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Vibronic coupling, or electron-phonon coupling, of naphthalene is calculated. A method of vibronic coupling
density analysis, which has been proposed for the vibronic coupling of the Jahn-Teller active modes in a
Jahn-Teller molecule, is extended for totally symmetric vibrational modes of a molecule including a non-
Jahn-Teller molecule. Contrary to non-totally-symmetric modes, orbital relaxation upon a charge transfer
plays a crucial role in the vibronic coupling calculation for the totally symmetric modes. The method is
applied for the ground state of the naphthalene anion to compare with that of the benzene anion. The relationship
between the vibronic coupling density and a nuclear Fukui function is also discussed.

1. Introduction

Vibronic coupling is one of the fundamental interactions both
in molecules and in extended systems.1 The coupling is clearly
observed in Jahn-Teller systems.2,3 Strength of the coupling
for a certain vibrational mode is measured by a vibronic coupling
constant.

Recently, we have calculated the vibronic coupling for some
Jahn-Teller molecules within a spectroscopic accuracy, and we
have proposed a concept ofVibronic coupling density, which
provides a local picture of the coupling in a molecule.4,5 For
the vibronic coupling of a Jahn-Teller active mode, it is not
the doubly occupied orbitals but the open level that can
contribute to the coupling because of some symmetry reason.
On the other hand, for totally symmetric modes either in the
Jahn-Teller molecules or in the non-Jahn-Teller molecules,
all the occupied orbitals can contribute to the coupling as long
as the symmetry is permitted.4,5

In this article, we extend a method of the vibronic coupling
density analysis for the totally symmetric modes and apply it
to the ground state of the naphthalene anion to compare with
that published for the benzene anion.5

Naphthalene is the second member of oligoacenes, and much
research on the vibronic coupling has been done using both
experimental and theoretical methods. Absorption, fluorescence,
and photoelectron spectroscopy are important techniques in the
observation of the vibronic coupling in the neutral6-18 and the
cationic state.15,18-26 Simulated spectra have shown good
agreements with these experimental data.17,25,26 On the other
hand, the vibronic coupling on the anionic state has not been
observed with enough resolution because naphthalene has a
negative electron affinity and is therefore unstable in the anionic
state.27-29 Previous theoretical studies on the vibronic coupling

of naphthalene anion have concerned the superconducting
transition temperature30,31 or the intramolecular reorganization
energy.32

The vibronic coupling is important also in chemical reaction
theory. Cohen et al. have proposed a nuclear Fukui function
based on the density functional theory.33 The nuclear Fukui
function has a close relation to the vibronic coupling density.

This article is organized as follows. In section 2, we define
a vibronic Hamiltonian and introduce some notations which are
used in the later sections. The vibronic coupling density is
defined in section 3. Computational details are described in
section 4. The calculated results are discussed in section 5.
Finally, we summarize this work in section 7.

2. Vibronic Hamiltonian

We consider the structural change of a molecule upon a
change of the electronic state, Rf S, such as an electron
addition, an electron removal (an ionization), or an electronic
excitation. A reference nuclear configurationR0 is defined as a
certain nuclear configuration of the molecule. In the case of a
Jahn-Teller molecule,R0 is defined as a Jahn-Teller center2

where the electronic state is degenerate, whereas, for a non-
Jahn-Teller molecule, naphthalene in the present study, the
optimized geometry of the ground state of the neutral state is
taken as the reference nuclear configuration. We simply call
the system consisting of the reference configurationR0 and
electronic state a reference system R herein.

The change of the electronic state from R to S, Rf S, will
give rise to a deformation of the nuclear configuration,R0 f
R. An arbitrary deformed structure with the electronic state S
is called a system S hereafter. The molecular Hamiltonian for
a deformed molecule with a nuclear configurationR can be
written as
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where

un(R) is a nuclear kinetic energy operator,ue(r ) is an electronic
kinetic energy operator,Uee(r ) is an electronic-electronic,Uen-
(r ,R) is an electronic-nuclear, andUnn(R) a nuclear-nuclear
potential operators.Vi is called the electronic part of a linear
vibronic operator.Wij is called the electronic part of a quadratic
vibronic operator. The electronic Hamiltonian isHe ) ue +
Uee + Uen.

A vibronic wave function can be expanded in terms of the
eigenfunctionsΦ(r ,R0) of the electronic HamiltonianHe(r ,R0),
which are called the crude adiabatic (CA) basis. We concentrate
on the case that the electronic ground staten is nondegenerate.
We obtain the vibronic Hamiltonian as

where the second term is an eigenvalue ofHe(r ,R0). Assuming
that the last term, which contains the cross terms of the normal
modes,QiQj, is vanishing in the system S,34 the vibronic
Hamiltonian is finally obtained as

whereωi is the frequency of a vibrational modei of the reference
system and

The quantityVi is called a linear vibronic coupling constant.

3. Vibronic Coupling Density

We restrict ourselves to the case of an electron addition to
an N-electron system. We define theN-electron state of the
molecule and the equilibrium structureR0 as the reference
system R.

Within the Born-Oppenheimer (BO) approximation, we can
write the energy of theN-electron system as a function of the
nuclear configurationR:

whereΨN is an electronic wave function of theN-electron state
at R. At the equilibrium configurationR0,

for an arbitrary modei. This is the condition for the equilibrium
nuclear configurationR0 of the reference system.

When an electron is added to the reference system R, the
energy of the electronic state of the (N + 1)-electron state is
written as a function of the nuclear configurationR,

whereΨN+1 is the electronic wave function of the (N + 1)-
electron system, which is regarded as the system S defined in
the previous section. Now that the equilibrium configuration
of the reference system is not stable in the (N + 1)-electron
system,

can have a finite value.
If the Hellmann-Feynman theorem can be applied to eq 10,

though this is not always the case as we discuss later, we can
obtain an equation for the vibronic coupling constantVi of the
(N + 1)-electron system as

Therefore,Vi can be evaluated from the gradient of the BO
potential with respect to the normal coordinate. However, we
calculateVi from the integral in eq 11, because we are interested
in a local property of the vibronic coupling.

Except for a totally symmetric mode, the derivative of the
nuclear-nuclear repulsion potential is vanishing because of the
symmetry:

It is not necessary to consider the nuclear-nuclear repulsion
term for such a mode. As for a totally symmetric mode, on the
other hand, the nuclear-nuclear repulsion term plays an
important role in the vibronic coupling calculation.

From the equilibrium condition for the reference system (8),
the nuclear-nuclear repulsion term becomes

This relation is a particular case of Feynman’s electrostatic
theorem.35 Substituting eq 8 into eq 10, we obtain

whereF0 andF1 are electron densities of theN- and (N + 1)-
electron systems, respectively, and∆F(x) ) F1(x) - F0(x) is
the electron density difference. FurthermoreVi is a one-electron
operator, the derivative of the electronic-nuclear potential
operator, which yields

after summation overN or N + 1 electrons, andηi(x) is the
vibronic coupling density

EN+1(R) ) 〈ΨN+1|ue|ΨN+1〉 + 〈ΨN+1|Uen|ΨN+1〉 +
〈ΨN+1|Uee|ΨN+1〉 + Unn(R) (9)
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)
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For a Jahn-Teller molecule within the Hartree-Fock ap-
proximation, we can writeηi for a Jahn-Teller active mode as

where SOMO means a singly occupied molecular orbital,
because the doubly occupied orbitals do not contribute to the
vibronic coupling constant because of the symmetry of Cleb-
sch-Gordan coefficients.4 From eq 16, it is found thatVi can
be calculated as the integral ofηi over the space. The vibronic
coupling density can significantly contribute to the vibronic
coupling constant in the region where both∆F(x) andVi(x) are
large. Furthermore,ηi(x) gives a local picture of the vibronic
coupling of a molecule.

The vibronic coupling constant for (N - 1)-electron systems
and electronic excited states can be calculated from the electron
density difference and potential derivative in the same way.

However, the Hellmann-Feynman theorem is not valid for
a conventional LCAO wave function, as long as the center of
the basis functions are not variationally optimized. To make
the theorem applicable, some improvements have been pro-
posed: (1) using floating basis, (2) optimizing the center of
the basis function variationally, and (3) including the derivatives
of the basis set. In the present calculation, we employed a basis
set including the first derivatives.36 As we discuss later, the
Hellmann-Feynman theorem is approximately satisfied, when
the basis set with their first derivatives is used. It is expected
that the higher derivatives are included to the basis set, the more
the validity of the Hellmann-Feynman theorem would increase.

4. Method of Calculations

We adopted naphthalene anion as a target molecule. The
reference system R is the ground state of neutral naphthalene.
The equilibrium structure of the reference systemR0, vibrational
structure, and electron densityF0 were calculated using the
restricted Hartree-Fock (RHF) method. Figure 1 shows the
vibrational modes.

To evaluate the electron densityF1, the electronic structure
of naphthalene anion was calculated using the restricted open-
shell Hartree-Fock (ROHF) method at the equilibrium structure
of the reference systemR0. We call F1 relaxed densityFR

hereafter. For comparison withFR, we also calculated the
electron density using frozen orbital approximation, or Koop-
mans’ approximation,FF:

where FLUMO is frontier electron density of LUMO of the
referenceN-electron system calculated with the RHF method.
We call FF frozen density.

We optimized the geometryR of the anion and estimated
the stabilization energy∆EBO from R0 to R, which corresponds
to the reorganization energy within the BO approximation. On
the other hand, the Hamiltonian (5) in the CA approximation
can be rewritten as

Therefore, the reorganization energy in the CA approximation
can be expressed as

Throughout the article, the reorganization energy is given in
electronvolts, wave number in cm-1, and the other quantities
are in atomic unit.

The basis set employed in all the calculations is the 6-31G
basis set with the first derivatives. The calculations were
performed using GAMESS program.37

5. Results and Discussion

5.1. Vibronic Coupling Constant. First, we confirmed the
applicability of the Hellmann-Feynman theorem to the present
model. Table 1 summarizes the frequencies and the deviation
from the theorem for the reference system. Scaled values of
frequency agree well with the experimental values.38 The
deviations from the Hellmann-Feynman theorem are large in
the modes over 3000 cm-1. Because these modes are localized
on the C-H bonds as shown in Figure 1 and have high
frequencies, the effect on the stabilization energy∆ECA is rather
small (0.001 eV). Therefore, we can conclude that the Hell-
mann-Feynman theorem can be applied to the present model.

The calculated vibronic coupling constants are tabulated in
Table 2. The calculation using the frozen densityFF by no means
reproduces those calculated from the relaxed densityFR. In this
respect, vibronic couplings for totally symmetric modes are quite
different from those for Jahn-Teller active modes in which
calculations assuming the Koopmans’ approximation yields
qualitatively satisfactory results. In the modes ag(2), ag(6), ag-
(8), and ag(9), the calculations usingFF andFR result in different
orders of magnitude with opposite signs, in ag(3) and ag(7) the
couplings have different orders of magnitude, and in ag(1) they
have opposite signs. Because the discrepancy is large in the
low-frequency region, it greatly affects the reorganization
energy. The frozen densityFF yields poor a result∆ECA ) 5.614
eV. This is because the large values ofVi in the low-frequency
region cause the overestimation of∆ECA. On the other hand,
the reorganization energy using the relaxed densityFR in the
CA approximation∆ECA ) 0.242 eV is almost the same as the

Figure 1. Vibrational modes of the reference system.
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result in the BO approximation∆EBO ) 0.239 eV. It should be
noted that∆ECA can be obtained from the calculation at the
single pointR0 without a geometry optimization of the anion.

Kato and Yamabe have reported the vibronic coupling
constant of naphthalene anion.31 Their results are also tabulated
in Table 2. They have insisted that they calculated an orbital
vibronic coupling constant, which is∫FLUMOVi dτ in the present
notation. Therefore, it should approximately correspond to our
results calculated using the frozen density. However, their results
agree fairly well with the present values calculated using the
relaxed density difference. To clarify this incomprehensible
point, we calculated the orbital vibronic coupling constant
∫FLUMOVi dτ and the energy gradient (∂EN+1/∂Qi)R0

B3LYP at the
same level of theory, B3LYP/6-31G(d), as in ref 31 using
Gaussian 03.39 One can see from the table that the reported
values in ref 31 seem to be not the orbital vibronic coupling
constant but the energy gradient. The orbital vibronic coupling
constant usingFLUMO is equal to the vibronic coupling constant
using FF ) F0 + FLUMO as long as the Hellmann-Feynman
theorem is satisfied, because the contribution ofF0 is equivalent
for the contribution ofUnn. If one calculated a vibronic coupling
constant following exactly the same procedure described in ref
31, one would obtain an unsatisfactory result, as we obtained
in the sixth line of Table 2. In the present calculation usingFR,
because the Hellmann-Feynman theorem is approximately valid
by including the first derivatives of the basis functions, and the
orbital relaxation is included,Vi is almost equal to the energy
gradient as tabulated in the third and fourth lines of Table 2. It
should be noted that the orbital relaxation is particularly
important in non-Jahn-Teller molecules, because the orbital
vibronic couplings of all the occupied orbitals contribute to the
vibronic coupling constant.

5.2. Vibronic Coupling Density Analysis.Figure 2 shows
the electron density differences using the frozen densityFF and
the relaxed densityFR.

5.2.1. Frozen Electron Density.Because the electron density
difference of FF is equal to the frontier electron density of
LUMO of naphthaleneFLUMO, FF is positive everywhere, as
shown in Figure 2a. Reflecting the orbital pattern of the LUMO,
FF is distributed greatly on C4 and C6. Because a nodal plane

exists on the line connecting C1 and C2, the density on C1 and
C2 is exactly zero. The density difference on C8 and C10 is
small. It should be noted that the density difference distributes
out of the molecular plane.

5.2.2. Relaxed Electron Density.Figure 2b shows the electron
density difference using the relaxed density. The distribution
of the density difference is rather complicated. The positive
region with π character mainly comes from the LUMO. The
positive region on C8 and C10 is increased after the relaxation.
Moreover, it should be noted that there appear regions in which
the electron density decreases upon the electron addition. Such
negative regions are classified into two cases: the in-plane
negative regions on C4, C6, C8, and C10 and the out-of-plane
negative regions on C1 and C2. These negative regions originate
from polarization that the orbitals of naphthalene anion are
relaxed from those of the neutral molecule due to the additional
electron densityFLUMO.

Different from a Jahn-Teller problem, the polarizations of
the occupied orbitals play an important role in the vibronic
coupling calculation in a non-Jahn-Teller molecule, because
all the orbital vibronic couplings contribute to the vibronic
coupling constant.

5.2.3. DeriWatiWe of Potential with Respect to Normal
Coordinate.Figure 3 shows isosurfaces of the derivatives of
the nuclear-electronic potential with respect to the normal
coordinates. It is found that large contributions are located in
the regions where the atoms move along bonds. As we will
discuss later in detail, symmetric distribution of the derivative
around a carbon atom gives rise to cancellation of the vibronic
coupling density around the atom.

The ag(1) vibrational mode corresponds to one of e2g(1) modes
of benzene. Note that the derivativeVag(1) around C6 is
asymmetric, and the electron densityFF has a symmetric
distribution around C6. As for the benzene anion, no electron
density is located here. On the other hand, the large density
difference exists on C6 of naphthalene anion. Correspondingly
the asymmetric distribution ofVag(1) may give a large contribution
to the vibronic coupling in naphthalene anion.

In addition, it should be noted thatVag(2) exhibits asymmetric
distributions around C2 and C6.

TABLE 1: Calculated Values of Frequency (cm-1), 〈ΦN|Vi|ΦN〉 ) Vi (10-4 au), and ∆E (eV) of ag Modesa

ag(1) ag(2) ag(3) ag(4) ag(5) ag(6) ag(7) ag(8) ag(9) ∆E

frequency calcb 496 745 998 1154 1331 1454 1592 2997 3022
exptc 513 765 1020 1383 1464 1576 3057

Vi -0.06 -0.19 -0.16 -0.02 0.02 -0.04 -0.04 -0.28 0.83 0.001 (∆ECA)

a ∆ECA was calculated fromVi and unscaledωi. There is a good agreement between the theoretical and the experimental values ofωi. Differences
betweenVi and (∂EN/∂Qi)R0 ) 0 are small for the C-C stretching modes ag(5)-ag(7), which yield large vibronic coupling constants, and that
between∆ECA and∆EBO ) 0 is also small. Therefore, we can employ the Hellmann-Feynman theorem in the present calculations.b Scaled by
0.8992, the value for HF/6-31G(d,p).42 c Raman scattering for single crystal of naphthalene.38

TABLE 2: Calculated Vibronic Coupling Constant Vi (10-4 au), Energy Gradient (DEN+1/DQi)R0 (10-4 au), and the
Reorganization Energy∆E (eV)a

ag(1) ag(2) ag(3) ag(4) ag(5) ag(6) ag(7) ag(8) ag(9) ∆E

Vi FF 9.68 15.55 13.84 2.34 -5.22 4.70 -0.35 7.09 -12.15 5.614 (∆ECA)
FR -1.10 -0.61 0.64 2.11 -7.03 -0.17 -4.52 -0.21 1.84 0.242 (∆ECA)

(∂EN+1/∂Qi)R0 -1.04 -0.47 0.84 2.12 -7.06 -0.17 -4.47 0.07 0.98 0.239 (∆EBO)
ref 31b 1.0 0.5 1.2 4.1 4.0 0.127
∫FLUMOVi dτ 12.33 17.03 15.06 1.37 -6.76 5.37 0.02 9.26 -13.29 8.570 (∆ECA)
(∂EN+1/∂Qi)R0

B3LYP -1.06 -0.61 -0.03 1.20 -4.11 -0.25 -3.97 -0.03 1.24 0.131 (∆EBO)

a ∆ECA in the CA approximation was calculated fromVi and unscaledωi. ∆EBO was estimated fromEN+1(R0) - EN+1(R) in the BO approximation.
Results of Kato and Yamabe are also tabulated for comparison. We also calculated the orbital vibronic coupling constant∫FLUMOVi dτ and energy
gradient (∂EN+1/∂Qi)R0

B3LYP at the same level of theory, B3LYP/6-31G(d), as in ref 31. The reported values in ref 31 seem to be the energy gradient,
though they have insisted they calculated the orbital vibronic coupling constant.b Absolute values ofVi calculated from the relationVi ) ωixl i,
wherel is the electron-phonon coupling constant defined in ref 31.
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5.2.4. Frozen Vibronic Coupling Density.Figures 4 and 5
show the vibronic coupling density of naphthalene anion using
the frozen densityFF. These distributions can be easily
understood from Figures 2a and 3. BecauseFF g 0, negativeη
< 0 is ascribed to negativeV < 0. Furthermore, significantly
asymmetricV yields large contribution to the vibronic coupling,
because theFF near an atom is almost symmetric.

We discuss ag(1), ag(2), ag(3), and ag(9) modes. In both ag(1)
and ag(2) modes,F andV are greatly located near C6. In addition,
because the anisotropy of the vibronic coupling density around

C6 is large, the large net contribution to the vibronic coupling
remains after cancellation.

Both F andV for ag(3) mode are large on the bond C8-C10.
Thusηag(3) has large positive density on the bond. In other words,
the reason whyVag(3) is large is that the displacement of the
mode is along the bond in which the frontier orbital has bonding
character. The same situation occurs in cyclopentadienyl radical4

and benzene radicals.5

Modes ag(8) and ag(9) are C-H stretching modes. Because
V is anisotropic around the C atoms connecting to the H atoms,

Figure 2. Electron density difference using (a) the frozen electron densityFF and (b) the relaxed electron densityFR. The white region is positive,
and the gray region negative.

Figure 3. DerivativeVi of the nuclear-electronic potentialUen with respect to a normal coordinateQi. The white region is positive, and the gray
region negative. The threshold of the isosurface is 0.01 atomic unit.
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η on the C atoms are not symmetric. Thus the large net
contribution to the vibronic coupling remains after cancellation.

Finally, the coupling of ag(7) looks large at a glance.
However, the large density is canceled, and small coupling
results.

5.2.5. Relaxed Vibronic Coupling Density.Figures 6 and 7
show the relaxed vibronic coupling density. Though it is more
complex than that of the frozen density, reflecting the compli-
cated distribution of the relaxed electron density, in principle,
the distribution of Figures 6 and 7 can be understood from
Figures 2b and 3.

As shown in Figures 6 and 7, both theπ and σ electron
density distributions contribute to the relaxed vibronic coupling
density. The in-plane, orσ density also contributes to the
coupling. To clarify this, the vibronic coupling density is
integrated over the region of the Wigner-Seitz cell around a
nucleus. The regional or atomic vibronic coupling constants are
shown in Figures 8 and 9 forFF andFR, respectively. As a rule,
the absolute values of the atomic vibronic coupling constant
calculated fromFR become smaller than those fromFF. This is
because of the polarization of the occupied electron density.

6. Nuclear Fukui Function

In this section, we discuss the relation between the vibronic
coupling density and nuclear Fukui function,33 which is based
on the density functional theory.40

Assuming the BO approximation, from the Hohenberg-Kohn
theorem, the ground state energy of a system is written as a
functional of the ground state electron densityF and potential
u:

whereF[F] ) T[F] + Vee[F] and U[F,u] ) Vne[F,u] + Vnn[u].

The total differential ofE[F,u] is
Because the electronic chemical potential is defined by

and onlyU[F,u] depends onu in E[F,u],

The second term can be written in terms of normal coordinates:

Assuming the Hellmann-Feynman theorem,

From the mixed derivative ofE with respect toN andQi, we
obtain the Maxwell relation:

The right-hand side is approximately equal to the finite
difference

From eqs 8, 10, and 14,

Figure 4. Top view of the vibronic coupling density using∆F ) FF - F0 ) FLUMO as the electron density difference. The white region is positive,
and the gray region negative. The threshold of the isosurface is 5× 10-5 atomic unit.

E[F,u] )
T[F] + Vne[F,u] + Vee[F] + Vnn[u] ) F[F] + U[F,u] (21)

µ ) µ[F,u] ) (∂E
∂N)u

(23)

dE ) µ dN + ∫[δU
δu]N

δu(x) dτ (24)

dE ) µ dN + ∑
i

(∂U

∂Qi
)

N
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(∂U
∂Qi

) ) ∫FN(x) Vi(x) dτ + (∂Vnn

∂Qi
) ) Vi (26)

( ∂
2E

∂N∂Qi
) ) ( ∂µ

∂Qi
)

N
) [ ∂

∂N(∂U
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(∂Vi

∂N)
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∂N( ∂E
∂Qi
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∂N)
Qi

≈ ∫ ηi(x) dτ ) Vi (29)
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Furthermore, the total differential of the chemical potential
µ ) µ[F,u] can be written as

whereη ) 1/2(∂µ/∂N)u is the absolute hardness. Therefore

On the other hand, the nuclear Fukui function is defined by

wherexkR is thek ) x, y, z component of the position vector of
a nucleusR. The total differential of the electronic chemical
potential is written as

Moreover, the coordinatesxkR is related to the normal coordinate

and

Therefore, the nuclear Fukui function is expressed by the
vibronic coupling constant, or vibronic coupling density

From eq 29, the vibronic coupling constant means the sensitivity
of the electronic chemical potential for the deformationQi, and
the nuclear Fukui function describes that for the displacement
xkR. The nuclear Fukui function is expressed as an element of
a 3M-dimensional vector, whereM denotes the number of nuclei.
On the other hand, the vibronic coupling density as a function
of the position for a certain deformation. The vibronic coupling
density has advantages in the following points. First, vibronic
coupling densityη yields the vibronic coupling constant and,
thus, the nuclear Fukui functionφ as described in eq 36. The
vibronic coupling constant for a certain mode can be observed
by spectroscopy. Therefore, one can compare the calculated
vibronic coupling density with experiments. Second, contrast
to the nuclear Fukui function, the vibronic coupling density is
a local function of the position in a molecule. The vibronic

Figure 5. Side view of the vibronic coupling density using∆F ) FF - F0 ) FLUMO as the electron density difference. The white region is positive,
and the gray region negative. The threshold of the isosurface is 5× 10-5 atomic unit.

dµ ) 2η dN + ∑
k,R

∑
i

(∫dτ ηi(x))Ai,kR dxkR (35)

φkR ) -∑
i

(∫dτ ηi(x))Ai,kR ) -∑
i

ViAi,kR (36)

dµ ) 2η dN + ∑
i

( ∂µ

∂Qi
)

N

dQi (30)

dµ ) 2η dN + ∑
i

Vi dQi ) 2η dN + ∑
i

(∫dτηi(x)) dQi

(31)

φkR ) -( ∂U
∂xkR

)
N

(32)

dµ ) 2η dN - ∑
R

∑
k)x,y,z

φkR dxkR (33)

Qi ) ∑
k,R

Ai,kRxkR (34)
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coupling is a driving force for the structural change in the early
stage of a chemical reaction. From the vibronic coupling density
map, one can see the region from which the large vibronic
coupling comes. Therefore, for chemical reactions including
solid-state reactions,41 more detailed discussion on an active
cite would be possible using the vibronic coupling density.

7. Conclusions

A method of vibronic coupling density analysis was extended
for totally symmetric vibrational modes of a molecule including
non-Jahn-Teller molecules. The method was applied for
naphthalene anion to compare with benzene anion.

Figure 6. Top view of the vibronic coupling density using∆F ) FR - F0 as the electron density difference. The white region is positive, and the
gray region negative. The threshold of the isosurface is 5× 10-5 atomic unit.

Figure 7. Side view of the vibronic coupling density using∆F ) FR - F0 as the electron density difference. The white region is positive, and the
gray region negative. The threshold of the isosurface is 5× 10-5 atomic unit.
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First, we calculated vibronic coupling constants using frozen
electron densityFF, and the calculated values were overesti-
mated. On the other hand, the relaxed electron densityFR gives
a good result. Thus, it was found that, contrary to the non-totally-
symmetric modes, the orbital relaxation upon the charge transfer
plays a crucial role in the vibronic coupling calculation for non-
Jahn-Teller molecule. This is because all the occupied orbitals
contribute to the vibronic coupling.

Next, the relationship between the vibronic coupling density
and the nuclear Fukui function was discussed. Vibronic coupling
density is defined as a local function of the position, but the
nuclear Fukui function is an element of a vector. The concept
of vibronic coupling density has advantages in the discussion
of chemical reactions. Applications of the vibronic coupling

density analysis to chemical reactions including solid-state
reactions, in which nuclear displacement plays an important role,
are under investigation. They will be published elsewhere in
the near future.
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