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We present a new attenuator function that can be applied to the Coulomb operator. Similar to the popular
erf(ωr) attenuator, the function [erf(ω(r + r0)) + erf(ω(r - r0))]/2 divides the Coulomb potential into a
singular short-range piece and a non-singular long-range piece. In our attenuator,ω controls the sharpness of
the short-range/long-range division atr0. With r0 ) 0, this reduces to erf(ωr), but the additional parameter
allows more flexible adjustment of the potential, for physical and/or computational reasons. We present some
illustrative results for a truncated MP2 method, where mean field effects are handled exactly and correlation
is treated locally. This study indicates, somewhat expectedly, that the slope and curvature of the attenuated
potential are more important than its value (a trivial constant may always be added to a potential). However,
there are some surprising features of the data that suggest what bounds need to be put on the curvature of the
attenuated potential in order to achieve reasonable physics. Conveniently, we find that our attenuator form
has the ability to preserve the curvature of the Coulomb potential almost exactly at short range, allowing for
the truncation of long-range interactions while preserving the local physics very well. The molecular integrals
for the resultant operator can be done analytically over Gaussian basis functions, and the extensive algebraic
manipulations necessary to evaluate them stably are shown.

1. Introduction

For some time, the electronic-structure community has been
pursuing methods that divide computations into short- and long-
range components, with the hope that intelligent truncation of
the formal degrees of freedom in a model will yield cheaper
yet accurate methods. One piece of this puzzle is the Coulomb
operator itself, which couples each pair of electrons. The number
of repulsion integrals that must be considered scales minimally
quadratically with the number of single-particle basis states that
electrons can occupy, and the range of this interaction is too
long to be truncated naturally. Indeed, as has been noted before,1

at a millimeter of separation, the value of the electron-electron
Coulomb potential is∼10-7 a.u. This magnitude is around the
convergence threshold for many Hartree-Fock (HF) calcula-
tions, but a millimeter is an enormous distance by chemical
standards.

Chemists understand that one does not need to consider
interaction lengths of millimeters for standard ground-state
calculations. Screened interactions produce negligible forces at
long range, since matter is largely neutral. On account of this,
local correlation algorithms are a mainstay of electronic-structure
method development.2-17

The relevant question is how one may best trim the dead
weight from an electronic-structure computation. Generalization
of the fast multipole method of Greengard and Rokhlin18 allows
evaluation of the mean-field Coulomb energy in HF and Kohn-
Sham calculations in linear-scaling time.19 However, this applies
to static charge distributions, and it will not circumvent needing
a quadratic-scaling number of integrals to represent fluctuation
forces in a correlated calculation.

To approach the correlation problem, one might desire a
method that allows all but a linear-scaling number of integrals
to be discarded in the fluctuation potential. At the size regime
where energy becomes extensive, the number of relevant
integrals should naturally scale linearly, but in light of the
previous statement about the magnitude of these integrals before
charge screening, it would probably be necessary to apply a
thresholding mechanism to realize this computationally, even
asymptotically. For realistic calculations we desire control over
the speed/accuracy trade-off by being able to adjust the range
of an approximate fluctuation potential explicitly.

This integral thresholding needs to be done carefully,
however. A raw distance or integral-value criterion would lead
to discontinuities in the energetic surface for the nuclear
coordinates.20 The optimal strategy is to cause integrals to go
smoothly to zero, more quickly than the natural Coulomb law.
Once outside of the truncation region, an efficient distance
criterion may be safely applied. To avoid ambiguity concerning
rotations of the single particle basis states, this is best done by
modifying the Coulomb operator itself, such that the result
corresponds to that of a physical system under a well-defined
model potential, rather than a haphazardly truncated basis
projection of the full potential. Some set of reasonably localized
functions will be needed to obtain an advantage, but we should
insist that the answer be invariant to this choice.

We letV1(r) ) 1/r be the Coulomb potential in atomic units,
and define a pair of attenuating functionsR(r) + â(r) ) 1, where
R decreases monotonically from unity to zero over the domain
r ∈ [0,∞). We are most interested in methods using the short-
range potentialVR(r) ) R(r)/r, but evaluation of the necessary
integrals for our attenuator will be more compactly discussed
in terms of the trivially related long-range potentialVâ(r) )
â(r)/r.
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Much has been written on the topic of attenuated or short-
range Coulomb operators. Work by Gill and co-workers in this
area has focused on reducing the amount of computational work
necessary in electronic-structure calculations, by dividing the
Coulomb operator as described above and choosing different
means to evaluate the short- and long-range portions.21-23 They
have also made chemical studies of the effects of neglecting
the long-range portion of the Coulomb interaction.1,24Panas and
Snis have used related integrals in constructing adjusted
Coulomb metrics to approximate the short-range correlation
associated with the Coulomb hole.25,26 Savin and co-workers
have used divisions of the Coulomb operator to explore the
physics of electron-electron interaction and exchange, particu-
larly in the context of density functional theory (DFT), and they
have developed correction schemes for the present shortcomings
of density functionals.27-33 Work by Hirao and co-workers has
been directed toward chemical studies using such a long-range-
corrected density functional,34 and most recently they have
applied these ideas to fixing the charge-transfer problem of time-
dependent DFT.35-39 Scuseria and co-workers have also recently
studied and assessed long-range-corrected functionals,40,41 and
they have worked to develop and assess efficiently computable
functionals that include only short-range exchange.42-48 Fixing
the long-range behavior of density functionals is a growing area
of research,49-52 and while we explore electron correlation via
perturbation theory here, we hope that the flexible attenuator
presented in this work will be useful for these purposes as well.
Such flexibility may also be useful in a density-fitting metric
for resolution-of-the-identity integral codes53 or in the recently
proposed modifications to scaled-opposite-spin MP2 meth-
ods.54,55

To date, almost all spatial divisions of the Coulomb operator
have made use ofR(r) ) erfc(ωr), whereω is an adjustable
parameter. This is largely due to the fact that the necessary
integrals for using this attenuator are trivially related to those
for the regular Coulomb potential. This splitting divides the
Coulomb potential into a singular short-range component and
a smooth long-range background. In terms of local properties,
however, erf and erfc do not yield very fine control over the
division of the Coulomb operator, and the short-range compo-
nent never has the curvature of the Coulomb potential for any
finite ω.

Gill and co-workers have improved on this splitting by
expanding the background as a sum of increasingly broad
Gaussians.56 While each Gaussian adds only a small amount to
the computational time, a large number might be necessary to
systematically improve the Hamiltonian, and the variation as
such is discretized. Our work could be viewed as an extension
of their ideas, where we try to improve on this scheme by
introducing an explicit cutoff radiusr0 for the Coulomb
potential, by allowingR(r) ) terfc(ωr,ωr0) where

and terfc) 1 - terf. The terf function is named for “two erfs,”
and we note that it approaches zero linearly at the origin,
meaning that, again, only the short-range potential is singular.
The terfc attenuator essentially turns off the Coulomb potential
over a domain of size∼1/ω centered atr0. Sample plots of the
functions terf and terfc are given in Figure 1, as well as an
example plot of the Coulomb potential split by this attenuator
pair.

In Section 2, we study the correlation energetics of the neon
atom and dimer within perturbation theory as the parameters in

our attenuator are varied. We pay special attention to the case
wherer0ω ) 1/x2, as this will be shown to minimize the error
in the short-range curvature of the attenuated potential. We
compare the behavior of this case of the terfc attenuator to results
with a comparable erfc attenuator. In Section 3, we derive the
necessary expressions for the numerical implementation of the
resulting molecular integrals, discussing the stability of evalu-
ation in detail. In Section 4, we summarize our conclusions from
this work.

2. A Local Møller-Plesset Model

2.1. Method Definition. One can consider a split Hamiltonian
in the correlation calculation only, such that long-range effects
are handled by the proper Coulomb operator at the HF level.
In this way monopole and mean-field multipole induction effects
will be properly included in charged or charge-separated
systems.

Let Ĥ be the usual nonrelativistic electronic Hamiltonian and
F̂ be the converged Fock operator, using the full Coulomb
potential. Allow the many-electron Coulomb operatorV̂1 to be
split into short- and long-range piecesV̂R andV̂â, respectively,
such thatV̂1 ) V̂R + V̂â. Let ĤShort be defined byĤ ) ĤShort +
V̂â, so that ĤShort includes V̂R and the kinetic and nuclear-
attraction operators. Similarly, letF̂ ) F̂Short + V̂â, whereV̂â is
the long-range part of the effective mean-field potential, built
using the converged occupied space from the full Coulomb
operator.

Now say we want to solve for the ground state ofĤ′ ) ĤShort

+ ∑x V̂ x
â (x runs over electron labels) within second-order

Møller-Plesset perturbation theory (MP2). The unperturbed
Hamiltonian is taken to be∑x F̂x, and a Brillouin-like exclusion
of single excitations can be derived. This results in an MP2

terf(x,y) ) 1
2

[erf(x + y) + erf(x - y)] (1)

Figure 1. Plots of attenuators and attenuated Coulomb potentials. (a)
The functions terf and terfc are plotted, and the shape of erf is shown
for reference. (b) A division of the Coulomb potential into short- and
long-range components by terfc and terf, respectively (ω ) 5/r0).
Increasingω sharpens the truncation at the cutoff radius ofr0.
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expression where the usual integrals involving occupied orbitals
i andj and virtualsa andb are simply replaced by〈a|〈b|V̂R|i〉|j〉.
We emphasize that, as we explore the behavior of correla-
tion with respect to the parameters in the attenuated potential,
the HF reference state in each calculation is obtained with
the unattenuated potential, and it is independent of these
parameters.

2.2. The Ne Atom.We start by examining the behavior of
our attenuated MP2 method on a closed-shell atom, namely
neon, using the cc-pVDZ basis set. To simplify the discussion,
we first taker0 ) 5 Å, which is well larger than the atomic
diameter, such that any two points in space that are likely to be
occupied by a pair of electrons are separated by less than this
distance. Variations in the attenuated Coulomb potential as a
function ofω and the resulting deviation of the atomic absolute
energy are shown in Figure 2.

Two limits are immediately evident in Figure 2. First, asω
f ∞, the cutoff becomes sharper, and since the entire atom
lives within a diameter of 5 Å, the full MP2 energy is recovered.
Second, asω f 0, the cutoff region becomes extremely broad,
and the full MP2 energy is again recovered. There are two
intuitively possible consequences as this cutoff region ap-
proaches infinitely broad: the first is that the whole short-range
potential is attenuated to zero, and the second is that no part of
the potential is ever attenuated. It is easy to show that the latter
is true, and hence the full MP2 energy is recovered. In the
intermediate-ω regimes, the cutoff region is of finite width and
extends well inside the 5 Å formal cutoff radius, and the energy
of the atom is modified significantly.

Attention should be drawn to one of the other two cases in
Figure 2b in which the full MP2 energy is recovered (ω ) 0.14
Å-1), which can be shown not to be an accidental cancellation
of errors.

First, we briefly remind the reader that there is a gauge
invariance in the potential formulation of particle-particle
interactions, so that adding an arbitrary constant to a potential
does not change particle-number-conserving relative energies,
including correlation energies. Therefore, we focus our attention
on the slope and curvature of the attenuatedVR potential. Since
it is rather difficult to see the change in curvature with varied
ω, due to the singularity, the complementaryVâ long-range
potentials (deviation ofVR from the Coulomb potential) have
been plotted in Figure 3 for the same choices ofω as in Figure
2a, with the samer0. In regions where this long-range potential
has a nonzero slope, we can deduce that the corresponding short-
range potential (same parameters) has the opposite deviation
in its slope from that of the Coulomb potential. This is
effectively an additional artifactual force between the electrons
(which, at long range, is equal and opposite to the Coulomb
force, hence the attenuation).

If we were to attempt to minimize the first derivative ofVâ

over the short-range region, so as to minimize the force deviation
of VR over this same region, we might try setting the second
derivative ofVâ to zero at the origin, limiting the expansion at
that point to quartic and higher even terms. Thus, we can derive
the condition r0ω ) 1/x2 for which the complementary
potentialVâ is as flat as possible near the origin. An example
of such aVâ potential is shown in Figure 3. One can see that
the potential starts flat at a finite value and begins to turn into
the Coulomb potential nearr0 (see also Figure 6). UsingVR

with r0ω ) 1/x2 is reminiscent of a long-standing trick in
classical dynamics, in which a potential is truncated, shifted
downward, and perhaps smoothed.

2.3. The Ne2 Dimer. Considering that our primary interest
is the forced decay of the correlation interaction with respect
to distance, we now turn our attention to Ne2, which will be
studied as a function of nuclear separation, with the same
attenuated potentials and basis. No integrals were discarded in
the algorithm for which results are presented, but it should be

Figure 2. Attenuated Coulomb potentials and resultant atomic cor-
relation energies. (a) Short-range Coulomb potentials withr0 ) 5 Å
and different values ofω. (b) The MP2/cc-pVDZ energy of a Ne atom,
relative to the unattenuated result, for the continuous family of
fluctuation potentials generated by varyingω with r0 ) 5 Å. The zero
of this curve atω ) 0.14 Å-1 is meaningful, because the short-range
curvature of the Coulomb potential is optimally preserved whenr0ω
) 1/x2.

Figure 3. The complement of the attenuated Coulomb potentials in
Figure 2a, such that the changes in short-range forces may be illustrated
for each ω. A large slope near the cutoff radius here indicates a
countering slope in the short-range potential, which produces unphysical
forces. Note the flat appearance of these complement curves at the origin
asω f 0.14 Å-1 ) 1/r0x2 (which preserves the short-range forces of
the Coulomb operator in the short-range potential). Values ofω that
are lower than 1/r0x2 give rise to curves that would look like flat
lines on the scale of this plot, with the value of the potential approaching
zero everywhere asω f 0; in theω f 0 limit, their shape approaches
that of the erf-attenuated complement potential (see Figure 6), but with
small ω.
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clear that some integrals could be discarded at larger distances
(at least in the atomic basis representation57) without affecting
the energetic results. Dimer interaction curves are shown in
Figure 4 for the set of potentials pictured in Figure 2a.

The most striking feature of the majority of these curves is
the unphysical second minimum near 5 Å separation, where
the Coulomb interaction was truncated. For very largeω, the
depth of this minimum even exceeds that of the physically
meaningful binding well, as can be seen forω ) 10 Å-1 (which
is near theω f ∞ limit for our purposes). This effect is easily
explained by looking at the form of the MP2 correction. It is
an energetically weighted sum over (the squares of) all possible
pairs of occupied-virtual product-distribution interactions. By
orthogonality of the occupieds and virtuals, we know that each
product distribution generates, at most, a dipolar field. Since
the MP2 correction is therefore a sum over dipolar and higher
order interactions, the interaction between the two neon atoms
would be monotonically decaying (beyond the physical mini-
mum) only if the dominant dipole-dipole interactions are
decreasing in strength with distance, which is not the case for
some of theVR plotted in Figure 2a.

We again consider the curvature of the attenuated operator.
It is an easy numerical exercise to show that the dipole-dipole
interaction, which goes as the second derivative of the potential,
is monotonically decreasing for our attenuator under the
condition thatr0ω e 2.06987. Indeed, for the lower two values
of ω in Figure 4 (r0ω e 2), there is no extraneous minimum.
Furthermore, 1/x2 < 2.06987, so we have no contradiction
between conditions we would like to satisfy.

A satisfying interpretation of this is available in terms of
forces. If the Coulomb operator is truncated sharply, then near
the region of this truncation, the potential energy of the system
is lowered a lot by small displacements of the electrons from
their mean-field equilibrium; strong forces (large derivatives)
lead to strong and energetically significant correlations.

Figure 5 shows how the variation ofω affects the long-range
portion of the interaction and the region of the equilibrium
minimum. As expected, the long-range interactions decay to
zero at a shorter distance than with the unattenuated potential,
and the interaction goes more quickly to zero with a more
steeply truncated potential. It is encouraging that the curve with
r0ω ) 1/x2 tracks the full MP2 curve much more closely than
the others at long range in Figure 5a. While we expect further
improvement asω tends to zero (recovering the full Coulomb
potential), it is remarkable how much improvement there is

between theω ) 0.2 Å-1 curve and theω ) 0.14 Å-1 (r0ω )
1/x2) curve, considering that their complement potentials look
so similar in Figure 3.

Near the equilibrium region in Figure 5b, we again see that,
asω tends toward zero or infinity, the result tends toward the
full MP2 result. The main point of difference from Figure 2b
for atomic absolute energies (other than the energetic scale of
the quantity considered) is that the relative sizes of the small-
and large-ω features has changed. This is most easily viewed
as a relative exaggeration of the deviation at higherω for the
dimer. As can be seen in Figure 3, asω is increased, the region
of adversely affected curvature is increasingly localized around
r0. Because the dimer does not fit entirely within a diameter of
5Å, the interatomic correlations remain sensitive to this poor
curvature atr ≈ r0 ) 5 Å for all ω, while the intraatomic
correlations of Figure 2b begin to fall within a radius where
the potential is no longer altered asω increases. Unlike in the
atomic case, the numerically exact full MP2 result is not
achieved for the dimer asω f ∞, and the deviation asymptotes
to -5 × 10-9 a.u. It is again encouraging that the binding energy
is obtained very accurately for allω smaller than∼1/r0x2.

In the foregoing text, it has been shown that, for fixedr0, the
best choice of finiteω seems to be 1/r0x2. The computation-
ally advantageous attenuation disappears asω f 0, and patently
absurd results are obtained in theω f ∞ extreme. To clean up
the notation, the constant 1/x2 will hereafter be represented
symbolically asγ.

Figure 4. The MP2/cc-pVDZ interaction curves of Ne2 for the
attenuated potentials in Figure 2a (r0 ) 5 Å). Each curve is relative to
the energy of two Ne atoms with the same fluctuation potential. The
extraneous minima are the result of unphysically strong correlations
when electrons are separated by a distance of nearly the cutoff radius.
The unphysical minima disappear for the lower parameter values.

Figure 5. Further examination of the Ne2 curves in Figure 4. Both
sets of results improve asω f 0; however, very good results are
obtained with r0ω ) 1/x2, and the finite ω would allow the
attenuated potential to be neglected at some radius (dependent on a
threshold). (a) Magnified view of the large-separation regime, where
steeper quenching of the dispersion interaction with increasingω can
be seen. (b) The deviation of the binding energy from the unattenuated
result as a continuous function ofω at a nuclear separation of 2.74 Å
(equilibrium for the unattenuated potential).
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2.4. Comparison with the erfc Attenuator.Now, regarding
ω ) γ/r0 as a function ofr0 rather than as a separate parameter,
we discuss variation ofr0 as well as comparison to the erfc
attenuator. Hereafter,ω′ will denote the variable parameter in
erfc(ω′r), andω retains its meaning for the terfc attenuator. In
order to make the comparison of these two attenuators more
orderly, we attempt to draw a correspondence between attenu-
ated potentials with a specific value ofr0 in the terfc attenuator
(ω ) γ/r0) and a corresponding value ofω′ in the erfc attenuator.
Again, we work with the finite long-range complementary
potentialsVâ for convenience. If the erf- and terf-attenuatedVâ

potentials are aligned such that both potentials and their
derivatives come within the same threshold of being the same
as the Coulomb operator at about the same value ofr, then the
two corresponding attenuated short-range potentials can be
neglected to within the same tolerance at that distance, allowing
the distance-based filtering of the same number of integrals for
each attenuator in a given calculation.

Because both complement potentials have the general ap-
pearance of being concave-up in the outer domain, where they
approach Coulombic behavior, and being concave-down in the
inner domain, we expect a reasonable correspondence to be
drawn if we insist that the potential curves intersect at the
inflection point of one or the other attenuated potentials.
Arbitrarily, we choose the inflection point of the terf-attenuated
potential, which numerically leads to the conditionω′ )
0.7336ω ) 0.7336γ/r0. Examples of corresponding erf- and terf-
attenuated potentials are shown in Figure 6; since these curves
are self-similar under change ofr0 with the corresponding
variations inω andω′, this is a perfectly general example of
the kind of correspondence achieved by this condition. (Self-
similarity here means that some scaling of the horizontal and
vertical axes allow any two such plots with differentr0 to be
identically superimposed on one another.) In the outer region,
the two curves track each other well for some distance inside
the region where they are both very much like the Coulomb
operator, but only the terf-attenuated potential has the appear-
ance of being constant for any part of the inner domain (flat
out to almostr0). We can now scan the behavior of the erfc-
attenuated short-range potential for allω′ and make a reasonable
comparison to the best case of the terfc-attenuated potential with
a similar attenuation radius.

The deviation of the attenuated result from the full MP2 result
for the absolute energy of the Ne atom is shown in Figure 7a
for both corresponding potentials as a function of the effective

truncation radius (r0 of the terf attenuator). In Figure 7b, the
same comparison is made for the Ne2 binding energy.

On account of the better preserved Coulombic curvature of
the terfc-attenuated potential at short range, the absolute energy
of the atom converges to the full MP2 result more quickly with
r0 than does the result with the erfc attenuator. To be clear, the
terfc-attenuated curve in Figure 7a exhibits a minimum of depth
-10-3 a.u. at aroundr0 ) 0.75 Å, and both attenuators deviate
by exactly the negative of the full correlation energy atr0 ) 0
(qualitatively similar in Figure 7b).

Figure 7b shows that the result of the erfc-attenuated
calculation converges more quickly withr0 for the well depth.
This is counter-intuitive, as we would expect that the same
curvature-of-the-potential argument as above would hold for
molecules as for atoms, for large enoughr0. The explanation
for this seems to lie in some fortuitous cancellation of errors
for the erfc-attenuated case, because the absolute energies of
both the atom and dimer converge more quickly with the terfc
attenuator. Each of the three calculations (the erfc- and terfc-
attenuated ones and the unattenuated one) begin with the same
HF reference state, and we would certainly expect the inter-
atomic correlations with the terfc attenuator to converge faster
to the unattenuated result; however, this small-energy-scale
interaction may be obscured by the way that changes in the
larger intraatomic correlations contribute to the binding energy
for each of these attenuators. We suppose that this is not a
general phenomenon, and we also note that the difference in
how the two attenuators converge for absolute energies is more
dramatic than for the dimer relative energies. As a counter-
example, a similar plot is presented for the N2 molecule in Figure

Figure 6. Complements of terfc- (ω ) γ/r0) and erfc-attenuated
potentials for givenr0, with ω′ chosen for best correspondence between
them. Given some threshold, these potentials and their derivatives are
both the same as the Coulomb potential to within that threshold at about
the same distance, such that both of the complement short-range
potentials can be considered to have vanished at comparable distances.
This comparison looks the same for all values ofr0.

Figure 7. Deviations in MP2/cc-pVDZ energetics for fluctuation
potentialsVR, relative to using the unattenuated potential, whereR is
either the erfc or the terfc attenuator. The attenuators both depend on
an effective Coulomb cutoff radiusr0, and the other parameters have
been chosen to give good correspondence between the potentials for
thatr0. (a) Deviation of the absolute energy of a Ne atom. (b) Deviation
of the binding energy of the Ne2 dimer at a nuclear separation of 2.74
Å (equilibrium for the unattenuated potential).
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8, where the correlations involved with the bond are much less
subtle, and the result with the terfc-attenuated fluctuation
potential converges much more quickly.

Finally, we observe the long-range region of the Ne2 dimer
interaction curve for the erfc and terfc attenuators in Figure 9.
At the distances shown, changes in intraatomic correlations with
nuclear separation should be negligible. The erfc attenuator
truncates the dispersion forces in a more gradual fashion, but
the curves are separated by less than 5× 10-9 a.u. in this regime.

3. Integral Calculus

3.1. Repulsion Integrals in General.We now discuss the
computation of repulsion integrals with our proposed attenuator.
In this work, we will largely follow the development of Gill,58

with some minor variation in the notation. To compute the
particle-particle interaction integral for an arbitrary spherically
symmetric interparticle potentialV over a quartet of Gaussian
s basis functions, the integration can be reduced to a fundamental
integral Ipq. This integral is the average interaction of two
classical, spherical Gaussian distributions under the same
potentialV; we normalize the distributions here.

The integral has a functional dependence onV and parametric
dependences on the exponentsp andq, which are related to the
exponents of the original basis function quartet. The integral
depends most importantly on the distanceR between the two
distributions, which is related to the original basis function
positions and exponents (zb is a unit vector in an arbitrary
direction). We will need derivatives of the fundamental integral
with respect toR, in order to compute integrals for higher
angular momentum basis functions. During the subsequent steps
in building the final primitive shell interaction integrals from
this fundamental integral and its derivatives,R is usually handled
in terms of a variableT, related toR2, but these details have
been discussed elsewhere, and we shall not repeat them here.
Likewise, the handling of theR-dependent prefactor to this
integral and all subsequent contractions is not dependent on the
choice of V, and so we refer the curious reader to existing
literature on conventional Coulomb integrals.58,59

Ipq can be reduced to a one-dimensional integral in inverse
space

Integrating over the angular parts of the interparticle vector
for a general attenuated potentialVâ(r) ) â(r)/r in eq 3, we
have

in terms of the attenuating functionâ. For â(r) ) terf(ωr,ωr0),
this integrates to

where the antisymmetry of terf acrossr aids in a trick for the
integral evaluation (Fourier transformation of the integrands),
and we ultimately obtain

where

This integral is done by inserting the trigonometric identity for
the multiplied sin and cos functions, giving a form that is
familiar from the unattenuated potential.

Figure 8. Deviations in the MP2/cc-pVDZ binding energy of N2 at a
nuclear separation of 1.13 Å (equilibrium for the unattenuated potential)
for fluctuation potentialsVR, relative to using the unattenuated potential,
whereR is either the erfc or the terfc attenuator. The attenuators both
depend on an effective Coulomb cutoff radiusr0, and the other
parameters have been chosen to give good correspondence between
the potentials for thatr0.

Figure 9. Comparison of the long-range behavior of the MP2/cc-pVDZ
Ne2 interaction for fluctuation potentialsVR, whereR is either the erfc
or the terfc attenuator. The attenuators both have an effective Coulomb
cutoff radius ofr0 ) 5 Å, and the other parameters have been chosen
to give good correspondence between the potentials. Comparison of
dimer interaction curves for different values ofr0 are qualitatively
similar. The roughness of the curves is because these small relative
energies are only manifested in the last few printed digits of the absolute
energies.

Ipq[V](R) )

∫∫ [(pπ)3/2
e-prb1

2] V(| rb2 - rb1|)[(qπ)3/2
e-q( rb2- Rzb)2] drb1drb2

(2)

Ipq[V](R) )
4π
R3 ∫0

∞
usin(u)Λ(u/R)e-(1/p+1/q)u2/4R2

du

Λ(|kB|) ) 1

8π3 ∫ V(| rb|)e-ikB‚ rb drb (3)

Λâ(k) ) 1

2π2k
∫0

∞
sin(kr)â(r) dr (4)

Λω,r0

terf (k) )
cos(kr0)e

-k2/4ω2

2π2k2
(5)

Ipq[Vω,r0

terf ](R) )

2
πR∫0

∞ cos((r0/R)u) sin(u)e-(1/p+1/q+1/ω2)u2/4R2

u
du

) 1
R

terf(æR,ær0) (6)

æ ) (1p + 1
q

+ 1

ω2)-1/2
(7)
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We now draw attention to two important limits of this
potential and the resulting integral. The first limit isr0 f 0:

This result is familiar from literature concerning attenuated
Coulomb integrals.56 The second interesting limit is the unat-
tenuated Coulomb interactionV1 ) V∞,0

terf obtained by taking the
ω f ∞ limit of the expressions in eq 8, ultimately resulting in
the well-known formula

3.2. Fundamental Integral Evaluation.Similar to the known
transformation

we can write

without loss of generality, since the integral is an even function
of R and r0.

For the conventionalV1 integral, it could be viewed as a
fortuitous accident that the dependences ofF0 onp andq along
with the dependence onR can all be folded together into the
single variableT. This means that differentiation with respect
to variation in R (for higher angular momenta), as well as
interpolation by power series for continuous values ofR, p and
q, may be handled simultaneously. However, bothS and s
depend onp and q, and it will be necessary to compute
derivatives with respect tos as well, in order to make a two-
dimensional interpolation table. Usually, we evaluateF0 and
its mth derivatives with respect toT, known as theFm (to within
a sign convention). Similarly, we are interested in evaluating
G0 and its derivatives with respect toS, the Gm, up to some
given m (mmax ) 4lmax, where lmax is the maximum orbital
angular-momentum quantum number for a given basis), where
Gm is an abbreviation forGm

(0):

Since the expressions forF0 andG0 contain erf, there can be
no closed form expression for them. In the case of theFm,
however, one can find a decaying series of all positive terms to
express eachFm:

This allows us to construct theFm to arbitrary precision at

regular intervals to construct a power series interpolation table.
In practice, the interpolation table only needs to be constructed
out to some cutoff, at which point the asymptotic expression is
accurate to within machine precision:

Unfortunately, theGm cannot be represented as all-positive
series. It is clear that, for nonzeros, G0 has a maximum along
S, corresponding to where the long-range Coulomb interaction
is turned on, only to then decay. This means that the first
derivativeG1 has a root, the second derivative has two roots,
and so forth. Such nodes can only be achieved by the addition
of terms that have opposite sign. The subtraction of two numbers
to make a smaller number degrades the precision of the answer
on a finite-precision machine.

Although it is not as elegant as the computation of theFm,
the Gm can be computed efficiently with enough precision for
quantum chemistry purposes. In the remainder of this subsection,
we will develop some algebra for computing theGm

(n), and in
the next subsection we will discuss the actual steps in the
evaluation with the precision of the result as a consideration.

We start by transforming the integrand ofG0, noting the
symmetry with respect tos1/2 f -s1/2,

and then we insert the series expansion for cosh to obtain

and finally, inserting the series in eq 13 for theFi and
rearranging the indices, we obtain an all-positive decaying series
for G0:

This can be simplified in terms of a family of functionsgi
(k)

that are related to the incomplete gamma function

We now obtain very easily

The primary advantages of eqs 10 and 11 is that the division
by R has been absorbed into the integration, making it clear
that the functions are finite in theR f 0 limit, and indeed, the
formulas in eqs 13 and 19 are evaluable atR ) 0. However,
we shall not want to build an infinitely large interpolation table
over allSands for theGm. Yet for S≈ s, we would need such

Vω
erf(r) ) Vω,0
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a table even for largeS. Also, the formula in eq 19 does degrade
in precision asS ≈ s gets large.

The solution we seek is to return to the original form of the
integral, and look at the largeS limit, away from where this
form is indeterminate:

and then differentiate to obtain

The amk values are constant coefficients resulting from the
algebra. We note that theam0 values are exactly unity for allm,
meaning that the leadingk ) 0 term of this expansion is the
asymptotic form ofFm given in eq 14, multiplied by a function
that starts as zero forS , s and goes to unity atS . s. The
remaining terms are Gaussian-like and produce the wiggles and
nodes in theS≈ s region. For any givenSands, we compute
the difference between their square roots and use an interpolation
table for the hk, and then compute the sum. For a large
magnitude ofS1/2 - s1/2, the hk values all go very quickly to
either zero or unity, meaning that we only need to interpolate
over a region near zero.

3.3. Implementation Details.In constructing an interpolation
table for theGm, a greater number of theGm

(n) will need to be
constructed at regularly spaced grid points. If we use 10× 10-
term interpolation to construct functions up toG12 during a
calculation (up to f functions), we will need derivatives up to
G12+10

(10) at the grid points. For this we use eq 19. First, the
function

is constructed for grid values ofx and integersi, because it is
the easiest. The maximum value ofx necessary is the maximum
value ofSor s for the region over which direct interpolation is
necessary, i.e., where eq 21 is not valid. We have found this
maximum to be 150. ForS< 150 ands < 150, summing up to
i ) 500 seems to be a sufficient number of terms in eq 19 for
all m e 22 andn e 10 (i will always need to be much greater
thanS ands, and increasingm or n necessitates more terms).
Then

is used to constructg0
(i) over the samex and i. Finally,

is used recursively to construct the highergi
(k) over the samex

andi, for k up to 22+ 1; defininggi
(k)(x) ) 0 for i < 0 ensures

self-consistency of eq 24. The recursive use of eq 24 causes a
severe degradation in the precision of the highergi

(k). Ad-
ditionally, the summation in eq 19 also contains comparable
terms of opposite sign, giving an unacceptably noisy result. For
these reasons, we do all steps in 256-bit precision, using the
GNU multiple-precision library;60 the finalGm

(n) values at each
grid point are then stored as a 64-bit double precision number.
Because of the large amount of time, memory, and disk
resources required to compute the interpolation table entries,
the final table is stored on disk (∼50 Mb) as a permanent
resource to a development version of the Q-Chem program
package.61 We judged that summing toi ) 500 using 256-bit
precision was sufficient on the basis of the fidelity of the final
Gm for m e12; determining the fidelity of the answer is
discussed later.

Using 10× 10-term interpolation withm e12, the only open
question is then one of grid spacing for the interpolation table.
This could be better optimized, but that should be the subject
of later work. We have found that 1/16-integer spacing is
sufficient over the entire first quadrant of the (S,s) plane; the
other quadrants correspond to imaginary values for physical
quantities. ForS > 4 or s > 2, eighth-integer spacing is
sufficient. For S > 10 or s > 5, quarter-integer spacing is
sufficient. For S > 40 or s > 20, half-integer spacing is
sufficient. Again, we determined that the grid spacing was
sufficient on the basis of the fidelity of the finalGm.

For S > 70 ors > 150, however, the cheaper formula in eq
21 is precise enough, and only one, one-dimensional interpola-
tion table over a finite range for thehk suffices for the rest of
the first quadrant. We determined that the eq 21 is valid when
its error relative to eq 19 is less than one part in 1014. We use
10-term interpolation for theh(k) with 1/50-integer spacing over
the domain [-29, 29]. The grid spacing was deemed to be
sufficient on the basis of the fidelity of the finalh(k) for k e12.
The domain was chosen, because outside of [-29,29], theh(k)

values are machine-zero (<10-307), except forh(0) at 29, which
has asymptoted to unity, to within machine precision. This
domain is larger than necessary and needs to be optimized.

Now we comment on what is meant by the fidelity of a
function value over an interpolated region. The grid spacing
over a given region is deemed sufficiently tight if, for all points
in that region that are located directly between the grid points
(between two grid points for one dimension and centered
between four grid points in two dimensions), interpolation from
either/any of the nearest grid points yielded a relative difference
of 10-14 or less in the function value. Near the nodes of them
* 0 or k * 0 functions, 14 digits of accuracy is not obtained,
because the function value is getting very small, and it is being
computed as the difference of numbers that are on the order of
the function value away from the nodes. This is acceptable
because we still obtain these values to the same absolute decimal
place as the rest of the function, but these numbers are tiny. If
the above manipulations had not been made, the most straight-
forward expressions give theGm as differences between numbers
that are orders of magnitude larger than the function value, even
away from the nodes. We note that, for both theGm andh(k),
the highm or k cases present worst-case scenarios, demanding
the tightest grid spacing over the largest domains.

lim
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Efficiency has not been the major concern of the present
work, but even at present, the algorithm does not add substantial
cost relative to the conventional Coulomb integrals. TheGm

information that is generated is very primitive and sits below
the generally more expensive building of angular harmonics and
contractions.

4. Conclusion

We believe that this is the first time a straightforward cutoff
has been applied to the Coulomb operator itself in a quantum
mechanical context (rather than to the integrals), and the
truncation region can be variably smoothed with our proposed
attenuator. Concerning local correlation, optimization of the
parameters in our attenuator have led us to a form of the
truncated potential that is already familiar from classical
dynamics, whereby the potential is truncated and shifted
downward (and, in this case, smoothed); the reach of the inner
range of this potential, over which the Coulomb repulsion is
well-represented, can be easily and systematically extended in
a smooth manner. This new tool will hopefully find use in both
the study of correlation as well as the construction of efficient
algorithms. In comparison with the popular erfc attenuator, we
find that we obtain comparable results for dispersion-type
interactions, and much better physics for shorter range correla-
tions. This was shown to be important for covalent interactions
and is likely to be important if a property such as an ionization
energy or electron affinity is to be calculated. The use of
Coulomb attenuation to truncate correlation is suitable for use
in methods that yield smooth potential energy surfaces without
risk of hysteresis. In this paper we have investigated only short-
range correlation perturbatively. A useful variation on this theme
would be to consider using the divided operator to solve for
short-range correlations with a more accurate method and handle
the long-range correlations by perturbation theory, as done in
the work of Subotnik et al.17 Finally, we have shown that the
integral of our proposed attenuator can be computed stably over
Gaussian basis functions.
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