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We propose a generalized one-dimensional energy diffusion approach for describing the dynamics of
multidimensional dynamical processes in the condensed phase. On the basis of a formalism originally due to
Zwanzig, we obtain a one-dimensional kinetic equation for a properly selected relevant dynamical quantity
and derive new analytical results for the dynamics of a multidimensional electron-transfer process,
nonequilibrium solvation, and diffusive escape from a potential well. The calculated results for electron-
transfer reactions in solvent-separated and contact ion pair systems are found to be in good agreement with
the experimental results. We are able to explain the rate of the electron-transfer reaction using much smaller
and reasonable values of the solvent reorganization energy in contrast to earlier works that had to use a much
larger value. The proposed theory is not only conceptually simpler than the conventional approaches but is
also free from many of their limitations. More importantly, it provides a single theoretical framework for
describing a wide class of dynamical phenomena.

1. Introduction well as y-dependent diffusivity is defined a3(y,t) = I()-
ré(O)é(A(t) — y)IB(A(t) — y)0 with the broken brackets
denoting an equilibrium ensemble average and the dot corre-
sponding to the time derivative. The effective potentiai(y)

is defined asVer(y) = In[d(A(t) — y)Owhere g (= 1/kgT)
denotes the inverse temperature. Zwanzig's derivation of eq 1
assumes thatAqt)/dt is small, which has been discussed by
him in detail*

Dynamical processes in the condensed phase such as electro
transfer (ET) reactionsdiffusive escape from potential weHs,
activated barrier crossing, nonequilibrium solvatfogic. are
of immense and long standing importance in various frontier
areas of research in physics, chemistry, and biology. A theoreti-
cal description of these phenomena is, however, severely
hindered by the multidimensional nature of the collective motion
involved and also the difficulty in evaluation of the nonequi-
librium time correlation functions for proceeding beyond linear
response theory. The objective of the present work is to bypass In an ET process, the system moving initially on a multidi-
these difficulties by developing alternative simpler approaches mensional reactant potential energy surface (PES) crosses to
for describing condensed phase dynamics. We obtain here athe product PES at the intersection point. The ET reactions do
new simple one-dimensional theoretical framework by identify- occur with an intrinsic rat& corresponding ty = 0, i.e., when
ing a proper reaction co-ordinate (or the relevant dynamical the reactant and product potential energies are €gdehce,
variable) and deriving a kinetic equation for its probability the kinetic equation foP(y,t|y0,0) given by eq 1 should be
distribution function, which is shown to provide a generalized modified for ET reactions by introducing a delta sink with
approach for describing a wide class of dynamical phenomena.strengthko to its right side. The modified kinetic equation, for
Specifically, we consider its application to the dynamics of three ET reactions, thus becomes
important multidimensional dynamical problems, viz. two- _
dimensional electron transfer, nonequilibrium solvation, and w:i{ ft D(y.7) dr IBP(“—W+
escape of a particle from a potential well. at aylJo = ay

The description that we propose is based on a kinetic equation 9
for the probability distribution of a microscopic phase space @{,BVeﬁ(y)} Pyt — r|y0,0)]} — ked()P(r.t170,0) (2)
function A constrained to have a valye at timet that was . )
proposed originally by Zwanzfgand can be written, in a Here the sink strengthkf) can be expressed in terms of an

2. Theory of Electron Transfer

modified formS as electron-transfer integral dg = (47%/h)J?, whereh denotes

the Planck constant. A simple theoretical model that we consider
Py tye0) 9] A P(y.t — 71y,,0) here consists of a multidimensional space spanned by the low-
. 5 ﬂ) D(y.7) de T + frequency solvent polarizatiorX) and the vibrational coordi-

9 nate® (Q) or two low-frequency solvent collective coordinafes.
a_{ﬂveﬁ(y)} Pyt — T|V010)]} (1) In Flgu_re 1, the PES of the system is _drawn in th_e two-
Y dimensional space spanned by the coordinXtesid Q, with
the curve ABC representing the intersection of the reactant and
product PES, and ET takes place when the reactant reaches the
* Author to whom correspondence should be addressed. E-mail: intersection point. The dynamical effects in ET reactions can
skghosh@barc.gov.in. be investigated theoretically using this model for which the
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wherey is the value ofy att = 0 and the time-dependent as
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e e at timet within the reactant surface is definedrR@) = /* dz

| ( I P(zt|2,0), and the average rate constérdf the ET reaction
| can be expressed d&s~! = 7 dt P(t), which also can be

written as

K= (krsp "+ kp * (6)

Potential Energy

| Here, krst represents the transition state theory (TST) result
obtained by Marcu$which can be expressed as

(AG + 1 + Ag)°

4kgT(Ag + 4) ™

X o ket = Ko(Ak T(2o + 4) 12 exp[

Figure 1. Typical potential energy surface of a two-dimensional
electron-transfer reaction. The two surfaces intersect on the curve ABC. while kp represents the rate constant for the well dynamics and

) ) _ can be expressed in terms of the nonequilibrium distribution
conventional Smoluchowski equatfofapproach is cumbersome  function Po(z,tz0,0) in the absence of sink (i.e., solution of eq

and highly involved, thus making the simpler one-dimensional 4 with k, = 0) as

description, as proposed here, very important and significant.

When specialized to the standard low-frequency harmonic o _

oscillator mod€él” for the reactant and product PES defined as, kD—l(Zk z) = fo dt [(Po(*,112,0) — Po(z",112,, 0))]
respectively VR(Q,X) = (Y2)Q? + (Y2)X2 andVP(Q,X) = (1/2)- '

(Q — Qu)? + (M2)(X — Xo)2 + AG, the modified generalized

kinetic equation (eq 1), in the Markovian limit, for ET reactions One can have an analytical expression for this quantity by using

Po(Z*,0(Z*,0)

becomes the standard expression Bf(z*t|z0,0) and evaluating a line
integral with a gradient okp ™! in two-dimensional space,)
Ptye0) 3 |Plye0) L from (0,0) to &*,z), using a suitable path (0,8) (z*,0) —
ot T et Ay dy (z*,20) because the integral is path-independent. The analytical

expression fokp~! thus obtained is given by

ko {2 2) = () (ke T(Ro + 4)) 2D+ x
kO (7)P(y,tly0,0) (3) - 1 1
ZO H — (Agn+1 _ A§n+1) 4 2(‘7_[)71/2 x

B B
S0 gl ~ ¢ ot AGIPGY,0)

where D(y,t) of eq 1 has been replaced by the effective

diffusivity Dest = /5 dt [Xo2DX(t)X(0)TH Qo2@(t)Q(0)T within w (—1)"

the Markovian approximation and assumption of weadte- (A;(mn_ Aan) 9)
pendence oD(y,t). It is also assumed that the cross-velocity n;, mi2m+ 1)X,, !
contribution is zero. Here, the low-frequency vibrational

reorganization energy and solvent reorganization energy whereXmn = 2m + 2n 4 2 with A; andA, (for Ay < Ay) given

are given byl = (1/2)Qo2 and/lo = (1/2))(02, respec’gively, Whi|§ by A= Zo/(4kBT(/10 + ;L))llz and A = Z*/(4kBT(/10 + /1))1/2_
AG represents the free energy of the ET reaction. Equation 3 The effective diffusivity can be approximated in terms of the

also can be rewritten as solvent relaxation timer as Deit = 2ksT(o + A)/77. If the
system evolves from an initial equilibrium state, then the
aP(z,t|zo,0)= D 9 P(zt12,0) + corresponding rate constant is given by
eff
ot 0z 0z
- Ao
k, ' =17[In 2 + (27)" [7° dx exppé/2] erf(x/2)] (10)
ﬁ ZR(21|,,0)| — ked(z — 2¥)P(212,,0) (4) J;
)

whereAy = (Lo + 1 + AG)/(2ksT(Ao + A))Y2 Equations 4, 9,
using the variables = y + z*, zo = yo + z*, andz* = —(A + and 10 are the new results of the present work. An analogous
Jo + AG). This is an important result because it provides a €xpression has been derived by Tachiya and Méfataone-
one-dimensional energy diffusion equation of the reactive systemdimensional ET reactions. It may be noted that analytical results
and can be numerically solved much more easily than the two- for the ET rate constark cannot be obtainédl by directly
dimensional Smoluchowski equation involvidgand Q coor- solvm_g _the two-d|menS|(_)naI Smoluc_howskl equation, and |n_fact
dinates. It may be noted that the present one-dimensionalthe difficulty for numerical evaluation through this equation
description of a two-dimensional ET is analogous to the Zusman increases drastically with an increase in dimensionality. The
equatiof} proposed earlier for a one-dimensional ET process. Investigation of two-dimensional ET as a one-dimensional

The formal solution of eq 4 is given by problem leading to an analytical expression for the rate constant,
as shown here, is only illustrative, and it is straightforward to

P(z,t|2,,0) = Py(zt|2,0) — use the present approach to formulate the treatment of ET
i reactions involving higher-dimensional (more than two) space

ko 5, dt Po(zt — 7l2*,0)P(z*,712,0) (5) as a one-dimensional problem and obtain analogues of eqs 4,

9, and 10. In the case of a delocalized sink, one should replace
where the functiorPy(zt|2,0) is the solution of eq 4 in the  the localized(y) sink of eq 3 by a generalized sink functidn
absence of any sink term. The probability of finding the system ).
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As an illustrative example, we now consider a typical ET the frequency and mass of the solute particle, wiilev;, and
reaction, where a molecule DA is excited from the ground state, g; represent, respectively, the mass, frequency, and positions
leading to ion pair formation and the system then relaxes of theith bath oscillator and the coefficie@ couples théth
downward along the PES of the resulting®~ system until it bath oscillator to the system coordin&g The excited state of
meets the PES of the ground state DA, when the back ET the solute here corresponds to a displaced harmonic oscillator
reaction takes place. Considering the potential energy for thewith d; denoting the displacement for th#h oscillator. It is
system DA and DA~ to be given byWVPA(Q,X) = (Y2)Q? + clear from eq 11 that the relevant microscopic phase space

(*2)x% and VP™A(QX) = (Y2)(Q — Qo)* + (M2)(X — Xo)? — function A can be considered to b& = V¢ — V2, and the
AG, respectively, wherdG represents the free energy of back-  probability of this phase space function to have the valie
ET (charge recombination reaction), the rate conskant is satisfies the equation

given by eq 9 withZg = —2(% + A¢).
dP(AEt|AE,,0) . P [aP(AE,t — 7|AE,,0)
3. Nonequilibrium Solvation Dynamics — J, Co) dr GAE| SAE +

Another very important dynamical process is the nonequi-
librium solvation of a newly created charge or dipole that (C+ DAE)P(AE — 7|AE,0)| (14)
provide$ a microscopic understanding of the relaxation of the
solvent molecules around a newly created ion or dipole at WhereC = (1/2kgT), D = (2AoksT) Hor = (Y2)M 3j=1"C2%d?,
different time domains. The calculation of the nonequilibrium andC.(t) is the collective velocity correlation function of the
solvation time (NEST) through simulation, however, requires Solute particle in the excited state. In the Markovian limit, as is
harvesting of the nonequilibrium trajectories and is, therefore, clear from eq 14, the probability distributid?(AE,t|AE,,0) of
computationally demanding. One of the most common ap- the energy gap between the electronic states of the solute are
proximations in theoretical studies of solvation dynamics is Gaussian throughout the dynamics of nonequlibrium solvation.
based on the assumption of linear response, which permits theThese remarkable energy gap statistics also have been odgerved
rep]acement of NEST by the equi"brium solvation time cor- in real SyStemS thrOUgh simulation StUdieS, such as nonequilib-
relation function, the theoretical calculation of which is rather fium relaxation following the dipolar transition of solute in
simple. Computer simulatidfas well as experimental studies Water. Now, defining the nonequilibrium solvation energy as
show that in many situations the linear response theory breaksAE(t) = /., dAEP(AE,t|AE,0), using eqs 14 and 11, one
down, and hence a good theoretical method for the evaluationobtains, after some algebra, the result
of NEST is in demand. The relevant quantity of interest is the

. . . _1
NEST, which is defined as S = L—l(s+ 1 Cv(s)) (15)

. 2o ks T
o = AE@) — AE(»)

_— — (11) whereL™! represents the inverse Laplace transform &pd)
AE(0) — AE(e) is the Laplace transform &,(t). Equations 14 and 15 represent
- . L new important results of the present work and provide an
and is directly accessible via time-dependent fluorescence. Here|mpor'[ant relation between the solvation time correlation
AE(t) is the nonequilibrium ensemble average of the energy fynction and the velocity correlation functi@(t) of the solute
gap between the ground and the excited states of the solutejn the excited state. To obtain an analytical expressiorsr

We propose here a simple one-dimensional dynamical equationye assume that the frequency of oscillation for different modes
for its evaluation. Many optical and rate processes involving of the solute particle are identical( = Q; = Q), and in the
molecules in solution can be described by considering a two gyerdamped limit, the velocity correlation function decays
(electronic) level system coupled to collective harmonic bath exponentially with a decay constan€ Livhereg is the friction
coordinates representing the solvent, which was first proposedexerted on the solute particle by the solvent particles. Within

by Zwanzig® and is widely used for the study of barrier crossing  these approximations, after some algebra, we obtain the expres-
dynamicst* many ultrafast nonlinear techniqu®sLandau sion for S(t) given by

diamagnetisi#f in a dissipative and confined system, etc. The

generalized form of the potential energy of the system in exp[—(&/2)t]

multidimensional space in this mode! for the ground and excited () == 55— (1 + P)exp[(P&/2)t]] —

states of the solute is given, respectively, by (1 — P)exp[-(PE/2)] (16)

; NN g c ) with P = (1 — 4(Q/E))Y2

Vg =Vs(Qr.Qy + Z Z —Mlog+—Q (12)
;&2 ma; 4. Diffusive Escape from a Potential Well

and The escape of a parti@efrom a potential well in the

condensed phase is another important dynamical phenomenon

N N g Cij 2 that we consider here. The motion of the patrticle is coupled to

V,=VIQ,..Qy) + Z Z -m|log +—Q (13) the solvent motion, thus requiring a description of the dynamics
&E&:2 Mo, : to be multidimensional. We employ a model potential similar

to the one defined in eq 12 and assume the solute particle to
In egs 12 and 13, the first terms represent the potential energyescape from the potential well on attaining the endtgyi.e.,
of the solute (consisting d¥; vibrational degrees of freedom)  V¥(Q;...Qn) = Eq. Thus the obvious choice for the phase space
in the ground and excited states, respectively, and are assumegnction isA = VY(Q1..Quy), and the dynamical equation for
to be given byVI(Q1.Qu) = (Y2)MYE,Q2Q? and V- the probability that this potential energy functidnis con-
(Q1..0n) = (M2)M z;\';leZ(Qj — dj)? with ©; andM denoting strained to have the valugas obtained from eq 1 is given, in
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the Markovian limit, by 12
P(Et|E,,0) 9| _ OP(Et|E,,0)
a Pt e T

E N
(k,TT +1- E)P(E,UEO,O) 17)

Here,D is the diffusion constant corresponding to the motion
along the hyperspherical coordinate of the solute particle. A
similar equation for a one-dimensional problely & 1) was
derived by KramerS$ based on a different approach. The present
generalized one-dimensional energy diffusion equation, how- 4 . . . . . .
ever, corresponds to a multidimensional problem. The rate 00 05 10 15 20 25 30 35
constank for the escape process can be evaludted solving -AG
eq 17 using the reflecting boundary conditioneat= 0 and a Figure 2. Plot of the electron-transfer rate constans the free energy
perfectly absorbing boundary conditiontat= E4. The resulting changeAG for the solvent-separated ion pair for the parameter values
expression fok is obtained as o= 0.75 eV,7r = 0.3 ps,T = 300 K, andJ = 0.003 eV. The solid

line represents the present calculated results, the dashed line represents

SEq 1 results based on Marcus theory (eq 7), and the circles represent the
K= 45D fo dz 2" exp[-2 18) experimental result&.
T BE 1 -1 2
S dz 2 exp] [ dtt"* exp[~zf] 15
wheren = Ng/2. Equations 17 and 18 represent important results
of the present work. The diffusion constdhtappearing in eq
18 can be calculated using suitable approaches including the = 12
scaling laws proposed recent8?11t is clear from this equation é
that the rate of escape of a particle from the potential well %I)
decreases with an increase of barrier heightis expected. —
94
5. Results and Discussion
The one-dimensional energy diffusion approach to multidi-
mensional dynamical processes developed here and applied to 6.
understand three important dynamical processes, viz. ET reac- ! ! .

tions, nonequilibrium solvation dynamics, and diffusive escape 0 1 2 3
from the potential well, is now illustrated through numerical -AG

results. Our first consideration is the example of ET reactions Figure 3. Plot of the electron-transfer rate constins the free energy

for which we consider two different types of specific examples, changeAG for the contact ion pair fod = 0.3 eV. Other parameters
viz. solvent-separated ion pair (SSIP), where the ion pair is nggm gﬁéf‘:ssmfssigﬂ%gfeg Figure 2 except that the source of the
separated by solvent molecules, and the case of ET for contact P '

ion pair (CIP), where the ion pair is in contact with each other. undergoes the ET reaction, the rest relaxes downward toward

To explain the experimental results, Tachiya and Mdrhatd the minimum along the PES of the excited state, and further
considered only single-mode diffusive motion in tiXeco- reaction occurs via the activated Marcus mechanism. This
ordinate and used the parameteds= 0.003 eV (for SSIP)J observation of the ET reaction proceeding always via the

= 0.3 eV (for CIP)? and/o = 1.5 eV. But this value of the  activated mechanism for smdllvalues is quite general because
reorganization energyo is quite high and cannot be easily the system has to relax after excitation, reach the population
rationalized. However, the ET process is multidimensional in minimum, and then overcome the reaction barrier. As a result,
nature, and the reorganization energy might be contributed bythe total rate of the ET reaction is independent of the initial
different modes and not necessarily from one single mode asnonequilibrium configuration, and Marcus theory does work
they have considered in their investigation. In the present theory, quite well. However, in the case of CIP, the valuela$ large

we have developed a one-dimensional description of two- as expected, and the back-ET reaction occurs with almost unit
dimensional motion where the total reorganization energy is probability during the course of the relaxation as the reactant
contributed by two modes. For simplicity, we consider here the population reaches the reaction zone. Thus, the reaction can
reorganization energy for the two modxsand Q to be the occur from a completely nonequilibrium condition, and an
same, and the best fitted value &f is found to be 0.75 eV, interplay betweerkrst andkp leads to a non-Marcus energy-
which is much less than the value taken by Tachiya and Mdrata. gap-dependent rate of ET reactions, as is clear from Figure 3.
The calculated values of the rate constiafir the ET process  As a result, the rate of the ET reaction is strongly dependent
in the SSIP and CIP cases are plotted along with the availableon the initial nonequilibrium configuration as well as the solvent
experimental resulf323 as a function ofAG in Figures 2 and relaxation dynamics. As already mentioned, the experimental
3, respectively. It is observed that for the SSIP dasleas very results are reproduced with much lower values of the solvent
little effect on the overall ET reaction rate const&nivhich is reorganization energyp (= 0.75 eV), in contrast to the higher
mainly controlled bykrst as predicted by Marcus in his value o = 1.5 eV) used by Tachiya and Mur&although
landmark workt In this case, the electronic coupling strendth  Gayathri and BagcHhi did predict earlier the rate of the same
is very small, as a result only a small fraction of the reactant ET reactions using smaller values/f they evaluated the rate
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1.2 the barrier height. This increase in rate is due to a decrease of
BVer Of the solute particle in the energy space.

6. Concluding Remarks

In this work, we have presented, for the first time, using
Zwanzig's generalized kinetic equation and the proper selection
of the multidimensional reaction co-ordinate or the relevant
dynamical variable, a kinetic equation for its probability
distribution function, which is shown to provide a generalized
approach for describing a wide class of dynamical phenomena.
Specifically, we have considered its application to the dynamics
of three important multidimensional dynamical problems, viz.
two-dimensional electron transfer, nonequilibrium solvation, and
escape of a particle from the potential well. The one-dimensional
energy diffusion equation proposed here is conceptually simple,
computationally economic, and also free from many of the

time(t*) bottlenecks of the conventional approaches. As illustrative
Figure 4. Plot of the nonequilibrium solvation time correlation function e_xam_ples, we havg considered ET reacuons_m nonequilibrium
(1) vs scaled time* (= Qt) for the parameter values: Frequer@y situations and derived an analytical expression for the rate of
= 10251, friction coefficients = 10Q for curve 1, = 5Q for curve ET where the overall rate constant is explicitly dependent on
2, &£ = (Y93)Q for curve 3, andt = 2.5 for curve 4. various physical parameters of the system. We are able to
explain the rate of the electron-transfer reaction using much
smaller and reasonable values of the solvent reorganization
energy, in contrast to earlier works that had to use much larger
values for the same. This has been possible in our theory as the
total reorganization energy considered here is contributed by
two modes of motion in contrast to the earlier consideration of

12

101

o 5 only a single mode. It may be mentioned that a prediéfiof
Pl - the rate of the same ET reactions using smaller values for the
al JPtas solvent reorganization had been reported earlier, but it involved
-7 numerical solution of the multidimensional Smoluchowski

< equation, whereas the present work provides analytical results.
_ === We also have provided a scheme to study the nonequilibrium
2 4 6 8 10 12 solvation without invoking the linear response theory. Numerical
N, results based on the harmonic oscillator model show that with
Figure 5. Plot of the ratio of the rate of escape of a solute particle a decrease of the friction experienced by the solute particle the
havingNs degrees of freedom to the same for one degree of freedom nonequilibrium solvation becomes faster, which is observed in
vs the number of degrees of freeddn The solid line corresponds to  many realistic systems. We also have studied the dynamics of
the calculated resuits fg#q = 3, and the dashed line corresponds 10 egcape of a particle moving in a multidimensional space through
BB =2. the one-dimensional approach presented here.
numerically using the multidimensional Smoluchowski equation,  Although we have adopted here some generic model to derive
which is cumbersome, whereas we have obtained here anthe analytical results, an analytical expression for the rate of
analytical expression for the rate of electron transfer, which is ET reactions and escape of a particle from a potential well for

easy to evaluate. arbitrary potentiaMet(y) andy-dependent diffusivity also has
The next problem that we consider involves nonequilibrium been possible to obtain. In the case of nonequilibrium solvation
solvation dynamics in the overdamped limit, i.2/& < 1. It dynamics, however, for arbitrary potentidls(y) one has to

is clear from eq 16 that the solvation time is not of a single- solve the one-dimensional equation (eq 1) numerically with the
exponential form, whereas, in the Markovian limit, it can be initial value yo = [V — VI[J which can be calculated using
expressed in the simple exponential form ex@?t/£]. In Figure equilibrium theory. Because the equation is a one-dimensional
4, we have plotted the nonequilibrium solvation time correlation one, it is rather easy to solve it in comparison to other
function, §t), as a function of time for different values of the conventional methods. Most interestingly, in the present theory,
friction experienced by the solute particle. We have considered it is easy to incorporate the effect of the initial nonequilibrium
here the frequency of the solute particle to®e= 1012 s71. It configuration througly,, whereas the same is not easy for the

is clear from the figure that the solvation becomes faster, with conventional approaches that are based on linear response
a decrease of the friction coefficient, which agrees with the theory. Moreover, in many situations, the linear response theory
intuition that the solute can readjust itself along with the solvent breaks down, but our theory provides a simple method to
molecules to reach the equilibrium faster. While the discussion evaluate the nonequilibrium solvation time correlation function.
here is based on a model system, it is also observed in manyWe will address a detailed discussion on all of these issues in
realistic systems. Finally, we investigate the problem of dynam- future work.

ics of escape of a particle from a potential well, for which we
have calculated the ratio of the escagg/ki:) of a particle for
different degrees of freedonNg) of the solute particle as well
as different barrier heights and plotted the results in Figure 5. References and Notes
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