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We present a new attenuator function that can be applied to the Coulomb operator. Similar to the popular
erf(wr) attenuator, the function [eef(r + rg)) + erf(w(r — rg))]/2 divides the Coulomb potential into a
singular short-range piece and a non-singular long-range piece. In our atteauatmityols the sharpness of

the short-range/long-range divisionrat With ro = 0, this reduces to ewd(r), but the additional parameter

allows more flexible adjustment of the potential, for physical and/or computational reasons. We present some
illustrative results for a truncated MP2 method, where mean field effects are handled exactly and correlation
is treated locally. This study indicates, somewhat expectedly, that the slope and curvature of the attenuated
potential are more important than its value (a trivial constant may always be added to a potential). However,
there are some surprising features of the data that suggest what bounds need to be put on the curvature of the
attenuated potential in order to achieve reasonable physics. Conveniently, we find that our attenuator form
has the ability to preserve the curvature of the Coulomb potential almost exactly at short range, allowing for
the truncation of long-range interactions while preserving the local physics very well. The molecular integrals
for the resultant operator can be done analytically over Gaussian basis functions, and the extensive algebraic
manipulations necessary to evaluate them stably are shown.

1. Introduction To approach the correlation problem, one might desire a
method that allows all but a linear-scaling number of integrals
to be discarded in the fluctuation potential. At the size regime
where energy becomes extensive, the number of relevant
integrals should naturally scale linearly, but in light of the
pPrevious statement about the magnitude of these integrals before
charge screening, it would probably be necessary to apply a

For some time, the electronic-structure community has been
pursuing methods that divide computations into short- and long-
range components, with the hope that intelligent truncation of
the formal degrees of freedom in a model will yield cheaper
yet accurate methods. One piece of this puzzle is the Coulom
operator itself, which couples each pair of electrons. The number - ; y . X
of repulsion integrals that must be considered scales minimally thrésholding mechanism to realize this computationally, even
quadratically with the number of single-particle basis states that asymptotically. For realistic calculatl_ons we deS|re_ control over
electrons can occupy, and the range of this interaction is too the speed/accuracy trade-off by being able to adjust the range

long to be truncated naturally. Indeed, as has been noted Before,Of @n approximate fluctuation potential explicitly.

at a millimeter of separation, the value of the electrefectron This integral thresholding needs to be done carefully,
Coulomb potential i3~10~7 a.u. This magnitude is around the however. A raw distance or integral-value criterion would lead
convergence threshold for many Hartrdeock (HF) calcula- to discontinuities in the energetic surface for the nuclear
tions, but a millimeter is an enormous distance by chemical coordinateg® The optimal strategy is to cause integrals to go
standards. smoothly to zero, more quickly than the natural Coulomb law.

Chemists understand that one does not need to considetOnce outside of the truncation region, an efficient distance
interaction lengths of millimeters for standard ground-state criterion may be safely applied. To avoid ambiguity concerning
calculations. Screened interactions produce negligible forces atrotations of the single particle basis states, this is best done by
long range, since matter is largely neutral. On account of this, modifying the Coulomb operator itself, such that the result
local correlation algorithms are a mainstay of electronic-structure corresponds to that of a physical system under a well-defined
method development.t’ model potential, rather than a haphazardly truncated basis

The relevant question is how one may best trim the dead projection of the full potential. Some set of reasonably localized
weight from an electronic-structure computation. Generalization functions will be needed to obtain an advantage, but we should
of the fast multipole method of Greengard and RoKfilailows insist that the answer be invariant to this choice.
evaluation of the mean-field Coulomb energy in HF and Kehn We letV(r) = 1/ be the Coulomb potential in atomic units,
Sham calculations in linear-scaling tiffe-owever, this applies 514 define a pair of attenuating function®) + A(r) = 1, where
to static charge distributions, and it will not circumvent needing  gecreases monotonically from unity to zero over the domain
a quadratic-scaling number of integrals to represent fluctuation , [0,:0). We are most interested in methods using the short-
forces in a correlated calculation. range potential/(r) = a(r)/r, but evaluation of the necessary

T Part of the “William A. Lester, Jr.. Festschrift”. integrals for our attenuator will be more compactly discussed
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Much has been written on the topic of attenuated or short- a)
range Coulomb operators. Work by Gill and co-workers in this T
area has focused on reducing the amount of computational work
necessary in electronic-structure calculations, by dividing the
Coulomb operator as described above and choosing different
means to evaluate the short- and long-range porfibrid They
have also made chemical studies of the effects of neglecting

. . -Y.-""f y
the long-range portion of the Coulomb interactigfiPanas and
Snis have used related integrals in constructing adjusted erf(x)
Coulomb metrics to approximate the short-range correlation ¢
. ; . ; erf(x,y) -
associated with the Coulomb hd¥e?® Savin and co-workers " terfo(x.y) -

have used divisions of the Coulomb operator to explore the
physics of electrorrelectron interaction and exchange, particu- X
larly in the context of density functional theory (DFT), and they b)

have developed correction schemes for the present shortcomings

of density functional@’-33 Work by Hirao and co-workers has

been directed toward chemical studies using such a long-range-
corrected density function&t, and most recently they have

applied these ideas to fixing the charge-transfer problem of time-
dependent DF 2739 Scuseria and co-workers have also recently
studied and assessed long-range-corrected functitfitéland

they have worked to develop and assess efficiently computable
functionals that include only short-range exchaf®jé8 Fixing

1lr

terf(wr,wrg)/r -
terfo(wr,@rg)lr e

the long-range behavior of density functionals is a growing area rg
of researci?~52 and while we explore electron correlation via 0
perturbation theory here, we hope that the flexible attenuator 0 "o

presented in this work will be useful for these purposes as well. _
Such flexibility may also be useful in a density-fitting metric ~ Figure 1. Plots of attenuators and attenuated Coulomb potentials. (a)
for resolution-of-the-identity integral cod@sr in the recently The functions terf and terfc are plotted, and the shape of erf is shown

d dificati ¢ led it in MP2 th for reference. (b) A division of the Coulomb potential into short- and
proposed modmcanons 10 scaled-opposite-spin meth- long-range components by terfc and terf, respectively= 5/ro).

0ds>*%5 S Increasingw sharpens the truncation at the cutoff radiug of
To date, almost all spatial divisions of the Coulomb operator
have made use ai(r) = erfc(wr), wherew is an adjustable o attenuator are varied. We pay special attention to the case
parameter. Th'.s IS Ia_rgely due to the f_ac_;t that the NECESSATY,\ hererow = 1/+/2, as this will be shown to minimize the error
integrals for using this attenuator are trivially related to those in the short-range curvature of the attenuated potential. We
Ig’r tlhe Legultar tC_:cl)qkimb p.otenlnal. r-]r h'ts splitting divides tthe q compare the behavior of this case of the terfc attenuator to results
ou Omth ‘IJO entialin g aflngu adr SI (3[r -rang? lcomlponen t‘f’m with a comparable erfc attenuator. In Section 3, we derive the
a smooth long-rangé background. in terms ot local properties, necessary expressions for the numerical implementation of the

gpyv(_aver,fetrg agd elrfc tc)zlo not ¥'e|d vgr%/hflneh cc;ntrol over the resulting molecular integrals, discussing the stability of evalu-
Ivision ot the Loulomb opeérator, an € short-range Compo- inn in detail. In Section 4, we summarize our conclusions from
nent never has the curvature of the Coulomb potential for any this work

finite w.

Gill a_md co-workers have improved on_this splitting by 5 A Local Maller—Plesset Model
expanding the background as a sum of increasingly broad o ) ) o
Gaussians® While each Gaussian adds Only a small amount to 2.1. Method Definition. One can consider a Spht Hamiltonian
the computational time, a large number might be necessary toin the correlation calculation only, such that long-range effects
systematically improve the Hamiltonian, and the variation as aré handled by the proper Coulomb operator at the HF level.
such is discretized. Our work could be viewed as an extension In this way monopole and mean-field multipole induction effects
of their ideas, where we try to improve on this scheme by Will be properly included in charged or charge-separated

introducing an explicit cutoff radiug, for the Coulomb systems. o ) o
potential, by allowingu(r) = terfc(wr,wro) where Let H be the usual nonrelativistic electronic Hamiltonian and

F be the converged Fock operator, using the full Coulomb
potential. Allow the many-electron Coulomb operaBrto be
split into short- and long-range piec¥s andV?, respectively,
such that/! = Ve + VP, Let HShotbe defined byH = HSMot+
and terfc= 1 — terf. The terf function is named for “two erfs,”  V#, so thatHS"" includes V* and the kinetic and nuclear-
and we note that it approaches zero linearly at the origin, attraction operators. Similarly, I&t= FShot+ 34, whered is
meaning that, again, only the short-range potential is singular. the long-range part of the effective mean-field potential, built
The terfc attenuator essentially turns off the Coulomb potential using the converged occupied space from the full Coulomb
over a domain of size-1/w centered ato. Sample plots of the  operator. o
functions terf and terfc are given in Figure 1, as well as an  Now say we want to solve for the ground statéHof= HShot
example plot of the Coulomb potential split by this attenuator + Y« fo (x runs over electron labels) within second-order
pair. Mgller—Plesset perturbation theory (MP2). The unperturbed
In Section 2, we study the correlation energetics of the neon Hamiltonian is taken to bg Fy, and a Brillouin-like exclusion
atom and dimer within perturbation theory as the parameters in of single excitations can be derived. This results in an MP2

terf(x,y) = % [erf(x +y) + erf(x — y)] Q)
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Figure 3. The complement of the attenuated Coulomb potentials in
b) 5 0.05 Figure 2a, such that the changes in short-range forces may be illustrated
« row = 12 for eachw. A large slope near the cutoff radius here indicates a
S | /-\ countering slope in the short-range potential, which produces unphysical
Z 0.00 forces. Note the flat appearance of these complement curves at the origin
[ .
S asw — 0.14 At = 1ir/2 (which preserves the short-range forces of
% the Coulomb operator in the short-range potential). Values dfiat
2 -0.05 | are lower than T4v/2 give rise to curves that would look like flat
=4 lines on the scale of this plot, with the value of the potential approaching
S zero everywhere as — 0; in thew — 0 limit, their shape approaches
g 0107 that of the erf-attenuated complement potential (see Figure 6), but with
3 small w.
<
015 02 04 06 08 10 Attention should be drawn to one of the other two cases in
' ' o A ' ' Figure 2b in which the full MP2 energy is recovered 0.14
. . . A~1), which can be shown not to be an accidental cancellation
Figure 2. Attenuated Coulomb potentials and resultant atomic cor- f
relation energies. (a) Short-range Coulomb potentials witls 5 A o e_rrors' . . .
and different values ab. (b) The MP2/cc-pVDZ energy of a Ne atom, ~ First, we briefly remind the reader that there is a gauge
relative to the unattenuated result, for the continuous family of invariance in the potential formulation of partielparticle
fluctuation potentials generated by varyimgwith ro =5 A. The zero interactions, so that adding an arbitrary constant to a potential

of this curve aw = 0.14 A" is meaningful, because the short-range does not change particle-number-conserving relative energies,
curvature of the Coulomb potential is optimally preserved when including correlation energies. Therefore, we focus our attention
= w2 on the slope and curvature of the attenuategotential. Since
it is rather difficult to see the change in curvature with varied

expression where the usual integrals involving occupied orbitals @, due to the singularity, the complementav long-range
i andj and virtualsa andb are simply replaced b [V|iTjC] potentials (dgwat_lon o¥/* from the Coulomb potentlal) have
We emphasize that, as we explore the behavior of correla- 0een plotted in Figure 3 for the same choicesads in Figure
tion with respect to the parameters in the attenuated potential, 2@, With the samey. In regions where this long-range potential
the HF reference state in each calculation is obtained with Nas a nonzero slope, we can deduce that the corresponding short-
the unattenuated potential, and it is independent of these'@nge potential (same parameters) has the opposite deviation
parameters. in its slope from that of the Coulomb potential. This is

2.2. The Ne Atom.We start by examining the behavior of effeptively an additionall artifactual force betyveen the electrons
our attenuated MP2 method on a closed-shell atom, namely (Which, at long range, is equal and opposite to the Coulomb
neon, using the cc-pVDZ basis set. To simplify the discussion, force, hence the attenuation). _ o
we first takero = 5 A, which is well larger than the atomic If we were to attempt to minimize the first derivative of
diameter, such that any two points in space that are likely to be Over the short.-range region, so as to minimize thg force deviation
occupied by a pair of electrons are separated by less than thi2f V* over this same region, we might try setting the second
distance. Variations in the attenuated Coulomb potential as aderivative ofV¥ to zero at the origin, limiting the expansion at
function ofw and the resulting deviation of the atomic absolute that point to quartic and higher even terms. Thus, we can derive
energy are shown in Figure 2. the conditionrow = 1/¥/2 for which the complementary

Two limits are immediately evident in Figure 2. First,@as ~ potentialV¥ is as flat as possible near the origin. An example
— o, the cutoff becomes sharper, and since the entire atomof such aV# potential is shown in Figure 3. One can see that
lives within a diameter of 5 A, the full MP2 energy is recovered. the potential starts flat at a finite value and begins to turn into
Second, as» — 0, the cutoff region becomes extremely broad, the Coulomb potential neap (see also Figure 6). Using®
and the full MP2 energy is again recovered. There are two with row = 1W/2 is reminiscent of a long-standing trick in
intuitively possible consequences as this cutoff region ap- classical dynamics, in which a potential is truncated, shifted
proaches infinitely broad: the first is that the whole short-range downward, and perhaps smoothed.
potential is attenuated to zero, and the second is that no part of 2.3. The Ne Dimer. Considering that our primary interest
the potential is ever attenuated. It is easy to show that the latteris the forced decay of the correlation interaction with respect
is true, and hence the full MP2 energy is recovered. In the to distance, we now turn our attention to ANehich will be
intermediatew regimes, the cutoff region is of finite width and  studied as a function of nuclear separation, with the same
extends well inside #5 A formal cutoff radius, and the energy ~ attenuated potentials and basis. No integrals were discarded in
of the atom is modified significantly. the algorithm for which results are presented, but it should be
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Figure 4. The MP2/cc-pVDZ interaction curves of bdor the
attenuated potentials in Figure 2g € 5 A). Each curve is relative to b) ™
the energy of two Ne atoms with the same fluctuation potential. The @
extraneous minima are the result of unphysically strong correlations %
when electrons are separated by a distance of nearly the cutoff radius. Z
The unphysical minima disappear for the lower parameter values. § 5T
2 ro® = 112
clear that some integrals could be discarded at larger distances 2 ‘
(at least in the atomic basis representatipwithout affecting §’ 0
the energetic results. Dimer interaction curves are shown in o ’\/
Figure 4 for the set of potentials pictured in Figure 2a. §
The most striking feature of the majority of these curves is 5] . . . ‘
the unphysical second minimum me& A separation, where '50_0 0.2 0.4 0.6 0.8 1.0
the Coulomb interaction was truncated. For very laigehe o/ A
depth of this minimum even exceeds that of the physically rigure 5. Further examination of the Neurves in Figure 4. Both
meaningful binding well, as can be seendor= 10 A~ (which sets of results improve as — 0; however, very good results are

is near thay — oo limit for our purposes). This effect is easily  obtained withrqw = 1/v/2, and the finittw would allow the
explained by looking at the form of the MP2 correction. It is attenuated potential to be neglected at some radius (dependent on a
an energetically weighted sum over (the squares of) all possiblethreshold). (a) Magnified view of the large-separation regime, where
pairs of occupieetvirtual product-distribution interactions. By ls)teeper q(Ll‘;r_‘I?r:"n(? of the d'?pﬁrst')‘?” d|_nteract|on ‘f’v'th |nhcreas|ngn g
: H : e seen. e deviation of the binding energy from the unattenuate

g:i)h dougcct)ncilsl?rlit?ljttig?l %chuepr:tiz ag? r\rl]lcr)t:talz’ ;\i,;:?oligrm?iletlzat 56;222 result as a continuous function afat a nuclear separation of 2.74 A

e ' ' ) - equilibrium for the unattenuated potential).
the MP2 correction is therefore a sum over dipolar and higher (eq P )
order interactions, the interaction between the two neon atomsbetween they = 0.2 A1 curve and they = 0.14 A-1 (row =
would be monotonically decaying (beyond the physical mini- NG o . i .
mum) only if the dominant dipotedipole interactions are 1/+/2) curve, considering that their complement potentials look

decreasing in strength with distance, which is not the case for so similar in Figure 3.

some of thev* plotted in Figure 2a. Near the equilibrium region in Figure 5b, we again see that,
We again consider the curvature of the attenuated operator.as® tends toward zero or infinity, the result tends toward the
It is an easy numerical exercise to show that the dipdipole full MP2 result. The main point of difference from Figure 2b

interaction, which goes as the second derivative of the potential, for atomic absolute energies (other than the energetic scale of
is monotonically decreasing for our attenuator under the the quantity considered) is that the relative sizes of the small-
condition thatrow < 2.06987. Indeed, for the lower two values and largesw features has changed. This is most easily viewed
of w in Figure 4 (ow < 2), there is no extraneous minimum.  as a relative exaggeration of the deviation at higheor the
Furthermore, N2 < 2.06987, so we have no contradiction dimer. As can be seen in Figure 3,@ss increased, the region
between conditions we would like to satisfy. of adversely affected curvature is increasingly localized around
A satisfying interpretation of this is available in terms of r,. Because the dimer does not fit entirely within a diameter of
forces. If the Coulomb operator is truncated sharply, then near 5A, the interatomic correlations remain sensitive to this poor
the region of this truncation, the potential energy of the system curvature atr ~ ro = 5 A for all w, while the intraatomic
is lowered a lot by small displacements of the electrons from correlations of Figure 2b begin to fall within a radius where
their mean-field equilibrium; strong forces (large derivatives) the potential is no longer altered asincreases. Unlike in the
lead to strong and energetically significant correlations. atomic case, the numerically exact full MP2 result is not
Figure 5 shows how the variation ofaffects the long-range  achieved for the dimer as — o, and the deviation asymptotes
portion of the interaction and the region of the equilibrium ;5 109 a.u. Itis again encouraging that the binding energy

minimum. As expected, the long-range interactions decay to . :
zero at a shorter distance than with the unattenuated potential,IS obtained very accurately for ail smaller than~1/rov/2.

and the interaction goes more quickly to zero with a more N the foregoing text, it has been shown that, for fixgdhe
steeply truncated potential. It is encouraging that the curve with best choice of finites seems to be 14v/2. The computation-
row = 1/v/2 tracks the full MP2 curve much more closely than ally advantageous attenuation disappears as0, and patently
the others at long range in Figure 5a. While we expect further absurd results are obtained in the— c extreme. To clean up
improvement as tends to zero (recovering the full Coulomb the notation, the constantI2 will hereafter be represented
potential), it is remarkable how much improvement there is symbolically asy.
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Figure 6. Complements of terfc-of = y/rg) and erfc-attenuated
potentials for givem,, with w' chosen for best correspondence between 0.2
them. Given some threshold, these potentials and their derivatives are b) 5
both the same as the Coulomb potential to within that threshold at about

the same distance, such that both of the complement short-range
potentials can be considered to have vanished at comparable distances.
This comparison looks the same for all values ®f
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u

o) = rfc(0.7336 Yrirg) e
a(r) = terfc(yrirg, y) e

0.1

0.0

2.4. Comparison with the erfc Attenuator.Now, regarding
o = ylrg as a function of g rather than as a separate parameter,
we discuss variation ofp as well as comparison to the erfc
attenuator. Hereaftew' will denote the variable parameter in
erfc('r), andw retains its meaning for the terfc attenuator. In
order to make the comparison of these two attenuators more ‘4 4 5 6 7
orderly, we attempt to draw a correspondence between attenu- rol A
ated potentials with a Speci_fic value Qﬁr_] the terfc attenuator Figure 7. Deviations in MP2/cc-pVDZ energetics for fluctuation
(@ = ylIro) and a corresponding value ef in the erfc attenuator.  qtenialsve, relative to using the unattenuated potential, whete

Again, we work with the finite long-range complementary egither the erfc or the terfc attenuator. The attenuators both depend on
potentialsV? for convenience. If the erf- and terf-attenuaét an effective Coulomb cutoff radius, and the other parameters have

potentials are aligned such that both potentials and their been chosen to give good correspondence between the potentials for
derivatives come within the same threshold of being the same thatro. (2) Deviation of the absolute energy of a Ne atom. (b) Deviation
as the Coulomb operator at about the same valuethien the zf the t')l_nd'lng energy of the Nelimer at a n_uclear separation of 2.74
. . (equilibrium for the unattenuated potential).

two corresponding attenuated short-range potentials can be
neglected to within the same tolerance at that distance, allowingtruncation radiusrg of the terf attenuator). In Figure 7b, the
the distance-based filtering of the same number of integrals for same comparison is made for the N®nding energy.
each attenuator in a given calculation. On account of the better preserved Coulombic curvature of

Because both complement potentials have the general ap-the terfc-attenuated potential at short range, the absolute energy
pearance of being concave-up in the outer domain, where theyof the atom converges to the full MP2 result more quickly with
approach Coulombic behavior, and being concave-down in therg than does the result with the erfc attenuator. To be clear, the
inner domain, we expect a reasonable correspondence to beerfc-attenuated curve in Figure 7a exhibits a minimum of depth
drawn if we insist that the potential curves intersect at the —10-3a.u. at aroundy = 0.75 A, and both attenuators deviate
inflection point of one or the other attenuated potentials. by exactly the negative of the full correlation energy@t 0
Arbitrarily, we choose the inflection point of the terf-attenuated (qualitatively similar in Figure 7b).
potential, which numerically leads to the conditiesi = Figure 7b shows that the result of the erfc-attenuated
0.7336@v = 0.7336//ro. Examples of corresponding erf- and terf-  calculation converges more quickly with for the well depth.
attenuated potentials are shown in Figure 6; since these curvesThis is counter-intuitive, as we would expect that the same
are self-similar under change of with the corresponding curvature-of-the-potential argument as above would hold for
variations inw andw', this is a perfectly general example of molecules as for atoms, for large enoughThe explanation
the kind of correspondence achieved by this condition. (Self- for this seems to lie in some fortuitous cancellation of errors
similarity here means that some scaling of the horizontal and for the erfc-attenuated case, because the absolute energies of
vertical axes allow any two such plots with differemtto be both the atom and dimer converge more quickly with the terfc
identically superimposed on one another.) In the outer region, attenuator. Each of the three calculations (the erfc- and terfc-
the two curves track each other well for some distance inside attenuated ones and the unattenuated one) begin with the same
the region where they are both very much like the Coulomb HF reference state, and we would certainly expect the inter-
operator, but only the terf-attenuated potential has the appear-atomic correlations with the terfc attenuator to converge faster
ance of being constant for any part of the inner domain (flat to the unattenuated result; however, this small-energy-scale
out to almostrg). We can now scan the behavior of the erfc- interaction may be obscured by the way that changes in the
attenuated short-range potential for@lland make a reasonable larger intraatomic correlations contribute to the binding energy
comparison to the best case of the terfc-attenuated potential withfor each of these attenuators. We suppose that this is not a
a similar attenuation radius. general phenomenon, and we also note that the difference in

The deviation of the attenuated result from the full MP2 result how the two attenuators converge for absolute energies is more
for the absolute energy of the Ne atom is shown in Figure 7a dramatic than for the dimer relative energies. As a counter-
for both corresponding potentials as a function of the effective example, a similar plot is presented for therblecule in Figure

Binding energy deviation / 10%a
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Figure 8. Deviations in the MP2/cc-pVDZ binding energy o bt a
nuclear separation of 1.13 A (equilibrium for the unattenuated potential)
for fluctuation potential®*, relative to using the unattenuated potential,
wherea is either the erfc or the terfc attenuator. The attenuators both
depend on an effective Coulomb cutoff radiug and the other
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Lo VI(R) =
p\*? —p“rf] Fo—F [(9)3’2 —q(fz—R“z)ZI Fdr
ff[(n) e V(T — Ty ) e dr,dr,
)

The integral has a functional dependencevoand parametric
dependences on the exponemendq, which are related to the
exponents of the original basis function quartet. The integral
depends most importantly on the distariRé&etween the two
distributions, which is related to the original basis function
positions and exponentZ (s a unit vector in an arbitrary
direction). We will need derivatives of the fundamental integral
with respect toR, in order to compute integrals for higher
angular momentum basis functions. During the subsequent steps
in building the final primitive shell interaction integrals from
this fundamental integral and its derivativess usually handled

in terms of a variabl€l, related toR?, but these details have

parameters have been chosen to give good correspondence betweeR€€n discussed elsewhere, and we shall not repeat them here.

the potentials for that,.
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Likewise, the handling of th&k-dependent prefactor to this
integral and all subsequent contractions is not dependent on the
choice ofV, and so we refer the curious reader to existing
literature on conventional Coulomb integr&is$?

Ipg can be reduced to a one-dimensional integral in inverse
space

Lol VI(R) =

4 po . —(Lp+1/q)u2/4R?
o J. usinU)A(WR)e” PHHIER gy
- 1 v iR
A(KD = S V(e dr €)

Integrating over the angular parts of the interparticle vector

Figure 9. Comparison of the long-range behavior of the MP2/cc-pvDz  fOF @ general attenuated potentli(r) = A(r)/r in eq 3, we

Ne; interaction for fluctuation potentialé*, wherea is either the erfc

or the terfc attenuator. The attenuators both have an effective Coulomb

cutoff radius ofro = 5 A, and the other parameters have been chosen

to give good correspondence between the potentials. Comparison of

dimer interaction curves for different values of are qualitatively

have

1

APk =
K -

S5 sinfkn)B(r) dr (4)

similar. The roughness of the curves is because these small relative,

energies are only manifested in the last few printed digits of the absolute

energies.

8, where the correlations involved with the bond are much less
subtle, and the result with the terfc-attenuated fluctuation
potential converges much more quickly.

Finally, we observe the long-range region of the, aner

in terms of the attenuating functigh For (r) = terf(wr,wro),
this integrates to

A _cos(«o)e_"z"““2 .
w,ro( )_ 2.7'[2k2 ( )

where the antisymmetry of terf acrossids in a trick for the

interaction curve for the erfc and terfc attenuators in Figure 9. integral evaluation (Fourier transformation of the integrands),
At the distances shown, changes in intraatomic correlations with and we ultimately obtain

nuclear separation should be negligible. The erfc attenuator

truncates the dispersion forces in a more gradual fashion, butlpq[\/‘j’r:D](R) =

the curves are separated by less thanB)~? a.u. in this regime.

3. Integral Calculus

3.1. Repulsion Integrals in General.We now discuss the
computation of repulsion integrals with our proposed attenuator.
In this work, we will largely follow the development of GH#,
with some minor variation in the notation. To compute the
particle—particle interaction integral for an arbitrary spherically
symmetric interparticle potentid over a quartet of Gaussian

s basis functions, the integration can be reduced to a fundamental

2 . COS((’O/R)U) Sin(u)e*(l/p+1/q+l/w2)uz/4R2
aRJo

du
u

L terf(gRgro) (6)

where

o=t ™

P a ?

integral l,q. This integral is the average interaction of two This integral is done by inserting the trigonometric identity for
classical, spherical Gaussian distributions under the samethe multiplied sin and cos functions, giving a form that is

potentialV; we normalize the distributions here.

familiar from the unattenuated potential.
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We now draw attention to two important limits of this
potential and the resulting integral. The first limitrig — O:

—k2/4w2

27°K8

VEI®) = Ve = Terfon; AT =

AVIR) = S erf(gR) ®)
This result is familiar from literature concerning attenuated
Coulomb integral§® The second interesting limit is the unat-

tenuated Coulomb interactioft = Vf,f;"'é obtained by taking the

w — oo limit of the expressions in eq 8, ultimately resulting in

the well-known formula

9)

Ipq[Vl](R) = % erfR); 1)—1/2

P q

3.2. Fundamental Integral Evaluation. Similar to the known
transformation

e a]=2

T=@WR?
(10)

l pq[vl] ( R) 1/2 O(T) :

we can write
— (SL2y+sL/2)2
@ ro](R) 2 [zf 1 e k du I 72 GO(S’S)

S=(@R?%  s=(gry’ (11)
without loss of generality, since the integral is an even function
of Randro.

For the conventionaV/! integral, it could be viewed as a
fortuitous accident that the dependenceEgodn p andg along
with the dependence oR can all be folded together into the
single variableT. This means that differentiation with respect
to variation inR (for higher angular momenta), as well as
interpolation by power series for continuous valuefgp and
g, may be handled simultaneously. However, b&fand s
depend onp and g, and it will be necessary to compute
derivatives with respect te as well, in order to make a two-
dimensional interpolation table. Usually, we evalu&teand
its mth derivatives with respect {6, known as thé-, (to within
a sign convention). Similarly, we are interested in evaluating
Go and its derivatives with respect & the G, up to some
given m (Mmax = 4max wherelnax is the maximum orbital

angular-momentum quantum number for a given basis), where

G, is an abbreviation foGEﬁ):
a\m( ad\n
GR(s9=(~7 (-39 SS9

Since the expressions f&p andGy contain erf, there can be
no closed form expression for them. In the case of Fhe

12)

however, one can find a decaying series of all positive terms to

express eachn:
a\m 1 _
Fo(T) = (— 8_T) FoD = /i e ™ du =

2 (@

e’'em-My ——
So (2m+ 2i + 1)

13)

This allows us to construct thE,, to arbitrary precision at

Dutoi and Head-Gordon

regular intervals to construct a power series interpolation table.
In practice, the interpolation table only needs to be constructed
out to some cutoff, at which point the asymptotic expression is
accurate to within machine precision:

lim F(T) =

T—o

aem— 1)1 1 ( 14

)m+l/2
2m+l

T

Unfortunately, theG,, cannot be represented as all-positive
series. It is clear that, for nonzespGp has a maximum along
S corresponding to where the long-range Coulomb interaction
is turned on, only to then decay. This means that the first
derivativeG; has a root, the second derivative has two roots,
and so forth Such nodes can only be achieved by the addition
of terms that have opposite sign. The subtraction of two numbers
to make a smaller number degrades the precision of the answer
on a finite-precision machine.

Although it is not as elegant as the computation of g
the Gy, can be computed efficiently with enough precision for
guantum chemistry purposes. In the remainder of this subsection,
we will develop some algebra for computing t8&”, and in
the next subsection we will discuss the actual steps in the
evaluation with the precision of the result as a consideration.

We start by transforming the integrand G, noting the
symmetry with respect te!2 — —s'2

—S
GyS9 =5 [ e cosh(@ S ) du (15)
and then we insert the series expansion for cosh to obtain
S1./251/2)2| .
Gy(Ss) =€ Z) 01 e S¥ du| =
i= (2I)|
o Sdd
e’ —Fi(9 (16)
(2i)!

and finally, inserting the series in eq 13 for tlig and
rearranging the indices, we obtain an all-positive decaying series

for Go:
5
2

This can be simplified in terms of a family of functiorg#q
that are related to the incomplete gamma function

00

Go(S;S) = e_(S_FS) Z

29

@i + 1! ()

L Il

Gy(S9) =) — R Gl C)
= (2 + )N
609 = ( ) |1|me ue™ du] (18)
We now obtain very easily
© i
G(SS) = > —) Vi CT R ORI
= (20 + )N

The primary advantages of egs 10 and 11 is that the division
by R has been absorbed into the integration, making it clear
that the functions are finite in the — 0 limit, and indeed, the
formulas in eqs 13 and 19 are evaluableRat 0. However,
we shall not want to build an infinitely large interpolation table
over allSandsfor the G,,. Yet for S~ s, we would need such



Attenuation Curvature’s Effect on Correlation Energy

a table even for larg8. Also, the formula in eq 19 does degrade
in precision asS~ s gets large.

The solution we seek is to return to the original form of the
integral, and look at the larg® limit, away from where this
form is indeterminate:

Jm_ 6459 -

. {nllz 11 }
Ri|rmw _qa R2 [erf(pR+ @ry) + erf(pR — ¢r()]
12
_r° 1 h© (g2 /2
2 g (8755

h® (x) = (— %()k% [1 + erf)] (20)

and then differentiate to obtain

172
Jim_ 6,597 (- i) [ SLACES)

_a” -1 0 hO (S2 — s
T ot S1/2 S1/2 81/2 (

m/2(2m 1)l| S)mu/z [ZO amkh(k) (S”z Sl/Z)gdZ

(21)
The ank values are constant coefficients resulting from the
algebra. We note that theg values are exactly unity for afh,
meaning that the leading = 0 term of this expansion is the
asymptotic form of, given in eq 14, multiplied by a function
that starts as zero fd < s and goes to unity a6 > s. The
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is used to construa over the same andi. Finally,

(k—1)

g0 = g“ P® - o*7x) (24)

is used recursively to construct the hig@é? over the same&
andi, for k up to 22+ 1; definingg®(x) = 0 fori < 0 ensures
self-consistency of eq 24. The recursive use of eq 24 causes a
severe degradation in the precision of the highft Ad-
ditionally, the summation in eq 19 also contains comparable
terms of opposite sign, giving an unacceptably noisy result. For
these reasons, we do all steps in 256-bit precision, using the
GNU multiple-precision library° the final GI” values at each
grid point are then stored as a 64-bit double precision number.
Because of the large amount of time, memory, and disk
resources required to compute the interpolation table entries,
the final table is stored on disk-60 Mb) as a permanent
resource to a development version of the Q-Chem program
packagé?! We judged that summing to= 500 using 256-bit
precision was sufficient on the basis of the fidelity of the final
Gm for m <12; determining the fidelity of the answer is
discussed later.

Using 10x 10-term interpolation wittm <12, the only open
question is then one of grid spacing for the interpolation table.
This could be better optimized, but that should be the subject
of later work. We have found that 1/16-integer spacing is
sufficient over the entire first quadrant of th§d) plane; the
other quadrants correspond to imaginary values for physical
guantities. ForS > 4 or s > 2, eighth-integer spacing is
sufficient. ForS > 10 or s > 5, quarter-integer spacing is
sufficient. ForS > 40 or s > 20, half-integer spacing is
sufficient. Again, we determined that the grid spacing was
sufficient on the basis of the fidelity of the fin&n,.

ForS> 70 ors > 150, however, the cheaper formula in eq

remaining terms are Gaussian-like and produce the wiggles and21 is precise enough, and only one, one-dimensional interpola-

nodes in theS~ sregion. For any givers ands, we compute

tion table over a finite range for the suffices for the rest of

the difference between their square roots and use an interpolatiorthe first quadrant. We determined that the eq 21 is valid when

table for thehy, and then compute the sum. For a large
magnitude ofS’2 — sl2, the hy values all go very quickly to
either zero or unity, meaning that we only need to interpolate
over a region near zero.

3.3. Implementation Details.In constructing an interpolation
table for theGy, a greater number of the" will need to be
constructed at regularly spaced grid points. If we usex110-
term interpolation to construct functions up @ during a
calculation (up to f functions), we will need derivatives up to
G, at the grid points. For this we use eq 19. First, the
function

o () =e™5; (22)

is constructed for grid values afand integers, because it is
the easiest. The maximum valuexafiecessary is the maximum
value ofSor s for the region over which direct interpolation is

its error relative to eq 19 is less than one part if*1We use
10-term interpolation for the® with 1/50-integer spacing over
the domain 29, 29]. The grid spacing was deemed to be
sufficient on the basis of the fidelity of the fina® for k <12.
The domain was chosen, because outside-@9]29], theh®
values are machine-zers {0399, except forh© at 29, which
has asymptoted to unity, to within machine precision. This
domain is larger than necessary and needs to be optimized.
Now we comment on what is meant by the fidelity of a
function value over an interpolated region. The grid spacing
over a given region is deemed sufficiently tight if, for all points
in that region that are located directly between the grid points
(between two grid points for one dimension and centered
between four grid points in two dimensions), interpolation from
either/any of the nearest grid points yielded a relative difference
of 10714 or less in the function value. Near the nodes of e
= 0 ork = 0 functions, 14 digits of accuracy is not obtained,
because the function value is getting very small, and it is being

necessary, i.e., where eq 21 is not valid. We have found this computed as the difference of numbers that are on the order of

maximum to be 150. FdB < 150 ands < 150, summing up to

i = 500 seems to be a sufficient number of terms in eq 19 for
allm < 22 andn < 10 ( will always need to be much greater
thanS ands, and increasingn or n necessitates more terms).
Then

990 = Z&m (23)

the function value away from the nodes. This is acceptable
because we still obtain these values to the same absolute decimal
place as the rest of the function, but these numbers are tiny. If
the above manipulations had not been made, the most straight-
forward expressions give t@&;, as differences between numbers
that are orders of magnitude larger than the function value, even
away from the nodes. We note that, for both tg andh®,

the highm or k cases present worst-case scenarios, demanding
the tightest grid spacing over the largest domains.
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Efficiency has not been the major concern of the present
work, but even at present, the algorithm does not add substantial

cost relative to the conventional Coulomb integrals. Thg

information that is generated is very primitive and sits below

Dutoi and Head-Gordon

(18) Greengard, L.; Rokhlin, VJ. Comput. Phys1985 60, 187.

(19) White, C. A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M.
Chem. Phys. Lettl994 230, 8.

(20) Russ, N.; Crawford, TJ. Chem. Phy2004 121, 691.

(21) Dombroski, J. P.; Taylor, S. W.; Gill, P. M. W. Phys. Chem.

the generally more expensive building of angular harmonics and 1996 100, 6272.

contractions.

4. Conclusion

We believe that this is the first time a straightforward cutoff
has been applied to the Coulomb operator itself in a quantum
mechanical context (rather than to the integrals), and the
truncation region can be variably smoothed with our proposed
attenuator. Concerning local correlation, optimization of the

(22) Lee, A. M.; Taylor, S. W.; Dombroski, J. P.; Gill, P. M. Whys.
Rev. A 1997, 55, 3233.
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parameters in our attenuator have led us to a form of the 100 1047.

truncated potential that is already familiar from classical
dynamics, whereby the potential is truncated and shifte
downward (and, in this case, smoothed); the reach of the inner
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a smooth manner. This new tool will hopefully find use in both
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(34) likura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. Chem. Phys2001,

the study of correlation as well as the construction of efficient 115 3540.

algorithms. In comparison with the popular erfc attenuator, we
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(37) Chiba, M.; Tsuneda, T.; Hirao, KI. Chem. Phys2006 124
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energy or electron affinity is to be calculated. The use of
Coulomb attenuation to truncate correlation is suitable for use
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in methods that yield smooth potential energy surfaces without 2007, 436, 30.
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range correlation perturbatively. A useful variation on this theme
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