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Quantum Monte Carlo (QMC) calculations on the stacked (st) and Watson/Crick (wc) bound adenine/thymine
(A/T) and cytosine/guanine (C/G) DNA base pair complexes were made possible with the first large scale
distributed computing project inab initio quantum chemistry, Quantum Monte Carlo at Home (QMC@HOME).
The results for the interaction energies (wc-A/T) 15.7 kcal/mol, wc-C/G) 30.2 kcal/mol, st-A/T) 13.1
kcal/mol, st-C/G) 19.6 kcal/mol) are in very good agreement with the best known coupled-cluster based
estimates. The accuracy of these values is further supported by calculations on the S22 benchmark set of
noncovalently bound systems, for which we obtain a small mean absolute deviation of 0.68 kcal/mol. Our
results support previous claims that the stacking energies are of comparable magnitude to the interactions of
the commonly discussed hydrogen-bonded motif. Furthermore, we show that QMC can serve as an
advantageous alternative to conventional wave function methods for large noncovalently bound systems. We
also investigated in detail all technical parameters of the QMC simulations and recommend a careful
optimization procedure of the Jastrow correlation factors in order to obtain numerically stable and reliable
results.

Introduction

Noncovalent interactions among basic building blocks of
biomacromolecules like DNA, RNA and proteins are imposing
major challenges for today’s science.1,2 Besides hydrogen
bonding and electrostatic interactionsswhich can both be
accounted for in a reasonably accurate manner even within the
framework of current density functional theory (DFT)sthe
dispersion interactions, especially involved in the stacking of
the basic building blocks, remain a challenging task for quantum
chemistry.3,4 For a realistic description of these systems,
dispersion effects are essential as counteracting part for the Pauli
exchange repulsion, and need very advanced quantum chemical
methods to be described accurately.5 However, methods capable
of correctly describing dispersion cannot routinely be applied
to larger systems due to the so-called computational “scaling
wall”.6 Current DFT can give an acceptable good description
of hydrogen-bonded systems, but fail to do so for stacked
complexes,3,4 and although interesting developments to over-
come these shortcomings are on the way,7,8 the results cannot
be considered as beingab initio, which makes error estimates
for new and untested systems difficult. Precisely for the future
development of all approximate methods (including classical
force fields), quantum chemistry needs more rigorous ap-
proaches, that can provide high accuracy reference data for
calibration.

A promising method for the highly accurate description of
noncovalent interactions in medium to large systems is fixed
node diffusion Monte Carlo (FNDMC).9 This quantum Monte

Carlo (QMC) method is capable of solving the fully correlated
electronic Schro¨dinger equation exactly within the boundary
conditions of a given many particle fermion nodal hypersur-
face.10 The remaining “fixed node error” (FNE) cancels out
(within typically necessary and attainable statistical accuracy)
for noncovalently bound systems,11 as the approximate nodal
hypersurface of the complex is to a large extent similar to the
product of the approximate nodal hypersurfaces of the mono-
mers, and therefore errors related to the approximation of nodal
hypersurfaces should cancel out for binding energies. Calcula-
tions on smaller noncovalently bound complexes confirmed this
assumption.12,13Within the statistical error bars given, FNDMC
can therefore be considered as being able to solve the electronic
Schrödinger equation for noncovalent interactions. Overviews
on quantum Monte Carlo methods have been published,10,14and
the same holds for details of the FNDMC algorithm used by
our workgroups.15 An approach with an improved optimization
algorithm and more complex trial wave functions was proposed
for noncovalently bound systems.16 Interaction energies were
merely presented for the parallel displaced benzene dimer (2.2-
(3) kcal/mol) and are within the statistical error bars identical
to what we obtain with our simpler approach, and hence this
proceeding does not seem reasonable to us. General advantages
of the FNDMC method are a negligible basis set dependence
and a favorable scaling behavior of N3-4 with system size
(improved scaling algorithms are possible and currently under
development).17,18

Due to a large prefactor, however, QMC calculations are very
CPU-time intensive (in spite of the favorable scaling, that makes
FNDMC more and more economic with increasing system size).
A solution to this problem can be found in the ideal parallel-
izability of FNDMC (thanks to the Monte Carlo nature of the
algorithm), that allows for massive parallel calculations on
thousands of processors, and therefore the effective exploitation
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of modern developments in high-performance-computing. This
feature of the QMC algorithm will likely become more and more
important in the future, as further gains in computing power
are considered to be possible only within “high density
computing” concepts (e.g., multicore processors). Furthermore,
FNDMC offers the possibility to open up unused computing
resources, institution-wide and even in the general public,
because FNDMC is not explicitly wave-function based, so that
only small data amounts have to be transferred to and from the
computer-nodes. Based on the insight that the world’s computing
power is no longer concentrated in supercomputers centers, but
distributed in hundreds of millions of personal computers
belonging to the general public, “public resource computing”
(PRC) or “volunteer computing” (VC) is a way to open up new
resources for scientific research. On the basis of the BOINC
(Berkeley Open Infrastructure for Network Computing) software
system,19 our Quantum Monte Carlo at Home (QMC@HOME)
project20 allows PC owners all over the world to participate in
our research through the donation of spare computing time. At
the time of writing, the project supplies around 15 TFlop/s
sustained computing power for our research into QMC for
medium to large systems. Thanks to hundreds of thousands of
volunteers worldwide, PRC thus provides the opportunity to
acquire computing power in the range of a top500 supercom-
puter for the price of a mid-size server-system. Centered on
standard web-server components, the BOINC software system
provides mechanisms for the necessary work-scheduling, data-
handling and accounting as well as several user community
features, and thus allows for a relatively easy setup of a secure
and reliable scientific computing project. This way the FNDMC
calculations were done by a specially adapted version of the
program Amolqc.21

Although our project is still in a beta test stage (considering
technical aspects of software engineering and project adminis-
tration), we were able to obtain conclusive results for the DNA
base pair interaction energies of the adenine/thymine (A/T) and
cytosine/guanine (C/G) stacked (st) and Watson-Crick (wc)
bound complexes (see Figure 1). Theoretical research of nucleic
acid base pair interaction focuses on these systems, because the
understanding of their fundamental interactions forms the basis
for many scientific aspects of DNA biomacromolecules. While
on the one hand experimental data on these and similar

complexes are missing,3 systems of this size are on the other
hand out of range for standard CCSD(T) calculations with a
sufficiently large AO basis set, the current “gold standard” of
quantum chemistry6 (an interesting alternative is the approximate
local CCSD(T) treatment).22,23 Additionally, extensive checks
for all simulation parameters and calculations on the S22
benchmark set3 of noncovalently bound systems were made, to
ensure the accuracy of our results.

Computational Details

For our FNDMC calculations we use guidance functions of
the Slater-Jastrow type, with Hartree-Fock (HF) determinants
and Schmidt-Moskowitz type correlation functions.24 Gaussian
quadruple-ú valence basis sets were fully optimized25 for soft-
ECPs by Ovcharenko et al.26 Correlation parameters were
optimized by variance minimization. HF, MP2 and SCS-MP227

single point calculations were done with a slightly modified
version of the TURBOMOLE 5.6 suite of programs.28 Complete
basis set (CBS) values were extrapolated according to Halkier
et al.,29 using TZ and QZ basis sets. Geometries for the S22 set
were taken from Jurecka et al.,3 and all other geometries were
optimized at the DFT-D(BLYP)/TZV(2d,2p) level of theory.30

Results and Discussion

DNA Base Pairs.Our results are presented in Table 1. The
FNDMC interaction energies are based on calculations within
the QMC@HOME project, where each energy value is evaluated
from around 1500-2000 work-units, each of 4000 steps with
an equilibrated and statistically independent ensemble of 100
walkers. This way, the calculation of a ground state energy for
one of the DNA base pairs lasts on about 2000 of the more
than 38000 participating hosts approximately 2 days, with a first
sensible estimate available after 1 day. QMC@HOME allowed
us to carefully check all technical simulation parameters (includ-
ing finite sample size effects, equilibration length and time step
dependence) by separate, independent calculations. These ab-
solutely necessary checks would have been impossible to per-
form on nonprofit computing resources without QMC@HOME.
Not to our surprise, the optimization of the used correlation
function parameters turned out to be a crucial step and since
for PRC-distributed calculations no reference energy exchange
is possible, a thorough investigation of finite sample size errors
was mandatory, which is described in the following.

In FNDMC, the wave function is evolved in imaginary time
toward the ground state with a diffusion process which relies
on the mathematical equivalence of the imaginary time-
dependent Schro¨dinger equation and a generalized diffusion
equation:

This process is governed by the unknown Green’s function

Figure 1. Structures of the A/T(st), A/T(wc), C/G(st) and C/G(wc)
DNA base pairs.

TABLE 1: Interaction Energies of DNA Base Pairs
(kcal/mol)

FNDMC,a present work CCSD(T) estimatesb

A/T, st -13.1(8) -11.6
A/T, wc -15.7(9) -15.4
C/G, st -19.6(9) -16.9
C/G, wc -30.2(9) -28.8

a Statistical errors in parentheses.b Values are taken from ref 33,
estimated errors due to the basis set extrapolation and remaining
correlation errors are about 1-2 kcal/mol.

Ψ(R,τ+δτ) ) ∫G(R,R′,δτ)Ψ(R′,τ) dR′

Worldwide Distributed QMC Calculations J. Phys. Chem. A, Vol. 112, No. 10, 20082105



of the system that is approximated by the short-time approxima-
tion

where e-Tτ results in a diffusion step and e-(V-Eref)τ in a weight
or branching step. Importance sampling with a guide or trial
function31

results in the weight step e-(El-Eref)τ with the local energy

Since the kinetic energy operatorT does not commute with
the potential or local energy, this ansatz is exact only for a time
stepτ of zero and might lead to time step errors even for small
time steps, depending on the overall trial wave function quality.
Time step errors can normally be circumvented by extrapolation
to τ ) 0. For systems as large as the DNA base pairs, special
care has to be taken for the convergence of the correlation
function parameter optimization, as the nonlinear optimization
process may result in Jastrow factors of different quality for
systems of considerably different size (e.g. monomers and
complexes). Such Jastrow factors would yield trial wave
functions of different quality that could lead to different time
step errors for monomers and complexes. In our case, the quality
of a Jastrow factor can be measured by the FNDMC variance,
because the variance is a measure for the overall quality of the
trial wave function, which is in our case the product of a
(constant) HF determinantΦ and the (optimized) Jastrow factor
eU.

The function U consists of two-body and three-body terms

with

wherea andi,j refer to nuclei and electrons, respectively, with
interparticle distancesr. The Jastrow factor parameters are
optimized by variance minimization (see Computational Details
section for more details and references).

To check for the convergence of the Jastrow optimization,
we have investigated the time step dependence of absolute and
relative energies of adenine, thymine and their hydrogen-bonded
and stacked complexes for Jastrow factors of different quality.
The results are shown in Figures 2 to 4: Figures 2 to 4 each
show the time step behavior of the absolute energy for different
Jastrow factors, first for the adenine/thymine stacked (Figure
2) dimer, then for the involved monomer adenine (Figure 3),
and finally for the binding energies of the stacked (Figure 4)
complexes. Corresponding curves for the Watson-Crick bound
dimer and the thymine monomer were also calculated, and they

show the same trends with a less problematic behavior for the
relative energies.

As can be seen from Figure 2, we encounter a strong
dependence of the energy on the Jastrow factor quality for the
stacked adenine/thymine base pair. Figure 3 shows that this

G(R,R′,t) ) 〈R|e-(H-Eref)τ|R′〉

e-(H-Eref)τ ≈ e-Tτ‚e-(V-Eref)τ

ΨG ) Φ‚eU

El )
HΨG
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Figure 2. Time step dependence of the absolute energy of the adenine/
thymine stacked base pair for three Jastrow factors of different quality
(dotted, dashed and solid curves).

Figure 3. Time step dependence of the absolute energy of adenine
for two Jastrow factors of different quality (dashed and solid curves).
Energy axis spacing is the same as in the corresponding curves for the
complexes.

Figure 4. Time step dependence of the interaction energy of the
adenine/thymine stacked base pair for two sets of Jastrow factors of
different quality (dashed and solid curves) and estimated CCSD(T)
values (dotted curve); delta(variance) is the complex variance minus
the sum of the monomer variances.
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behavior is greatly alleviated for the smaller monomer systems.
The different characteristics of the curves can be assigned to
different finite time step errors related to monomer and complex
trial wave functions of different overall quality. The finite time
step error should vanish for an extrapolation to a time step of
zero (i.e., the curves for the different Jastrow factors should
converge forτ ) 0), but for trial wave functions with a quality
below a certain threshold we encounter finite sample size errors,
that prevent the dotted curve in Figure 2 from converging to
the correct value when reaching a time step of zero (see below
for more information on our investigation of finite sample size
effects). Even considering the more regular time step behavior
of the dashed and solid curves in Figure 2, an extrapolation to
a zero time step turns out to be problematic. For reliable
calculations on larger molecules we thus need equally good
Jastrow factors for monomers and complexes, to make sure that
time step errors cancel out. As a measure of equality we can
use the FNDMC variance. If we have Jastrow factors of the
same quality, the variance (that rises linearly with system size)
of the monomers should sum up to the complex variance. Figure
4 shows that our consideration about the Jastrow factor
optimization holds for the DNA base pairs: If the variance
difference (complex variance minus sum of monomer variances,
termed delta(variance)) is below a certain threshold, we get
reliable results for the interaction energies with reasonable small
time steps (see the solid curve in Figure 4, we observe the same
trend also for the omitted Watson-Crick bound complex, that
shows a less problematic behavior). If the variance difference
is greater than about 0.2 atomic unit, the results get significantly
influenced by the different time step behavior (see the dashed
curve in Figure 4).

Errors related to the finite sample size of an individual
FNDMC simulation run are commonly referred to as “population
control error” (PCE).32 For weakly coupled simulations like our
PRC calculations (where no reference energy exchange is
possible), one ends up with many independent data points each
based on a relative small sample. To exclude finite sample size
effects on our results, we have investigated the sample size
dependence of the absolute energy for the stacked adenine/
thymine complex with two Jastrow factors of different quality
(see Figure 5). As mentioned above, a Jastrow factor of higher
quality can be identified by a lower variance. Because a lower
variance leads to decreased fluctuations of the weights, which
lead to decreased branching, which in turn leads to decreased
fluctuations of the reference energy, Jastrow factors of higher

quality should encounter less pronounced finite sample size
effects. This is confirmed by the different development of the
curves in Figure 5. With the afterward chosen sample size of
100 walkers no PCE can be observed for the Jastrow factor of
higher quality. For the Jastrow factor of lower quality a sample
size of 100 walkers is not sufficient to exclude finite sample
size effects (this is the reason for the above-named problems
with the dotted curve in Figure 2). Alternative ways to limit
the population control error have been suggested by Umrigar
et al.32

We also performed checks for the numerical stability of our
approach by considering the geometry dependence of the
interaction energies. This is of some importance because the
estimated CCSD(T) values,3 which we take for comparison, have
been calculated with geometries optimized at the RI-MP2/
TZVPP level33 while we use DFT-D(BLYP)/TZV(2d,2p) ge-
ometries.30 The DFT-D method has been proven to provide
excellent geometries for noncovalently bound systems.34 In any
case, comparative FNDMC calculations on the DNA base pair
model geometries of the S22 benchmark set3 (see below) showed
that geometry effects on the relative energies are smaller than
the statistical error of our FNDMC calculations and the basis
set extrapolation scheme used to obtain the estimated CCSD-
(T) values. Considering geometry dependence in more detail,
we chose the cytosine/cytosine dimer (C/C), a commonly used
model system for geometry dependence in stacking4 for further
tests. The C/C potential curve (see Figure 6) shows the overall
good performance of FNDMC compared to complete basis set
(CBS) extrapolated SCS-MP227 values, the most accurate
method for largeπ-π-stacked systems available.35,36For larger
distances the FNDMC values begin to deviate from the SCS-
MP2 values, presumably because numerical problems with the
used Schmidt-Moskowitz Jastrow correlation factors come into
play, as indicated by the impossibility to optimize reasonable
Jastrow factors for much larger intermolecular distances. This
however is not relevant for the calculation of the interaction
energies of the DNA bases, because these were taken as the
difference between complex and fragment energies. An impor-
tant conclusion for future work is that additional efforts to obtain
better trial wave functions should be invested. Interaction
energies from MP2, the most popular quantum chemical method
in the field, are also shown for comparison, approving that
dispersion effects are strongly overestimated at this level.

In comparison to our FNDMC interaction energies, Table 1
shows estimated CCSD(T)/CBS data, the best known reference
values until now. We want to mention that results of presumably

Figure 5. Sample size dependence of the absolute energy of the
adenine/thymine stacked base pair for two Jastrow factors of different
quality (circles and diamonds).

Figure 6. Cytosine/cytosine potential curve. The sum of the fragment
energies is taken as zero of energy.
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the same good quality as the CCSD(T) values were obtained
recently with symmetry adapted perturbation theory (SAPT).37

While the accuracy of these results is harder to judge (as only
perturbation up to second order is included, while for polar
systems one would also expect the third order to become
important),38 they are in good agreement with the coupled-cluster
data, deviating by a uniform upward shift in the relative energies
of 1.2-1.6 kcal/mol.

Our FNDMC interaction energies are, within the given error
bars, in very good agreement with the estimated CCSD(T)/CBS
values. The largest deviation is found for the G/C stacked
complex, where the DFT-D geometry used is quite strongly
tilted and on the way to a hydrogen-bonded structure (see Figure
1), which is reflected in the lower binding energy.

The S22 Benchmark Set.This well-established test set
covers two important noncovalent interaction types, as the
binding situation of the first seven complexes is dominated by
H-bonds, while entries eight to fifteen provide more or less
purely dispersion-bonded systems, and the last seven are
mixed cases. Our results presented in Table 2 are based on
QMC@HOME calculations, with each energy value evaluated
from 250 to 2000 work-units, each ofn‚4000 steps with an
equilibrated and statistically independent ensemble of 100
walkers. (n is chosen so that each work-unit is not shorter than
around 5-10 h, which has turned out to be a convenient value.)
All results for this set are obtained as “black box” results (i.e.,
without manual selection of trial wave functions) by FNDMC
calculations based on three consecutive Jastrow factor optimiza-
tions, so that the FNDMC variance differences between dimer
and monomers are as small as possible (as described above in
more detail for the DNA base pairs).

In comparison to our FNDMC interaction energies, Table 2
also shows estimated CCSD(T)/CBS data, which is the best

known reference for this benchmark set.3 Again, all FNDMC
interaction energies are in very good agreement with the
reference values, resulting in a mean absolute deviation (MAD)
from the reference of 0.68 kcal/mol. Whereas 13 out of 22
entries show a deviation larger than 0.5 kcal/mol, and 7 larger
than 1.0 kcal/mol, only the formic acid dimer (deviation of
-1.58 kcal/mol) and the adenine/thymine stacked complex
(deviation of 1.34 kcal/mol) deviate by more than 1.2 kcal/mol.
Errors of FNDMC larger than the statistical error are found for
15 out of 22 entries, but while 8 of these are larger than 0.5
kcal/mol, only one entry (the formic acid dimer) deviates by
more than 1.0 kcal/mol (-1.35 kcal/mol) from the reference
value, when taking the statistical error into account. Within our
approach of choosing trial wave functions according to the
variance difference, we do not expect to be able to go beyond
this accuracy of 0.5 to 1.0 kcal/mol. The uniform distribution
of deviations around zero (see Figure 7) suggests that the
remaining error is not of systematic nature (in contrast to the
systematic errors of MP2 shown for comparison), which is also
supported by the fact that the largest percentage deviations are
found for smaller interaction energies (entries 10, 11, 20). The
overall good performance of FNDMC for the S22 benchmark
set provides strong support for the statement that FNDMC can
be considered as being able to solve the electronic Schro¨dinger
equation for noncovalent interactions.

Conclusions

Our FNDMC interaction energies are, within the given error
bars, both for the DNA base pairs and for the entire S22
benchmark set, in very good agreement with the estimated
CCSD(T)/CBS values. From a theoretical point of view, our
results for the DNA base pairs have to be considered as the
most accurate nucleic acid base pair interaction energies reported
up to now. They confirm that noncovalent interactions in stacked
geometries are of comparable magnitude to those in hydrogen-
bonded (Watson-Crick) mode. While our work supports
previous estimates3swhich is of particular importance, because
stacked interactions are expected to be problematic within the
extrapolation-scheme-based calculations (as dispersion effects
are overestimated by MP2, see above)swe want to emphasize
that our approach is not limited to systems of medium size, as
CCSD(T) based estimates are. With FNDMC, quantum chem-
istry has the opportunity to develop a reference method for larger
noncovalently bound systems (e.g., larger DNA fragments or
protein folding), that allows for the efficient utilization of
modern developments in computer technology.

TABLE 2: Results for the S22 Benchmark Set (kcal/mol)a

deviation
FNDMC,a

present
work

CCSD(T)
estimatesb

kcal/
mol %

1 (NH3)2 -3.19(9) -3.17 -0.02 -1
2 (H2O)2 -5.34(9) -5.02 -0.32 -6
3 formic acid dimer -20.19(23) -18.61 -1.58 -8
4 formamide dimer -17.05(23) -15.96 -1.09 -7
5 uracil dimer -21.60(55) -20.65 -0.95 -5
6 2-pyridoxine‚2-

aminopyridine
-17.63(49) -16.71 -0.92 -6

7 adenine‚thymine WC -15.88(79) -16.37 0.49 3
8 (CH4)2 -0.48(8) -0.53 0.05 10
9 (C2H4)2 -1.38(13) -1.51 0.13 9
10 benzene‚CH4 -0.63(21) -1.50 0.87 58
11 benzene dimer PD -1.65(42) -2.73 1.08 40
12 pyrazine dimer -3.70(42) -4.42 0.72 16
13 uracil dimer -10.72(60) -10.12 -0.60 -6
14 indole‚benzene -4.11(55) -5.22 1.11 21
15 adenine‚thymine stack -10.89(69) -12.23 1.34 11
16 ethene‚ethane -1.22(12) -1.53 0.31 20
17 benzene‚H2O -3.69(24) -3.28 -0.41 -12
18 benzene‚NH3 -2.49(22) -2.35 -0.14 -6
19 benzene‚HCN -3.40(43) -4.46 1.06 24
20 benzene dimer T -3.77(39) -2.74 -1.03 -37
21 indole‚benzene T-shape -6.52(50) -5.73 -0.79 -14
22 phenole dimer -7.10(46) -7.05 -0.05 -1

MD -0.03
MAD 0.68
rms 0.82
∆min-max 2.92

a Statistical errors in parentheses.b Values are taken from ref 3,
estimated errors due to the basis set extrapolation and remaining
correlation errors are about 1-2 kcal/mol.

Figure 7. Deviation of S22 interaction energies from the reference
data3 for FNDMC and MP2/CBS (with counterpoise correction). MP2
data taken from ref 36.
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