
Sensitivity Analysis of Uncertainty in Model Prediction

Trent Russi,* Andrew Packard, Ryan Feeley, and Michael Frenklach*
Department of Mechanical Engineering, UniVersity of California, Berkeley, California 94720-1740

ReceiVed: August 27, 2007; In Final Form: NoVember 28, 2007

Data Collaboration is a framework designed to make inferences from experimental observations in the context
of an underlying model. In the prior studies, the methodology was applied to prediction on chemical kinetics
models, consistency of a reaction system, and discrimination among competing reaction models. The present
work advances Data Collaboration by developing sensitivity analysis of uncertainty in model prediction with
respect to uncertainty in experimental observations and model parameters. Evaluation of sensitivity coefficients
is performed alongside the solution of the general optimization ansatz of Data Collaboration. The obtained
sensitivity coefficients allow one to determine which experiment/parameter uncertainty contributes the most
to the uncertainty in model prediction, rank such effects, consider new or even hypothetical experiments to
perform, and combine the uncertainty analysis with the cost of uncertainty reduction, thereby providing guidance
in selecting an experimental/theoretical strategy for community action.

1. Introduction

Predictive ability of chemical kinetics models, as of models
in general, is one of the most sought after characteristics that
underlie scientific activity in reaction chemistry. Reliable model
predictions are needed for both establishment of poorly under-
stood reaction mechanisms and quantitative application of
established mechanisms. The current level of predictiveness in
most cases is far from satisfactory, and one is interested in
identifying possible actions that could measurably improve it:
What causes/skews the model predictiveness? Are there new
experiments to be performed, old ones to be repeated, and/or
theoretical studies to be carried out? What impact could a
planned experimental work have? What would it take to bring
a given chemical kinetics model to a desired level of accuracy?
In the present report, we present an approach to address such
questions.

The mathematical quest for the model predictiveness typically
relies upon sensitivity analysis,1-4 parameter tuning/
optimization,5-14 and propagation of errors.14-21 The two-stage
approach is common: estimation of model parameters and their
uncertainties (generally, from experimental data) followed by
the analysis of the influence of the estimated parameter values
and uncertainties on model prediction. So doing commits to best-
fit parameter values, often having individual, uncorrelated
uncertainties. In an alternative approach, one transfers uncertain-
ties in the experimental data into model prediction directly. The
most common techniques for this use Bayesian methods.20,22

The same goal can be accomplished with some loss of statistical
information (e.g., the structure of distributions) but with an
enormous gain in computational efficiency by a deterministic
method we call Data Collaboration. The mathematical formalism
of Data Collaboration is presented in refs 23-28 and briefly
reported in the next section. Here, we illustrate the underlying
ideas with the following pictorial example.

Consider a chemical reaction system that is described by a
kinetic model with two parameters, rate constantsk1 and k2,

and is used to predict an observableYP, say a product
concentration,Y, at conditions P. The initial information
available is the range of uncertainty for each of the rate
constants. This is shown in the top left panel of Figure 1, where
the area colored in green designates thek1-k2 space corre-
sponding to the individualk1 andk2 spans. In other words, the
green area represents the set of (k1, k2) pairs that satisfy the
given initial information; we refer to this set as prior knowledge
and designate it by the letterH.

For every (k1, k2) point in H, there is a model prediction,y.
For all (k1, k2) points inH, there is a set of predictions, which
are shown in Figure 1 as the blue surface for conditions P. Also
indicated in Figure 1 is the span of values predicted forYP,
limited from below by the minimum point of the blue surface,
yP,min, and from above by the maximum one, yP,max.

Let us now assume that we perform a new experiment, A,
on the reaction system and that the observedYA at these
conditions is inferred from measurements to be within the
range (yA,min, yA,max). We ask this: what is the span of the model
predictions for observableY at conditions P, (yP,min, yP,max),
given as before thatk1 andk2 are constrained to their respective
prior ranges of uncertainties,H, and now with an additional
condition that the model prediction for the new experiment must
be within the uncertainty of its observed value, (yA,min, yA,max)?
This is illustrated in the top right panel of Figure 1: only part
of the green area satisfies the compound condition that (k1, k2)
is within H and the predictedYA is within the (yA,min, yA,max)
range. This smaller area is colored in red and referred to as a
feasible set,F. As a consequence of the smallerk1-k2 domain
of the feasible set, as compared to the prior knowledge, the
span of predictedYP (i.e., the range of the red surface) is
decreased.

Performing another experiment, B, results in further reduction
in the possible (k1, k2) values, that is, in a smaller feasible set.
However, the smaller feasible set does not necessarily lead to
the reduction in the span of predictedYP, as illustrated in the
bottom left panel of Figure 1. Yet another experiment shrinks
both the feasible set and the prediction interval, as shown in
the bottom right panel of Figure 1.
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This example illustrates the way experimental data increase
our knowledge of the system of interest: a new experiment
reduces possible combinations of parameter values, thereby
decreasing the range of variability (i.e., uncertainty) in a model
prediction. The methodology of Data Collaboration formalizes
the “transfer” of the uncertainty in a given experimental
observation (or theoretical evaluation) to the uncertainty in a
desired model prediction and does so by imposing all (experi-
mental and theoretical) constraints at once. At the same time,
satisfying an increasing number of constraints shrinks the
parameter feasible set, which may (but often does not24,29)
decrease the uncertainty in the parameter values as well.
Typically, the geometry of the feasible set is very complex.24,29

Data Collaboration, which fully exploits the properties of the
feasible set, treats the feasible set geometry as a “derived”
feature in information transfer from data to prediction.

In previous studies, we addressed the collaborative features
of this approach,24 mutual consistency of a set of experi-
ments,24,25and discrimination among competing reaction mod-
els.26 In the present study, we return to our initial objective:23

model prediction. We show that Data Collaboration allows one
to assess the propagation of uncertainty more deeply, determin-
ing which experiment/parameter uncertainty contributes the most
to the current uncertainty in model prediction, ranking such
effects and considering new or even hypothetical experiments,
thereby providing guidance in selecting next experiments to
perform.

We begin with a brief description of Data Collaboration
concepts and definitions in Section 2. We then present the new
mathematical developments regarding experiment and parameter
uncertainty in Sections 3 and 4. Finally, we demonstrate these
new developments with several examples in Section 5.

2. Data Collaboration

Data Collaboration is a framework designed to make infer-
ences from experimental observations in the context of an

underlying model.23-26 An observable,Y, is experimentally
measured and modeled using a reaction kinetics system.M is a
model predictingY, andd is the measured value. The measure-
ment has an uncertainty bounded byl from below and byu
from above,l e M - d e u. The triple of measurementd,
uncertaintyl andu, and modelM for a given set of conditions
is referred to as a dataset unit. A collection of dataset units,
whose elements are indexed bye ranging from 1 tom, is referred
to as a dataset.

Each model,Me, has a functional dependence on a set of
model parameters, active variablesXe. Different models may
have different active variable sets with some in common and
some unique to each. Their union is denotedX ) ∪e)1

m Xe. The
valuexi of each parameterXi is bounded by prior knowledge,
expert-assessed uncertainties of the formxi,min e xi e xi,max.
Collectively, all dataset parameter values,x, span the prior
knowledge “hypercube”H ) {x ∈ Rn : xi,min e xi e xi,max} .
The component-wise projection ofx onto the active variables
Xe is denotedxe. The subset of the hypercube satisfyingle e
Me(xe) - de e ue for all dataset units is referred to as the feasible
set,F.

The feasible set expresses the collective constraints imposed
by experiment and theory. One of the essential features of Data
Collaboration is making model predictions while constraining
model parameters to the feasible set. The underlying numerical
methods are Solution Mapping,1,5,30polynomial optimization,31

and semidefinite programming.27,32

3. Problem Statement

Given a dataset composed of several dataset units, we seek
to quantify the influence of each dataset unit on the prediction
of an unmeasured observableYP. We do not have the measure-
ment, but have a model,MP, designed to reproduce the
observable. This model is dependent on a set of parametersXP,
a subset ofX, and evaluating it at any point in the feasible set
yields a valid model prediction.

Figure 1. Illustration of model prediction on the feasible set (see text).
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A concise way to represent the uncertainty in this prediction
is to form a prediction interval that encloses all valuesMP can
take over the feasible set. The length of this interval

is the uncertainty in predicting the unmeasured observableYP

with the subscriptF serving as a reminder of the dependence
of the prediction range on the feasible set. The objective of the
present study is assessing the influence of the quantified dataset
uncertainty (reported uncertainties in each experiment and in
each parameter of the dataset) on the length of the prediction
interval. This could be done through a brute force approach
by, for instance, excluding an experiment or reducing its
uncertainty by half and recomputing the prediction interval.
Here, we develop a methodology of assessing the influence by
quantifying the local dependence of the prediction interval on
the experiment and parameter uncertainties. For this purpose,
we introduce sensitivity coefficients

that provide measures of how much the prediction intervalRP,F

changes when the uncertainty in measurementde or parameter
xi is perturbed. The explicit expressions forλ’s and ν’s are
developed in Section 4. An important feature of our method is
that the sensitivity coefficients are obtained while computing
RP,F. This makes it computationally feasible to evaluateλ’s and
ν’s for manyMP’s, an aspect utilized in Section 5.3.

4. Sensitivity Coefficients

4.1. Mathematical Expressions.We begin development of
expressions forλe

P and νi
P by rewriting the experimental

constraintsle e Me(xe) - de e ue asLe e Me(xe) e Ue, where
Le ) le + de andUe ) ue + de, and expressing the length of the
prediction interval introduced in eq 1 asRP,F ) Mh P - MP

where

The constrained optimization, formulated in eqs 3 and 4, is
in general nonconvex and thus difficult to solve exactly. Our
method for tackling such problems, described in Section 4.2,
yields Lagrange multipliers that are essentially partial derivatives
of the maximumMh P and minimumMP to the constraining

bounds xi,min, xi,max, Le, and Ue. For clarity in subsequent
manipulations, these are notated as

The sensitivity coefficients conceptually defined in eq 2 are
formulated as

We now justify these expressions, focusing onλe
P, the sensi-

tivity coefficients with respect to experiment uncertainty. The
sensitivity coefficientsνi

P with respect to parameter uncer-
tainty are derived in an analogous manner and are omitted for
brevity.

Assume that a dataset experiment, for example,e, is repeated
with the objective of increasing its accuracy by reducing the
length of its uncertainty interval,Ue - Le. We introduceâ ∈
[0, 1] to be the fraction reduction in the uncertainty interval.
When repeating this experiment, the measured valuede may
also change, and so we defineR as a shifting factor, taking
values between-1 and 1- â. This range ofR is chosen so
that the new interval intersects the old interval at least at one
point. Using these definitions, we introduce functions

where∆Le ) (R + â)(Ue - Le) and∆Ue ) R(Ue - Le). As R
takes on values from-1 to 1- â, the family of intervals [Le,R,
Ue,R] parametrizes all intervals of length (1- â)(Ue - Le) that
intersect [Le, Ue]. The following derivation considers this family
of intervals, because while the measured data from the repeated
experiment will fix R, it is unknown a priori.

The change in the prediction interval due to changes inLe

andUe can now be expressed as

where (a) comes from finite difference approximations to the
partial derivatives in eq 5, and (b) is from the use of the relations
in eq 7. Because the remeasured value ofde, and henceR, is
unknown, we focus on the average value of∆RP,F. Employing
the finite difference approximation (eq 8a) and takingR to be
symmetrically distributed over its range [-1, 1 - â] results in

RP,F ) max
x∈F

MP(xP) - min
x∈F

MP(xP) (1)

λe
P ∼ ∂(prediction interval)

∂(uncertainty inde)
, νi

P ∼ ∂(prediction interval)

∂(uncertainty inxi)
(2)

MP ) max
x

MP(xP)

subject to:{xi,min e xi e xi,max for i ) 1, . . .,n
Le e Me(xe) e Ue for e ) 1, . . .,m (3)

MP ) min
x

MP(xP)

subject to:{xi,min e xi e xi,max for i ) 1, . . .,n
Le e Me(xe) e Ue for e ) 1, . . .,m (4)

µLe
) -

∂MP

∂Le
, µUe

)
∂MP

∂Ue
, µLe

)
∂MP

∂Le
, µUe

) -
∂MP

∂Ue

µxi,min
) -

∂MP

∂xi,min
, µxi,max

)
∂MP

∂xi,max
, µxi,min

)
∂MP

∂xi,min
,

µxi,max
) -

∂MP

∂xi,max
(5)

λe
P ) 1

2
(µLe

+ µUe
+ µLe

+ µUe
),

νi
P ) 1

2
(µxi,min

+ µxi,max
+ µxi,min

+ µxi,max
) (6)

Le,R ) Le + ∆Le

Ue,R ) Ue + ∆Ue (7)

∆RP,F ) ∆MP - ∆MP

(a)≈ (-µLe
∆Le + µUe

∆Ue) - (µLe
∆Le - µUe

∆Ue)

(b)
) [-µLe

(R + â) + µUe
R - µLe

(R + â) + µUe
R](Ue - Le)

(8)

average∆RP,F ≈ - 1
2

(µLe
+ µUe

+ µLe
+ µUe

)â(Ue - Le) (9)
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Noting that-â(Ue - Le) ) ∆(uncertainty inde), the interpreta-
tion of λe

P as given in eq 2 results by dividing eq 9 by
∆(uncertainty inde) and taking the limit as∆(uncertainty in
de) approaches zero.

4.2. Evaluation Method.We begin this section by recapping
pertinent results of optimization theory,32 focusing on con-
strained optimization and sensitivity interpretation of Lagrange
multipliers. We then discuss how the special case of quadratic
cost function and quadratic constraint functions, those employed
by the Data Collaboration, gives rise to more refined results.

Consider a constrained optimization problem

where a real-valued functionf is minimized, subject to several
inequality constraints involving the minimization variable. The
dual optimization, which introduces Lagrangian multipliers, is

The inequalitydf e pf always holds. Moreover, ifpf is
written as a function of nonzero constraint bounds, namely

and if λf is the (vector) optimizer for the Lagrangian dual
problem in eq 11, the bound

holds for allu ∈ Rm. Note that large entries ofλf imply high
sensitivity of the optimum value in eq 12 to constraint tightening
(negative values for entries ofu), while small values imply low
sensitivity to constraint loosening.

Recent results in optimization32,33 state that if the functionf
and the functionsgi are quadratic functions, then the problem
(eq 11) is readily solved by semidefinite programming (SDP),
and the optimalλf is obtained. However, because the second-
order terms off andgi are not necessarily positive-semidefinite,
it is not the case that the original problem (eq 10) is necessarily
easily solved. Therefore eq 13 is quite useful; it provides a lower
bound and quantitative sensitivity information about the solution
to a problem that is difficult to solve.

In application of Data Collaboration to nonlinear dynamic
models, the dataset-unit modelsM are approximated by
quadratic surrogate functions of active variables,24,25,27and hence
the prediction optimizations are converted to quadratic optimiza-
tions. As discussed above, the optimal Lagrange multiplierλf

is obtained reliably and efficiently using SDP. The partial
derivatives used in eq 5 are approximated by the components
of λf. As eq 13 holds for allu, the entries ofλf may be
considered to be “global sensitivities”.

5. Results and Discussion

This section presents several example uses of the sensitivity
coefficients introduced in eq 2. We begin by calculating these
coefficients for a specific case, discuss implications of the
computed values, and delineate the difference from the tradi-

tional sensitivity analysis. Then, we introduce a means to gauge
the general impact of an experiment in a dataset by averaging
the sensitivity coefficients determined for multiple model
predictions. We conclude with the formulation and solution of
two related resource allocation problems that might guide further
experimentation by accounting for the cost associated with
reducing experiment/parameter uncertainty.

We illustrate the methodology with the dataset used in our
prior studies,24-26 namely the GRI-Mech 3.0 dataset.34 This is
a collection of models and experimental results used to study
chemical kinetic models of pollutant formation in combustion
of natural gas. The GRI-Mech 3.0 dataset consists of 77 dataset
units (experimental targets) and a 102-dimensional parameter
vector. The model in each dataset unit is a quadratic surrogate,
expressing log10 of the experimental target in terms of log10 of
parameters (typically pre-exponential factors of the Arrhenius
expressions), normalized to take values between-1 and+1.

Due to insufficient records of experiment uncertainties even
for such a well-documented case as GRI-Mech 3.0, an artificial
yet realistic assignmentLe ) de - 0.1 andUe ) de + 0.1 was
used for “nominal” uncertainties of all dataset units,e ) 1, . .
., 77. As the uncertainty level of each dataset unit can influence
the analysis, at the suggestion of an anonymous reviewer we
extended the example using nonconstant experimental uncer-
tainties. The parameter uncertainties [xi,min, xi,max], for i ) 1, .
. ., 102, were taken as reported.34 The results of Sections 5.1,
5.3, and 5.4 were obtained using the 0.1 uncertainty level, while
Section 5.2 considers nonconstant levels.

5.1. Direct Evaluation of Sensitivity Coefficients.As a
concrete example, we considered the observable of the GRI-
Mech 3.0 dataset unit 71, Y71, the laminar flame speed in a
stoichiometric atmospheric ethane-air mixture35 (target StF8 of
GRI-Mech 3.034). We ignored the measured flame speed 40.2
cm/s of this observable and removed its unit from the dataset.
Taking MP to beM71 in eq 1, the Data Collaboration analysis
predicted the interval [34.5, 58.4] cm/s based on the dataset
comprised of the remaining 76 units. The length of the prediction
interval in this case isR71,F ) Mh 71 - M71 ) log10 58.4- log10

34.5. The analysis also yielded the sensitivity coefficientsλe
71

for each of the experimentse ) 1, . . ., 70, 72, . . ., 77 andνi
71

for each parameteri in the dataset, which are displayed in the
top panel of Figures 2 and 3, respectively.

Inspection of the top panel of Figure 2 reveals that the largest
sensitivity value corresponds to dataset unit 37, laminar flame
speed of a stoichiometric methane-air mixture at an elevated
pressure of 4.9 atm,36 target F5 of GRI-Mech 3.0.34 The
computed value of the sensitivity coefficient isν37

71 ) 0.27,

pf) min
x∈Rn

f(x)

subject togi(x) e 0 for i ) 1, . . .,m (10)

df ) max
λ∈Rm

min
x∈Rn

f(x) + λTg(x)

subject toλi g 0 for i ) 1, . . .,m (11)

pf(u) ) min
x∈Rn

f(x)

subject togi(x) e ui for i ) 1, . . .,m (12)

pf(u) g df - λfTu (13)

Figure 2. Sensitivity coefficients of the prediction intervalR71,F with
respect to the uncertainties of the remaining 76 dataset experiments.
The top panel uses an uncertainty of 0.1 for all experiments; the ranking
of the top sensitivities is:e ) 37, 64, 17, 72, 35, 74, 22. The bottom
panel uses different sensitivities (see Section 5.2); the ranking of the
top sensitivities is:e ) 37, 64, 57, 72, 74, 34, 17, 22.
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which projects, from 0.27≈ ∆(Mh 71 - M71)/∆(U37 - L37), a
reduction by 11.7 and 21.1% in the predicted range in the flame
speed if the uncertainty interval∆(U37 - L37) is reduced by
factors of 2 and 10, respectively. Computations performed with
such reduced ranges for∆(U37 - L37) resulted in corresponding
intervals [36.8, 58.4] and [39.2, 58.4] cm/s, that is, a reduction
by 12.5 and 24.4% in the predicted range of the flame speed,
close to the respective estimates 11.7 and 21.1%.

The sensitivity spectrum in the top panel of Figure 2 exhibits
the effect sparsity37,38sthe predicted range is affected signifi-
cantly by the uncertainties of only a small number of experi-
ments in the dataset, and most have negligible impact on the
prediction. It is noteworthy, as exemplified by the top panel of
Figure 2, that the prediction interval for one type of experiment,
a flame speed, is measurably influenced by the uncertainty of
different experimental systems, in this case shock-tube species
peaks (e ) 64, 17; GRI-Mech 3.0 targets OH.ST8 and
CH3.StC6, respectively), shock-tube ignition (e ) 72; target
IG.6a), and flame speed at different conditions (e ) 35, 74;
targets F3 and F1).

The results presented for Y71, sensitivity to various types of
experiments and effect sparsity, are not atypical. The calculations
can be repeated for different choices ofMP. Figure 4 displays
the results of 77 such individual Data Collaboration computa-
tions, performed by designating in turn each of the dataset units
to be the unperformed experiment for which we seek the range
of model prediction based on the rest of the dataset information.
The green row in this figure marks the sensitivities depicted in

the top panel of Figure 2. The bars in each row parallel to the
green row rank experiments whose uncertainty impacts the
prediction interval for the particular observable. The bars in the
perpendicular direction rank experiments mostly affected by the
uncertainty of a given experiment.

The sensitivity information, such as that illustrated in the top
panel of Figure 2 and in Figure 4, have important practical
applications. If one desires to improve the quality of the model
prediction (for an unknown property), the sensitivity spectrum
identifies possible experiments in the dataset to be remeasured
with a tighter control of the respective experiment uncertainties.
If the desired range of the model prediction is specified, one
can perform Data Collaboration computations for a series of
“what if” scenarios with varying individual experiment uncer-
tainties, exploring the feasibility of attaining the stated goal and
establishing a possible experimental strategy. The same numer-
ical procedures can be used to explore the impact of performing
an additional experiment at a different condition or with a
different apparatus. We will continue this discussion in Section
5.4.

It is important to emphasize that the results just discussed
demonstrate Data Collaboration’s ability to propagate uncer-
tainty from experimental observations to model prediction,
subject to prior knowledge of parameter bounds, in a single
step. Next, we demonstrate that by using Data Collaboration
we can assess the impact of parameter bounds as well, and that
this information is not exactly the same as obtained in the usual
sensitivity analysis.

Figure 3 displays sensitivity coefficientsνi
71 for the same

response ofe ) 71 as in the top panel of Figure 2 but with
respect to the parameter ranges. These sensitivity coefficients
gauge the dependence of the prediction interval,RP,F, on
variation in a parameter uncertainty, while the usual sensitivity
coefficients measure the dependence of the predicted value,MP,
on the variation in a parameter value. The two sets of
sensitivities are overlaid in Figure 5. While there are similarities,
there are also significant differences between the two sets.

Figure 3. Sensitivity coefficients of the prediction intervalR71,F with
respect to the uncertainties in the model parameters; the ranking of the
top sensitivities is:i ) 10, 24, 36, 60, 66, 41, 2, 32, 62, 97, 3, 88, 34,
54.

Figure 4. Sensitivity coefficients of the predicted interval with respect
to the experiment uncertainties performed for each of the dataset units.
Each GRI-Mech 3.0 model,MPj, is predicted in turn using the remaining
GRI-Mech 3.0 dataset units. Sensitivities computed for the uncertainty
in predicting Y71 with respect to the uncertainties of the remaining GRI-
Mech 3.0 dataset observables are highlighted green. Sensitivities for
the uncertainty in predicting each GRI-Mech 3.0 observable to
uncertainty in experiment 37 are highlighted yellow.

Figure 5. Logarithmic response sensitivity of laminar flame speed in
a stoichiometric atmospheric ethane-air mixture, Y71, with respect to
reaction rate coefficients,k, ∂ ln y71/∂ ln ki (blue bars), sorted in
decreasing order.34 The correspondingνi

71 is shown as red bars. The
numbers in parentheses refer to the indexi of the corresponding model
parameter.
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The “by-value” sensitivities can be either negative or positive;
increasing some rate coefficients increases the predicted flame
speed while increasing others decreases it. On the other hand,
the “by-uncertainty” sensitivities, which are those introduced
in the present work, are only positive; increasing uncertainty
of a parameter can only increase the predicted interval (the same
is true for the sensitivities with respect to experiment uncertainty,
those displayed in the top panel of Figure 2 and in Figure 4).

Another interesting observation follows from comparison of
the sensitivity rankings seen in Figure 5. In both measures,
parameteri ) 10 is ranked highest. However the two sensitivity
measures generally rank other parameters differently. For
example, parameteri ) 24 is ranked fourth with by-value
sensitivity but second in the by-uncertainty ranking. Similarly
third-ranked by-uncertainty (i ) 36) is second-ranked by-value.
Comparing rankings fori ) 17 and i ) 24 shows further
differences worth noting. The by-value sensitivity indicates that
MP (M71 in this case) has modest sensitivity to both of these
parameters (fourth and fifth ranked, respectively). By contrast,
the by-uncertainty sensitivity coefficients are very different,
namely 0 fori ) 17 (i.e., bottom ranked) yet second-ranked
for i ) 24.

When the optimization in eqs 3 and 4 is constrained only by
parameter ranges,xi,min e xi e xi,max, the resulting by-uncertainty
sensitivity values and spectra overall are close to the by-value
ones (exactly equal for a linearMP). This result reveals the nature
of the difference between the two sensitivity measures. The by-
uncertainty sensitivity “incorporates” additional information,
originating from experiment uncertainty constraints.

Figure 6 is similar to Figure 4, except that it displays the
sensitivity coefficientsνi

P with respect to parameter uncertain-
ties for the same 77 Data Collaboration computations. The green
row in Figure 6 indicates the sensitivities depicted in Figure 3.
For each row parallel to the green row, the bars rank parameters
whose uncertainty impacts the prediction interval for the
particular observable. The bars in the perpendicular direction
rank observables whose predictions are most affected by the
uncertainty of a given parameter.

The sensitivity information, such as that illustrated in Figures
3 and 6, can be used analogously to the discussed above
sensitivity spectra with respect to experiment uncertainty:

identification of parameters for uncertainty reduction and
performance of “what if” analysis for such reductions. Perhaps
the primary source for reduction of uncertainty in an individual
parameter has become the use of theory, for example, applying
high-level quantum-chemical methods. Data Collaboration uni-
fies experiment and theory; both influence the “extraction” of
knowledge by reducing the respective uncertainty bounds and
the results of both are used in unison, as mathematically
equivalent constraints in a single optimization problem. Further
unification is attained by assigning cost to uncertainty reduction,
as discussed in Section 5.4.

5.2. Sensitivity Analysis with Uneven Uncertainties.In the
previous example, an uncertainty of 0.1 for each experiment in
the GRI-Mech 3.0 dataset was used. In general, one would
expect each experiment to have its own uncertainty. We now
extend the previous example by giving the experiments differing
uncertainties that are hypothetical, yet not without basis: those
in reaction-progress times were set to 0.05, flame speeds to 0.02,
temperatures to 0.01, and the rest were kept at 0.1, as before.
This essentially created a new dataset with the same observa-
tions,de, but different uncertainties,ue.

Making this assignment of uncertainties resulted in the dataset
being inconsistent, meaning there did not exist a parameter
vector that satisfied all the constraints.24,25To examine the source
of the inconsistency, the sensitivities of the consistency measure
(as defined in eq 2 in ref 25) to the uncertainty in the
experiments were computed using the techniques of Data
Collaboration.25 The highest sensitivities corresponded to the
flame speed measurement uncertainties (see top panel of Figure
7). Hence, the uncertainty in the flame speed experiments was
increased to 0.05. Recomputing the consistency measure
revealed that the time measurements had the highest sensitivity
coefficients (middle panel of Figure 7). The time measurement
uncertainties were then set to 0.08, which made the dataset
consistent (resulting in the sensitivities in the bottom panel of
Figure 7).

An interval prediction on unit 71 was performed using the
dataset created in the above manner. The experiment sensitivity
coefficients with respect to uncertainty are shown in the bottom
panel of Figure 2. They have the same order of magnitude as
those in the top panel of Figure 2 and exhibit most of the same
peaks. One noticeable difference is the sensitivity to the
uncertainty in experiment 57 (a time measurement in a shock
tube experiment, target OH.1a of the GRI-Mech 3.0 dataset34),
which appears using the newly assigned uncertainty levels and

Figure 6. Sensitivity coefficients of the predicted interval with respect
to parameter uncertainties performed for each of the dataset units. Each
GRI-Mech 3.0 model,MPj, is predicted in turn using the rest of the
GRI-Mech 3.0 dataset. Sensitivities computed for the uncertainty in
predicting Y71 with respect to the uncertainties in the 102 model
parameters are highlighted in green. The sensitivities for each GRI-
Mech 3.0 observable to uncertainty in parameter 10 are highlighted
orange.

Figure 7. Sensitivity coefficients of dataset consistency measure with
respect to experiment uncertainty. The top panel displays sensitivities
when time measurements have uncertainty 0.05, flame speeds 0.02,
temperatures 0.01, and all other experiments 0.1 (inconsistent dataset).
The middle panel has flame speed uncertainties increased to 0.05
(inconsistent dataset). The bottom panel has time measurement
uncertainties increased to 0.08 (consistent dataset).
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is negligibly small when using the 0.1 uncertainties. It is clear
that each set of uncertainties leads to a specific outcome.

5.3. Averaging Sensitivity Coefficients to Assess Experi-
ment Impact. The quantity λe

P assesses the influence of
uncertainty in experimente on the uncertainty in predicting a
specific observable. Can a general measure of the influence of
theeth experiment uncertainty be developed? One approach to
obtaining such a measure is to averageλe

Pj, j ) 1, . . .,p, from
predictions for a diverse set ofp observables. We denote this
average byλe

ave. Similarly, νi
ave measures the average influence

of uncertainty in parameterxi. Determination of these average
measures requires assembling a diverse set of observables and
constructing their models. In this section we describe two
different approaches to accomplish these. Both produce close
results, thereby cross-validating each other.

The first approach to obtain a set of diverse observables is
simply to use those already present in the dataset. Thus, we
obtained λe

ave and νi
ave by averaging over the given set of

dataset units. These values are displayed in the top panel of
Figures 8 and 9.

Another avenue to obtaining and modeling a collection of
diverse observables is to generate a set ofrandom models, {MPj}
j)1
p , that are similar to the dataset models,{Me}e)1

m . This diverse
set provides a much larger set to average prediction sensitivities
over to obtain a more general measure of experiment impact.
Each GRI-Mech dataset-unit model is a quadratic function,
Me(xe) ) xe

TAexe + bexe + ce, whereAe, be, andce are fitted
coefficients. A random model,MPj, is formulated to have the
same structure. Active variables,XPj, of the random models are
selected by ensuring that every pair of variables appearing in a
random model appears together as active variables in at least

one of the models of the GRI-Mech 3.0 dataset. Coefficients
APj and bPj are obtained by sampling a standard normal
distribution and then scaled so that

where || ||F denotes the matrix norm. Equation 14 constrains
the coefficients of the quadratic form of a random model to be
of similar magnitudes as those of the dataset models and also
preserves the relative magnitude of the quadratic termsAPj as
compared to the linear termsbPj. The constant termcPj was set
to zero because it does not affect the sensitivitiesλe

ave andνi
ave.

Ten thousand random models were generated in this manner,
and the sensitivity coefficients{λe

Pj}e)1
77 and {νi

Pj}i)1
102 were

computed for each random model,j ) 1, . . ., 10000. These
values were averaged over the 10 000 random models to obtain
λe

ave and νi
ave, which are displayed in the bottom panels of

Figures 8 and 9, respectively. Comparison between the two sets
of results in Figures 8 and 9, the respective random and over-
dataset averages, indicates a general accord in the ranking. This
level of agreement is encouraging for the use of the random
model approach. For example, the sensitivity of prediction range
to the uncertainty in experiment 64 is high both when averaged
over predictions of the GRI-Mech 3.0 observables and when
averaged over predictions of the observables of random models
generated by eq 14. On this basis, we conclude that the present
level of uncertainty in experiment 64 is likely to affect prediction
of combustion observables within the class of condition covered
by GRI-Mech 3.0. Consequently, such predictions may benefit
from lowering the uncertainty in experiment 64. Analysis of
future actions may take into account additional considerations
and is discussed next.

5.4. Cost-Constrained Uncertainty Quantification.In Sec-
tions 5.1 and 5.3, the Data Collaboration methodology was used
to obtain sensitivities that rank impact of uncertainties in
experiments and/or parameters on model prediction. Such
sensitivity spectra allow one to identify highest-ranking experi-
ments and/or parameters, gain insights on possible future actions
to undertake for improving model predictability, and test the
developed ideas in “what if” computational scenarios. In
considering different scenarios, one introduces additional factors
of a practical nature. For instance, it could be easier to remeasure
the second-ranked target with a twofold increased accuracy than
to reduce the uncertainty of the highest-ranked one by 10%.
Alternatively, it could be easier to use a high-level theory on
some top-ranked parameters than to perform new measurements.
The methodology of Data Collaboration allows one to formalize
such assessments and by doing so to unify on the fundamental
level experiment and theory. We illustrate the approach with
the following example.

We introduce cost functionsKe and Ki associated with
reduction in uncertainty intervals of experimental observations
and parameters, respectively. From practical considerations, one
knows that higher accuracy in both measurements and numerical
calculations requires more resources, and this dependence is
unlikely to take a linear mathematical form. Also, the cost
functions representing this dependence should produce a cost
of zero for no uncertainty reduction and attribute a very large
(or infinite cost) to reducing the uncertainty to zero. Given such
cost functions, we pose the following question:

Given a budgetT, determine the best experimental/theoretical
strategy for reducing the uncertainty of model prediction for
the given response,RP,F.

Figure 8. Average sensitivity coefficients of the prediction interval
with respect to experiment uncertainties. Top panel, averaged over 77
dataset units; bottom panel, averaged over 10 000 random models.

Figure 9. Average sensitivity coefficients of the prediction interval
with respect to parameter uncertainties. Top panel, averaged over 77
dataset units; bottom panel, averaged over 10 000 random models.

||APj
||F )

1

77
∑
e)1

77

||Ae||F, and||bPj
||F )

1

77
∑
e)1

77

||be||F (14)

Sensitivity Analysis of Uncertainty in Model Prediction J. Phys. Chem. A, Vol. 112, No. 12, 20082585



To address this allocation problem, we denote the current
uncertainty in the measurement ofYe asδe,cur ) Ue - Le (the
subscript “cur” meaning current), and the cost of remeasuring
Ye with a smaller measurement uncertainty,δe, as Ke(δe).
Similarly, δi,cur ) xi,max - xi,min is the current uncertainty in
parameterxi, andKi(δi) is the cost of reducing the uncertainty
in parameteri from δi,cur to δi. In the following, we denote by
the boldfaceδ the combined vector of the uncertainties,
containingδe for e ) 1, . . .,m andδi for i ) 1, . . .,n.

Recasting eq 1 such that experiment and parameter uncertain-
ties are allowed to vary, we expressRP,F as a function ofδ:

The formulation in eq 15 presumes that for each uncertainty
interval the lower and upper bounds are drawn together equally.
An assumption of this type is necessary because the solution to
the posed question depends on the updated uncertainty intervals
themselves, which are unknown a priori. With this in mind, the
resource allocation problem is

As a concrete example, we will use, as before,MP ) M71 for
model prediction with the 76 remaining GRI-Mech 3.0 units as

the given dataset. To present the solution graphically, we limit
the analysis to two variables. From the sensitivity spectrum
given in Figure 2, we select the top two dataset units, 37 and
64, as candidates for uncertainty reduction. The observable of
dataset unit 37 is laminar flame speed of a stoichiometric
methane-air mixture at a pressure of 4.9 atm,36 target F5 of
GRI-Mech 3.034 and that of unit 64 is half time to the OH
concentration peak in observed in a shock-tube oxidation of
methane,39 target OH.ST8.

To each of the selected observables, we assign a cost function
that meters the uncertainty reduction. A plausible functional
form, which possesses the properties described above, is

Taking the parametera > 0, the functional form of eq 17
represents a nonlinear rise in cost with the reduction in
uncertainty, and the steepness of the rise is metered by the value
of a. With no reduction,δ ) δcur and the cost is zero. Complete
elimination of uncertainty,δ ) 0, results in an infinitely large
cost. For the present example, the values of parametera in eq
17 are chosen arbitrarily asa37 ) 3 anda64 ) 2.

Having selected two experiments to be performed again and
having specified the cost functions, we then solved the example
problem: Given a budgetT, determine the best experimental
strategy for reducing the uncertainty of the model prediction
for Y71, the laminar flame speed in a stoichiometric atmospheric
ethane-air mixture. The optimization in eq 16 is difficult to
solve in general because the function that maps experiment and
parameter uncertainties onto model prediction (eq 15) is
complicated. For the present example, with two free variables,
we employed a “brute-force” method, by gridding the uncer-
tainty space, solving the prediction in eq 15 at each grid node,
and interpolating to find prediction interval lengths along
constant-budget lines. The number of grid points,g, was set to
40 per dimension, resulting in 1600 computations ofRP,F(δ).

Figure 10. Cost of reduction in uncertainty of dataset units 37 and 64. The solid horizontal lines are constant-budget lines drawn atT ) 3, 5, 10,
20; they color code the value of the prediction interval computed for dataset unit 71,R71,F, according to the color bar displayed on the right of the
figure. The dashed lines are drawn at constant values ofR71,F, 17.5, 19.1, and 21.3. The coordinates (µs, cm/s) of the marked points are A (68.8,
11.0), B (185.8, 8.3), C (117.9, 15.2), D (56.0, 18.4), E (83.7, 13.1), and Alin (78.6, 9.8). The total-cost values,T, at points C and E are 2.2 and 5.7,
respectively.

RP,F(δ) ) max
x

MP(xP) - min
x

MP(xP)

subject to:{Le + 0.5(δe,cur - δe) e Me(xe) e Ue - 0.5(δe,cur - δe)
xi,min + 0.5(δi,cur - δi) e xi e xi,max - 0.5(δi,cur - δi)
for eache ) 1, . . .,m andi ) 1, . . .,n

(15)

δopt ) argmin
δ

(RP,F(δ))

subject to:{∑
e)1

m

Ke(δe) + ∑
i)1

n

Ki(δi) e T

0 e δe e δe,cur

0 e δi e δi,cur
for eache ) 1, . . .,m i ) 1, . . .,n

(16)

K(δ) ) (δcur

δ )a

- 1 (17)
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The numerical results are presented in Figure 10. The gray
surface represents a total cost of decreasing the uncertainties in
the flame and shock-tube measurements. The upper front corner
of this surface marks the assigned, “current uncertainties” in
the respective two measurements. The solid horizontal lines are
constant-budget lines, drawn atT ) 3, 5, 10, 20; they are colored
according to the value of the prediction interval,R71,F, whose
color-scale is displayed on the right of the figure. The dashed
lines are drawn at constant values ofR71,F.

Inspection of the color coding of the constant-budget lines
indicates that for a budget ofT ) 10 the lowest prediction range,
17.5 cm/s, marked as point A, is obtained by decreasing
uncertainties of both experiments by about one-half each. If only
one of the experiments, for example 37, is to be repeated with
the same budget of 10, the prediction range, marked as point
B, is much larger at 21.3 cm/s. Following the dashed line from
point B shows that the same prediction-interval value could be
obtained at a much lower cost,T ) 2.2 (Point C), if both
experiments are repeated. Analogous results and conclusions
arise if experiment 64 is repeated alone.

The gridding and interpolation method we employed in our
example scales exponentially with the number of experiments,
m, and parameters,n, as the function in eq 16 is evaluatedgn+m

times. With two free variables, the computational time to obtain
the data depicted in Figure 10 was 7 h. In the special case when
a local search algorithm works, it can take substantially less
time. For example, a local search algorithm starting atδcur

explored much less of the space and took 20 min to find
Point A.

A dramatic reduction in computational cost can be achieved
using the results of the present study. We linearize eq 16 and
observe that the outcome utilizes our sensitivity coefficients

If the cost functionsKe and Ki in eq 16 are convex, then the
problem (the constraints of eq 16 and the objective from eq
18) has a linear objective, box constraints, and a constraint
that is the sum of convex functions, each depending on a
different scalar variable. The time to solve this new problem
scales favorably,∼(n + m)σ, where σ is a relatively small,
positive number.32 The requirement onKe andKi of convexity
is satisfied by the nature of the cost’s dependence on decreasing
uncertainty.

Applying the linearized solution to our earlier example,
again only allowingδ37 andδ64 to vary and using a budget of
T ) 10, found Point Alin and correspondingRP,F ) 17.8 cm/s
(Figure 9). This is within 2% of the Point A solution of 17.5
cm/s and took less than 0.1 s to compute (on a 2.8 GHz Pentium
4 desktop PC). With such computational efficiency, it is
affordable to solve a larger problem. For instance, allowing all
variables to vary (the remaining 76 GRI-Mech 3.0 experiment
uncertainties and all 102 parameter uncertainties), the optimiza-
tion took 30 s. In that test, all cost functions were given the
same exponent,a ) 2. Solving this optimization suggested
reduction of uncertainty in 5 experiments (e ) 37, 64, 17, 72,
in that order) and 10 parameters (i ) 24, 41, 60, 66, 32, 10, 34,
62, 36, 2).

A related question can be similarly stated: Given a desired
value of the prediction interval for a givenYP, RP,F

max, determine

experimental/theoretical strategy to attain this objective with
the lowest cost. We write this problem as the optimization

This optimization is solved in a manner analogous to the
previous one.

6. Summary

The analysis introduced in this work offers a methodology
of applying the infrastructure of Data Collaboration to obtain
sensitivities that rank impact of uncertainties in experiments and/
or parameters on uncertainty in model prediction. Such sensitiv-
ity spectra allows one to identify highest-ranking experiments
and/or parameters, provide insights on possible future actions
to undertake for improving model predictability, and test the
developed ideas in “what if” computational scenarios. By
focusing on reliability of model prediction and considering
practical costs of possible actions, the methodology exploits
experiment, theory, models, and communal data with a unified
analysis that can help to identify the optimal course of
community action.
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