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How to partition a chemical system into its constituent parts is a classic problem of theoretical chemistry. A
formally exact solution has recently been developed, partition theory (PT), based on density functional theory
[Cohen, M. H.; Wasserman, A.J. Phys. Chem. A2007, 111, 2229]. PT presents a constrained optimization
problem to which the Car-Parrinello (CP) method of electronic structure theory is well suited. We propose
here a generalization of the CP method suitable for PT and thereby make way for its practical numerical
implementation. We demonstrate that this CP implementation of PT need not increase the complexity of the
computation of the system’s electronic structure. The scheme provides an exact DFT formulation of, e.g.,
atoms in molecules theory that is amenable to numerical implementation.

I. Introduction

How topartition a molecule or larger aggregated system into
smaller constituent parts is a classic problem of theoretical
chemistry.1 These parts may be acids, bases, sugars, monomers,
side chains, etc. The many approximate or precise solutions
proposed are not reviewed here. At the ultimate level of partition
the general partition problem becomes the “atoms-in-molecules”
problem with its own extensive literature which has been
cogently reviewed by Nalewajski and Parr.2

In earlier papers, one of the current authors3-5 has developed
with Wasserman a formally exact procedure for the partition
based on density-functional theory (DFT).6 This partition theory
(PT) fixes the nuclei of the parts in the positions they hold in
the molecule and imposes the condition that the electron
densities of the parts sum identically to that of the molecule.
The average electron numbers of the parts are not restricted to
integer values. Consequently, the ensemble formulation of DFT
of Perdew et al. (PPLB) for noninteger systems must be used.7,8

The partition theory was developed further as the foundation
of a formulation of chemical reactivity theory (CRT)5 free of
the inconsistencies arising from derivatives of properties of
reactants with respect to electron numbers in the original
formulation of DFT-based CRT.9,10 A very simple analytic
illustration of PT has been worked out in quantitative detail.11

Finding the ground states of the parts is a constrained
optimization problem like that of a typical electronic ground-
state problem with a given nuclear configuration but with the
added constraints that the electron densities of the parts add up
to that of the molecule and that their electron numbers add up
to the integer electron number of the molecule. In PT, a
reactivity potential is introduced as a Lagrange multiplier of
the density constraint and an internal chemical potential equal
to the negative of the ionization potential of the molecule as
that of the number constraint. For such constrained optimizations

the Car-Parrinello (CP) method is ideal.12,13 However, in the
CP method as originally formulated, the Lagrange multipliers
are adjusted at each iteration step. To do so for the reactivity
potential would require at each step computation of a two-point
susceptibility for each part, summing them, and inverting the
sum, a prohibitively complex task.14 Accordingly, we introduce
here two modifications of the CP method. In the first, the
reactivity potential is treated as a dynamical variable in parallel
with the analogous treatment of the expansion parameters of
the Kohn-Sham (KS) wavefunctions,15 presuming prior knowl-
edge of the molecular electron density and ionization potential.
In the second, such prior knowledge is not required, and the
ground-state properties of the molecule and of its parts emerge
simultaneously as the iteration proceeds.

The paper is organized as follows. The partition theory is
reviewed briefly in section II. The new, dynamical version of
PT is described in section III for the case where prior knowledge
of the molecular electron densitynM(r ) and of the molecular
chemical potentialµM exists. That version is generalized in
section IV to the case where no prior information for the
molecule exists; it allows the molecular and partition problems
to be solved simultaneously. We conclude in section V with a
discussion of the computational feasibility of the two methods.

II. Partition Theory

We consider an arbitrary molecule M in its ground state for
a given atomic configuration. LetnM(r ) be the electron density
and the integerNM ) ∫nM(r ) dr be the total number of electrons
in the molecule. The corresponding ground-state energyEM is,
according to the Hohenberg and Kohn (HK) theorem,6 a
functional ofnM(r ), EM[nM(r )], which is minimized by the actual
ground-state density. We presently assume that we have solved
the ground-state molecular problem; i.e., we know the nuclear
configuration,nM(r ) and the ground-state energyEM[nM]. We
also know the chemical potentialµM of the molecule, which is
equal to minus the ionization potential of the molecule. The
partition problem can be formulated as follows. “How can the
total energy functionalEM be replaced by a sum of energy
functionals ẼR of constituent parts which can be used to a
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rigorous partition of the total charge density into a sum of semi-
positive definite partial densitiesñR(r )?” The partial densities
do not necessarily integrate to integral numbers of electrons,
i.e., theÑR ) ∫ñR(r ) dr are in general not integers because the
constituent parts interact among themselves. To solve this prob-
lem, we mustextendthe definition of the energy functional to
systems with noninteger electron numbers. The correct way of
doing that is by adopting the Perdew-Parr-Levy-Balduz
(PPLB) ensemble density functional theory.7,8 Following PPLB
we write ÑR ) pR + νR, wherepR is a semipositiVe definite
integer and 0< νR e1. The partial energy functionalẼR is
then given by the PPLB density functional of the part regarded
as isolated but with its nuclear configuration identical to that
in M,

The functionalẼR has continuous piecewise linear dependence
on ÑR in consequence of the discrete convexity of the ground-
state energy of integer bound systems.5,7,8The partition problem
is then solved by minimizingEPT ) ∑RẼR with the constraints
nM(r ) ) ∑RñR(r ), NM ) ∑RÑR. The present paper deals with
how this can be done efficiently in practice.

According to KS, the molecular density can be represented
as nM(r ) ) ∑i)1,NM|ψi

M(r )|2 in terms of single-particle or-
thonormal orbitalsψi

M(r ). The functionalEM takes the form

whereVM(r ,RM) is the external potential of the nuclei, andF[nM]
is a universal functional of the densitynM. The KS construction
allows us to replace the minimization ofEM with respect to the
densitynM(r ) with the minimization ofEM with respect to the
ψi

M(r ) subject to orthonormality constraints. For the parts, the
KS prescription can be generalized to nonintegral electron
numbers by defining:4,5,7,8

Equations 3 require specification of the orthonormal orbitals
ψi

p(r ) for the integerp ) pR and for p ) pR + 1 and of the
noninteger occupation number componentsνR. Thus, varying
(pR,νR) is equivalent to varyingÑR. The generalized minimiza-
tion problem forEPT with respect to the variablesψi

p(r ) p ) pR
andp ) pR + 1 andÑR is thus subject to the constraints

Using the technique of Lagrange multipliers, this is equivalent
to finding the infimum16 of the functionalGPT[{np(r )},{pR,νR}]
given by

HereEPT is given explicitly by

and the KS form is used forER[np]

whereVR is the external potential of the nuclei of partR in
their positions in M. In eq 7λij

p, VR(r ), and µR are Lagrange
multipliers that impose the constraints (4)-(6), respectively. We
call VR(r ) the reactiVity potential.3-5 It acts as an external
potential on the electron densityñR(r ) to impose the condition
∑RñR(r ) ) nM(r ) and serves as a proxy for the mutual interaction
of the various fragments. We also require that the chemical
potentialµR is fixed and equal toµM,4,5 i.e., the known chemical
potential of the molecule; the corresponding term in eq 7 simply
says that each fragment experiences the same chemical potential.

Note thatẼR[np, pR, νR], eq 1, is the exact KS functional of
part R. It has the correct derivative discontinuinities at integer
ÑR, i.e., atνR = 0, 1. Although approximate functionals can be
used for the individual components ofẼR, ER[npR] andER[npR+1]
having integer electron numbers, the continuation of such
approximate functionals to a noninteger number should not be
used forẼR. Otherwise, a risk of substantial loss of accuracy
could result.

In the conventional Car-Parrinello (CP) minimization pro-
cedure, imposing the orthonormalization of theψi

p(r) by
calculating the Lagrange multipliersλij

p does not pose particu-
lar difficulties.13 On the other hand, calculating the reactivity
potential via that methodology is impractical because it would
require calculating an electronic response function (an inverse
susceptibility) each time that the constraint (6) is imposed during
CP iterations. We therefore regard eq 7 as a Legendre
transformation from the variables ({ψi

p(r )}, {pR, νR}) , con-
strained by eqs 5 and 6, to the variables ({ψi

p(r )}, {pR, νR},
VR(r )) of which only the{ψi

p(r )} are constrained (by eq 4).
Optimization of the PT functionalGPT[({ψi

p(r )}, {pR, νR},
VR(r ))] in eq 7 supplemented only by the orthonormality con-
straints isequiValent to the optimization of the same functional
supplemented by the constraints (4)-(6). We use the phrase
optimization ofGPT for the search of its stationary point because
the latter is a saddle point, minimal with respect to theψ but
maximal with respect toVR, as discussed further in section III.

An initial choice of{pR} must be made before iteration on
the values of theψi

p andνR can start. They can be chosen via
conventional chemical arguments, e.g., the anticipated formal
oxidation states of the parts. For a given initial choice, no
minimum may be found as theνR vary. Instead, an infimum
could be found with respect to one or moreνR at the end points
0 or 1 of their ranges. If found forνR v 1 , thatpR has to be
increased by one and the search resumed. IfνR V 0 , thatpR is
to be decreased by one and the search resumed.

ẼR ) (1 - νR)ER[npR
] + νRER[npR+1] (1)

EM[nM] )
1

2
∑

i
∫(∇ψi

M/)‚(∇ψi
M) dr +

∫VM(r ,RM) nM(r ) dr + F[nM] (2)

ñR(r ) ) (1 - νR)npR
(r ) + νRnpR + 1

(r )

np(r ) ) ∑
i)1,p

|ψi
p(r )|2 p ) pR, pR + 1 (3)

∫ψi
p/(r ) ψj

p(r ) dr ) δij (4)

∑
R

ÑR ) NM (5)

∑
R

ñR(r ) ) nM(r ) (6)

GPT[{np},{pR,νR}] ) EPT[{np},{pR,νR}] -

∑
R

∑
p)pR,pR+1

∑
i,j)1

p

λij
p(∫ψj

p/(r ) ψi
p(r ) dr - δij) -

µR(∑
R

ÑR - NM) + ∫VR(r )(∑
R

ñR(r ) - nM(r )) dr (7)

EPT ) ∑
R

{(1 - νR)ER[npR
] + νRER[npR+1]} (8)

ER[np] )
1

2
∑
i)1

p ∫(∇ψi
p/)‚(∇ψi

p) dr +∫VRnp dr + F[np]

p ) pR, pR + 1 (9)
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Next we discuss a strategy to optimizeGPT based on
dynamical equations of motion which constitutes a generaliza-
tion of conventional CP theory.12,13 In particular, we consider
in the next section the case in which the molecular density
nM(r ) is known, and the case in which the molecular density is
unknown is considered in the subsequent section. In the latter
case, the dynamical optimization is used to generatesimulta-
neouslythe density of the parts and of the molecule.

III. Dynamical Optimization of the PT Functional;
Molecular Density Known

Dynamical minimization of the KS energy functional was
introduced in (12). This approach can be naturally extended to
the PT functionalGPT, the derivatives of which with respect to
the variables ({ψi

p(r )}, {pR, νR}, VR(r )) can be easily calcu-
lated. We discuss here the particularly simple case of optimiza-
tion by steepest descent/ascent (SAD) dynamics. Generalization
to more efficient optimization schemes, such as damped mole-
cular dynamics13 and, even better, conjugate gradient dyna-
mics,17-20 is straightforward and will be discussed in a future
paper on the numerical implementation of the PT methodology.

Given a generalized functionalF [{X}] depending on a set
of fields{X}, SAD optimization amounts to solving numerically
the following set of ordinary first-order differential equations
in a fictitious time variable:

In eq 10Γi is a member of a set of friction coefficients that
control the SAD dynamic response of the variables{X}.
Numerically, eq 10 is solved by finite differences in time starting
from an initial guess{X} (t ) 0). The trajectory generated by
eq 10 approaches a stationary point{X}0 at sufficiently large
t whenδF /δ{X} f 0, signaling, for example, that the system
approaches a saddle point ofF located on the separatrix of the
basin of the initial guess. The stationary point{X}0 does not
depend on the parameters{Γ}, which are free to be chosen to
speed up convergence.

Application of the SAD optimization procedure to the
partition problem leads to the following equations:

Equation 11 resembles the usual equation for SAD minimization
of the KS functional in conventional CP theory.13 HKS

p is the
KS Hamiltonian of partR depending on the set of orbitals
{ψi

p} with p ) pR or p ) pR + 1. However, the presence ofVR

in GPT, augmenting the nuclear electrostatic potential in its
dependence on∑RñR, forces an interesting change. AsGPT is
minimal with respect to theψi

p, Γψp must be positive so that
integrating eq 11 over time forces the steepestdescentin the

ψi
p subspace. Similarly,GPT is convex with respect to theνR,

as its Hessian in theνR subspace is just the hardness matrix
ηRâ defined in (5), which is positive definite. On the other hand,
asVR is an external potential,GPT is concave with respect to it,
so ΓVR must be negative to enforce steepestascenttoward the
stationary point, a maximum in the subspace containingVR and
orthonormalψi

p. The Hessian ofGPT there is simply

whereøR is a positive-definite susceptibility defined in ref 5 as

Vext can be any external potential,VR for example. Eachøp is
positive definite, and so therefore areøR and øR via (17) and
(16). GPT is therefore concave with respect toVR, as stated
above. The stationary point is a saddle point, and the search
for it is an optimization in the general sense, not a minimization
of GPT. Moreover, the stationary point is unique becauseGPT is
everywhere concave with respect toVR, and theER[np] have
unique minima and by conjecture5 their ensemble possesses
discrete convexity for givenVR. One can illustrate that unique-
ness by integrating eqs 11-13 over successive small time
intervals and observing that the resulting increments always
move the system toward the sole stationary point.

Finally, we note that in eq 13, the chemical potentialµR
R of

R in the presence ofVR is taken as the difference in the total
energiesER. If the density functionals employed in actual
computations were exact, this difference would be identical to
the corresponding KS HOMO eigenvalue forpR + 1. However,
for small systems like the parts, inaccuracies in the usual
approximate density functionals can cause the KS HOMO to
differ significantly from the total energy difference, which, in
fact, gives a better approximation than the KS HOMO to the
ionization energy. Nevertheless, of the two choices forµR

R, the
KS HOMO in the presence ofVR must be used. The asymptotic
behavior of the density of each partR is controlled by the KS
HOMO eigenvalue ofpR + 1 in the presence ofVR. Similarly,
the asymptotic behavior ofnM is controlled by the KS HOMO
eigenvalue of M. The constraint (6), as imposed through the
evolution of VR via eq 12, enforces the equality of the KS
HOMO eigenvalue for each partR with that of M. Conse-
quently, it is the KS HOMO eigenvalues of the parts that must
be used for theµR

R in eq 13, and not the difference in total ener-
gies EpR+1

R - EpR

R , and similarly for M, when approximate
density functionals are used. However, the usual care should
be taken to avoid the introduction of multiple minima by such
approximations.

The Lagrange multipliers that impose orbital orthonormality
in (11) are calculated in the usual way.12,13For each partR, eq
11 amounts to computing two different SAD trajectories, one
for the set of orbitals{ψi

pR} and one for the set of orbitals
{ψi

pR+1}. If the integer numberspR do not vary during SAD
minimization, i.e., only the fractional occupationsνR change,
eqs 11-13 solve completely the optimization problem of PT.
A special problem arises when the numberspR increase or

ΓiẊ i ) - δF
δXi

(10)

Γψpψ̇i
p(r ) ) -[(1 - νR){(HKS

p + VR)ψi
p(r ) -

∑
j

λij
pψj

p(r )}]δp,pR
- [νR{(HKS

p + VR)ψi
p(r ) -

∑
j

λij
pψj

p(r )}]δp,pR+1 (11)

ΓVR
V̇R(r ) ) -[∑

R
ñR(r ) - nM(r )] (12)

ΓνR
ν̆R ) -[ER[npR+1] - ER[npR

] - µM] ) -[µR
R - µM] (13)

ER[np] ) E[np] + ∫VR(r ) np(r ) dr (14)

δ2GPT

δVR(r ) δVR(r ′)
) -øR (15)

øR ) ∑
R

øR (16)

øR ) (1 - νR)øpR
+ νRøpR+1 (17)

øp ) -
δnp

δVext
(18)
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decrease by a unit in the course of SAD minimization, as
discussed above. This situation can be dealt with by addingSp

supplementary orbitalsψk)p+1,p+Sp

p to the orbitalsψi)1,p
p that are

used to define the starting point of the SAD trajectory. The
supplementary orbitals do not enter in the definition of the
electron densitynp(r ), on which the KS HamiltonianHKS

p

depends. They evolve as virtual orbitals; i.e., they follow an
SD trajectory determined by the KS HamiltonianHKS

p + VR

and are subject to the constraint of orthogonality to the occupied
orbitals ψi)1,p

p and to the constraint of orthonormality among
themselves. Whenever, during a trajectory, ap increases by
unity, the virtual orbital corresponding to the lowest unoccupied
KS eigenvalue becomes an occupied orbital and begins to
contribute to the electronic densitynp(r ). At the same time the
set of virtual orbitals is reduced by a unit. Correspondingly,
whenever ap decreases by unity, the set of virtual orbitals
increases by a unit. This procedure entails derivative disconti-
nuities in the SAD trajectory. The discontinuities in the
quantities themselves are however small because when an empty
orbital starts to become occupied or a filled orbital starts to
empty the resulting change of the electron density is very small.

IV. Dynamical Optimization of the PT Functional;
Molecular Density Unknown

Absent PT, obtaining the molecular densitynM for a given
nuclear configuration{RR} via the CP method using SD
dynamics requires solving the standard CP equation by iteration,

with the result that at the stationary point,

where the symbols in eqs 19 and 20 take on their standard
meanings,εM

M in particular being the KS HOMO eigenvalue. In
eq 20, we deliberately use the KS HOMO of M instead of the
ground state energy differenceEM(NM) - EM(NM - 1) in accord
with the above discussion of the consequences of inaccuracy
in the density functionalEM[nM]. The densitynM has the
standard form

Equations 19 and 11-13 are to be solved in parallel by iteration,
using at a given stage of iteration of eqs 11-13 appropriate
intermediate values ofnM from eq 21 andµM from eq 20 as the
values ofnM andµM in eqs 11-13. How close the iteration of
eqs 11-13 has to track the evolving value ofµM andnM remains
to be investigated. When iteration of both equations is complete,
ground-state values for both the parts and the whole will have
been found.

So far we have assumed that the nuclear coordinates{RR}
are fixed. It would be straightforward to allow for nuclear
relaxation by extending the optimization procedure also to the
nuclear coordinates as done in the standard CP approach.12,13

V. Discussion

In ref 5 PT has already proved its worth in providing a sound
foundation for chemical reactivity theory. At issue is whether,
in regard to CRT, computation of the reactivities defined in ref
5 is feasible. Also, given the immense effort poured into the

atoms in molecules theory (AIMT), now subsumed within PT,
it is reasonable to expect further conceptual advances from PT.
Remaining at issue, then, is whether quantitative results can be
obtained with PT, for example values of the reactivities defined
in ref 5. In the present paper, we have worked out modifications
of the standard CP formalism for the casesnM andµM, known
or unknown. Thus whether PT can be made quantitative
devolves to the computational complexity of these procedures.

There areA parts and each part has two components. Treating
the parts as having the same sizeN for the first case,nM known,
the computational complexity of the partition scales as 2AN3 if
the presence of VR does not significantly delocalize theψi

p,
because computingVR and theνR does not add significant
computational complexity. The complexity of gettingnM and
the {RR} by an ordinary CP computation scales as (AN)3. The
ratio of the two complexities is 2A-2. With A significant for
large systems, carrying out the partition does not add signifi-
cantly to the computational complexity of the original study of
M. This conclusion does not change if the partition and finding
nM and{RR} are carried out simultaneously, the second case.

We conclude that PT is computationally feasible for all
systems to which the ordinary CP method can be usefully
applied and in which the presence ofVR does not delocalize
ñR. When that condition is violated, one must carry out (2A +
1) computations of complexity (AN)3, severely limiting the size
of the systems which can be embraced by PT. Determining
whether delocalization is introduced byVR is thus a pressing
issue for PT. The nearsightedness concept21,22suggests, however,
thatVR probably does not delocalize thenR in the general case.

There is an alternative to the PPLB form ofẼR of eq 1, a
continuous interpolation ofER[np] of eq 9 betweenpR andpR
+ 1.23,24,25Using such a form forẼR would reduce the number
of ψi by a factor of∼2, but at the cost of significant loss of
accuracy in the density functional. Added to the existing
inaccuracies of the density functionals for the integer number
is the inaccuracy of the very complex mapping of the PPLB
ensemble DF into a functional of a single density with
noninteger number. For now, PPLB is preferred.
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