N f(X1 rym) = Z:) ga(yrn) Ta(xi)na (D12)
d— = 20 Dip W(%,,Y) (D4) *
X bex p= Then, ¢(xn,ym) is given by
whereDj, are the elements of a matrix which is independent of N
y; (to be determined shortly). Successive applications of eq D4 OXYm) = /Zo (Vi) Ts(X)74 (D13)
give =
Py (%) with coefficients (B(ym)} obtained from{g«(ym)} by the
d i xy) : ; .
20 20 DiDgp I(Xp y]) (D5) following recursion relations
dx® % =0
Using eq D5, we can write eq D3 as e =0
A(n,m) = €1 =6€.,+29, a=2.,N—-1

N M

;Z ERY (lalp (Xnym)]) Z}Z}Dm w5y, (D6) h,=oae, a=0,..N (D14)

Applying this recursion twice give8(n,m) in eq D7 in O(N)
Taking the derivative through the last two summation signs and pperations. A formal proof of this recurrence relation is very
referring to the wave function expansion described by eqs 7 tedious and will not be given here. One can verify numerically
and 11 gives a Kronecker delta (a contribution of zero untess  that the scheme works.
= pandm = j) and leads to The functional derivatives of the other terms involving kinetic
energy are calculated similarly. The terms that do not involve
T the kinetic energy and those involving derivativesFofvith
Anm) = > (DD)y; XY (07) respect to th&® m%)'zrix elements are straigghtforward to calculate.

N
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