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The results of an ab initio study of the vibronic structure in 84, electronic state of &,** and its
deuterated species {0,*") are presented. They are generated employing a simple model that incorporates
the minimal number of terms contributing to the Renn€eller effect. Therans andcis-bending potential

curves at planar nuclear arrangements are obtained by means of large-scale configuration interaction
calculations. The corresponding harmonic vibrational frequencies are 717 and 65fbc@.H,**, and 549

and 477 cmt in the case of €D,™". It is found that the splitting of the potential surfaces is moderate at
trans-distortions of linearity, while it is extremely small afs-bending vibrations. The eigenvalues and
eigenfunctions of the model Hamiltonian employed are obtained by means of a perturbative and a variational
approach.

1. Introduction (a*Ag) beyond the harmonic approximation is available in the
literature. Hence, our computed vibronic spectra gHg *-
alAg) and its deuterated species are predictive in nature and
hould be helpful in the understating of the corresponding
experimentally rovibronic resolved spectra when measured.

Previous theoretical and experimental investigations have
established that the acetylene dication is a stable species in th
microsecond to millisecond time scdlé It is believed that
this metastability is due to the formation, in these experiments,
of this dication in its lowest electronic states, namely, tREgX,
alAg, and b'>;" states. For the upper electronic states, fast
dissociation processes and fast dicationic acetyteng/lidene For molecular dicationic species, only interaction configu-
isomerization phenomena were noticed. ration approaches can be used for the calculations of their

The main aim of the present theoretical contribution is to properties because of their multi-configuration nature. Here the
provide insight into the vibronic structure of the lowéAt, state one-dimensional cuts of the 6-D potential energy surfaces of
of C,;H,™*. The vibronic structure in such a doubly degenerate both components of the doubly degeneratelC*(a'Ag) along
electronic state is rather complicated because of the Renner the bending coordinates are computed using such approaches,
Teller (RT) effect. The RT effect il electronic states of four- ~ namely, the complete active space self-consistent field (CASS-
atomic molecules has been investigated very rarely. Inre& 5  CF) method? followed by the internally contracted multiref-

a theoretical model for variational and perturbative ab initio erence configuration interaction (MR&}}“technique. For these
handling of this phenomenon has been developed. It wascomputations, the carbon and the hydrogen atoms were de-
employed in refs 58 to compute the vibronic structure in the scribed using thespd{g) cc-pV5Z Dunning’s basis sét.All
excited TAq electronic state of BH,. In these studies, the valence electrons were correlated. All electronic calculations
potential energy computations were performed using configu- were performed using the MOLPRO program stiftén the
ration interaction approaches and large basis sets. CASSCEF active space, all valence molecular orbitals were

The experimentally resolved spectra treating shstate of optimized. These calculations were carried out in the@int
C,H,™ consists of a vibrational series that is attributed to the group. The CASSCF active space comprised all configurations
excitation of thev, C—C stretching mode when the dication is  (configuration state functions (CSFs)) obtained after excitations
obtained by removal of two electrons from the neutraHE of all valence electrons in valence orbitals. Moreover, three
molecule. The earlier theoretical works by Ohrendorf ef al., Singlet electronic components (two for taéAq and one for
Andrews et all® Thissen et alt, Duflot et al2 and, more the b'>y") have been averaged together using the CASSCF
recently, by Furuhashi et &.and Kinugawa et al.allowed averaging procedure implemented in MOLPRO. At the MRCI
determination of the relative energy of thestate with respect  level, all configurations in the CI expansion of the CASSCF
to the ground state, the shape of its potential energy surfaceswave function were taken into account as a reference, resulting
along the stretching coordinates, and its harmonic wavenumbersin more than 108< 10° CSFs to be treated.

However, no information on the bending pattern of thelg*- The variational and perturbative approaches employed in the
present study for calculating vibronic spectra are described in
* Corresponding author. Electronic mail: peric@ffh.bg.ac.yu (M.P.); detail elsewhere (see refs-B, 17, and 18 and the references

hochlaf@univ-mlv.fr (M.H.). therein). In the context of this work, the most important fact is

T University of Belgrade. . . .
: Universitede Pars.Est. Marne-la-Vatie that the model applied does not require calculating the complete

s presently at LCPMR, UniversitBierre et Marie Curie, 11 rue Pierre  four-dimensional potential energy surface involving simulta-
et Marie Curie 75005 Paris, France. neous variation of all bending coordinates; it has been shown
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2. Technical Details
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Figure 1. Ab initio computed values for the mean valué) (of the
adiabatic electronic energies for the components ofafidg state of
C,H,*™* and half the difference between them\{/2) as a function of
thetrans-bending coordinatgr (black and white circles, respectively).
Solid line: the quadratic function obtained by fitting of the energy
data in the range betweern = 0 and 40. Dash-dotted curve: quartic
order function inpr.

that all information needed can be extracted from a few potential

energy values computed solely at planar nuclear arrangements.

That was explicitly demonstrated in refs 18 and 19. Very

reasonable agreement between the results of our previous a
initio studies and available experimental data has proven the.

reliability of other assumptions (e.g., neglect of the coupling
between bending and stretching modes) involved in our model.

3. Method for Calculation of the Vibronic Structure in A
Electronic States of Symmetric Four-Atomic Molecules

3.1. Potential Energy Curves fortrans and cis Bending
Vibrations. All the potential curves for the bending vibrations
in the a'Aq electronic state of §H,"" are computed at planar
nuclear arrangements with the-€l and C-C bond lengths
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Figure 2. Ab initio computed values for the mean value) (&f the
adiabatic electronic energies and half the difference between thgm (
2) as a function of thecis-bending coordinatec. For the key to
notations, see Figure 1.

where V' and V- represent respectively the states df akd

A" in the framework of the ©point group. As seen from these
figures, the molecule has linear equilibrium geometry in the
electronic state in question.

At the transbending, i.e., in th&,, point group (Figure 1),
the splitting of the potential curves is relatively large, with the
, component of the\y state (that correlates with &\ species

in the Cs subgroup ofCyp) lying above itsAq (A') counterpart.

In the present study, we are only interested in low-lying vibronic
levels of thea'A electronic state and thus we focus our attention
to the behavior of the potential energy surfaces in the region of
the bending coordinatesr, pc (ot is the supplement of the
H—C—C bond angle at collectiverans displacements of the
hydrogen nuclei, angc is the analogous quantity for tres
bending) between 0 and 40 degrees. In this geometry range,
the mean potential for thegans bending vibrations is reliably
represented by a quadratic functiorpin(shown as a solid line

in Figure 1), while the quantitAV/2 is fitted as a function

kept fixed at the values of 2.15 and 2.6 bohr, respectively. They involving only thepr* term, in accordance with the theory of

are depicted in Figures-13. Instead of presenting the actually

the RT effect inA electronic states at small distortions of

computed adiabatic potential curves for two electronic species linearity5-8 Deviation of the ab initio computed energies at

correlating at the linear nuclear arrangement witheth, state,

larger pr values from these curves indicates that the model

and split upon bending, we show the mean potential and half applied ceases to be reliable at strongly bent geometries. At

the difference between the adiabatic potentials

VitV AV V-V

V"o 2

1)

the cis bending vibrations, i.e., within th€,, point group
(Figure 2), the splitting of the potential curves is extremely
small, and, in this case, th (A’ in the Cs point group) state
lies slightly above the B(A'") component. As in the case of
thetransvibrations, in the range qfc between 0 and 40 degrees,
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E/eV wheregr and¢c respectively represent the angles between the

4 instantaneous molecular planes at collectivens and cis
bending vibrations and a space-fixed plane with the common
z-axis. Expression 3 reduces at planar molecular geometries,
i.e., at¢pr — ¢c) = 0ormto

AV , , 2 2
157 > ¢ 1+ Cepc’ + Crepripe 4)

By fitting all the electronic energy points in the above-mentioned
restricted geometry ranges, we obtain the following coefficients
appearing in Expressions-2:

k; = 0.114 hartree/rddk. = 0.1374 hartree/rdd

¢'; = —0.0284 hartree/rdd
' = 0.000412 hartréead’, ¢'; = 0.0362 hartree/rdd
)
The reduced masses for ttransandcis bending infinitesimal

vibrations in thea'Aq4 electronic state of §4,**, corresponding
to the bond lengths used in the calculation, are

TRTTRTITE I Vi
T R+ 20 + MR

= 5.85444,

_ 2mMrP
He=m+m

= 8.59545 (6)

-0.51

relative to the mass of tH&C atom equal to 12.0. In expressions
T I 6, mandM represent the masses of hydrogen (1.007825) and
0 20 40 B=R 1deq. carbon (12.0), andandR are the H-C and C-C bond lengths,

. - - respectively.
Figure 3. Ab initio computed values for the mean valué) (of the . _—t .
adiabatic electronic energies and half the difference between them ( 3.2. The Model for Handling RT Effect in A Elec_tron'?
2) as afunction Of one Of the{—cfc bond ang|es at anothemfc States Of SymmetrIC FOUI‘-AtomIC |\/|O|eCU|esln the VIbTOI’IIC

angle kept fixed at the zero value. For the key to notations, see Figure treatment to follow, we use the simplest possible Hamiltonian

1 that incorporates the terms contributing to the RT effecAin
electronic states of tetra-atomic molecules. It can be written in

the mean potential and the difference between the componentthe form

electronic states are reliably reproduced by the functions of

second and quartic order, respectively, in the bending coordinate H=H,+H (7)

pc. In Figure 3 are given the mean potential and the quantity

AV/2 computed at one of the-HC—C bending angles (say) with

varied and the other HC—C angle p,) kept fixed at the zero

T 1

value. This coordinate; is thus equal to the sum @f/2 and oo L 19,1 ¥
pc/2 with .pT = pc. o 0 2ur |5 PT2 o1 o7 PT2 5 ¢T2
According to the predictions followed from the theory of the 1 5 1 1 & 1 1
RT effectA electronic states of symmetric (ABBA-type) four- — 3—2 + = 8 + = 3—2 += kTpTZ += chc2 (8)
atomic molecules at small distortions of lineatit§ and their c\dps”  Pcdpc  pcl dge 2 2

above-mentioned specific forms of the potential curves, we
assume the following expressions for the mean potential andand

AV/2: _ _ _
H = C,TpT4[e4|(97¢T) + e74|(07¢T)] + C,Cpc4[e4|(07¢c) +
N/ 1 2 1 2 —4i(0— , i[(40—27— —i(40—2¢p—
V=Zkier + 5 kepe @ e Crep eI + e HTHTHI] (9)
where6 is the coordinate conjugate to the component of the
and . . o
electronic angular momentuln along thez-axis that coincides
AV at the linear nuclear arrangements with the molecular axis. Thus,
5= [C'TZPTB + C'czpcs + C'TCZPT4PC4 + we assume the stretching and end-ove_r-end _rotations_ to be
6 o ) e separable from the degrees of freedom directly involved in the
2C+C'1cpr P COS 201 — @) + 2C C'1cp1 Pc COS 201 — RT effect. For the sake of simplicity (and consistency) we use
' the kineti t ing to the infinitesimal
é0) + 2¢1C CpT4pC4 coS 4, — ¢C)]1/z 3) e kinetic energy operator corresponding to the infinitesima

bending vibrations. The quantum numbéfor the projection
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Figure 4. Graphical presentation of the low-lying part of the vibronic

spectrum of th&'A, state of GH,™*. Left-hand side (short lines): zero-
order vibronic levels. Solid (longer) lines represent levels gof
symmetry, and dashed lines represent those fmmetry. Zero on

the energy scale corresponds to the minimum of the potential surface
for bending vibrations. Vibronic levels are labeled by the values of the

guantum numbersr andvc. Uniquetype vibronic levels are denoted
by u (Please note that, in this case, the symbdoes not denote the
u-symmetry.).

of the total angular momentum on tkexis is assumed to be
a good quantum number. It is given by

K=|ly+ e+ Al (10)

wherelt andlc are the quantum numbers for the vibrational

angular momenta at th&ans and cis bending vibrations,

respectively, and\ (= 2) is the quantum number corresponding
to L,. For technical reasons, it is convenient to introduce the

dimensionless bending coordinaigsandqc by the relations

Go = VAo Ao = VKatty = o0 . =T,C  (11)

We employ as a basis functions in the variational handling,
as well as zero-order vibronic functions in the perturbative

treatment of the problem in question
lvr, I ve, 1o HE=
(27) % &(pe, 206" €T R, | (Gr)R, 1 (G0)

|Z/'-|—, I'Tl U,C! I,Ca - =

(27) 32 E(p,, z)e 27 &7 g'ote R, @R,y (a) (12)

where&(pe,ze) is the part of the electronic wave functions that

J. Phys. Chem. A, Vol. 112, No. 4, 200871

TABLE 1: Low-Lying Part of the Vibronic Spectrum in the
a'Aq State of GH, 2

o owe EO© E® E®@ Ep E.
1367.27 0.00 —0.25 1367.01 1367.01
2017.21 0.00 —0.33 2016.88 2016.88
2017.21 0.00 —0.39 2016.81 2016.81
2084.60 0.00 —1.20 2083.40 2083.39
2084.60 0.00 —2.16 2082.44 208241
2667.14 0.00 —0.43 2666.71 2666.71
2667.14 0.00 -—-0.59 2666.55 2666.54
2667.14 —0.50 —1.24 2665.40 2665.62
2667.14 0.50 —-1.24 2665.41 2665.73
2734.54 0.00 —1.42 2733.12 2733.11
2734.54 0.00 —3.02 2731.52 2731.48
2734.54 0.00 —1.11 2733.43 273341

273454 —19.64 —2.29 2712.61 2712.49
2734.54 19.64 —2.29 2751.88 2751.93
2801.94 0.00 —3.51 2798.43 2798.37
2801.94 0.00 —8.53 2793.41 2793.22
2801.94 —-6148 —335 2737.11 2737.16
2801.94 61.48 —3.35 2860.07 2860.28

3317.08 0.00 —0.57 3316.50 3316.50
3317.08 0.00 —0.84 3316.24 3316.23
3317.08 —-0.87 —2.19 3314.01 3313.60
3317.08 0.87 —2.19 3315.76 3315.19
3384.47 0.00 —1.73 3382.74 3382.71
3384.47 0.00 —3.89 3380.58 3380.51
3384.47 0.00 —1.41 3383.06 3383.06
3384.47 3353.27
3384.47 3376.46
3384.47 3413.21
3451.87 0.00 —3.93 3447.94 3447.87
3451.87 0.00 —10.27 3441.60 3441.36
3451.87 0.00 —3.37 3448.50 3448.44
3451.87 3381.03
3451.87 3444.75
3451.87 3515.50
3519.27 0.00 —8.04 3511.23 3510.98
3519.27 0.00 —21.51 3497.76 3497.04

3519.27 —106.49 —8.60 3404.18 3403.22
3519.27 106.49 —8.60 3617.16 3617.73

WWWWNNNNNNRPRPRPRPPRPRPRPOOOONNNNRPRPERPRPPRPOOOOREF,OOO
OCOOCORRFPRFPRFPFEFENNNNMNNNWWWWOOOORRFEFREPEPENNMNNNOORLRELO
RPRPROWUORRPRPOWUORRPRPOWUIORRPOWUOONDMOONNRAOONRAMRWRWN|AN

agO, EW, E@, and E, represent the zero-order energy, the first-
and second-order corrections, and the complete second-order pertur-
bative energy, respectivelf, values are the results of variational
computations.

depends on all the electronic coordinates except tho8earid
— 2
R,.(0) =N, L, (G)e ™ (13)

are the eigenfunctions of the “radial” equation for an isotropic
two-dimensional harmonic oscillatary is the bending quantum
number; for a giveny, the possible values &f are vy, vq —

2, ..., —vs. After integrating over the electronic coordinates,
the parts of the model Hamiltonian (eqgs 8 and 9) take the forms

2 |2

Ho={—2( X 4+10 T +%qu o +
T

1@ 10 17| 1,

——— |+ 50 toc (14)

21892 e pll 2 o

and

H = c o 0,6 T + €7 + ceweacle ¢ + €7 +
Crey/w oot 20 e 20THe0) 4 rt2id) (15)

with the values

w;=717.32m !, 0, = 649.94m *,
¢; = —0.007145¢. = 0.00006463¢; = 0.007192 (16)
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TABLE 2: Low-Lying K = 0—3 Vibronic Energy Levels (in the basis functions with the sanze (i.e., +2 or —2) value],
cm™) of the a'A, State of GH,"* and C,D,*, Relative to and thus they differ in some cases from those we give below
the Lowest-Lying (K = 2) Vibronic Level® for the simplest possible model fa states (i.e., they cannot
CoHy CD be simply reduced to the latter ones), represented by Hamilto-
g u g u nians 14 and 15. As stated many times, in the case of four-
K=0 1299 1345 954 1058 atomic molecules it is not possible to derive the perturbative
1299 1385 954 1082 formulas for all possible combinations of the vibronic quantum
1370 2623 1144 2000 numbers, because the zero-order energy levels become continu-
1493 2644 1229 2023 ously more degenerate with increasing valuesspfand vc.
2595 2654 1907 2023 Fortunately, they can be simply obtained for the majority of
2596 2680 1909 2048 the low-lying vibronic levels, which are of most importance,
K=1 715 650 593 a7 because they are usually observed in experiments, and, on the
1986 1947 1530 1431 other hand, the reliability of the model employed is less reliable
2009 1948 1547 1432 . ' . -
2036 2014 1564 1617 for higher-energy levels. We consider the following cases:
2046 2078 1704 1661 (&) vc = 0 (The formulas for the opposite case, namely,
2251 2148 1851 1709 = 0, are simply obtained by interchanging the indices T and C
K=2 0 1364 0 1070 in the formulas given below.)
1300 1366 954 1071 The zero-order energy is given by
1426 2628 1184 2003
2594 2657 1907 2024 EQ = (o + Do, + 0 17)
2598 2681 1909 2045
2658 2701 2091 2177 There are three particular cases: (K1F vr + 2(= Kmay The
K=3 281161 1223 155% 14"17371 zero-order vibronic wave function |sr, v1, 0,0,+ O The first-
2016 5074 1548 1660 order energy correction iE® = 0. The second-order energy
2130 2081 1770 1664 correction is given by
3271 3240 2477 2384
3304 3247 2591 | 2386 E@— _ % (g + 1)(vr + 2)(vr + 3) oy + 42wy —
ag andu denote “gerade” and “ungerade” vibronic levels, respec-
tively.

2 2 %1%
6cc"we — (vr + 1)(vr + 2)crc o+ o (18)
We know, of course, that the present theoretical treatment does T ¢
not guarantee such an accuracy, which would justify giving the
bending frequencies with so many significant digits; however,
we write these numbers in such a form, because we will discuss
below the (extremely small) discrepancies between the varia-

(a.2)K = vr(= Kmax — 2) The zero-order vibronic wave function
is |vr, o1 — 2,0,0, + O The first-order energy correction
vanishes. The second-order energy correction is

tional and truncated perturbative handling of the problem. The @ 1 5 5
numbers given in eq 16 are consistent with the ab initio results EY=- 2 ve(vr + Doy + 2)(vr + 35)cr"wr — 6w —
of Furuhashi et at! who obtained 950 and 461 crhfor trans w

and 667 and 627 cm for cis bending vibrational frequencies, viCrcwr| 4+ (v + 1)+ — (19)
concerning both the magnitude of the mean frequencies for two o+ og

adiabatic components of tt#A, state, the moderate splitting

of the potential curves in the former, and very small splitting
in the latter case. However, a precise comparison of the
corresponding numbers is not possible, because of the specia
kind of the fitting procedure employed in the present study.
We have namely the following situation: In the caselIdf
electronic states, when handled in the lowest-order (quadratic) ! 3 > > 5 P
approximation, the bending frequencies for the upper and lower Ep="7F > CTwT«/(UT = K)(vr +2)° =K (20)
(adiabatic) potential curve, split upon bending; andw;~ (i

=T, C), respectively, are connected with the mean frequency and the second-order correction is given by

w; by the relationwi* = wi./1+¢;,, wheree; is the quadratic 1

“Renner parameter”. In the present cageqlectronic states), 2 _ _ 21 a2,

however, there is no splitting in the second-order of the Eilz 4 (or T DL Terlor +2) + 4K o

Both cases a.1 and a.2 represent so-calledjue vibronic
states? (a.3) K < vr The zero-order energy level is two-fold
gegenerate. The corresponding vibronic functions areK +

,0,0, — Oand |vr, K — 2,0,0, + 0O The first-order energy
correction is

coordinates;, and, consequently, the adiabatic potential energy

curves remain degenerate in the harmonic approximation. On GCCZwC - % cTcsz 2(uT2 —K*+ 2u7) +
the other hand, if the splitting (of the fourth-ordergif is taken
into account, the adiabatic potential energy curves cannot be -2
fitted reliably by quadratic functions, and thus the above simple (UT2 + K%+ 2v7) % (22)
formula cannot be applied for determining®. We — Or

3.3. Perturbative Approach. Second-order perturbative o )
formulas for vibronic levels i\ electronic states of symmetric (b) K= vr + vc + 2 (= Knay) This is anunigue level

four-atomic molecules with the linear equilibrium geometry have corresponding to the zero-order vibronic wave functien vr,
already been published in refs 6 and 7. However, they concern?c: vc, +LI The zero-order energy is

somewhat more complicated cases than the present one [mul- ©)

tiplet electronic states, the presence of quatric terms connecting E™ = (vr + Dor + (v + Dog (22)
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The first-order perturbative correction vanishes. The second- study involve the bending functions up# = vc = 9 with all

order correction is compatiblelr and lc. The dimensions of the corresponding

1 secular equations do not exceed about 200. The basis sets of
E@ = — (1 + D + 2)(v- + 3)(v- + 4)c 20 — such dimensions ensure full convergence (up to 0.01¢for

4( T Jer Jor Jer Joror all the vibronic levels presented.

1 2
“(ve+ V(v + 2) (v + 3)(ve + 4)c“we-—
4( ot Dl +2)ue + (e + 4)ecwe 4. Results and Discussion

W
%(UT + D + 2)(ve + V(e + Z)QCZﬁ (23) The low-lying vibronic energy levels of tha'Aq state of
T c C.H,™t computed in the framework of the present study are

given in Tables 1 and 2 and Figure 4. Table 1 contains the results
obtained by using the perturbative formulas from Section 3.3
and the variational approach briefly described in Section 3.4.
First let us note that the perturbative formulas presented in
Section 3.3 cover almost all the cases corresponding to the
combinations of/r andvc with their sum not exceeding 3. An
inspection of the content of Table 1 shows that the discrepancy
between the energies computed in the second-order perturbation
theory €,) and their variationally calculated counterpaits,
{which correspond to a complete perturbative treatment) are in
no case larger than 1 crhand, in the great majority of cases,

o1 1 > 5 much smaller. This is of no special practical interest in the
Bio=35 (Hyy tHyp) T E\/(Hn — Hy) +4H,," (24) present case, but clearly shows that the perturbative formulas
can be reliably used when there is no program package available
where for a variational handling of the same problem, as in the case
of more than four-atomic moleculés?? A difference between
the RT effect inA electronic states of polyatomic (in the present
case, four-atomic) molecules and that for the classical example
of triatomics is the appearance of more than tmiquelevels
for each quantum numbé¢ in the former case. Such are, for
1 , Wy example, in the_ case ¢f = 4, the levels corresponding to the
> velvr + D(vr + 2)Crwe| 4 + (v + 1) m (25) zero-order specig8,0,2,2++|1,1,1,1,+[]|2,2,0,0;+[]|0,0,4,2;+L)

For vc = 0, formulas 22 and 23 reduce to 17 and 18,
respectively.

(C) K=uvr+ vc (= Kmax — 2)

There are two zero-order vibronic functions corresponding
to this case|vr, vT, vc, vc — 2, +0and|vt, v1 — 2, v, ve, +0
The zero-order energy is given by eq 22. The degeneracy of
the corresponding vibronic level is not resolved in the first-
order perturbation theory, and this represents the difference
compared to the case when a more general Hamiltonian is used
like in refs 6 and 7. The second-order correction is given by

1
Hy == 7 (or + Der + 2)(r + 3)(or + dor’wr —

% vlve + Dog + Do + 35Kl -

14,2,0,05-0]
_ Table 2 lists also the variationally computed vibronic energies
Hi, = =4y vrvctre yoroc [(vr + 1)(vr + 2)cr + of the GD,"*(alAg) isotopomer. The harmonicans and cis

(ve + D)(ve + 2)c] (26) bending frequencies corresponding to the means and cis
bending potentials curves are, in the case gL, 549.17
and the termH,; is obtained from eq 25 by interchanging the and 477.21 cm!, respectively. Thus, the computed ratios of
indices T and C. the trans and cis bending frequencies in8,™" and GD,™
dyvr=21uvc=1,K=0 are 1.207 and 1.362. However, the numbers given in Table 2
In the general case, the zero-order vibronic levels are more cannot be directly used for predicting the isotopic shifts in the
than two-fold degenerate, and the perturbative handling is morebending spectra of ££1,7" and GD,™" because they are given
complicated. An important exception is whep= 1, vc = 1, with respect to the lowest-lying bending levels of these
K = 0. There are two corresponding vibronic wave functions: isotopomers, i.e., they do not take into account the different
[1,1,1,1-0and|1,—1,1—-1,+0 The zero-order energy and the zero-point energies involving all vibrational modes of these

first- and second-order corrections are then species.
EQ = 20, + 20, (27) 5. Conclusions
1) _ In this study we present the results of ab initio calculation of
E(1/)2 = FAcCrcy/wrwc (28) ywep

the low-lying part of the vibronic spectrum in tlaéA, state of
C,Hzt* and GD,™ obtained by employing a perturbative and
a variational approach. It is shown that, in the concrete case,
E? — _g 4CTz - — 54c 20 — they give almost identical results, what means that a perturbative
12 i cre treatment of the RT effect in polyatomic molecules with linear
equilibrium geometry can reliably be used instead of a corre-
sponding variational procedure. The computations presented in
this study are carried out in the framework of a very simple
3.4. Variational Approach. The variational computations are  model. Consequently, they cannot compete in accuracy with
carried out for eaclK value separately; furthermore, the use is those achieved by employing highly sophisticated approaches
made from the fact that the vibronic basis functions correspond- that can be applied in the case of much simpler triatomic species
ing to even values ofc are ofg, and those with oddc of u (as, e.g., in the benchmark study on ¥#8;, A2A; — 2I1 system
symmetry, enabling further block-diagonalization of the Hamil- of NH,%9). It is to be expected that the numerical inaccuracy of
tonian matrix. Moreover, th& = 0 () blocks can be divided  the results shown in Table 1 and Figure 4 continuously grows
into + and— subblocks. The basis sets employed in the present with increasing energy, reaching magnitude on the order of 100

and

) WTWc
ZCTC 260-,— + ZCUC + m (29)
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cm? for the highest levels presented. However, the present

Pericet al.

(9) Ohrendorf, E. M.-L.; Tarantelli, F.; Cederbaum, JSChem. Phys.

pragmatic approach gains attractiveness in handling larger199Q 92 2984.

(10) Andrews, S. R.; Harris, F. M.; Parry, D. Ehem. Phys1992

dicationic systems, for which the more accurate treatments 166, 69.

would be hardly feasible.
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