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Data Collaboration is a framework designed to make inferences from experimental observations in the context
of an underlying model. In the prior studies, the methodology was applied to prediction on chemical kinetics
models, consistency of a reaction system, and discrimination among competing reaction models. The present
work advances Data Collaboration by developing sensitivity analysis of uncertainty in model prediction with
respect to uncertainty in experimental observations and model parameters. Evaluation of sensitivity coefficients
is performed alongside the solution of the general optimization ansatz of Data Collaboration. The obtained
sensitivity coefficients allow one to determine which experiment/parameter uncertainty contributes the most
to the uncertainty in model prediction, rank such effects, consider new or even hypothetical experiments to
perform, and combine the uncertainty analysis with the cost of uncertainty reduction, thereby providing guidance
in selecting an experimental/theoretical strategy for community action.

1. Introduction and is used to predict an observab¥p, say a product
concentration,Y, at conditions P. The initial information
available is the range of uncertainty for each of the rate
constants. This is shown in the top left panel of Figure 1, where
the area colored in green designates kirek, space corre-
sponding to the individuat; andk; spans. In other words, the
green area represents the setlaf k) pairs that satisfy the
given initial information; we refer to this set as prior knowledge
and designate it by the lettéf.

For every ki, ko) point in H, there is a model predictior,
or all k1, ko) points inH, there is a set of predictions, which

Predictive ability of chemical kinetics models, as of models
in general, is one of the most sought after characteristics that
underlie scientific activity in reaction chemistry. Reliable model
predictions are needed for both establishment of poorly under-
stood reaction mechanisms and quantitative application of
established mechanisms. The current level of predictiveness in
most cases is far from satisfactory, and one is interested in
identifying possible actions that could measurably improve it:
What causes/skews the model predictiveness? Are there ne
experiments to be performed, old ones to be repeated, and/o ) B o
theoretical studies to be carried out? What impact could a .are'shown. n Elgure 1‘?15 the blue surface for COﬂd!tIOﬂS P. Also
planned experimental work have? What would it take to bring |.nd.|cated in Figure 1 is the. span of yalues predicted Yar
a given chemical kinetics model to a desired level of accuracy? limited from below by the minimum point of the blue surface,
In the present report, we present an approach to address suchPmin @nd from above by the maximum one, e
questions. Let us now assume that we perform a new experiment, A,

The mathematical quest for the model predictiveness typically O the reaction system and that the obser¥edat these
relies upon sensitivity analysis? parameter tuning/ conditions is inferred from measurements to be within the

optimization5-14 and propagation of errof4:21 The two-stage  "@Ng€ Yamin, Yamay). We ask this: what is the span of the model
approach is common: estimation of model parameters and theirPredictions for observabl¥ at conditions P, Y min Yp.may,
uncertainties (generally, from experimental data) followed by 9iven as before thdg andk, are constrained to their respective
the analysis of the influence of the estimated parameter valuesPrior ranges of uncertainties}, and now with an additional
and uncertainties on model prediction. So doing commits to best- condition that the model prediction for the new experiment must
fit parameter values, often having individual, uncorrelated D€ within the uncertainty of its observed valug fin, Ya,ma)?
uncertainties. In an alternative approach, one transfers uncertain-This is illustrated in the top right panel of Figure 1: only part
ties in the experimental data into model prediction directly. The Of the green area satisfies the compound condition thak)
most common techniques for this use Bayesian metPids. IS within H and the predicteda is within the §/amin, Yamax)
The same goal can be accomplished with some loss of statisticaf@nge. This smaller area is colored in red and referred to as a
information (e.g., the structure of distributions) but with an feasible setF. As a consequence of the smalket-k, domain
enormous gain in computational efficiency by a deterministic Of the feasible set, as compared to the prior knowledge, the
method we call Data Collaboration. The mathematical formalism span of predictedrp (i.e., the range of the red surface) is
of Data Collaboration is presented in refs-228 and briefly decreased.
reported in the next section. Here, we illustrate the underlying  Performing another experiment, B, results in further reduction
ideas with the following pictorial example. in the possiblek;, ko) values, that is, in a smaller feasible set.
Consider a chemical reaction system that is described by aHowever, the smaller feasible set does not necessarily lead to
kinetic model with two parameters, rate constakitsind ko, the reduction in the span of predict&g, as illustrated in the
bottom left panel of Figure 1. Yet another experiment shrinks
*To whom correspondence should be addressed. E-mail: (T.R.) POth the feasible set and the prediction interval, as shown in
trussi@berkeley.edu; (M.F.) myf@me.berkeley.edu. the bottom right panel of Figure 1.
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Figure 1. lllustration of model prediction on the feasible set (see text).

This example illustrates the way experimental data increase underlying modef3~26 An observable)Y, is experimentally
our knowledge of the system of interest: a new experiment measured and modeled using a reaction kinetics sydteima
reduces possible combinations of parameter values, therebymodel predictingy, andd is the measured value. The measure-
decreasing the range of variability (i.e., uncertainty) in a model ment has an uncertainty bounded bjrom below and byu
prediction. The methodology of Data Collaboration formalizes from above,| < M — d < u. The triple of measuremenm,
the “transfer” of the uncertainty in a given experimental uncertaintyl andu, and modeM for a given set of conditions
observation (or theoretical evaluation) to the uncertainty in a is referred to as a dataset unit. A collection of dataset units,
desired model prediction and does so by imposing all (experi- whose elements are indexeddésanging from 1 tam, is referred
mental and theoretical) constraints at once. At the same time,to as a dataset.
satisfying an increasing number of constraints shrinks the Each modelMe, has a functional dependence on a set of
parameter feasible set, which may (but often doeg*Rdt model parameters, active variablss. Different models may
decrease the uncertainty in the parameter values as well.have different active variable sets with some in common and
Typically, the geometry of the feasible set is very compte®.  some unique to each. Their union is denotee UT", X.. The
Data Collaboration, which fully exploits the properties of the valuex of each parametex; is bounded by prior knowledge,
feasible set, treats the feasible set geometry as a “derived”expert-assessed uncertainties of the foghn < X < X max
feature in information transfer from data to prediction. Collectively, all dataset parameter values,span the prior

In previous studies, we addressed the collaborative featuresknowledge “hypercubeH = {X € R": Ximin < X < Ximax -
of this approaci# mutual consistency of a set of experi- The component-wise projection &fonto the active variables
ments?425and discrimination among competing reaction mod- X is denotedx.. The subset of the hypercube satisfyiiags
els?8 In the present study, we return to our initial objectiie:  Me(xe) — de < U for all dataset units is referred to as the feasible
model prediction. We show that Data Collaboration allows one set,F.
to assess the propagation of uncertainty more deeply, determin-  The feasible set expresses the collective constraints imposed
ing which experiment/parameter uncertainty contributes the mostby experiment and theory. One of the essential features of Data
to the current uncertainty in model prediction, ranking such Collaboration is making model predictions while constraining
effects and considering new or even hypothetical experiments, model parameters to the feasible set. The underlying numerical
thereby providing guidance in selecting next experiments to methods are Solution Mappirig;3°polynomial optimizatiors:
perform. and semidefinite programmirtg:32

We begin with a brief description of Data Collaboration
concepts and definitions in Section 2. We then present the new3. Problem Statement
mathematical developments regarding experiment and parameter
uncertainty in Sections 3 and 4. Finally, we demonstrate these
new developments with several examples in Section 5.

Given a dataset composed of several dataset units, we seek
to quantify the influence of each dataset unit on the prediction
of an unmeasured observabMe We do not have the measure-
ment, but have a modelVp, designed to reproduce the
observable. This model is dependent on a set of paraméters

Data Collaboration is a framework designed to make infer- a subset o, and evaluating it at any point in the feasible set
ences from experimental observations in the context of an yields a valid model prediction.

2. Data Collaboration
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A concise way to represent the uncertainty in this prediction
is to form a prediction interval that encloses all valiscan
take over the feasible set. The length of this interval

Rep = 1)

TE?-:XMP(XP) — min Mg(Xp)

is the uncertainty in predicting the unmeasured observgble
with the subscripF serving as a reminder of the dependence
of the prediction range on the feasible set. The objective of the
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bounds X min, Ximax Le, and Ue. For clarity in subsequent
manipulations, these are notated as

— My — My My Mg
;uLe 8Le J ILLUe - aUe’ ‘liLe - 8Le' &Ue - aUe
- Mp  — M BMP
[u = — , =—,
Xi,min 8Xi,min X, max axi,max ‘Iixl min ax1 min
Mp )
T 5
—max 8X1 max

present study is assessing the influence of the quantified dataset

uncertainty (reported uncertainties in each experiment and in

The sensitivity coefficients conceptually defined in eq 2 are

each parameter of the dataset) on the length of the predictionformulated as

interval. This could be done through a brute force approach
by, for instance, excluding an experiment or reducing its
uncertainty by half and recomputing the prediction interval.

Here, we develop a methodology of assessing the influence by

quantifying the local dependence of the prediction interval on
the experiment and parameter uncertainties. For this purpose
we introduce sensitivity coefficients

d(prediction interval)
d(uncertainty ind) * '

d(prediction interval)
d(uncertainty inx)

P/\a
e

)

that provide measures of how much the prediction inteRgal
changes when the uncertainty in measurendgtr parameter

X is perturbed. The explicit expressions fos and v's are
developed in Section 4. An important feature of our method is
that the sensitivity coefficients are obtained while computing
Reg. This makes it computationally feasible to evaluéiteand

v’s for manyMp's, an aspect utilized in Section 5.3.

4. Sensitivity Coefficients

4.1. Mathematical ExpressionsWe begin development of
expressions forlf; and v:’ by rewriting the experimental
constraintde < Mg(Xe) — de < Ue @SLe = Mg(Xe) < Ug, Where
Le = le + de andUe = U + de, and expressing the length of the
prediction interval introduced in eq 1 & = Mp — Mp
where

Mpz maxMg(Xp)
X
subiect to: Ximm % <X1max fori=1,...,n (3)
) Le=MJx)=U, fore=1,...m
Mp = min Mp(xp)
X
: lem X1 X1max fori:1,...,n
subject to: {L =< M(xo) = Ug fore=1,....m )

The constrained optimization, formulated in egs 3 and 4, is
in general nonconvex and thus difficult to solve exactly. Our
method for tackling such problems, described in Section 4.2,
yields Lagrange multipliers that are essentially partial derivatives
of the maximumMep and minimumMp to the constraining

lP_‘(ﬂL +ﬂu +ﬂ|. +ﬂu)

=5 (”x e T 00 (6)

We now justify these expressions, focusingﬂim the sensi-
tivity coefficients with respect to experiment uncertainty. The
sensitivity coefficientSViP with respect to parameter uncer-
tainty are derived in an analogous manner and are omitted for
brevity.

Assume that a dataset experiment, for exanglis, repeated
with the objective of increasing its accuracy by reducing the
length of its uncertainty intervalJe — Le. We introduce €
[0, 1] to be the fraction reduction in the uncertainty interval.
When repeating this experiment, the measured vdlumay
also change, and so we defioeas a shifting factor, taking
values between-1 and 1— . This range ofa is chosen so
that the new interval intersects the old interval at least at one
point. Using these definitions, we introduce functions

Leo =Le+ AL,
Ueo = U T AU, @)
whereALe = (a0 + B)(Ue — Le) and AU = a(Ue — Lg). As a

takes on values from-1 to 1— f3, the family of intervals [,
Ueo] parametrizes all intervals of length (1 8)(Ue — L¢) that
intersect Le, Ug]. The following derivation considers this family
of intervals, because while the measured data from the repeated
experiment will fix o, it is unknown a priori.

The change in the prediction interval due to changekein
andUe can now be expressed as

ARy = AMP — AM,

@ (—u ALe+py AUQ — (g AL — 1y AUY)

O) [~ (0 + ) + g @ — (0 + ) + g @l (U~ L)
(8)

where @) comes from finite difference approximations to the
partial derivatives in eq 5, and)(is from the use of the relations
in eq 7. Because the remeasured valuglofand hencen, is
unknown, we focus on the average valueAd¥-r. Employing
the finite difference approximation (eq 8a) and takingo be
symmetrically distributed over its range 1, 1 — /3] results in

1 — f—
averageARer ~ — 3 (u +uy, T o +uy)BlUe — L) (9)
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Noting that—f(Ue — Le) = A(uncertainty inde), the interpreta- 04

tion of /15 as given in eq 2 results by dividing eq 9 by + £S5

A(uncertainty inde) and taking the limit as\(uncertainty in Ao CH3 StC6 OHS§ G 64

de) approaches zero. | I II.
4.2. Evaluation Method.We begin this section by recapping g 5 i EilF

pertinent results of optimization theot¥,focusing on con-

strained optimization and sensitivity interpretation of Lagrange A7 Oth

multipliers. We then discuss how the special case of quadratic
cost function and quadratic constraint functions, those employed 0 bl 55 S I i n"
by the Data Collaboration, gives rise to more refined results. 0 10 20 30 40 50 60 70

Consider a constrained optimization problem EEpRrimant. 8
Figure 2. Sensitivity coefficients of the prediction interv@}, g with

p*= min f(x) respect to the uncertainties of the remaining 76 dataset experiments.
XeRN The top panel uses an uncertainty of 0.1 for all experiments; the ranking

. . of the top sensitivities ise = 37, 64, 17, 72, 35, 74, 22. The bottom
subjecttag,(x) <Ofori=1,...,m (10) panel uses different sensitivities (see Section 5.2); the ranking of the

top sensitivities is:e = 37, 64, 57, 72, 74, 34, 17, 22.
where a real-valued functionis minimized, subject to several
inequality constraints involving the minimization variable. The tional sensitivity analysis. Then, we introduce a means to gauge
dual optimization, which introduces Lagrangian multipliers, is the general impact of an experiment in a dataset by averaging
the sensitivity coefficients determined for multiple model

d* = maxmin f(x) + 1'g(x) predictions. We conclude with the formulation and solution of
A€RT xeR" two related resource allocation problems that might guide further
subjecttal, = Ofori=1,...,m (11) experimentation by accounting for the cost associated with
reducing experiment/parameter uncertainty.
The inequalityd* < p* always holds. Moreover, ip* is We illustrate the methodology with the dataset used in our

written as a function of nonzero constraint bounds, namely  prior studies’* 26 namely the GRI-Mech 3.0 datas¥tThis is
a collection of models and experimental results used to study

p*(u) = min f(x) chemical kinetic models of pollutant formation in combustion
xeR" of natural gas. The GRI-Mech 3.0 dataset consists of 77 dataset
subject tog(x) < u fori =1, ...,m (12) units (experimental targets) and a 102-dimensional parameter

vector. The model in each dataset unit is a quadratic surrogate,
and if A* is the (vector) optimizer for the Lagrangian dual EXPressing log of the experimental target in terms of lo®f
problem in eq 11, the bound parameters (typically pre-exponential factors of the Arrhenius

expressions), normalized to take values betweénand+1.

p*(u) = d* — A*Tu (13) Due to insufficient records of experiment uncertainties even

for such a well-documented case as GRI-Mech 3.0, an atrtificial
holds for allu € R™ Note that large entries df* imply high yet realistic assignmeihie = de — 0.1 andUe = de + 0.1 was
sensitivity of the optimum value in eq 12 to constraint tightening used for “nominal” uncertainties of all dataset unéss 1, . .

(negative values for entries aj, while small values imply low ., 77. As the uncertainty level of each dataset unit can influence
sensitivity to constraint loosening. the analysis, at the suggestion of an anonymous reviewer we
Recent results in optimizatiéfh® state that if the functiof extended the example using nonconstant experimental uncer-

and the functiongj; are quadratic functions, then the problem tainties. The parameter uncertainti®&smjn, Ximay, for i =1, .
(eq 11) is readily solved by semidefinite programming (SDP), . ., 102, were taken as report&dThe results of Sections 5.1,
and the optimal* is obtained. However, because the second- 5.3, and 5.4 were obtained using the 0.1 uncertainty level, while
order terms of andg; are not necessarily positive-semidefinite, Section 5.2 considers nonconstant levels.
it is not the case that the original problem (eq 10) is necessarily 5.1. Direct Evaluation of Sensitivity Coefficients.As a
easily solved. Therefore eq 13 is quite useful; it provides a lower concrete example, we considered the observable of the GRI-
bound and quantitative sensitivity information about the solution Mech 3.0 dataset unit 71,7, the laminar flame speed in a
to a problem that is difficult to solve. stoichiometric atmospheric ethane-air mixfiirgarget StF8 of

In application of Data Collaboration to nonlinear dynamic GRI-Mech 3.3%. We ignored the measured flame speed 40.2
models, the dataset-unit modeld are approximated by  cm/s of this observable and removed its unit from the dataset.
quadratic surrogate functions of active variafte®;?’and hence ~ Taking Mp to be M54 in eq 1, the Data Collaboration analysis
the prediction optimizations are converted to quadratic optimiza- predicted the interval [34.5, 58.4] cm/s based on the dataset
tions. As discussed above, the optimal Lagrange multigler ~ comprised of the remaining 76 units. The length of the prediction
is obtained reliably and efficiently using SDP. The partial interval in this case i®1f = M71 — M71 = logio 58.4— 10gso
derivatives used in eq 5 are approximated by the components34.5. The analysis also yielded the sensitivity coefficietiis
of 1*. As eq 13 holds for alLl, the entries ofl* may be for each of the experimengz 1,..., 70, 72, R anq71
considered to be “global sensitivities”. for each parametdrin the dataset, which are displayed in the
top panel of Figures 2 and 3, respectively.

Inspection of the top panel of Figure 2 reveals that the largest

This section presents several example uses of the sensitivitysensitivity value corresponds to dataset unit 37, laminar flame
coefficients introduced in eq 2. We begin by calculating these speed of a stoichiometric metharair mixture at an elevated
coefficients for a specific case, discuss implications of the pressure of 4.9 at¥f, target F5 of GRI-Mech 3.8 The
computed values, and delineate the difference from the tradi- computed value of the sensitivity coefficient ué% = 0.27,

5. Results and Discussion
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H+0, — O+0H (10) |
OH+CO — H+CO3 (36) |
CH3+CHj — H+C2Hz (60) |
H+CHj (+M) — CoHs (+M) (24) |
H+CHs (+M) — CHy (+M) (17) |

20 40 80 80 100
Parameter, / OH+CHj — CHa2(S)+H20 (34) |
Figure 3. Sensitivity coefficients of the prediction intervi}, g with C3H5+03 — HO2+C2Hy (66) +

respect to the uncertainties in the model parameters; the ranking of the HtOotHoO — HOo+H-0 |
top sensitivities is:i = 10, 24, 36, 60, 66, 41, 2, 32, 62, 97, 3, 88, 34, +02+H20 — HO2+H20 (9)
54. HCO+Hz0 — H+CO+H20 (62) |

H+HCO — Ha+CO (20) f
HO,+CH;z — OH+CH30 (41) |
O+Hz — H4OH (1) }
H4+OH+M — HoO+M (12) |
H+HO, — OH+OH (14) |

-0.1 0 0.1 02
Sensitivity
Figure 5. Logarithmic response sensitivity of laminar flame speed in
a stoichiometric atmospheric ethane-air mixture,, With respect to
reaction rate coefficientsk, 9 In y71/0 In k (blue bars), sorted in
decreasing ordef. The correspondingyi71 is shown as red bars. The

numbers in parentheses refer to the indekthe corresponding model
parameter.

Sensitivity, A

Figure 4. Sensitivity coefficients of the predicted interval with respect the top panel of Flgure_2. The bars in each row pa_raIIeI to the
to the experiment uncertainties performed for each of the dataset units.9"€€N row rank experiments whose uncertainty impacts the
Each GRI-Mech 3.0 modeMs, is predicted in turn using the remaining ~ prediction interval for the particular observable. The bars in the
GRI-Mech 3.0 dataset units. Sensitivities computed for the uncertainty perpendicular direction rank experiments mostly affected by the
in predicting Yz, with respect to the uncertainties of the remaining GRI-  uncertainty of a given experiment.
'Y'le‘:h 3.0 dataset obsegl_aples are r?l%ﬂFle?hI\;ed [?r%eg- Sbens't'vl')tl'es for - The sensitivity information, such as that illustrated in the top
e oo ™ 1 panel of Figure 2 and in Figure 4, have important practical
applications. If one desires to improve the quality of the model
prediction (for an unknown property), the sensitivity spectrum
which projects, from 0.2 A(M71 — M71)/A(Us; — L3y), a identifies possible experiments in the dataset to be remeasured
reduction by 11.7 and 21.1% in the predicted range in the flame with a tighter control of the respective experiment uncertainties.
speed if the uncertainty interval(Us; — Ls7) is reduced by If the desired range of the model prediction is specified, one
factors of 2 and 10, respectively. Computations performed with can perform Data Collaboration computations for a series of
such reduced ranges fo(Usz7 — Ls7) resulted in corresponding ~ “what if” scenarios with varying individual experiment uncer-
intervals [36.8, 58.4] and [39.2, 58.4] cm/s, that is, a reduction tainties, exploring the feasibility of attaining the stated goal and
by 12.5 and 24.4% in the predicted range of the flame speed, establishing a possible experimental strategy. The same numer-
close to the respective estimates 11.7 and 21.1%. ical procedures can be used to explore the impact of performing
The sensitivity spectrum in the top panel of Figure 2 exhibits an additional experiment at a different condition or with a
the effect sparsiff-38—the predicted range is affected signifi- different apparatus. We will continue this discussion in Section
cantly by the uncertainties of only a small number of experi- 5.4.
ments in the dataset, and most have negligible impact on the It is important to emphasize that the results just discussed
prediction. It is noteworthy, as exemplified by the top panel of demonstrate Data Collaboration’s ability to propagate uncer-
Figure 2, that the prediction interval for one type of experiment, tainty from experimental observations to model prediction,
a flame speed, is measurably influenced by the uncertainty of subject to prior knowledge of parameter bounds, in a single
different experimental systems, in this case shock-tube speciesstep. Next, we demonstrate that by using Data Collaboration
peaks € = 64, 17; GRI-Mech 3.0 targets OH.ST8 and we can assess the impact of parameter bounds as well, and that
CH3.StC6, respectively), shock-tube ignitios € 72; target this information is not exactly the same as obtained in the usual
IG.6a), and flame speed at different conditioes< 35, 74, sensitivity analysis.
targets F3 and F1). Figure 3 displays sensitivity coefficients* for the same
The results presented for;¥ sensitivity to various types of  response ok = 71 as in the top panel of Figure 2 but with
experiments and effect sparsity, are not atypical. The calculationsrespect to the parameter ranges. These sensitivity coefficients
can be repeated for different choiceshdé. Figure 4 displays gauge the dependence of the prediction intenRyg, on
the results of 77 such individual Data Collaboration computa- variation in a parameter uncertainty, while the usual sensitivity
tions, performed by designating in turn each of the dataset units coefficients measure the dependence of the predicted \Mkje,
to be the unperformed experiment for which we seek the rangeon the variation in a parameter value. The two sets of
of model prediction based on the rest of the dataset information. sensitivities are overlaid in Figure 5. While there are similarities,
The green row in this figure marks the sensitivities depicted in there are also significant differences between the two sets.



2584 J. Phys. Chem. A, Vol. 112, No. 12, 2008 Russi et al.
40

20} 1 1
0 L L N L L L PR |

Sensitivity, v/,

0 10 20 30 40 50 60 70
Experiment, e

Sensitivity of consistency measure

Figure 7. Sensitivity coefficients of dataset consistency measure with
respect to experiment uncertainty. The top panel displays sensitivities
when time measurements have uncertainty 0.05, flame speeds 0.02,

Fi 6. Sensitivi fficients of th dicted int | with " temperatures 0.01, and all other experiments 01 (inqonsistent dataset).
igure 6. Sensitivity coefficients of the predicted interval with respect 5" piggle panel has flame speed uncertainties increased to 0.05
g’gﬁﬁgﬁtg gnr%?)réillrjcllesigerfrce)rdrincetgdfc?;etiiz ?stti?]e ?steaf:;tug}t?hsacmnconsistent dataset). The bottom panel has time measurement
GRI-Mech 3.0 dataset.H,SensF)itivities computed forgthe uncertainty in uncertainties increased to 0.08 (consistent dataset).
predicting Y;1 with respect to the uncertainties in the 102 model . . .
parameters are highlighted in green. The sensitivities for each GRI- identification of parameters for uncertainty reduction and
Mech 3.0 observable to uncertainty in parameter 10 are highlighted performance of “what if” analysis for such reductions. Perhaps
orange. the primary source for reduction of uncertainty in an individual
parameter has become the use of theory, for example, applying
The “by-value” sensitivities can be either negative or positive; high-level quantum-chemical methods. Data Collaboration uni-
increasing some rate coefficients increases the predicted flamefies experiment and theory; both influence the “extraction” of
speed while increasing others decreases it. On the other handknowledge by reducing the respective uncertainty bounds and
the “by-uncertainty” sensitivities, which are those introduced the results of both are used in unison, as mathematically
in the present work, are only positive; increasing uncertainty equivalent constraints in a single optimization problem. Further
of a parameter can only increase the predicted interval (the sameunification is attained by assigning cost to uncertainty reduction,
is true for the sensitivities with respect to experiment uncertainty, as discussed in Section 5.4.
those displayed in the top panel of Figure 2 and in Figure 4).  5.2. Sensitivity Analysis with Uneven Uncertaintiesin the
Another interesting observation follows from comparison of previous example, an uncertainty of 0.1 for each experiment in
the sensitivity rankings seen in Figure 5. In both measures, the GRI-Mech 3.0 dataset was used. In general, one would
parameter = 10 is ranked highest. However the two sensitivity expect each experiment to have its own uncertainty. We now
measures generally rank other parameters differently. For extend the previous example by giving the experiments differing
example, parameter = 24 is ranked fourth with by-value  uncertainties that are hypothetical, yet not without basis: those
sensitivity but second in the by-uncertainty ranking. Similarly in reaction-progress times were set to 0.05, flame speeds to 0.02,
third-ranked by-uncertainty & 36) is second-ranked by-value. temperatures to 0.01, and the rest were kept at 0.1, as before.
Comparing rankings foi = 17 andi = 24 shows further This essentially created a new dataset with the same observa-
differences worth noting. The by-value sensitivity indicates that tions, de, but different uncertaintiesje.
Mp (M7 in this case) has modest sensitivity to both of these  Making this assignment of uncertainties resulted in the dataset
parameters (fourth and fifth ranked, respectively). By contrast, being inconsistent, meaning there did not exist a parameter
the by-uncertainty sensitivity coefficients are very different, vector that satisfied all the constraift€>To examine the source
namely O fori = 17 (i.e., bottom ranked) yet second-ranked of the inconsistency, the sensitivities of the consistency measure
fori = 24. (as defined in eq 2 in ref 25) to the uncertainty in the
When the optimization in eqs 3 and 4 is constrained only by experiments were computed using the techniques of Data
parameter ranges;,mn < % < X,max the resulting by-uncertainty  Collaboratior?> The highest sensitivities corresponded to the
sensitivity values and spectra overall are close to the by-valueflame speed measurement uncertainties (see top panel of Figure
ones (exactly equal for a linelfr). This result reveals the nature 7). Hence, the uncertainty in the flame speed experiments was
of the difference between the two sensitivity measures. The by-increased to 0.05. Recomputing the consistency measure
uncertainty sensitivity “incorporates” additional information, revealed that the time measurements had the highest sensitivity
originating from experiment uncertainty constraints. coefficients (middle panel of Figure 7). The time measurement
Figure 6 is similar to Figure 4, except that it displays the uncertainties were then set to 0.08, which made the dataset
sensitivity (:oefﬁcien'[s:/iP with respect to parameter uncertain- consistent (resulting in the sensitivities in the bottom panel of
ties for the same 77 Data Collaboration computations. The greenFigure 7).
row in Figure 6 indicates the sensitivities depicted in Figure 3.  An interval prediction on unit 71 was performed using the
For each row parallel to the green row, the bars rank parametersdataset created in the above manner. The experiment sensitivity
whose uncertainty impacts the prediction interval for the coefficients with respect to uncertainty are shown in the bottom
particular observable. The bars in the perpendicular direction panel of Figure 2. They have the same order of magnitude as
rank observables whose predictions are most affected by thethose in the top panel of Figure 2 and exhibit most of the same
uncertainty of a given parameter. peaks. One noticeable difference is the sensitivity to the
The sensitivity information, such as that illustrated in Figures uncertainty in experiment 57 (a time measurement in a shock
3 and 6, can be used analogously to the discussed aboveube experiment, target OH.1a of the GRI-Mech 3.0 datgset
sensitivity spectra with respect to experiment uncertainty: which appears using the newly assigned uncertainty levels and
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0.1 one of the models of the GRI-Mech 3.0 dataset. Coefficients
i Ap and bp are obtained by sampling a standard normal
90_05, distribution and then scaled so that
ARl LS A d|lbpl| L [Ibell (14)
0 = — , an , =
o5 ] ] ‘ ‘ , , . RIIF 77; ellF RIIF 77; ellF
)La\.re
e

o1 where|| || denotes the matrix norm. Equation 14 constrains
' the coefficients of the quadratic form of a random model to be
of similar magnitudes as those of the dataset models and also
5 . . .
- N Lo preserves the relr?mve magnitude of the quadratic tekmas
Experiment, e compared to the linear ternt,. The constant terrop was set

to zero because it does not affect the sensitivitESand v

Figure 8. Average sensitivity coefficients of the prediction interval Ten th d d del ted in thi
with respect to experiment uncertainties. Top panel, averaged over 77 en thousand random maodels were generate '1noz IS manner,

dataset units; bottom panel, averaged over 10 000 random models. and the sensitivity coefficient§4g}.., and {v[} 2 were

computed for each random modgk= 1, . . ., 10000. These
aveo-“ values were averaged over the 10 000 random models to obtain
Vil 28¢ and v, which are displayed in the bottom panels of
02} 1 Figures 8 and 9, respectively. Comparison between the two sets

of results in Figures 8 and 9, the respective random and over-
dataset averages, indicates a general accord in the ranking. This

0_? ] ] , , , ] ] level of agreement is encouraging for the use of the random
vave model approach. For example, the sensitivity of prediction range
e to the uncertainty in experiment 64 is high both when averaged
0.05} 1 over predictions of the GRI-Mech 3.0 observables and when
averaged over predictions of the observables of random models
0 generated by eq 14. On this basis, we conclude that the present
0 20 30 40 50 60 70 level of uncertainty in experiment 64 is likely to affect prediction

Retamaist, of combustion observables within the class of condition covered
Figure 9. Average sensitivity coefficients of the prediction interval by GRI-Mech 3.0. Consequently, such predictions may benefit
with respect to parameter uncertainties. Top panel, averaged over 77 o lowering the uncertainty in experiment 64. Analysis of
dataset units; bottom panel, averaged over 10 000 random models. future actions may take into account additional considerations
and is discussed next.

5.4. Cost-Constrained Uncertainty Quantification.In Sec-
tions 5.1 and 5.3, the Data Collaboration methodology was used
2P . to obtain sensitivities that rank impact of uncertainties in
ment ”.“pa9t- The quantity Ao assesses th? |anu<_anpe of experiments and/or parameters on model prediction. Such
uncertainty in experimerg on the uncertainty in pfe‘?"c““g a sensitivity spectra allow one to identify highest-ranking experi-
specific obsgrvable. can a general measure of the influence Ofments and/or parameters, gain insights on possible future actions
the eth experiment uncertainty be developed? One approach 10y, \gertake for improving model predictability, and test the
obtaining such a measure is to averafiej = 1, .. .,p, from _ developed ideas in “what if" computational scenarios. In
predictions for a diverse set pfobservables. We denote this  :onsidering different scenarios, one introduces additional factors
average bylg". Similarly, " measures the average influence  of 4 practical nature. For instance, it could be easier to remeasure
of uncertainty in paramete. Determination of these average the second-ranked target with a twofold increased accuracy than
measures requires assembling a diverse set of observables ang) reduce the uncertainty of the highest-ranked one by 10%.
constructing their models. In this section we describe two aternatively, it could be easier to use a high-level theory on
different approaches to accomplish these. Both produce closesome top-ranked parameters than to perform new measurements.
results, thereby cross-validating each other. The methodology of Data Collaboration allows one to formalize

_The first approach to obtain a set of diverse observables is 5ych assessments and by doing so to unify on the fundamental
simply to use those already present in the dataset. Thus, Wejeye| experiment and theory. We illustrate the approach with
obtained Ag" and v}*® by averaging over the given set of the following example.

dataset units. These values are displayed in the top panel of e introduce cost function&. and K; associated with

is negligibly small when using the 0.1 uncertainties. It is clear
that each set of uncertainties leads to a specific outcome.
5.3. Averaging Sensitivity Coefficients to Assess Experi-

Figures 8 and 9. o _ _ reduction in uncertainty intervals of experimental observations
_Another avenue to obtaining and modeling a collection of and parameters, respectively. From practical considerations, one
diverse observables is to generate a seanfiom models Mg} knows that higher accuracy in both measurements and numerical

jp:l, that are similar to the dataset mod€lsle} m,. This diverse calculations requires more resources, and this dependence is
set provides a much larger set to average prediction sensitivitiesunlikely to take a linear mathematical form. Also, the cost
over to obtain a more general measure of experiment impact.functions representing this dependence should produce a cost
Each GRI-Mech dataset-unit model is a quadratic function, of zero for no uncertainty reduction and attribute a very large

Me(Xe) = XZAexe + beXe + Ce, WhereAg, be, andce are fitted (or infinite cost) to reducing the uncertainty to zero. Given such
coefficients. A random modelMp, is formulated to have the  cost functions, we pose the following question:
same structure. Active variablesp, of the random models are Given a budgeT, determine the best experimental/theoretical

selected by ensuring that every pair of variables appearing in astrategy for reducing the uncertainty of model prediction for
random model appears together as active variables in at leasthe given respons&pg.
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Figure 10. Cost of reduction in uncertainty of dataset units 37 and 64.
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The solid horizontal lines are constant-budget lines Travén &t 10,

20; they color code the value of the prediction interval computed for dataset uriy £l .according to the color bar displayed on the right of the
figure. The dashed lines are drawn at constant valuéf 17.5, 19.1, and 21.3. The coordinatgs,(cm/s) of the marked points are A (68.8,
11.0), B (185.8, 8.3), C (117.9, 15.2), D (56.0, 18.4), E (83.7, 13.1), an@7R.6, 9.8). The total-cost valu€E, at points C and E are 2.2 and 5.7,

respectively.

To address this allocation problem, we denote the current the given dataset. To present the solution graphically, we limit

uncertainty in the measurement ¥f asdecur = Ue — Le (the
subscript “cur” meaning current), and the cost of remeasuring
Ye with a smaller measurement uncertaintys, as Ke(de).
Similarly, 0icur = Ximax — Xi,min iS the current uncertainty in
parameter;, andK;(o;) is the cost of reducing the uncertainty
in parameter from 6; ¢ to d;. In the following, we denote by
the boldfaced the combined vector of the uncertainties,
containingde fore=1, ..., mandd; fori =1, .. .,n.

the analysis to two variables. From the sensitivity spectrum

given in Figure 2, we select the top two dataset units, 37 and
64, as candidates for uncertainty reduction. The observable of
dataset unit 37 is laminar flame speed of a stoichiometric
methane-air mixture at a pressure of 4.9 afftarget F5 of
GRI-Mech 3.4 and that of unit 64 is half time to the OH
concentration peak in observed in a shock-tube oxidation of
methanée? target OH.ST8.

Recasting eq 1 such that experiment and parameter uncertain- To each of the selected observables, we assign a cost function

ties are allowed to vary, we expreBsg as a function ob:

Rog(6) = m)?XMP(XP) - mxin Mg(Xp)

Le + 0-5(6e,cur - 6e) = Me(xe) = Ue - 0-5(6e,cur - 6e)

Xi min + 0-5(6i,cur_ 6i) =X%= X max 0-5(5i,cur_ 5i)
foreache=1,....mandi=1,...,n

subject to:{
(15)

The formulation in eq 15 presumes that for each uncertainty

interval the lower and upper bounds are drawn together equally.
An assumption of this type is necessary because the solution to

that meters the uncertainty reduction. A plausible functional

form, which possesses the properties described above, is

Io) a
K(0) = (%”r) -1 (17)
Taking the parametea > 0, the functional form of eq 17
represents a nonlinear rise in cost with the reduction in
uncertainty, and the steepness of the rise is metered by the value
of a. With no reductiony = d¢,rand the cost is zero. Complete
elimination of uncertaintyy = 0, results in an infinitely large
cost. For the present example, the values of paranagteeq

the posed question depends on the updated uncertainty intervald 7 &€ chosen arbitrarily &&; = 3 andaes = 2.

themselves, which are unknown a priori. With this in mind, the
resource allocation problem is

o = argmin (Ro(9))

Kede + ) Ki(0) =T

m
2 (16)
subject to:{ &
0 S 68 S 6e,cur
0= 0= 0y

foreaché=1,....mi=1,...,n

As a concrete example, we will use, as befddg,= M, for
model prediction with the 76 remaining GRI-Mech 3.0 units as

Having selected two experiments to be performed again and
having specified the cost functions, we then solved the example
problem: Given a budgel, determine the best experimental
strategy for reducing the uncertainty of the model prediction
for Y71, the laminar flame speed in a stoichiometric atmospheric
ethane-air mixture. The optimization in eq 16 is difficult to
solve in general because the function that maps experiment and
parameter uncertainties onto model prediction (eq 15) is
complicated. For the present example, with two free variables,
we employed a “brute-force” method, by gridding the uncer-
tainty space, solving the prediction in eq 15 at each grid node,
and interpolating to find prediction interval lengths along
constant-budget lines. The number of grid poigtsyas set to
40 per dimension, resulting in 1600 computationsRef(0).
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The numerical results are presented in Figure 10. The gray experimental/theoretical strategy to attain this objective with
surface represents a total cost of decreasing the uncertainties irthe lowest cost. We write this problem as the optimization
the flame and shock-tube measurements. The upper front corner

of this surface marks the assigned, “current uncertainties” in ot oo n
the respective two measurements. The solid horizontal lines are 0% =argminy K 0o + ) Ki(9)
constant-budget lines, drawnbt 3, 5, 10, 20; they are colored 0 & T ax 19
according to the value of the prediction intervBl, r, whose Rer(0) = Rof (19)
color-scale is displayed on the right of the figure. The dashed subjectto:{ 0 < J, = 5e,cur
lines are drawn at constant valuesRyf . 0= 0= 0y

Inspection of the color coding of the constant-budget lines foreache=1,....mi=1,...n

indicates that for a budget @f= 10 the lowest prediction range,

17.5 cm/s, marked as point A, is obtained by decreasing This optimization is solved in a manner analogous to the

uncertainties of both experiments by about one-half each. If only previous one.

one of the experiments, for example 37, is to be repeated with

the same budget of 10, the prediction range, marked as point6. Summary

B, _is much larger at 21.3 cm/s. Fo_IIo_wing the dashed line from 11 analysis introduced in this work offers a methodology

point B shows that the same prediction-interval value could be ot 4pp1ying ‘the infrastructure of Data Collaboration to obtain

obtained at a much lower cost, = 2.2 (Point C), if both  gengitivities that rank impact of uncertainties in experiments and/

experiments are repeated. Analogous results and conclusiong, harameters on uncertainty in model prediction. Such sensitiv-

arise if experiment 64 is repeated alone. _ ity spectra allows one to identify highest-ranking experiments
The gridding and interpolation method we employed in our 4nq/or parameters, provide insights on possible future actions

example scales exponentially with the number of experiments, 1, ndertake for improving model predictability, and test the

m, and parameters, as the function in eq 16 is evaluatgi™  geyeloped ideas in “what if’ computational scenarios. By

times. With two fre_e vquables, the computational time to obtain focusing on reliability of model prediction and considering

the data depicted in Figure 10 was 7 h. In the special case whery actical costs of possible actions, the methodology exploits

a local search algorithm works, it can take substantially less experiment, theory, models, and communal data with a unified

time. For example, a local search algorithm startinga@t  analysis that can help to identify the optimal course of
explored much less of the space and took 20 min to find community action.

Point A.
A dramatic reduction in computational cost can be achieved  acknowledgment. The work was supported by the NSF
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