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The results of an ab initio study of the vibronic structure in thea1∆g electronic state of C2H2
++ and its

deuterated species (C2D2
++) are presented. They are generated employing a simple model that incorporates

the minimal number of terms contributing to the Renner-Teller effect. Thetrans- andcis-bending potential
curves at planar nuclear arrangements are obtained by means of large-scale configuration interaction
calculations. The corresponding harmonic vibrational frequencies are 717 and 650 cm-1 for C2H2

++, and 549
and 477 cm-1 in the case of C2D2

++. It is found that the splitting of the potential surfaces is moderate at
trans-distortions of linearity, while it is extremely small atcis-bending vibrations. The eigenvalues and
eigenfunctions of the model Hamiltonian employed are obtained by means of a perturbative and a variational
approach.

1. Introduction

Previous theoretical and experimental investigations have
established that the acetylene dication is a stable species in the
microsecond to millisecond time scale.1-4 It is believed that
this metastability is due to the formation, in these experiments,
of this dication in its lowest electronic states, namely, the X3Σg

-,
a1∆g, and b1Σg

+ states. For the upper electronic states, fast
dissociation processes and fast dicationic acetylene-vinylidene
isomerization phenomena were noticed.

The main aim of the present theoretical contribution is to
provide insight into the vibronic structure of the lowest1∆g state
of C2H2

++. The vibronic structure in such a doubly degenerate
electronic state is rather complicated because of the Renner-
Teller (RT) effect. The RT effect in∆ electronic states of four-
atomic molecules has been investigated very rarely. In refs 5-8,
a theoretical model for variational and perturbative ab initio
handling of this phenomenon has been developed. It was
employed in refs 5-8 to compute the vibronic structure in the
excited 11∆g electronic state of B2H2. In these studies, the
potential energy computations were performed using configu-
ration interaction approaches and large basis sets.

The experimentally resolved spectra treating thea state of
C2H2

++ consists of a vibrational series that is attributed to the
excitation of theν2 C-C stretching mode when the dication is
obtained by removal of two electrons from the neutral C2H2

molecule. The earlier theoretical works by Ohrendorf et al.,9

Andrews et al.,10 Thissen et al.,1 Duflot et al.2 and, more
recently, by Furuhashi et al.11 and Kinugawa et al.3 allowed
determination of the relative energy of thea state with respect
to the ground state, the shape of its potential energy surfaces
along the stretching coordinates, and its harmonic wavenumbers.
However, no information on the bending pattern of the C2H2

++-

(a1∆g) beyond the harmonic approximation is available in the
literature. Hence, our computed vibronic spectra of C2H2

++-
(a1∆g) and its deuterated species are predictive in nature and
should be helpful in the understating of the corresponding
experimentally rovibronic resolved spectra when measured.

2. Technical Details

For molecular dicationic species, only interaction configu-
ration approaches can be used for the calculations of their
properties because of their multi-configuration nature. Here the
one-dimensional cuts of the 6-D potential energy surfaces of
both components of the doubly degenerate C2H2

++(a1∆g) along
the bending coordinates are computed using such approaches,
namely, the complete active space self-consistent field (CASS-
CF) method12 followed by the internally contracted multiref-
erence configuration interaction (MRCI)13,14technique. For these
computations, the carbon and the hydrogen atoms were de-
scribed using thespdf(g) cc-pV5Z Dunning’s basis set.15 All
valence electrons were correlated. All electronic calculations
were performed using the MOLPRO program suite.16 In the
CASSCF active space, all valence molecular orbitals were
optimized. These calculations were carried out in the C1 point
group. The CASSCF active space comprised all configurations
(configuration state functions (CSFs)) obtained after excitations
of all valence electrons in valence orbitals. Moreover, three
singlet electronic components (two for thea1∆g and one for
the b1Σg

+) have been averaged together using the CASSCF
averaging procedure implemented in MOLPRO. At the MRCI
level, all configurations in the CI expansion of the CASSCF
wave function were taken into account as a reference, resulting
in more than 108× 106 CSFs to be treated.

The variational and perturbative approaches employed in the
present study for calculating vibronic spectra are described in
detail elsewhere (see refs 5-8, 17, and 18 and the references
therein). In the context of this work, the most important fact is
that the model applied does not require calculating the complete
four-dimensional potential energy surface involving simulta-
neous variation of all bending coordinates; it has been shown
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that all information needed can be extracted from a few potential
energy values computed solely at planar nuclear arrangements.
That was explicitly demonstrated in refs 18 and 19. Very
reasonable agreement between the results of our previous ab
initio studies and available experimental data has proven the
reliability of other assumptions (e.g., neglect of the coupling
between bending and stretching modes) involved in our model.

3. Method for Calculation of the Vibronic Structure in ∆
Electronic States of Symmetric Four-Atomic Molecules

3.1. Potential Energy Curves for trans and cis Bending
Vibrations. All the potential curves for the bending vibrations
in the a1∆g electronic state of C2H2

++ are computed at planar
nuclear arrangements with the C-H and C-C bond lengths
kept fixed at the values of 2.15 and 2.6 bohr, respectively. They
are depicted in Figures 1-3. Instead of presenting the actually
computed adiabatic potential curves for two electronic species
correlating at the linear nuclear arrangement with thea1∆g state,
and split upon bending, we show the mean potential and half
the difference between the adiabatic potentials

whereV+ and V- represent respectively the states of A′ and
A′′ in the framework of the Cs point group. As seen from these
figures, the molecule has linear equilibrium geometry in the
electronic state in question.

At the transbending, i.e., in theC2h point group (Figure 1),
the splitting of the potential curves is relatively large, with the
Bg component of the∆g state (that correlates with anA′′ species
in the Cs subgroup ofC2h) lying above itsAg (A′) counterpart.
In the present study, we are only interested in low-lying vibronic
levels of thea1∆g electronic state and thus we focus our attention
to the behavior of the potential energy surfaces in the region of
the bending coordinatesFT, FC (FT is the supplement of the
H-C-C bond angle at collectivetrans displacements of the
hydrogen nuclei, andFC is the analogous quantity for thecis
bending) between 0 and 40 degrees. In this geometry range,
the mean potential for thetrans bending vibrations is reliably
represented by a quadratic function inFT (shown as a solid line
in Figure 1), while the quantity∆V/2 is fitted as a function
involving only theFT

4 term, in accordance with the theory of
the RT effect in∆ electronic states at small distortions of
linearity.5-8 Deviation of the ab initio computed energies at
larger FT values from these curves indicates that the model
applied ceases to be reliable at strongly bent geometries. At
the cis bending vibrations, i.e., within theC2V point group
(Figure 2), the splitting of the potential curves is extremely
small, and, in this case, theA1 (A′ in the Cs point group) state
lies slightly above the B1 (A′′) component. As in the case of
thetransvibrations, in the range ofFC between 0 and 40 degrees,

Figure 1. Ab initio computed values for the mean value (Vh) of the
adiabatic electronic energies for the components of thea1∆g state of
C2H2

++ and half the difference between them (∆V/2) as a function of
thetrans-bending coordinateFT (black and white circles, respectively).
Solid line: the quadratic function obtained by fitting of the energy
data in the range betweenFT ) 0 and 40°. Dash-dotted curve: quartic
order function inFT.

V ) V + + V-

2
,
∆V
2

) V + - V-

2
(1)

Figure 2. Ab initio computed values for the mean value (Vh ) of the
adiabatic electronic energies and half the difference between them (∆V/
2) as a function of thecis-bending coordinateFC. For the key to
notations, see Figure 1.
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the mean potential and the difference between the component
electronic states are reliably reproduced by the functions of
second and quartic order, respectively, in the bending coordinate
FC. In Figure 3 are given the mean potential and the quantity
∆V/2 computed at one of the H-C-C bending angles (sayF1)
varied and the other H-C-C angle (F2) kept fixed at the zero
value. This coordinateF1 is thus equal to the sum ofFT/2 and
FC/2 with FT ) FC.

According to the predictions followed from the theory of the
RT effect∆ electronic states of symmetric (ABBA-type) four-
atomic molecules at small distortions of linearity5-8 and their
above-mentioned specific forms of the potential curves, we
assume the following expressions for the mean potential and
∆V/2:

and

whereφT andφC respectively represent the angles between the
instantaneous molecular planes at collectivetrans and cis
bending vibrations and a space-fixed plane with the common
z-axis. Expression 3 reduces at planar molecular geometries,
i.e., at (φT - φC) ) 0 or π to

By fitting all the electronic energy points in the above-mentioned
restricted geometry ranges, we obtain the following coefficients
appearing in Expressions 2-4:

The reduced masses for thetransandcis bending infinitesimal
vibrations in thea1∆g electronic state of C2H2

++, corresponding
to the bond lengths used in the calculation, are

relative to the mass of the12C atom equal to 12.0. In expressions
6, m andM represent the masses of hydrogen (1.007825) and
carbon (12.0), andr andRare the H-C and C-C bond lengths,
respectively.

3.2. The Model for Handling RT Effect in 1∆ Electronic
States of Symmetric Four-Atomic Molecules.In the vibronic
treatment to follow, we use the simplest possible Hamiltonian
that incorporates the terms contributing to the RT effect in∆
electronic states of tetra-atomic molecules. It can be written in
the form

with

and

whereθ is the coordinate conjugate to the component of the
electronic angular momentumLz along thez-axis that coincides
at the linear nuclear arrangements with the molecular axis. Thus,
we assume the stretching and end-over-end rotations to be
separable from the degrees of freedom directly involved in the
RT effect. For the sake of simplicity (and consistency) we use
the kinetic energy operator corresponding to the infinitesimal
bending vibrations. The quantum numberK for the projection

Figure 3. Ab initio computed values for the mean value (Vh) of the
adiabatic electronic energies and half the difference between them (∆V/
2) as a function of one of the H-C-C bond angles at another H-C-C
angle kept fixed at the zero value. For the key to notations, see Figure
1.
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of the total angular momentum on thez-axis is assumed to be
a good quantum number. It is given by

where lT and lC are the quantum numbers for the vibrational
angular momenta at thetrans and cis bending vibrations,
respectively, andΛ () 2) is the quantum number corresponding
to Lz. For technical reasons, it is convenient to introduce the
dimensionless bending coordinatesqT andqC by the relations

We employ as a basis functions in the variational handling,
as well as zero-order vibronic functions in the perturbative
treatment of the problem in question

whereê(Fe,ze) is the part of the electronic wave functions that

depends on all the electronic coordinates except those ofθ, and

are the eigenfunctions of the “radial” equation for an isotropic
two-dimensional harmonic oscillator.VR is the bending quantum
number; for a givenVR, the possible values oflR areVR, VR -
2, ..., -VR. After integrating over the electronic coordinates,
the parts of the model Hamiltonian (eqs 8 and 9) take the forms

and

with the values

Figure 4. Graphical presentation of the low-lying part of the vibronic
spectrum of thea1∆g state of C2H2

++. Left-hand side (short lines): zero-
order vibronic levels. Solid (longer) lines represent levels ofg
symmetry, and dashed lines represent those ofu symmetry. Zero on
the energy scale corresponds to the minimum of the potential surface
for bending vibrations. Vibronic levels are labeled by the values of the
quantum numbersVT andVC. Unique-type vibronic levels are denoted
by u (Please note that, in this case, the symbolu does not denote the
u-symmetry.).

K ) |lT + lC ( Λ| (10)

qR ) xλRFR, λR ) xkRµR ) µRωR, R ) T,C (11)

|VT, lT, VC, lC, +〉 ≡
(2π)-3/2 ê(Fe, ze)e

2iθ eilTφT eilCφC RVTlT
(qT)RVClC

(qC)

|V′T, l′T, V′C, l′C, - ≡
(2π)-3/2 ê(Fe, ze)e

-2iθ eil ′TφT eil ′CφC RV′
Tl ′T

(qT)RV′
Cl ′C

(qC) (12)

TABLE 1: Low-Lying Part of the Vibronic Spectrum in the
a1∆g State of C2H2

++ a

VT VC K E(0) E(1) E(2) Ep Ev

0 0 2 1367.27 0.00 -0.25 1367.01 1367.01
0 1 3 2017.21 0.00 -0.33 2016.88 2016.88
0 1 1 2017.21 0.00 -0.39 2016.81 2016.81
1 0 3 2084.60 0.00 -1.20 2083.40 2083.39
1 0 1 2084.60 0.00 -2.16 2082.44 2082.41
0 2 4 2667.14 0.00 -0.43 2666.71 2666.71
0 2 2 2667.14 0.00 -0.59 2666.55 2666.54
0 2 0 2667.14 -0.50 -1.24 2665.40 2665.62
0 2 0 2667.14 0.50 -1.24 2665.41 2665.73
1 1 4 2734.54 0.00 -1.42 2733.12 2733.11
1 1 2 2734.54 0.00 -3.02 2731.52 2731.48
1 1 2 2734.54 0.00 -1.11 2733.43 2733.41
1 1 0 2734.54 -19.64 -2.29 2712.61 2712.49
1 1 0 2734.54 19.64 -2.29 2751.88 2751.93
2 0 4 2801.94 0.00 -3.51 2798.43 2798.37
2 0 2 2801.94 0.00 -8.53 2793.41 2793.22
2 0 0 2801.94 -61.48 -3.35 2737.11 2737.16
2 0 0 2801.94 61.48 -3.35 2860.07 2860.28
0 3 5 3317.08 0.00 -0.57 3316.50 3316.50
0 3 3 3317.08 0.00 -0.84 3316.24 3316.23
0 3 1 3317.08 -0.87 -2.19 3314.01 3313.60
0 3 1 3317.08 0.87 -2.19 3315.76 3315.19
1 2 5 3384.47 0.00 -1.73 3382.74 3382.71
1 2 3 3384.47 0.00 -3.89 3380.58 3380.51
1 2 3 3384.47 0.00 -1.41 3383.06 3383.06
1 2 1 3384.47 3353.27
1 2 1 3384.47 3376.46
1 2 1 3384.47 3413.21
2 1 5 3451.87 0.00 -3.93 3447.94 3447.87
2 1 3 3451.87 0.00 -10.27 3441.60 3441.36
2 1 3 3451.87 0.00 -3.37 3448.50 3448.44
2 1 1 3451.87 3381.03
2 1 1 3451.87 3444.75
2 1 1 3451.87 3515.50
3 0 5 3519.27 0.00 -8.04 3511.23 3510.98
3 0 3 3519.27 0.00 -21.51 3497.76 3497.04
3 0 1 3519.27 -106.49 -8.60 3404.18 3403.22
3 0 1 3519.27 106.49 -8.60 3617.16 3617.73

a E(0), E(1), E(2), and Ep represent the zero-order energy, the first-
and second-order corrections, and the complete second-order pertur-
bative energy, respectively.Ev values are the results of variational
computations.
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cTCxωTωCqT
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ωT ) 717.33cm-1, ωC ) 649.94cm-1,
cT ) -0.007145,cC ) 0.00006463,cTC ) 0.007192 (16)
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We know, of course, that the present theoretical treatment does
not guarantee such an accuracy, which would justify giving the
bending frequencies with so many significant digits; however,
we write these numbers in such a form, because we will discuss
below the (extremely small) discrepancies between the varia-
tional and truncated perturbative handling of the problem. The
numbers given in eq 16 are consistent with the ab initio results
of Furuhashi et al.11 who obtained 950 and 461 cm-1 for trans,
and 667 and 627 cm-1 for cis bending vibrational frequencies,
concerning both the magnitude of the mean frequencies for two
adiabatic components of thea1∆g state, the moderate splitting
of the potential curves in the former, and very small splitting
in the latter case. However, a precise comparison of the
corresponding numbers is not possible, because of the special
kind of the fitting procedure employed in the present study.
We have namely the following situation: In the case ofΠ
electronic states, when handled in the lowest-order (quadratic)
approximation, the bending frequencies for the upper and lower
(adiabatic) potential curve, split upon bending,ωi

+ andωi
- (i

) T, C), respectively, are connected with the mean frequency
ωi by the relationωi

( ) ωix1(εi, whereεi is the quadratic
“Renner parameter”. In the present case (∆ electronic states),
however, there is no splitting in the second-order of the
coordinatesFi, and, consequently, the adiabatic potential energy
curves remain degenerate in the harmonic approximation. On
the other hand, if the splitting (of the fourth-order inFi) is taken
into account, the adiabatic potential energy curves cannot be
fitted reliably by quadratic functions, and thus the above simple
formula cannot be applied for determiningωi

(.
3.3. Perturbative Approach. Second-order perturbative

formulas for vibronic levels in∆ electronic states of symmetric
four-atomic molecules with the linear equilibrium geometry have
already been published in refs 6 and 7. However, they concern
somewhat more complicated cases than the present one [mul-
tiplet electronic states, the presence of quatric terms connecting

the basis functions with the same∆ (i.e., +2 or -2) value],
and thus they differ in some cases from those we give below
for the simplest possible model for∆ states (i.e., they cannot
be simply reduced to the latter ones), represented by Hamilto-
nians 14 and 15. As stated many times, in the case of four-
atomic molecules it is not possible to derive the perturbative
formulas for all possible combinations of the vibronic quantum
numbers, because the zero-order energy levels become continu-
ously more degenerate with increasing values ofVT and VC.
Fortunately, they can be simply obtained for the majority of
the low-lying vibronic levels, which are of most importance,
because they are usually observed in experiments, and, on the
other hand, the reliability of the model employed is less reliable
for higher-energy levels. We consider the following cases:

(a) VC ) 0 (The formulas for the opposite case, namely,VT

) 0, are simply obtained by interchanging the indices T and C
in the formulas given below.)

The zero-order energy is given by

There are three particular cases: (a1)K ) VT + 2() Kmax) The
zero-order vibronic wave function is|VT, VT, 0,0,+ 〉. The first-
order energy correction isE(1) ) 0. The second-order energy
correction is given by

(a.2)K ) VT() Kmax - 2) The zero-order vibronic wave function
is |VT, VT - 2,0,0, + 〉. The first-order energy correction
vanishes. The second-order energy correction is

Both cases a.1 and a.2 represent so-calledunique vibronic
states.20 (a.3) K < VT The zero-order energy level is two-fold
degenerate. The corresponding vibronic functions are|VT, K +
2,0,0, - 〉 and |VT, K - 2,0,0, + 〉. The first-order energy
correction is

and the second-order correction is given by

(b) K ) VT + VC + 2 () Kmax) This is anunique level
corresponding to the zero-order vibronic wave function|VT, VT,
VC, VC, +〉. The zero-order energy is

TABLE 2: Low-Lying K ) 0-3 Vibronic Energy Levels (in
cm-1) of the a1∆g State of C2H2

++ and C2D2
++, Relative to

the Lowest-Lying (K ) 2) Vibronic Levela

C2H2
++ C2D2

++

g u g u

K ) 0 1299 1345 954 1058
1299 1385 954 1082
1370 2623 1144 2000
1493 2644 1229 2023
2595 2654 1907 2023
2596 2680 1909 2048

K ) 1 715 650 593 477
1986 1947 1530 1431
2009 1948 1547 1432
2036 2014 1564 1617
2046 2078 1704 1661
2251 2148 1851 1709

K ) 2 0 1364 0 1070
1300 1366 954 1071
1426 2628 1184 2003
2594 2657 1907 2024
2598 2681 1909 2045
2658 2701 2091 2177

K ) 3 716 650 594 477
2014 1949 1547 1431
2016 2074 1548 1660
2130 2081 1770 1664
3271 3240 2477 2384
3304 3247 2501 2386

a g andu denote “gerade” and “ungerade” vibronic levels, respec-
tively.

E(0) ) (VT + 1)ωT + ωC (17)

E(2) ) - 1
4

(VT + 1)(VT + 2)(VT + 3)(VT + 4)cT
2ωT -

6cC
2ωC - (VT + 1)(VT + 2)cTC

2
ωTωC

ωT + ωC
(18)

E(2) ) - 1
4

VT(VT + 1)(VT + 2)(VT + 35)cT
2ωT - 6cC

2ωC -

VTcTC
2ωT[4 + (VT + 1) +

ωC

ωT + ωC
] (19)

E1/2
(1) ) -

3
2

cTωTx(VT
2 - K2)[(VT + 2)2 - K2] (20)

E1/2
(2) ) - 1

4
(VT + 1)[17VT(VT + 2) + 4K2]cT

2ωT -

6cC
2ωC - 1

2
cTC

2ωT[2(VT
2 - K2 + 2VT) +

(VT
2 + K2 + 2VT)

ωC
2

ωC
2 - ωT

2] (21)

E(0) ) (VT + 1)ωT + (VC + 1)ωC (22)
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The first-order perturbative correction vanishes. The second-
order correction is

For VC ) 0, formulas 22 and 23 reduce to 17 and 18,
respectively.

(c) K ) VT + VC () Kmax - 2)
There are two zero-order vibronic functions corresponding

to this case,|VT, VT, VC, VC - 2, +〉 and|VT, VT - 2, VC, VC, +〉.
The zero-order energy is given by eq 22. The degeneracy of
the corresponding vibronic level is not resolved in the first-
order perturbation theory, and this represents the difference
compared to the case when a more general Hamiltonian is used,
like in refs 6 and 7. The second-order correction is given by

where

and the termH22 is obtained from eq 25 by interchanging the
indices T and C.

(d) VT ) 1, VC ) 1, K ) 0
In the general case, the zero-order vibronic levels are more

than two-fold degenerate, and the perturbative handling is more
complicated. An important exception is whenVT ) 1, VC ) 1,
K ) 0. There are two corresponding vibronic wave functions:
|1,1,1,1,-〉 and|1,-1,1,-1,+〉. The zero-order energy and the
first- and second-order corrections are then

and

3.4. Variational Approach. The variational computations are
carried out for eachK value separately; furthermore, the use is
made from the fact that the vibronic basis functions correspond-
ing to even values ofVC are ofg, and those with oddVC of u
symmetry, enabling further block-diagonalization of the Hamil-
tonian matrix. Moreover, theK ) 0 (Σ) blocks can be divided
into + and- subblocks. The basis sets employed in the present

study involve the bending functions up toVT ) VC ) 9 with all
compatible lT and lC. The dimensions of the corresponding
secular equations do not exceed about 200. The basis sets of
such dimensions ensure full convergence (up to 0.01 cm-1) for
all the vibronic levels presented.

4. Results and Discussion

The low-lying vibronic energy levels of thea1∆g state of
C2H2

++ computed in the framework of the present study are
given in Tables 1 and 2 and Figure 4. Table 1 contains the results
obtained by using the perturbative formulas from Section 3.3
and the variational approach briefly described in Section 3.4.
First let us note that the perturbative formulas presented in
Section 3.3 cover almost all the cases corresponding to the
combinations ofVT andVC with their sum not exceeding 3. An
inspection of the content of Table 1 shows that the discrepancy
between the energies computed in the second-order perturbation
theory (Ep) and their variationally calculated counterparts,Ev,
(which correspond to a complete perturbative treatment) are in
no case larger than 1 cm-1 and, in the great majority of cases,
much smaller. This is of no special practical interest in the
present case, but clearly shows that the perturbative formulas
can be reliably used when there is no program package available
for a variational handling of the same problem, as in the case
of more than four-atomic molecules.21,22A difference between
the RT effect in∆ electronic states of polyatomic (in the present
case, four-atomic) molecules and that for the classical example
of triatomics is the appearance of more than twouniquelevels
for each quantum numberK in the former case. Such are, for
example, in the case ofK ) 4, the levels corresponding to the
zero-order species|0,0,2,2,+〉, |1,1,1,1,+〉, |2,2,0,0,+〉, |0,0,4,2,+〉,
|4,2,0,0,+〉.

Table 2 lists also the variationally computed vibronic energies
of the C2D2

++(a1∆g) isotopomer. The harmonictrans andcis
bending frequencies corresponding to the meantrans and cis
bending potentials curves are, in the case of C2D2

++, 549.17
and 477.21 cm-1, respectively. Thus, the computed ratios of
the trans andcis bending frequencies in C2H2

++ and C2D2
++

are 1.207 and 1.362. However, the numbers given in Table 2
cannot be directly used for predicting the isotopic shifts in the
bending spectra of C2H2

++ and C2D2
++ because they are given

with respect to the lowest-lying bending levels of these
isotopomers, i.e., they do not take into account the different
zero-point energies involving all vibrational modes of these
species.

5. Conclusions

In this study we present the results of ab initio calculation of
the low-lying part of the vibronic spectrum in thea1∆g state of
C2H2

++ and C2D2
++ obtained by employing a perturbative and

a variational approach. It is shown that, in the concrete case,
they give almost identical results, what means that a perturbative
treatment of the RT effect in polyatomic molecules with linear
equilibrium geometry can reliably be used instead of a corre-
sponding variational procedure. The computations presented in
this study are carried out in the framework of a very simple
model. Consequently, they cannot compete in accuracy with
those achieved by employing highly sophisticated approaches
that can be applied in the case of much simpler triatomic species
(as, e.g., in the benchmark study on theX2B1, A2A1 - 2Π system
of NH2

23). It is to be expected that the numerical inaccuracy of
the results shown in Table 1 and Figure 4 continuously grows
with increasing energy, reaching magnitude on the order of 100

E(2) ) - 1
4

(VT + 1)(VT + 2)(VT + 3)(VT + 4)cT
2ωT -

1
4

(VC + 1)(VC + 2)(VC + 3)(VC + 4)cC
2ωC -

1
2

(VT + 1)(VT + 2)(VC + 1)(VC + 2)cTC
2

ωTωC

ωT + ωC
(23)
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(2) ) 1

2
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2 + 4H12
2 (24)
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2ωT -

1
4
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1
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ωT
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] (25)

H12 ) -4xVTVCcTC xωTωC [(VT + 1)(VT + 2)cT +
(VC + 1)(VC + 2)cC] (26)

E(0) ) 2ωT + 2ωC (27)

E1/2
(1) ) -4cTCxωTωC (28)

E1/2
(2) ) -54cT

2ωT - 54cC
2ωC -
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2(2ωT + 2ωC +

ωTωC

ωT + ωC
) (29)
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cm-1 for the highest levels presented. However, the present
pragmatic approach gains attractiveness in handling larger
dicationic systems, for which the more accurate treatments
would be hardly feasible.
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