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We propose a generalized one-dimensional energy diffusion approach for describing the dynamics of
multidimensional dynamical processes in the condensed phase. On the basis of a formalism originally due to
Zwanzig, we obtain a one-dimensional kinetic equation for a properly selected relevant dynamical quantity
and derive new analytical results for the dynamics of a multidimensional electron-transfer process,
nonequilibrium solvation, and diffusive escape from a potential well. The calculated results for electron-
transfer reactions in solvent-separated and contact ion pair systems are found to be in good agreement with
the experimental results. We are able to explain the rate of the electron-transfer reaction using much smaller
and reasonable values of the solvent reorganization energy in contrast to earlier works that had to use a much
larger value. The proposed theory is not only conceptually simpler than the conventional approaches but is
also free from many of their limitations. More importantly, it provides a single theoretical framework for
describing a wide class of dynamical phenomena.

1. Introduction

Dynamical processes in the condensed phase such as electron-
transfer (ET) reactions,1 diffusive escape from potential wells,2

activated barrier crossing, nonequilibrium solvation,3 etc. are
of immense and long standing importance in various frontier
areas of research in physics, chemistry, and biology. A theoreti-
cal description of these phenomena is, however, severely
hindered by the multidimensional nature of the collective motion
involved and also the difficulty in evaluation of the nonequi-
librium time correlation functions for proceeding beyond linear
response theory. The objective of the present work is to bypass
these difficulties by developing alternative simpler approaches
for describing condensed phase dynamics. We obtain here a
new simple one-dimensional theoretical framework by identify-
ing a proper reaction co-ordinate (or the relevant dynamical
variable) and deriving a kinetic equation for its probability
distribution function, which is shown to provide a generalized
approach for describing a wide class of dynamical phenomena.
Specifically, we consider its application to the dynamics of three
important multidimensional dynamical problems, viz. two-
dimensional electron transfer, nonequilibrium solvation, and
escape of a particle from a potential well.

The description that we propose is based on a kinetic equation
for the probability distribution of a microscopic phase space
function A constrained to have a valueγ at time t that was
proposed originally by Zwanzig4 and can be written, in a
modified form,5 as

whereγ0 is the value ofγ at t ) 0 and the time-dependent as

well as γ-dependent diffusivity is defined asD(γ,t) ) 〈Ȧ(t)-
Ȧ(0)δ(A(t) - γ)〉/〈δ(A(t) - γ)〉, with the broken brackets
denoting an equilibrium ensemble average and the dot corre-
sponding to the time derivative. The effective potentialVeff(γ)
is defined asVeff(γ) ) ln〈δ(A(t) - γ)〉 where â () 1/kBT)
denotes the inverse temperature. Zwanzig’s derivation of eq 1
assumes that dA(t)/dt is small, which has been discussed by
him in detail.4

2. Theory of Electron Transfer

In an ET process, the system moving initially on a multidi-
mensional reactant potential energy surface (PES) crosses to
the product PES at the intersection point. The ET reactions do
occur with an intrinsic ratek0 corresponding toγ ) 0, i.e., when
the reactant and product potential energies are equal.1 Hence,
the kinetic equation forP(γ,t|γ0,0) given by eq 1 should be
modified for ET reactions by introducing a delta sink with
strengthk0 to its right side. The modified kinetic equation, for
ET reactions, thus becomes

Here the sink strength (k0) can be expressed in terms of an
electron-transfer integral ask0 ) (4π2/h)J2, whereh denotes
the Planck constant. A simple theoretical model that we consider
here consists of a multidimensional space spanned by the low-
frequency solvent polarization (X) and the vibrational coordi-
nate6 (Q) or two low-frequency solvent collective coordinates.7

In Figure 1, the PES of the system is drawn in the two-
dimensional space spanned by the coordinatesX andQ, with
the curve ABC representing the intersection of the reactant and
product PES, and ET takes place when the reactant reaches the
intersection point. The dynamical effects in ET reactions can
be investigated theoretically using this model for which the
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conventional Smoluchowski equation6,7 approach is cumbersome
and highly involved, thus making the simpler one-dimensional
description, as proposed here, very important and significant.
When specialized to the standard low-frequency harmonic
oscillator model6,7 for the reactant and product PES defined as,
respectively,VR(Q,X) ) (1/2)Q2 + (1/2)X2 andVP(Q,X) ) (1/2)-
(Q - Q0)2 + (1/2)(X - X0)2 + ∆G, the modified generalized
kinetic equation (eq 1), in the Markovian limit, for ET reactions
becomes

where D(γ,t) of eq 1 has been replaced by the effective
diffusivity Deff ) ∫0

∞ dt [X0
2〈Ẋ(t)Ẋ(0)〉 + Q0

2〈Q̇(t)Q̇(0)〉] within
the Markovian approximation and assumption of weakγ-de-
pendence ofD(γ,t). It is also assumed that the cross-velocity
contribution is zero. Here, the low-frequency vibrational
reorganization energyλ and solvent reorganization energyλ0

are given byλ ) (1/2)Q0
2 andλ0 ) (1/2)X0

2, respectively, while
∆G represents the free energy of the ET reaction. Equation 3
also can be rewritten as

using the variablesz ) γ + z*, z0 ) γ0 + z*, andz* ) -(λ +
λ0 + ∆G). This is an important result because it provides a
one-dimensional energy diffusion equation of the reactive system
and can be numerically solved much more easily than the two-
dimensional Smoluchowski equation involvingX andQ coor-
dinates. It may be noted that the present one-dimensional
description of a two-dimensional ET is analogous to the Zusman
equation8 proposed earlier for a one-dimensional ET process.
The formal solution of eq 4 is given by

where the functionP0(z,t|z0,0) is the solution of eq 4 in the
absence of any sink term. The probability of finding the system

at timet within the reactant surface is defined asP(t) ) ∫-∞
∞ dz

P(z,t|z0,0), and the average rate constantk of the ET reaction
can be expressed ask -1 ) ∫0

∞ dt P(t), which also can be
written as

Here, kTST represents the transition state theory (TST) result
obtained by Marcus,1 which can be expressed as

while kD represents the rate constant for the well dynamics and
can be expressed in terms of the nonequilibrium distribution
function P0(z,t|z0,0) in the absence of sink (i.e., solution of eq
4 with k0 ) 0) as

One can have an analytical expression for this quantity by using
the standard expression ofP0(z*,t|z0,0) and evaluating a line
integral with a gradient ofkD

-1 in two-dimensional space (x,y)
from (0,0) to (z*,z0), using a suitable path (0,0)f (z*,0) f
(z*,z0) because the integral is path-independent. The analytical
expression forkD

-1 thus obtained is given by

whereXmn ) 2m + 2n + 2 with A1 andA2 (for A1 < A2) given
by A1 ) z0/(4kBT(λ0 + λ))1/2 and A2 ) z*/(4kBT(λ0 + λ))1/2.
The effective diffusivity can be approximated in terms of the
solvent relaxation timeτT as Deff ) 2kBT(λ0 + λ)/τT. If the
system evolves from an initial equilibrium state, then the
corresponding rate constant is given by

whereA0 ) (λ0 + λ + ∆G)/(2kBT(λ0 + λ))1/2. Equations 4, 9,
and 10 are the new results of the present work. An analogous
expression has been derived by Tachiya and Murata9 for one-
dimensional ET reactions. It may be noted that analytical results
for the ET rate constantk cannot be obtained10 by directly
solving the two-dimensional Smoluchowski equation, and in fact
the difficulty for numerical evaluation through this equation
increases drastically with an increase in dimensionality. The
investigation of two-dimensional ET as a one-dimensional
problem leading to an analytical expression for the rate constant,
as shown here, is only illustrative, and it is straightforward to
use the present approach to formulate the treatment of ET
reactions involving higher-dimensional (more than two) space
as a one-dimensional problem and obtain analogues of eqs 4,
9, and 10. In the case of a delocalized sink, one should replace
the localizedδ(γ) sink of eq 3 by a generalized sink function11

S(γ).

Figure 1. Typical potential energy surface of a two-dimensional
electron-transfer reaction. The two surfaces intersect on the curve ABC.
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As an illustrative example, we now consider a typical ET
reaction, where a molecule DA is excited from the ground state,
leading to ion pair formation and the system then relaxes
downward along the PES of the resulting D+A- system until it
meets the PES of the ground state DA, when the back ET
reaction takes place. Considering the potential energy for the
system DA and D+A- to be given byVDA(Q,X) ) (1/2)Q2 +
(1/2)X2 and VD+A-(Q,X) ) (1/2)(Q - Q0)2 + (1/2)(X - X0)2 -
∆G, respectively, where∆G represents the free energy of back-
ET (charge recombination reaction), the rate constantkD

-1 is
given by eq 9 withZ0 ) -2(λ + λ0).

3. Nonequilibrium Solvation Dynamics

Another very important dynamical process is the nonequi-
librium solvation of a newly created charge or dipole that
provides3 a microscopic understanding of the relaxation of the
solvent molecules around a newly created ion or dipole at
different time domains. The calculation of the nonequilibrium
solvation time (NEST) through simulation, however, requires
harvesting of the nonequilibrium trajectories and is, therefore,
computationally demanding. One of the most common ap-
proximations in theoretical studies of solvation dynamics is
based on the assumption of linear response, which permits the
replacement of NEST by the equilibrium solvation time cor-
relation function, the theoretical calculation of which is rather
simple. Computer simulation12 as well as experimental studies
show that in many situations the linear response theory breaks
down, and hence a good theoretical method for the evaluation
of NEST is in demand. The relevant quantity of interest is the
NEST, which is defined as

and is directly accessible via time-dependent fluorescence. Here

∆E(t) is the nonequilibrium ensemble average of the energy
gap between the ground and the excited states of the solute.
We propose here a simple one-dimensional dynamical equation
for its evaluation. Many optical and rate processes involving
molecules in solution can be described by considering a two
(electronic) level system coupled to collective harmonic bath
coordinates representing the solvent, which was first proposed
by Zwanzig13 and is widely used for the study of barrier crossing
dynamics,14 many ultrafast nonlinear techniques,15 Landau
diamagnetism16 in a dissipative and confined system, etc. The
generalized form of the potential energy of the system in
multidimensional space in this model for the ground and excited
states of the solute is given, respectively, by

and

In eqs 12 and 13, the first terms represent the potential energy
of the solute (consisting ofNs vibrational degrees of freedom)
in the ground and excited states, respectively, and are assumed
to be given by Vs

g(Q1...QN) ) (1/2)M∑j)1
Ns Ωj

2Qj
2 and Vs

g-
(Q1...QN) ) (1/2)M ∑j)1

Ns Ωj
2(Qj - dj)2 with Ωj andM denoting

the frequency and mass of the solute particle, whilemi, ωi, and
qi represent, respectively, the mass, frequency, and positions
of the ith bath oscillator and the coefficientCi

j couples theith
bath oscillator to the system coordinateQj. The excited state of
the solute here corresponds to a displaced harmonic oscillator
with dj denoting the displacement for thejth oscillator. It is
clear from eq 11 that the relevant microscopic phase space
function A can be considered to beA ) Vs

e - Vs
g, and the

probability of this phase space function to have the value∆E
satisfies the equation

whereC ) (1/2kBT), D ) (2λorkBT)-1λor ) (1/2)M ∑j)1
NsΩj

2dj
2,

andCv(t) is the collective velocity correlation function of the
solute particle in the excited state. In the Markovian limit, as is
clear from eq 14, the probability distributionP(∆E,t|∆E0,0) of
the energy gap between the electronic states of the solute are
Gaussian throughout the dynamics of nonequlibrium solvation.
These remarkable energy gap statistics also have been observed17

in real systems through simulation studies, such as nonequilib-
rium relaxation following the dipolar transition of solute in
water. Now, defining the nonequilibrium solvation energy as

∆E(t) ) ∫-∞
∞ d∆EP(∆E,t|∆E0,0), using eqs 14 and 11, one

obtains, after some algebra, the result

whereL-1 represents the inverse Laplace transform andCv(s)
is the Laplace transform ofCv(t). Equations 14 and 15 represent
new important results of the present work and provide an
important relation between the solvation time correlation
function and the velocity correlation functionCv(t) of the solute
in the excited state. To obtain an analytical expression forS(t),
we assume that the frequency of oscillation for different modes
of the solute particle are identical (Ωi ) Ωj ) Ω), and in the
overdamped limit, the velocity correlation function decays
exponentially with a decay constant 1/ê, whereê is the friction
exerted on the solute particle by the solvent particles. Within
these approximations, after some algebra, we obtain the expres-
sion for S(t) given by

with P ) (1 - 4(Ω/ê)2)1/2.

4. Diffusive Escape from a Potential Well

The escape of a particle2 from a potential well in the
condensed phase is another important dynamical phenomenon
that we consider here. The motion of the particle is coupled to
the solvent motion, thus requiring a description of the dynamics
to be multidimensional. We employ a model potential similar
to the one defined in eq 12 and assume the solute particle to
escape from the potential well on attaining the energyEd, i.e.,
Vs

g(Q1...QNs) ) Ed. Thus the obvious choice for the phase space
function is A ) Vs

g(Q1...QNs), and the dynamical equation for
the probability that this potential energy functionA is con-
strained to have the valueE as obtained from eq 1 is given, in
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the Markovian limit, by

Here,D is the diffusion constant corresponding to the motion
along the hyperspherical coordinate of the solute particle. A
similar equation for a one-dimensional problem (Ns ) 1) was
derived by Kramers18 based on a different approach. The present
generalized one-dimensional energy diffusion equation, how-
ever, corresponds to a multidimensional problem. The rate
constantk for the escape process can be evaluated19 by solving
eq 17 using the reflecting boundary condition atE ) 0 and a
perfectly absorbing boundary condition atE ) Ed. The resulting
expression fork is obtained as

wheren ) Ns/2. Equations 17 and 18 represent important results
of the present work. The diffusion constantD appearing in eq
18 can be calculated using suitable approaches including the
scaling laws proposed recently.20,21It is clear from this equation
that the rate of escape of a particle from the potential well
decreases with an increase of barrier heightEd as expected.

5. Results and Discussion

The one-dimensional energy diffusion approach to multidi-
mensional dynamical processes developed here and applied to
understand three important dynamical processes, viz. ET reac-
tions, nonequilibrium solvation dynamics, and diffusive escape
from the potential well, is now illustrated through numerical
results. Our first consideration is the example of ET reactions
for which we consider two different types of specific examples,
viz. solvent-separated ion pair (SSIP), where the ion pair is
separated by solvent molecules, and the case of ET for contact
ion pair (CIP), where the ion pair is in contact with each other.
To explain the experimental results, Tachiya and Murata9 had
considered only single-mode diffusive motion in theX co-
ordinate and used the parameters:J ) 0.003 eV (for SSIP),J
) 0.3 eV (for CIP),9 and λ0 ) 1.5 eV. But this value of the
reorganization energyλ0 is quite high and cannot be easily
rationalized. However, the ET process is multidimensional in
nature, and the reorganization energy might be contributed by
different modes and not necessarily from one single mode as
they have considered in their investigation. In the present theory,
we have developed a one-dimensional description of two-
dimensional motion where the total reorganization energy is
contributed by two modes. For simplicity, we consider here the
reorganization energy for the two modesX and Q to be the
same, and the best fitted value ofλ0 is found to be 0.75 eV,
which is much less than the value taken by Tachiya and Murata.9

The calculated values of the rate constantk for the ET process
in the SSIP and CIP cases are plotted along with the available
experimental results22,23 as a function of∆G in Figures 2 and
3, respectively. It is observed that for the SSIP casekD has very
little effect on the overall ET reaction rate constantk, which is
mainly controlled bykTST as predicted by Marcus in his
landmark work.1 In this case, the electronic coupling strengthJ
is very small, as a result only a small fraction of the reactant

undergoes the ET reaction, the rest relaxes downward toward
the minimum along the PES of the excited state, and further
reaction occurs via the activated Marcus mechanism. This
observation of the ET reaction proceeding always via the
activated mechanism for smallJ values is quite general because
the system has to relax after excitation, reach the population
minimum, and then overcome the reaction barrier. As a result,
the total rate of the ET reaction is independent of the initial
nonequilibrium configuration, and Marcus theory does work
quite well. However, in the case of CIP, the value ofJ is large
as expected, and the back-ET reaction occurs with almost unit
probability during the course of the relaxation as the reactant
population reaches the reaction zone. Thus, the reaction can
occur from a completely nonequilibrium condition, and an
interplay betweenkTST andkD leads to a non-Marcus energy-
gap-dependent rate of ET reactions, as is clear from Figure 3.
As a result, the rate of the ET reaction is strongly dependent
on the initial nonequilibrium configuration as well as the solvent
relaxation dynamics. As already mentioned, the experimental
results are reproduced with much lower values of the solvent
reorganization energyλ0 () 0.75 eV), in contrast to the higher
value (λ0 ) 1.5 eV) used by Tachiya and Murata.9 Although
Gayathri and Bagchi10 did predict earlier the rate of the same
ET reactions using smaller values ofλ0, they evaluated the rate
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1
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(18)

Figure 2. Plot of the electron-transfer rate constantk vs the free energy
change∆G for the solvent-separated ion pair for the parameter values
λ0 ) 0.75 eV,τT ) 0.3 ps,T ) 300 K, andJ ) 0.003 eV. The solid
line represents the present calculated results, the dashed line represents
results based on Marcus theory (eq 7), and the circles represent the
experimental results.22

Figure 3. Plot of the electron-transfer rate constantk vs the free energy
change∆G for the contact ion pair forJ ) 0.3 eV. Other parameters
and the key are the same as in Figure 2 except that the source of the
experimental results is different.23
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numerically using the multidimensional Smoluchowski equation,
which is cumbersome, whereas we have obtained here an
analytical expression for the rate of electron transfer, which is
easy to evaluate.

The next problem that we consider involves nonequilibrium
solvation dynamics in the overdamped limit, i.e.,Ω/ê , 1. It
is clear from eq 16 that the solvation time is not of a single-
exponential form, whereas, in the Markovian limit, it can be
expressed in the simple exponential form exp[-Ω2t/ê]. In Figure
4, we have plotted the nonequilibrium solvation time correlation
function,S(t), as a function of time for different values of the
friction experienced by the solute particle. We have considered
here the frequency of the solute particle to beΩ ) 1012 s-1. It
is clear from the figure that the solvation becomes faster, with
a decrease of the friction coefficient, which agrees with the
intuition that the solute can readjust itself along with the solvent
molecules to reach the equilibrium faster. While the discussion
here is based on a model system, it is also observed in many
realistic systems. Finally, we investigate the problem of dynam-
ics of escape of a particle from a potential well, for which we
have calculated the ratio of the escape (kNs/k1) of a particle for
different degrees of freedom (Ns) of the solute particle as well
as different barrier heights and plotted the results in Figure 5.
From the figure, it is clear that the escape rate increases with
an increase in the solute degree of freedom for a given value of

the barrier height. This increase in rate is due to a decrease of
âVeff of the solute particle in the energy space.

6. Concluding Remarks

In this work, we have presented, for the first time, using
Zwanzig’s generalized kinetic equation and the proper selection
of the multidimensional reaction co-ordinate or the relevant
dynamical variable, a kinetic equation for its probability
distribution function, which is shown to provide a generalized
approach for describing a wide class of dynamical phenomena.
Specifically, we have considered its application to the dynamics
of three important multidimensional dynamical problems, viz.
two-dimensional electron transfer, nonequilibrium solvation, and
escape of a particle from the potential well. The one-dimensional
energy diffusion equation proposed here is conceptually simple,
computationally economic, and also free from many of the
bottlenecks of the conventional approaches. As illustrative
examples, we have considered ET reactions in nonequilibrium
situations and derived an analytical expression for the rate of
ET where the overall rate constant is explicitly dependent on
various physical parameters of the system. We are able to
explain the rate of the electron-transfer reaction using much
smaller and reasonable values of the solvent reorganization
energy, in contrast to earlier works that had to use much larger
values for the same. This has been possible in our theory as the
total reorganization energy considered here is contributed by
two modes of motion in contrast to the earlier consideration of
only a single mode. It may be mentioned that a prediction10 of
the rate of the same ET reactions using smaller values for the
solvent reorganization had been reported earlier, but it involved
numerical solution of the multidimensional Smoluchowski
equation, whereas the present work provides analytical results.
We also have provided a scheme to study the nonequilibrium
solvation without invoking the linear response theory. Numerical
results based on the harmonic oscillator model show that with
a decrease of the friction experienced by the solute particle the
nonequilibrium solvation becomes faster, which is observed in
many realistic systems. We also have studied the dynamics of
escape of a particle moving in a multidimensional space through
the one-dimensional approach presented here.

Although we have adopted here some generic model to derive
the analytical results, an analytical expression for the rate of
ET reactions and escape of a particle from a potential well for
arbitrary potentialVeff(γ) andγ-dependent diffusivity also has
been possible to obtain. In the case of nonequilibrium solvation
dynamics, however, for arbitrary potentialVeff(γ) one has to
solve the one-dimensional equation (eq 1) numerically with the
initial value γ0 ) 〈Vs

e - Vs
g〉, which can be calculated using

equilibrium theory. Because the equation is a one-dimensional
one, it is rather easy to solve it in comparison to other
conventional methods. Most interestingly, in the present theory,
it is easy to incorporate the effect of the initial nonequilibrium
configuration throughγ0, whereas the same is not easy for the
conventional approaches that are based on linear response
theory. Moreover, in many situations, the linear response theory
breaks down, but our theory provides a simple method to
evaluate the nonequilibrium solvation time correlation function.
We will address a detailed discussion on all of these issues in
future work.
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