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Vibronic coupling, or electrortphonon coupling, of naphthalene is calculated. A method of vibronic coupling
density analysis, which has been proposed for the vibronic coupling of the-Jallar active modes in a
Jahn-Teller molecule, is extended for totally symmetric vibrational modes of a molecule including a non-
Jahn-Teller molecule. Contrary to non-totally-symmetric modes, orbital relaxation upon a charge transfer
plays a crucial role in the vibronic coupling calculation for the totally symmetric modes. The method is
applied for the ground state of the naphthalene anion to compare with that of the benzene anion. The relationship
between the vibronic coupling density and a nuclear Fukui function is also discussed.

1. Introduction of naphthalene anion have concerned the superconducting
transition temperatuf@3! or the intramolecular reorganization
energy3?

The vibronic coupling is important also in chemical reaction
theory. Cohen et al. have proposed a nuclear Fukui function
based on the density functional thedfyThe nuclear Fukui
function has a close relation to the vibronic coupling density.

This article is organized as follows. In section 2, we define
a vibronic Hamiltonian and introduce some notations which are
used in the later sections. The vibronic coupling density is
defined in section 3. Computational details are described in
section 4. The calculated results are discussed in section 5.
Finally, we summarize this work in section 7.

Vibronic coupling is one of the fundamental interactions both
in molecules and in extended systeh¥he coupling is clearly
observed in JahaTeller system&:? Strength of the coupling
for a certain vibrational mode is measured by a vibronic coupling
constant.

Recently, we have calculated the vibronic coupling for some
Jahn-Teller molecules within a spectroscopic accuracy, and we
have proposed a concept gibronic coupling densitywhich
provides a local picture of the coupling in a molectife-or
the vibronic coupling of a JahfTeller active mode, it is not
the doubly occupied orbitals but the open level that can
contribute to the coupling because of some symmetry reason.
On the other hand, for tot_ally symmetric modes either in the 2 Vibronic Hamiltonian
Jahni-Teller molecules or in the non-Jahiieller molecules,
all the occupied orbitals can contribute to the coupling as long We consider the structural change of a molecule upon a
as the symmetry is permittéd. change of the electronic state, R S, such as an electron

In this article, we extend a method of the vibronic coupling addition, an electron removal (an ionization), or an electronic
density analysis for the totally symmetric modes and apply it €xcitation. A reference nuclear configuratiBp is defined as a
to the ground state of the naphthalene anion to compare with certain nuclear configuration of the molecule. In the case of a
that published for the benzene anfon. Jahn-Teller moleculeRy is defined as a JahtTeller centet

Naphthalene is the second member of oligoacenes, and muchvhere the electronic state is degenerate, whereas, for a non-
research on the vibronic coupling has been done using bothJahn-Teller molecule, naphthalene in the present study, the
experimental and theoretical methods. Absorption, fluorescence,0ptimized geometry of the ground state of the neutral state is
and photoelectron spectroscopy are important techniques in theaken as the reference nuclear configuration. We simply call
observation of the vibronic coupling in the neutraf and the ~ the system consisting of the reference configurafitynand
cationic staté518-26 Simulated spectra have shown good electronic state a reference system R herein.
agreements with these experimental d&f&:26On the other The change of the electronic state from R to SR8, will
hand, the vibronic coupling on the anionic state has not beengive rise to a deformation of the nuclear configurati&g,—
observed with enough resolution because naphthalene has &. An arbitrary deformed structure with the electronic state S
negative electron affinity and is therefore unstable in the anionic is called a system S hereafter. The molecular Hamiltonian for

state?’-2% Previous theoretical studies on the vibronic coupling @ deformed molecule with a nuclear configuratiBncan be
written as
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where Enia(R) = Wy Vel Wia T Wy 2o Wiy CH
o 99/ o 32 7/ |]IIN+1| //eéleH[H_ //nn(R) (9)
7 W = ?)
3Qi/Rr, 0Qi0Qy/r, where Wy, is the electronic wave function of thé(+ 1)-

electron system, which is regarded as the system S defined in
Ur \R) = 2 {r) + % (r,R) + % (R) 3) the previous section. Now that the equilibrium configuration
of the reference system is not stable in tine 1)-electron
7x(R) is a nuclear kinetic energy operatofy(r) is an electronic system,
kinetic energy operator//edr) is an electronie-electronic, Zer
(r,R) is an electronie-nuclear, andZn(R) a nuclearnuclear CL=NTE] I R VIR B7A L N 94
potential operators?{ is called the electronic part of a linear Q |n - 3Q, R + 3Q s (10)
vibronic operator .7/ is called the electronic part of a quadratic 0 0 0
vibronic operator. The electronic Hamiltonian.4& = “ + can have a finite value.

lee +_ Me”_ . . If the Hellmann-Feynman theorem can be applied to eq 10,

A vibronic wave function can be expanded in terms of the q,gh this is not always the case as we discuss later, we can
eigenfunctionsb(r Ro) of the electronic Hamiltonianze(r,Ro), obtain an equation for the vibronic coupling constenof the
which are called the crude adiabatic (CA) basis. We concentrate(N + 1)-electron system as

on the case that the electronic ground stai® nondegenerate.
We obtain the vibronic Hamiltonian as (aENJrl

7= (TQDn+ ERJun+ Y (VduQ + 0Q,

) = Wy (R 71Wy(rRYE= V, (11)
RO

1 Therefore,V, can be evaluated from the gradient of the BO

z Z z W)aRQ (4) potential with respect to the normal coordinate. However, we

244 calculateV; from the integral in eq 11, because we are interested

in a local property of the vibronic coupling.
where the second term is an eigenvalugZgfr ,Ro). Assuming Except for a totally symmetric mode, the derivative of the
that the last term, which contains the cross terms of the normal nhuclear-nuclear repulsion potential is vanishing because of the
modes, QiQ;, is vanishing in the system % the vibronic symmetry:
Hamiltonian is finally obtained as
(a Z/”“) 0 (12)
Q Ry

2 2

hel o 1
ZYZZ_EEZ +EO+IZViQi+IZ£wi2Qi2 (5)

It is not necessary to consider the nucteauclear repulsion
term for such a mode. As for a totally symmetric mode, on the

wherew; is the frequency of a vibrational modef the reference :
other hand, the nucleanuclear repulsion term plays an

system and ) . A . ; .
important role in the vibronic coupling calculation.
V, = (V) = [@,(r,Ry)| 7 ®@,(r RO (6) From the equilibrium condition for the reference system (8),
' ' ' the nuclearnuclear repulsion term becomes
The quantityV; is called a linear vibronic coupling constant. aU. - OOW, | T, .
3. Vibronic Coupling Density 0Q Jr, aQ, R, (13)

We restrict ourselves to the case of an electron addition to __ . ) , .
an N-electron system. We define thé-electron state of the This relation is a particular case of Feynman’s electrostatic
molecule and the equilibrium structuRy, as the reference  theorent® Substituting eq 8 into eq 10, we obtain

system R. o -
Within the Born-Oppenheimer (BO) approximation, we can V, = O o HelPrialy |7 Wy
write the energy of thé&-electron system as a function of the aQ, R, aQ, R,

nuclear configuratiorR:

= X) v;(x) dr — X) v;(x) dr
EN(R) = (W, 75 W\ T (W, | 7, |W\TH W | 7. W O+ J P 169 & = [ o) 59

(R (7) = [Ap(X) v(X) dr = [ n,(x)dz (14)
whereWy is an electronic wave function of tié-electron state ~ Wherepo andpy are electron densities of thé- and N + 1)-
atR. At the equilibrium configuratiorRy, electron systems, respectively, an@(x) = pa(x) — po(X) is

the electron density difference. Furthermorés a one-electron
(BEN) AW\ | TPy (a Z/nn) operator, the derivative of the electronic-nuclear potential
- = + =0 (8)
RO RO RO

operator, which yields

0Q; aQ, aQ;
3<//en Nor N+1
for an arbitrary modeé This is the condition for the equilibrium = Z vi(X,) (15)
nuclear configuratioRy of the reference system. Q R, v

When an electron is added to the reference system R, the
energy of the electronic state of thM (- 1)-electron state is  after summation oveN or N + 1 electrons, and(x) is the
written as a function of the nuclear configuratiBn vibronic coupling density
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1(X) = Ap(X) v;(X) (16)

For a JahnaTeller molecule within the Hartreg~ock ap-
proximation, we can writg; for a Jahn-Teller active mode as

17i(X) = p1(X) z;(X) = psomo(X) vi(X) (17) 29(2) a9(3)
where SOMO means a singly occupied molecular orbital, ‘ [
because the doubly occupied orbitals do not contribute to the
vibronic coupling constant because of the symmetry of Cleb-
sch-Gordan coefficientd.From eq 16, it is found tha¥; can ] L
be calculated as the integral gfover the space. The vibronic ag(4) ag(5) ag(6)

coupling density can significantly contribute to the vibronic

coupling constant in the region where bdtj(x) andvi(x) are

large. Furthermorey;i(x) gives a local picture of the vibronic

coupling of a molecule.
The vibronic coupling constant foN(— 1)-electron systems

and electronic excited states can be calculated from the electror

density difference and potential derivative in the same way. aq(7) aq(8) ag(9)
However, the HellmannFeynman theorem is not valid for  Figure 1. Vibrational modes of the reference system.

a conventional LCAO wave function, as long as the center of

the basis functions are not variationally optimized. To make Therefore, the reorganization energy in the CA approximation

the theorem applicable, some improvements have been pro-can be expressed as

posed: (1) using floating basis, (2) optimizing the center of

the basis function variationally, and (3) including the derivatives V2
of the basis set. In the present calculation, we employed a basis AE.. = Z _ (20)
set including the first derivative®. As we discuss later, the cA 2m:2

Hellmann-Feynman theorem is approximately satisfied, when
the basis set with their first derivatives is used. It is expected Th hout th ficle. th ati L .
that the higher derivatives are included to the basis set, the more roughout the articie, the reorganization energy IS given in

the validity of the HellmanfaFeynman theorem would increase. eIecFronvoIt;, wave number in crh and the other quantities
are in atomic unit.

4. Method of Calculations The basis set employed in all the calculations is the 6-31G

. basis set with the first derivatives. The calculations were
We adopted naphthalene anion as a target molecule. Theperformed using GAMESS prografh.

reference system R is the ground state of neutral naphthalene.
The equilibrium structure of the reference systegnvibrational 5. Results and Discussion
structure, and electron densips were calculated using the
restricted HartreeFock (RHF) method. Figure 1 shows the
vibrational modes.

To evaluate the electron density, the electronic structure
of naphthalene anion was calculated using the restricted open
shell Hartree-Fock (ROHF) method at the equilibrium structure
of the reference systerR,. We call p1 relaxed densitypr
hereafter. For comparison witpr, we also calculated the
electron density using frozen orbital approximation, or Koop-
mans’ approximationgpg:

5.1. Vibronic Coupling Constant. First, we confirmed the
applicability of the HellmanaFeynman theorem to the present
model. Table 1 summarizes the frequencies and the deviation
from the theorem for the reference system. Scaled values of
frequency agree well with the experimental val&&sThe
deviations from the HellmannaFeynman theorem are large in
the modes over 3000 crh Because these modes are localized
on the C-H bonds as shown in Figure 1 and have high
frequencies, the effect on the stabilization enek@i¢a is rather
small (0.001 eV). Therefore, we can conclude that the Hell-
Pe= Po+ PLuMo (18) mann-Feynman th(_aorem can b(_a applied to the present modgl.
The calculated vibronic coupling constants are tabulated in

where pLumo is frontier electron density of LUMO of the Table 2. The calculation using the frozen dengitpy no means

referenceN-electron system calculated with the RHF method. reproduces those calculated from the relaxed depgitin this
We call pr frozen density respect, vibronic couplings for totally symmetric modes are quite

We optimized the geometrR of the anion and estimated ~ different from those for JahrTeller active modes in which
the stabilization energiEgo from Ry to R, which corresponds ~ calculations assuming the Koopmans' approximation yields
to the reorganization energy within the BO approximation. On dualitatively satisfactory results. In the mode&2 &(6), a-

the other hand, the Hamiltonian (5) in the CA approximation (8), and g(9), the calculations using- andpr result in different
can be rewritten as orders of magnitude with opposite signs, §{3 and g(7) the

couplings have different orders of magnitude, andgi)they
1 have opposite signs. Because the discrepancy is large in the
E(R) =E,+ z V.Q +_wi2Qi2 =E,+ low-frequency region, it greatly affects the reorganization
| 2 energy. The frozen densipg yields poor a resul\Ec, = 5.614
5 eV. This is because the large valuespin the low-frequency
1, Vilz Vv region cause the overestimation AEca. On the other hand,
z Ewi Q- T 19) the reorganization energy using the relaxed dengsityn the
! i 20, CA approximatiorAEca = 0.242 eV is almost the same as the
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TABLE 1: Calculated Values of Frequency (cnt?l), [d@y| 7{|®n0= V; (104 au), and AE (eV) of a; Modes?

ay(1) &(2) &(3) a(4) (%) %(6) a(7) &(8) %(9) AE
frequency calt 496 745 998 1154 1331 1454 1592 2997 3022
expf 513 765 1020 1383 1464 1576 3057
Vi -006 —019  —0.16  —0.02 0.02 —004 -004 —0.28 0.83  0.0014Ecs)

@ AEca was calculated fronv; and unscaled;. There is a good agreement between the theoretical and the experimental valudsithérences
betweenV; and PENW0Q)r, = O are small for the €C stretching modesyéb)—ay(7), which yield large vibronic coupling constants, and that
betweenAEca and AEgo = 0 is also small. Therefore, we can employ the HellmaRaynman theorem in the present calculatidrScaled by
0.8992, the value for HF/6-31G(d,f?).¢ Raman scattering for single crystal of naphthal&ne.

TABLE 2: Calculated Vibronic Coupling Constant V; (10~ au), Energy Gradient (0En+1/60Q))r, (10~ au), and the

Reorganization Energy AE (eV)?

(1) a(2) a(3) a(4) a(5) a(6) a(7) 3(8) a(9) AE
Vi oF 9.68 1555  13.84 234 -522 470 -0.35 7.09 —12.15  5.6144Ecn)
pr  —110 —061 064 211 -7.03 —-017 -452 —0.21 1.84  0.242AEcn)
(0En11/0Q)g, ~-1.04  —0.47 0.84 212 -7.06 —017 —4.47 0.07 0.98  0.23%Ezo)
ref 31° 1.0 0.5 1.2 4.1 4.0 0.127
Jprumov; dr 1233  17.03 1506 1.37 —6.76 5.37 0.02 9.26 —13.29  8.570AEcs)
(93 1/3Q)R B3 YP -1.06 -061 —0.03 120 -411 -025 -397 —0.03 1.24  0.1314Ezo)

@ AEca in the CA approximation was calculated frovhand unscaled;.

AEgo was estimated frorin+1(Ro) — En+1(R) in the BO approximation.

Results of Kato and Yamabe are also tabulated for comparison. We also calculated the orbital vibronic coupling geogtantdr and energy

gradient 0En+1/0Qi)r,23-"" at the same level of theory, B3LYP/6-31G(d), as in ref 31. The reported values in ref 31 seem to be the energy gradient,

though they have insisted they calculated the orbital vibronic coupling con&tabsolute values o¥; calculated from the relation; = wiﬂ,

wherel is the electror-phonon coupling constant defined in ref 31.

result in the BO approximatioAEgo = 0.239 eV. It should be
noted thatAEca can be obtained from the calculation at the
single pointRo without a geometry optimization of the anion.
Kato and Yamabe have reported the vibronic coupling
constant of naphthalene ani®riTheir results are also tabulated

exists on the line connecting C1 and C2, the density on C1 and
C2 is exactly zero. The density difference on C8 and C10 is
small. It should be noted that the density difference distributes
out of the molecular plane.

5.2.2. Relaxed Electron Densitizigure 2b shows the electron

in Table 2. They have insisted that they calculated an orbital density difference using the relaxed density. The distribution

vibronic coupling constant, which j§o umovi dr in the present

of the density difference is rather complicated. The positive

notation. Therefore, it should approximately correspond to our region withzr character mainly comes from the LUMO. The
results calculated using the frozen density. However, their results positive region on C8 and C10 is increased after the relaxation.
agree fairly well with the present values calculated using the Moreover, it should be noted that there appear regions in which

relaxed density difference. To clarify this incomprehensible
point, we calculated the orbital vibronic coupling constant
JpLumovi dr and the energy gradieniBn.1/0Q)r,23-Y" at the
same level of theory, B3LYP/6-31G(d), as in ref 31 using
Gaussian 03?2 One can see from the table that the reported
values in ref 31 seem to be not the orbital vibronic coupling
constant but the energy gradient. The orbital vibronic coupling
constant using uwmo is equal to the vibronic coupling constant
using pr = po + pLumo as long as the HellmarfFeynman
theorem is satisfied, because the contributiop,a$ equivalent

for the contribution of/4,. If one calculated a vibronic coupling

the electron density decreases upon the electron addition. Such
negative regions are classified into two cases: the in-plane
negative regions on C4, C6, C8, and C10 and the out-of-plane
negative regions on C1 and C2. These negative regions originate
from polarization that the orbitals of naphthalene anion are
relaxed from those of the neutral molecule due to the additional
electron densityumo-

Different from a Jahn Teller problem, the polarizations of
the occupied orbitals play an important role in the vibronic
coupling calculation in a non-JakiTeller molecule, because
all the orbital vibronic couplings contribute to the vibronic

constant following exactly the same procedure described in ref coupling constant.
31, one would obtain an unsatisfactory result, as we obtained 5.2.3. Dervative of Potential with Respect to Normal

in the sixth line of Table 2. In the present calculation usig
because the Hellmart-eynman theorem is approximately valid
by including the first derivatives of the basis functions, and the
orbital relaxation is includedy; is almost equal to the energy
gradient as tabulated in the third and fourth lines of Table 2. It
should be noted that the orbital relaxation is particularly
important in non-JahnTeller molecules, because the orbital
vibronic couplings of all the occupied orbitals contribute to the
vibronic coupling constant.

5.2. Vibronic Coupling Density Analysis.Figure 2 shows
the electron density differences using the frozen densignd
the relaxed densitgg.

5.2.1. Frozen Electron DensityBecause the electron density
difference of pr is equal to the frontier electron density of
LUMO of naphthaleneo umo, pr is positive everywhere, as
shown in Figure 2a. Reflecting the orbital pattern of the LUMO,

Coordinate.Figure 3 shows isosurfaces of the derivatives of
the nuclear-electronic potential with respect to the normal
coordinates. It is found that large contributions are located in
the regions where the atoms move along bonds. As we will
discuss later in detail, symmetric distribution of the derivative
around a carbon atom gives rise to cancellation of the vibronic
coupling density around the atom.

The g(1) vibrational mode corresponds to one gf ) modes
of benzene. Note that the derivativeyq) around C6 is
asymmetric, and the electron density has a symmetric
distribution around C6. As for the benzene anion, no electron
density is located here. On the other hand, the large density
difference exists on C6 of naphthalene anion. Correspondingly
the asymmetric distribution at,) may give a large contribution
to the vibronic coupling in naphthalene anion.

In addition, it should be noted thag,) exhibits asymmetric

pr is distributed greatly on C4 and C6. Because a nodal plane distributions around C2 and C6.
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Figure 2. Electron density difference using (a) the frozen electron depsignd (b) the relaxed electron density. The white region is positive,
and the gray region negative.

ag(1) _ ag(2)

.

Y XK

20, A oS
Y

Figure 3. Derivative y; of the nuclear-electronic potential., with respect to a normal coordina@. The white region is positive, and the gray
region negative. The threshold of the isosurface is 0.01 atomic unit.

5.2.4. Frozen Vibronic Coupling DensityFigures 4 and 5 C6 is large, the large net contribution to the vibronic coupling
show the vibronic coupling density of naphthalene anion using remains after cancellation.
the frozen densitypr. These distributions can be easily Both p andwv for a4(3) mode are large on the bond €810.
understood from Figures 2a and 3. Becapise: 0, negativey Thusiza,3) has large positive density on the bond. In other words,
< 0 is ascribed to negative < 0. Furthermore, significantly  the reason whyyys) is large is that the displacement of the
asymmetricw yields large contribution to the vibronic coupling, mode is along the bond in which the frontier orbital has bonding

because ther near an atom is almost symmetric. character. The same situation occurs in cyclopentadienyl radical
We discuss g1), &(2), &(3), and g(9) modes. In both#1) and benzene radicals.
and g(2) modesp andv are greatly located near C6. In addition, Modes g(8) and g(9) are C-H stretching modes. Because

because the anisotropy of the vibronic coupling density around v is anisotropic around the C atoms connecting to the H atoms,
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Figure 4. Top view of the vibronic coupling density usingo = pe — po = pLumo as the electron density difference. The white region is positive,
and the gray region negative. The threshold of the isosurfacexisl8-5 atomic unit.

ag(3)
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Y e

n on the C atoms are not symmetric. Thus the large net The total differential ofE[p,u] is
contribution to the vibronic coupling remains after cancellation. Because the electronic chemical potential is defined by
Finally, the coupling of g7) looks large at a glance.
However, the large density is canceled, and small coupling u=ulp,u] = (aE) (23)
results. N
5.2.5. Relaxed Vibronic Coupling Densityigures 6 and 7
show the relaxed vibronic coupling density. Though it is more
complex than that of the frozen density, reflecting the compli-
cated distribution of the relaxed electron density, in principle,
the distribution of Figures 6 and 7 can be understood from ) ) )
Figures 2b and 3. The second term can be written in terms of normal coordinates:
As shown in Figures 6 and 7, both tleand o electron U
density distributions contribute to the relaxed vibronic coupling dE = dN+ z —) dQ, (25)
density. The in-plane, ov density also contributes to the ™ \0Qi/n
coupling. To clarify this, the vibronic coupling density is )
integrated over the region of the WigreBeitz cell around a  Assuming the HellmannFeynman theorem,
nucleus. The regional or atomic vibronic coupling constants are U v,
shown in Figures 8 and 9 fgi= andpg, respectively. As a rule, ( ) IPN(X) v(x) dr + ( ) V, (26)
the absolute values of the atomic vibronic coupling constant 0Q; 0Q,
calculated frompr become smaller than those frgsa This is . I .
because of thr;ppolarization of the occupied elecz:wtﬁrlon density. Fro”_‘ the mixed denvatlye CE with respect toN and Qi, we
obtain the Maxwell relation:

and onlyU[p,u] depends oru in E[p,u],

dE=pdN+ [ [g—Ld]Néu(x) dr (24)

6. Nuclear Fukui Function
OE | _(9u) |02V 27
In this section, we discuss the relation between the vibronic aNAQ, o 3Q./y “laN 3Q/]o @7)
coupling density and nuclear Fukui functi&hwhich is based '
on the density functional theo). The right-hand side is approximately equal to the finite

Assuming the BO approximation, from the Hohenbekgphn difference
theorem, the ground state energy of a system is written as a

functional of the ground state electron densitand potential v 3 [9E 9Ensa)  [9En 28
Ui oN)q 8N(8QI) Q| |ig) ©®
E[p,u] = From egs 8, 10, and 14,
Tlpl + Vidp:ul + Vedpol + Vi ful = Flpe] + Ulp,u] (21) ” N
-] = 7;(X) dr =V, (29)
whereF[p] = T[p] + Vedp] and Ulp,t] = Vadp,tl + VarlUl. (3Qi)N (8'\‘) ~J
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ag (@) ag(5) ag(6)

Figure 5. Side view of the vibronic coupling density usidgp = pr — po = pLumo as the electron density difference. The white region is positive,
and the gray region negative. The threshold of the isosurfacexisl6=° atomic unit.

Furthermore, the total differential of the chemical potential and
u = u[p,u] can be written as

=2ndN+ dr 7, o d 35
du =25 dN+ Z aa—#) dQ, (30) du = 29 é Z(I 7 7, (0))A ko P (35)
I i/ N

Therefore, the nuclear Fukui function is expressed by the

wherey = */(9u/IN), is the absolute hardness. Therefore \ironic coupling constant, or vibronic coupling density

du =27 dN+ HV;dQ =2 dN+  (fdry(x) dQ

31) o = _Z(fdf MONA ko = _IzviAi,ka (36)

On the other hand, the nuclear Fukui function is defined by From eq 29, the vibronic coupling constant means the sensitivity

U of the electronic chemical potential for the deformat{@nand
b = _(W) (32) the nuclear Fukui function describes that for the displacement
a/N Xka- The nuclear Fukui function is expressed as an element of
a M-dimensional vector, wheitd denotes the number of nuclei.
On the other hand, the vibronic coupling density as a function
of the position for a certain deformation. The vibronic coupling
density has advantages in the following points. First, vibronic
— _ coupling densityy yields the vibronic coupling constant and,
G =2y ON Z z P P (33) thus, the nuclear Fukui functiop as described in eq 36. The
vibronic coupling constant for a certain mode can be observed
Moreover, the coordinateg, is related to the normal coordinate by spectroscopy. Therefore, one can compare the calculated
vibronic coupling density with experiments. Second, contrast
Q= ZAi,kaxka (34) to the nuclear Fukui function, the vibronic coupling density is
w1 a local function of the position in a molecule. The vibronic

wherexy, is thek = X, y, zcomponent of the position vector of
a nucleuso. The total differential of the electronic chemical
potential is written as

o k=Xxy,z
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Figure 6. Top view of the vibronic coupling density usin§o = pr — po as the electron density difference. The white region is positive, and the
gray region negative. The threshold of the isosurface is 50~° atomic unit.
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coupling is a driving force for the structural change in the early 7. Conclusions
stage of a chemical reaction. From the vibronic coupling density

map, one can see the region from which the large vibronic A method of vibronic coupling density analysis was extended
coupling comes. Therefore, for chemical reactions including for totally symmetric vibrational modes of a molecule including
solid-state reaction, more detailed discussion on an active non-Jahra-Teller molecules. The method was applied for
cite would be possible using the vibronic coupling density. naphthalene anion to compare with benzene anion.
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density analysis to chemical reactions including solid-state
reactions, in which nuclear displacement plays an important role,
are under investigation. They will be published elsewhere in
the near future.

Acknowledgment. Numerical calculation was partly per-
formed in the Supercomputer Laboratory of Kyoto University
and Research Center for Computational Science, Okazaki, Japan.

References and Notes

al(1) jose0 ay(2)

3.66 -0.62

-0.31
2.54 0.01

(1) Fischer, GVibronic Coupling Academic Press: London, 1984.

(2) Bersuker, I. B.; Polinger, V. Z/ibronic Interactions in Molecules
and Crystals Springer: New York, 1989.

(3) Bersuker, I. B.The Jahn-Teller EffectCambdige University
Press: Cambridge, U.K., 2006.

(4) Sato, T.; Tokunaga, K.; Tanaka, K. Chem. Phys200§ 124,
S 024314,
-0.23 -0.07 (5) Tokunaga, K.; Sato, T.; Tanaka, K. Chem. Phys200§ 124,
154303.
0.88 -0. -0.79 } 1.53 (6) Koch, E. E.; Otto, A.; Radler, KChem. Phys. Letll972 16, 131.
(7) Mikami, N.; Ito, M. Chem. Phys. Lettl975 31, 472.
(8) Stockburger, M.; Gattermann, H.; Klusmann, W.Chem. Phys.

-1.51 . 1.14

a,(4) -0.08 ay(6)

-0.29 -0.09

-0.06 ay(5)
-0.59 0.33

1975 63, 4519.
ay(7) 0.01 a,(8) 045 a,(9) -0.32 (9) Stockburger, M.; Gattermann, H.; Klusman, W.Chem. Phys.
1.51 -0.10 1.89 -0.11 -1.23 -0.3¢ 1975 63, 4529.
(10) Mikami, N.; Ito, M. Chem. Phys1977, 23, 141.

-1.46 -0.41 . -1.30 (11) Beck, S. M.; Powers, D. E.; Hopkins, J. B.; Smalley, R1.EChem.
_ _ o _ _ o Phys.198Q 73, 2019.
Figure 8. Regional vibronic coupling density (1 au), which is (12) Beck, S. M.; Hopkins, J. B.; Powers, D. E.; Smalley, RI.EChem.

obtained by integration of the vibronic coupling density over the Phys.1981 74, 43.
Wigner—Seits cell of each nucleus. The electron density difference  (13) Behlen, F. M.; McDonald, D. B.; Sethuraman, V.; Rice, SJA.
employed ISPF — po = PLUMO- Chem. PhySlQSl 75, 5685
(14) Duncan, M. A.; Dietz, T. G.; Smalley, R. B. Chem. Phys1981
75, 2118.
(15) Salama, F.; Allamandola, J. Chem. Phys1991 94, 6964.

-0.98 a,(3) |-087 (16) Cockett, M. C. R.; Ozeki, H.; Okuyama, K.; Kimura, &.Chem.
0.74 -0.06 Phys.1993 98, 7763.

(17) Negri, F.; Zgierski, M. ZJ. Chem. Phys1996 104, 3486.

(18) Negri, F.; Zgierski, M. ZJ. Chem. Physl997 107, 4827.

(19) Brundle, C. R.; Robin, M. B.; Kuebler, N. A. Am. Chem. Soc.
1972 94, 1466.

a (1) [1.10 a,(2)

2.64 -1.50

-2.69 -0. 0.23

(5) _ (20) Andrews, L.; Blankenship, T. Al. Am. Chem. Sod 981 103
ag 0.09 5977.
:0.38 -0.15 (21) Andrews, L.; Kelsall, B. J.; Blankenship, T. A.Phys. Chenl982
86, 2916.

-1.32 (22) Hacaloglu, J.; Andrews, L.Chem. Phys. Lettl989 160, 274.
(23) Rihl, E.; Price, S. D.; Leach, S. Phys. Chem1989 93, 6312.
(24) Szczepanski, J.; Roser, D.; Personette, W.; Eyring, M.; Pellow, R.;
Vala, M. J. Phys. Chem1992 96, 7876.
(25) Negri, F.; Zgierski, M. ZJ. Chem. Phys1993 100, 1387.
(26) da Silva Filho, D. A.; Friedlein, R.; Coropceanu, Vh@all, G.;
147 Osikowicz, W.; Suess, C.; Sorensen, S. L.; Svensson, S.; Salaneck, W. R.;
’ Brédas, J. L.Chem. Commur2004 page 1702.

Figure 9. Regional vibronic coupling density (1 au), which is (27) Schiedt, J.; Knott, W. J.; Barbu, K. L.; Schlag, E. W.; Weinkauf,
obtained by integration of the vibronic coupling density over the R-J: Chem. Phys200Q 113 9470.

! o : - (28) Lyapustina, S. A.; Xu, S.; Nilles, J. M.; Bowen, K. H.1J.Chem.
Wigner—Seits cell of each nucleus. The electron density difference Phys.2000 112, 6643,

-0.18
0.29 -0.14

employed isor — po. (29) Song, J. K.; Han, S. Y.; Chu, I; Kim, J. H.; Kim, S. K.; Lyapustina,
9E 3 S. A.; Xu, S.; Nilles, J. M.; Bowen, K. H. JI. Chem. Phys2002 116
—_ [0 ot 4477.
dE = (3N)u N+ f [35‘N ou(x) de (22) (30) Devos, A.; Lannoo, MPhys. Re. B 1997, 58, 8236.

(31) Kato, T.; Yamabe, TJ. Chem. Phys2001, 115 8592.

First, we calculated vibronic coupling constants using frozen 83 é”fr?k’o‘n;i f\_'-? '(—;‘rssoni_ S'CDhem- Phsﬁl\?w}(lga 25. o ch
H i onen, M. A.; Ganduglia-Firovano, ivl. V.; Ku rnovsﬂy. em.
electron densitypr, and the calculated values were overesti Phys.1994 101, 8988,

mated. On the Other_ hand, the relaxed electron depgigives (34) Non-zero cross terms are due to the Duschinsky effect. We
a good result. Thus, it was found that, contrary to the non-totally- calculated Duschinsky matri, Q' = SQ, whereQ' andQ are the normal

; ; ; modes of the naphthalene and the naphthalene anion. The smallest diagonal
symmetric modes, the orbital relaxation upon the charge transferterms ofS are 0.92-0.93 for a(6) and a(7), which is larger than that of

plays a crucial role in the Yibronic coupling Calcmaﬁo_n for NON- " penzene. In other words, the Duschinsky effect of naphthalene is less
Jahn-Teller molecule. This is because all the occupied orbitals important than that for benzene. Moreover, the off-diagonal elements other
contribute to the vibronic coupling. than that betweeng¢6) and g(7) are small, and the diagonal elements are

. . . . . ... almost equal to unity. Therefore, the Duschinsky effect does not play an
Next, the relationship between the vibronic coupling density important role in the present system, and we neglect the cross term in the

and the nuclear Fukui function was discussed. Vibronic coupling fourth term of eq 4.
density is defined as a local function of the position, but the  (35) Feynman, R. PPhys. Re. 1939 56, 340.

nuclear Fukui function is an element of a vector. The concept 75(3;3)0_“31'?5““' H.; Kanda, K.; Yonezawa, Them. Phys. Let198Q

of vibronic coupling density has advantages in the discussion ' “(37) schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.:
of chemical reactions. Applications of the vibronic coupling Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.;



Vibronic Coupling in Naphthalene Anion J. Phys. Chem. A, Vol. 112, No. 4, 200867

Su, S. J.; Windus, T. L.; Dupins, M.; Montgomery, J.JAComput. Chem. Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,

1993 14, 1347. A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
(38) Hanson, D. M.; Gee, A. Rl. Chem. Phys1969 51, 5052. Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
(39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,

M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A;;

N.; Burant, J. C.; Millam, J. M.; lyengar, S. S.; Tomasi, J.; Barone, V.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,

Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. Baussian 03

Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; revision C.02; Wallingford CT, 2004.

Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, (40) Parr, R. G.; Yang, WDensity-Functional Theory of Atoms and

X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Molecules Oxford University Press: New York, 1989.

Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; (41) Feng, S.; Li, TJ. Phys. Chem. 2005 109 7258.

Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; (42) Scott, A. P.; Radom, LJ. Phys. Chem1996 100, 16502.



