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To understand how enzymes work is essential for understanding life processes. And, in enzyme kinetics, a
fundamental assumption is the so-called Quasi-Steady-State Assumption, which has the history of more than
80 years and has been proven very fruitful in analyzing the equations of enzyme kinetics. Many experimental
results and numerical results have shown the validity of the assumption. So, an important problem is if it is
always true. If it is always true, then it should be a law, not only an assumption. In this paper, we prove
mathematically rigorously that it is indeed always true. Hence, it is a law, and we name it the Quasi-Steady-
State Law. Actually, more precisely, we have two Quasi-Steady-State Laws. In one of them quasi-steady
state means that the concentration of the enzyme-substrate complex remains approximately constant, and in
the other it means that the change rate of the concentration of enzyme-substrate complex is extremely tiny.

1. Introduction

Enzymes are involved in almost all the reactions of life
processes and play vital roles in them, so understanding how
enzymes work is essential to the understanding of life processes.1

Enzyme kinetics, as an important branch of enzymology, is the
study of the rates of chemical reactions that are catalyzed by
enzymes. It has attracted century-long investigation and is no
less important now than it was early in the twentieth century.2

Because enzyme kinetics is a branch of chemical kinetics, it
can be characterized by some differential equations by the
principles of chemical kinetics. Here we consider the simplest
case that the kinetics of single substrate S and single product P
reactions catalyzed by enzyme E, which can be described by
the following scheme

where k1 is the rate constant of formation of the enzyme-
substrate complex,k-1 is the rate constant of dissociation of
the enzyme-substrate complex, andk2 is the catalysis rate
constant. In this case, on the basis of the law of mass action
the time evolution of concentrations of reactants can be
determined by the following nonlinear differential equations:3

with the initial condition

Under the two conservation laws

equations 2-5 are equivalent to the following equations

with the initial condition (S(0), E(0)) ) (S0, E0). For brevity,
we only consider eqs 9 and 10 in this paper.

For the reason that these eqs 9 and 10 cannot be integrated
explicitly, Michaelis and Menten4 proposed equilibrium as-
sumption in 1913. They assumed thatk-1 . k2, therefore

This means that an equilibrium is established between E, S,
and the enzyme-substrate complex C, the slow step is the
breakdown of C to produce P and E. Under this assumption,
the time evolution of the reactant concentrations in scheme (1)
can be calculated explicitly.

In 1925, Briggs and Haldane5 pointed out that the Michaelis
assumption that an equilibrium exists between E, S, and C is
not always justified and should be replaced by the assumption
that C is present not necessarily at equilibrium but in a steady
state under conditionS0 . E0.6
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Here we give a more detailed description of Briggs’ steady-
state assumption by quoting the statement in Voet’s famous text-
book:2 With the exception of the initial stage of the reaction,
which is usually over within milliseconds of mixing E and S, C
remains approximately constant until the substrate is nearly
exhausted. Hence, the rate of synthesis of C must equal its rate
of consumption over most of the course of the reaction. In other
words, C maintains a steady state and can be treated as a
constant value:

This so-called steady-state assumption (SSA) is a more
general condition than that of equilibrium. Furthermore, it is
usually referred to as quasi-steady-state assumption or quasi-
steady-state approximation (QSSA) for the fact that

over the most course of the reaction corresponds to eq 12. By
QSSA, the classic Michaelis-Menten equation

is obtained, whereVmax ) k2E0, KM ) (k-1 + k2)/k1 is the
Michaelis constant andV0 denotes the initial velocity of the
reaction.

Since the work of Briggs and Haldane in 1925,5 QSSA has
become a fundamental assumption in enzyme kinetics. It has
been proven very fruitful in the analysis of eqs 9 and 10, yielding
approximate analytical solutions and simple parameter estima-
tion schemes.7-10 The application of QSSA in biochemical
kinetics allows the reduction of a complex biochemical system
with an initial fast transient into a simpler one.19 Therefore, this
kind of simplification can be used in the study of system biology
such as metabolic processes and genetic regulation processes,20

for all these processes involving enzyme catalysis.
All the experimental results about enzyme kinetics so far show

that the quasi-steady-state assumption or the Michaelis-Menten
equation provides a highly satisfactory description of enzyme
kinetics for large ensembles of enzyme molecules when the con-
centration of substrate greatly exceeds that of enzyme.1 At the
single-molecule level, an enzyme molecule undergoes rapid
thermal fluctuation and reacts stochastically with substrate
molecules due to its incessant collisions with the solvent mole-
cules.11,12However, by the statistical analysis of the stochastic
behavior of single-molecule enzyme catalysis, the Michaelis-
Menten equation is still satisfied.1,11,13Therefore, QSSA is high-
ly satisfied in all known experiments not only at the assembly
level of enzyme molecules but also at the single-molecule level.

Despite the high consistency of QSSA with known experimen-
tal results, the validity of QSSA had not been discussed until
the work of Segel14 and the work of Segel and Slemrod,15 in
which a conditionE0 , S0 + KM was given for QSSA. After
that, Borghans et al.16 proposed tQSSA by a simple change of
variable and extended the parameter domain in which QSSA is
valid. Schnell3 proposed a closed form solution for the total time
evolution of the reactant concentrations in scheme (1), and Schenell
et al.17 found a necessary criterion that ensures the validity of
rQSSA. All these previous work provided approximate analytical
solutions by employing the quasi-steady-state approximation and
showed that these approximate solutions were very close to the
numerical solutions of eqs 2-5 with initial condition (6).

Although much strong evidence for the validity of QSSA has
been provided from the point of experiment and approximate
solutions as mentioned in the above two paragraphs, they cannot
ensure that this assumption is also true in undone experiments
or numerical computations. Hence there is naturally a

Question: Is QSSA always true for any group of reaction
rate constants or if it is only true for the reaction rate constants
satisfying some conditions? If it is always true, then it would
be not only an assumption but also a law.

The answer to this question cannot be given by experiments
or numerical solutions of differential equations, because all these
concern only finite groups of concrete reaction rate constants,
not all possibilities of the constants.

Moreover, as said in ref 23, numerics can sometimes give
seriously misleading results; hence, although the famous Lorenz
attractor has been generated on computers by numerical ap-
proximations since 1963, the rigorous proof given by Tucker
in 1999 is still hugely significant and has become a worldwide
striking event.21-23

Thus if one can answer this question completely, the answer
can be given only by a rigorous mathematical proof. There have
been some significant applications of mathematics to biology,
such as the pioneering application of game theory to evolution
by Maynard Smith and the study of deterministic chaos into
ecology done by Robert May. For brevity, we do not list all
the details. Those who want to know more can refer to
references 24-27.

The qualitative theory of dynamical systems has been
developed for more than 100 years.28 Many talented mathemati-
cians made their contributions to its development.29-32 In this
century-long period, the qualitative theory of dynamical systems
has been applied to many fields.33,34 But it seems that none of
the published papers has tried to analyze QSSA by such a theory
in the past 82 years.

Hence we have made an attempt. Surprisingly, our attempt
is completely successful. So we are very glad and cannot help
admiring the gifted insights and excellent experimental tech-
niques of biologists in the meanwhile.

Because we can prove that the quasi-steady-state assumption
is always valid under the conditionS0 . E0, we call it quasi-
steady-state law from now on. All our proofs can be well
understood by those who have the undergraduate level calculus
background. Moreover, the analyzing technique used in our
proof should be able to apply to other more complex schemes
of enzyme kinetics.

2. Quasi-Steady-State Laws

In this section, we first repeat the quasi-steady-state assump-
tion as stated in the famous textbook:2 Under the physiologically
common condition that substrate is in great excess over enzyme
(S0 . E0), the enzyme-substrate complex C remains ap-
proximately constant until the substrate is nearly exhausted with
an exception of the transient initial stage of the reaction.

The above description about QSSA means thatC ≈ constant
for a long time. And in the applications of QSSA, one often uses
d/dt C ≈ 0 instead ofC ≈ constant. But C ≈ constantin a
period and d/dt C ≈ 0 in the same period are not equivalent in
general.C ≈ constantcannot ensure d/dt C ≈ 0, because d/dt
C may oscillate frequently. Conversely, d/dt C ≈ 0 cannot
ensureC ≈ constanteither, becauseC may change significantly
as time goes by.

Correspondingly, we reexpress the QSSA in the following
two versions. The first is, under the condition ofS0 . E0, C ≈
constantuntil the substrate is nearly exhausted with an exception

d
dt

C ) 0 (12)

d
dt

C ≈ 0 (13)

V0 )
VmaxS

KM + S
(14)
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of the transient initial stage of the reaction. The second is all
the same to the first butC ≈ constantis replaced by d/dt C ≈ 0.

To be more precise, we appeal to mathematical language and
state them as

Quasi-Steady-State Law 1: Given any small positive
numberε > 0, there is a proper positive numberU such that
C(t) will go upward from 0 att ) 0 to E0 - ε in a period less
thanε, then it will stay in the interval betweenE0 andE0 - ε

until S(t)/S0 < ε, if S0 > U.
Quasi-Steady-State Law 2: Given any small positive

numberε > 0, there is a proper positive numberU such that
|d/dt C(t)| will be less thanε after a fast initial period less than
ε and keep this state untilS(t)/S0 < ε, if S0 > U.

In the above two laws,ε can be any positive number which
depends on the requirement of the experiments. For example,ε

can be 0.1 or 0.01 or even smaller. So the statements thatC(t)
≈ constantand d/dt C ≈ 0 are characterized byE0 - ε e C(t)
e E0 and|d/dt C(t)| e ε, respectively. And the conditions that
S0 . E0 and S is nearly exhausted are described byS0 > U and
S(t)/S0 < ε, respectively.

No matter how smallε is, if a suitableU is chosen to make
sureS0 > U, then we could ensure both QSSL 1 and QSSL 2
for any reaction rate constants. Of course, the criteria for
choosingU is related toE0, ε, and the reaction rate constants.

3. Rigorous Proof of QSSL 1

According to section 1, the basic enzyme kinetics can be
described by the eqs 9 and 10, namely the equation system

where

Let (S(t), E(t)) be the solution of the system (15) with initial
condition (S(0), E(0)) ) (S0, E0).

The system (15) has a unique finite equilibrium point (0,E0).
Considering the linear part of system (15) at the point (0,E0),
that is

the eigenvalues of this linear system are two unequal negative
real numbers. Thus the equilibrium point (0,E0) of the system
(15) is a stable nodal point.18

At first, we describe some notations that will be used
frequently below. LetL1, L2, R1, andR2 be the point sets (see
the top panel of Figure 1)

Notice thatL1 andL2 are the hyperbolasQ(S, E) ) 0 andP(S,
E) ) 0 with S g 0, respectively, and they intersect each other
at the point (0,E0) (see the top panel of Figure 1). From system
(15), it is easy to deduce that

in the regionR1,

in the regionR2,

on the curveL1 and

on the curveL2.
The corresponding vector fields can be deduced by the

systems of eqs 17-20 (see the top panel of Figure 1).
Lemma 1: The solution (S(t), E(t)) of system (15) will arrive

at the curveL1 at some timeT0 > 0.
Proof : First, we prove that (S(t), E(t)) will actually arrive

at the hyperbolaQ(S,E) ) 0, where d/dt E ) 0. Otherwise,
there exists a positive numberµ > 0 such thatQ(S(t),E(t)) <
-µ for all t > 0. Therefore,E(t) would decrease to zero at some
time t0, which is less thanE0/µ. However, d/dt E ) Q(S(t0),0)
) (k-1 + k2)E0 > 0 at timet ) t0, contradicting the fact that
d/dt E ) Q(S(t),E(t)) < -µ.

Then let the arrival time beT0. If S(T0) g 0, the proof is
complete. If S(T0) < 0, then E(T0) > E0 by the hyperbolic
property ofL1. Therefore, there must exist some 0< t̂ < T0

such that d/dt E(t̂) > 0 for the initial valueE(0) ) E0. This
contradicts the fact that d/dt E(t) < 0 for 0 e t < T0. Hence the
solution (S(t), E(t)) of system (15) will arrive atL1 at some
time T0 > 0.

Lemma 2: E(t) andS(t) decrease monotonously and d/dt E(t)
increases monotonously with respect tot from t ) 0 until (S(t),
E(t)) arrives atL1.

Proof: Because the solution (S(t), E(t)) of system (15) starts
from (S0, E0) in R1 at t ) 0, E(t) and S(t) will decrease
monotonously until (S(t), E(t)) arrives atL1 by inequalities (17).

In addition,

for (S, E) in the region R1. Thus, d/dt E(t) will increase
monotonously until (S(t), E(t)) arrives atL1.

By inequalities (19), the solution (S(t), E(t)) crossesL1

horizontally once it arrives atL1 at the timeT0. Then, (S(t),
E(t)) will stay in the regionR2 permanently and approach the

{d
dt

S) P(S, E)

d
dt

E ) Q(S, E)
(15)

P(S,E) ) -k1SE+ k-1E0 - k-1E

Q(S,E) ) -k1SE+ (k-1 + k2)E0 - (k-1 + k2)E

{d
dt

S) -k1E0S- k-1(E - E0)

d
dt

E ) -k1E0S- (k-1 + k2)(E - E0)
(16)

L1 ) {(S,E) : Q(S,E) ) 0, Sg 0}

L2 ) {(S,E) : P(S,E) ) 0, Sg 0}

R1 ) {(S,E) : E > Ẽ, (S,Ẽ) ∈ L1}

R2 ) {(S,E) : Ẽ > E > Ê, (S,Ẽ) ∈ L1, (S, Ê) ∈ L2}

{d
dt

S) P(S,E) < 0

d
dt

E ) Q(S,E) < 0
(17)

{d
dt

S) P(S,E) < 0

d
dt

E ) Q(S,E) > 0
(18)

{d
dt

S) P(S,E) < 0

d
dt

E ) Q(S,E) ) 0
(19)

{d
dt

S) P(S,E) ) 0

d
dt

E ) Q(S,E) > 0
(20)

d2

dt2
E ) -k1EP(S,E) - (k1S+ k-1 + k2)Q(S,E) > 0
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stable nodal point (0,E0) from the inequalities (18)-(20) (see
Figure 2). Thus, the following lemma has been proved.

Lemma 3: Both E(t) andS(t) will decrease until (S(t), E(t))
horizontally crossesL1 and enters the regionR2. After that, (S(t),
E(t)) will stay in R2 and not attachL1 or L2 forever. In the region

R2, S(t) decreases andE(t) increases continuously. At last, (S(t),
E(t)) will approach the point (0,E0).

In the low panel of Figure 1, there are some solutions starting
from different initial points. All these solutions evolve like what
Lemma 3 states.

Figure 1. Top: Q(S,E) ) 0 andP(P,E) ) 0 hyperbolas, which intersect each other at the point (0,E0). L1 andL2 are the two hyperbolas withS
g 0, respectively.R1 is the region aboveL1, andR2 is betweenL1 andL2. The arrows show the vector fields of dynamical system (15). Bottom:
some trajectories of dynamical system (15) starting from different points, which are calculated by computers with parametersk1 ) 0.3, k2 ) 0.2,
k-1 ) 0.1.

Figure 2. Depiction of proof to make it more readable. Parameters:k1 ) 0.3, k2 ) 0.2, k-1 ) 0.1, E0 ) 5, S0 ) 20, andε ) 1. Q(S,E) ) 0 and
P(S,E) ) 0 are two hyperbolas, which are red and blue, respectively. The green curve shows the trajectory of the solution (S(t), E(t)) of system (15),
which starts from (S0, E0) and goes across the hyperbolaQ(S,E) ) 0 horizontally, and then goes toward (0,E0) in the regionR2. The top panel
shows the global trajectory and the corresponding hyperbolas. To see it clearly, the corresponding parts of the top panel are amplified as the lower
left and lower right panels. (S(t1), ε) and (S(t2), ε) are the intersections of the trajectory and lineE ) ε, wheret1 < t2. (s, ε) is the intersection of
line E ) ε and hyperbolaQ(S,E) ) 0. Furthermore, under the given parameters mentioned above, we havet1 ) 0.3437376,t2 ) 14.102563,S(t1)
) 15.816376, andS(t2) ) 3.568946.
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The next lemma shows that the time elapsed forE(t)
decreasing to any given level can be less than any given time
if S0 is chosen large enough.

Lemma 4: Given E0 and anyε > 0, there exists a proper
positive numberU0. If S0 > U0, E(t) will decrease to a level
less thanε in a period less thanε.

Proof: ChoosingE0/ε > 0, Q(S, E) ) -E0/ε defines a
hyperbola. To make sure that this hyperbola separates the point
(S0, E0) and the curveL1, it must restrict

By this restriction, the solution (S(t), E(t)) of system (15) must
cross the hyperbolaQ(S, E) ) -E0/ε before arriving at the curve
L1. Denote bytε the time to make the solution (S(t), E(t))
intersecting with the curveQ(S, E) ) -E0/ε, that is Q(S(tε),
E(tε)) ) -E0/ε, thenQ(S(t), E(t)) < -E0/ε for 0 e t < tε. Hence,

Comparing the eqs 9 and 10 yields

And by integrating each side of (23) from 0 totε, it gets

So,E(tε) - E0 e S(tε) - S0 + k2E0tε. Therefore,

due to the inequality (22). On the hyperbolaQ(S,E) ) -E0/ε,
if

then

Now, by the inequalities (21), (24), and (25), we have that if

it must have

Let

Then, if S0 > U0, E(t) will decrease to a level less thanε in a
period less thanε.

QSSL 1: Given anyε > 0, there exists a properU1 such
that if S0 > U1, E(t) will decrease to a level less thanε in a
period less thanε and keep the state thatE(t) e ε until S(t)
decreases to a level less thanεS0.

Proof: According to Lemma 4, there is aU0 such thatE(t)
will decrease to a level less thanε in a period less thanε, if S0

> U0. And according to Lemma 3,E(t) ) ε has two different
solutionst1 and t2 wheret1 < t2 (see Figure 2). According to
Lemma 3 and Lemma 4, the lineE ) ε intersects the hyperbola
Q(S,E) ) 0 at the point (s, ε) such thats > S(t2) (see the low
left panel of Figure 2). Thus

Thus, a choice of

whereU0 is defined by (29), completes the proof.

4. Rigorous Proof of QSSL 2

To prove QSSL 2, we need to consider the second-order
differential equation concerningC derived from the system (15).
Let V ) dC/dt.

Then

andC(0) ) 0, V(0) ) k1S(0)E(0) - (k-1 + k2)C(0) ) k1S0E0.
Thus, we get the system

with initial condition (C(0), V(0)) ) (0, k1S0E0).
We now consider the vector fields on the planeC-V, just

like considering that of system (15) on the planeS-E. Because
0 < E(t) e E0 for anyt, it appears that 0e C(t) < E0. Therefore,
it is enough to consider the vector fields of the system (32) in
the region 0e C < E0. Letting dV/dt ) 0 yields

Regarding (33) as a quadratic equation ofV, then the discrimi-
nant of this equation is

Note thatCk1k2(C - E0)2 have the same sign in the region 0<
C < E0. According to system (15), 0e C(t) < E0 for t g 0.
Thus, it is enough to consider the case 0e C e E0. Therefore,
if ∆ > 0, the eq 33 ofV has two negative solutions when 0<

S0 > 1
k1ε

(21)

tε e
E0

E0

ε

) ε (22)

dS
dt

+ k2(E0 - E) ) dE
dt

(23)

∫0

tε dE
dt

dt ) ∫0

tε [dS
dt

+ k2(E0 - E)] dt e ∫0

tε [dS
dt

+ k2E0] dt

S(tε) g S0 - k2E0tε + E(tε) - E0 g S0 - k2E0ε - E0
(24)

Sg
E0

k1ε
2

+
(k-1 + k2)E0

k1ε
-

k-1 + k2

k1
(25)

E e ε (26)

S0 g

max{ E0

k1ε
2

+
(k-1 + k2)E0

k1ε
-

k-1 + k2

k1
+ k2E0ε + E0,

1
k1ε}
(27)

E(tε) e ε (28)

U0 )

max{ E0

k1ε
2

+
(k-1 + k2)E0

k1ε
-

k-1 + k2

k1
+ k2E0ε + E0,

1
k1ε}
(29)

S(t2) < s )
(k-1 + k2)(E0 - ε)

k1ε
(30)

U1 ) max{U0,
(k-1 + k2)(E0 - ε)

k1ε
2 } (31)

dV
dt

) d2C

dt2

) k1(-V - k2C)(E0 - C) -
V + (k-1 + k2)C

E0 - C
V -

(k-1 + k2)V

{dC
dt

) V

dV
dt

) k1(-V - k2C)(E0 - C) -
V + (k-1 + k2)C

E0 - C
V -

(k-1 + k2)V
(32)

V2 + (k1(C - E0)
2 + k-1E0 + k2E0)V + Ck1k2(C - E0)

2 ) 0
(33)

∆ ) (k1(C - E0)
2 + k-1E0 + k2E0)

2 - 4Ck1k2(C - E0)
2
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C < E0. WhenC ) E0, ∆ ) E0
2 (k-1 + k2)2 > 0. Thus, the

equation ofV has two solutions. One is zero and the other is
negative. It is the same whenC ) 0. Actually, when 0e C(t)
e E0

Because∆ is a continuous function ofC, ∆ is bigger than 0
in a neighborhood of the interval [0,E0]. Consider the bigger
one of the solutions of the eq 33 in the neighborhood of the
interval [0,E0], that is

To consider the approximate shape of this solution on the phase
plane, the first and second derivative ofV with respect toC at
point C ) E0 should be considered. The first-order derivative
is equal to 0 atC ) E0. The second-order derivative is equal to
-2k1k2(k-1 + k2) at C ) E0. Thus,V1(C) is concave in the
neighborhood ofC ) E0. Namely, there isδ > 0 such that
V1(C) is concave whenE0 - δ < C < E0 + δ andC ) E0 is
the critical point. Thus,V1(C) increases with respect toC on
the interval (E0 - δ, E0] and V1(C) < 0 for C ∈ (E0 - δ, E0).

WhenV > 0 and 0e C < E0, dV/dt is less than 0. On the
curve given by the eq 33, dV/dt ) 0 and dC/dt ) V < 0. In the
interval (0,E0) of the C axis, dC/dt ) 0 and dV/dt < 0. Thus,
the vector fields in the regionV > 0 and 0e C < E0 and in the
region near the point (E0, 0) are obtained.

Chooseε < δ. As discussed in the proof of QSSL 1,C(t) )
E0 - E(t) is bigger thanE0 - ε whent1 < t < t2 if S0 > U0. In
the phase planeC-V, the integral curve cannot intersect the
curve dV/dt ) 0 while E0 - δ < C e E0 (see Figure 3).
Therefore, dV/dt < 0 while t < t2. That is to say

when t < t2.
Lemma 5: GivenE0 andε > 0, there existsU2. If S0 > U2,

|d/dt E(t)| will decrease to a level less thanε in a period less
thanε.

Proof: Choosing 2E0/ε > 0, Q(S, E) ) -2E0/ε defines a
hyperbola. To make sure that this hyperbola separates the point
(S0, E0) and the curveL1, we restrict

By this restriction, the solution (S(t), E(t)) of system (15) must
cross the hyperbolaQ(S,E) ) -2E0/ε before arriving at the curve
L1. Denote byt′ε the time to make the solution (S(t), E(t))
intersect with the curveQ(S, E) ) -2E0/ε, that is,Q(S(t′ε), E(
t′ε)) ) -2E0/ε, then Q(S(t), E(t)) < -2E0/ε for 0 e t < t′ε.
Hence,

By integrating each side of (23) from 0 tot′ε, one gets

So,E(t′ε) - E0 e S(t′ε) - S0 + k2E0t′ε. Therefore,

due to the inequality (36). On the hyperbolaQ(S,E) ) -2E0/ε, if

then

Now, by the inequalities (35), (37), and (38), we have that if

it must have

Figure 3. Key: green curves, shape of dV/dt ) 0; red curve, solution
of system (32); arrows, vector fields of the phase plane.

t′ε e
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Let

Then, if S0 > U2, E(t) will decrease to a level less thanε2/2 in
a period less thanε/2.

So far, the only thing left is to prove that|d/dt E(t)| will go
down to a level less thanε in a period less thanε. By the
inequality (41), d/dt E(t) < -ε cannot last longer thanε2/2/ε )
ε/2 from tε until |d/dt E(t)| e ε. Therefore,|d/dt E(t)| will
decrease to the level less thanε in a period less thanε.

Now it is easy to prove
QSSL 2: Given anyε > 0, there exists a properU3 such

that if S0 > U3, |dE/dt (t)| will decrease to a level less thanε in
a period less thanε and keep the state that|dE(t)/dt| e ε until
S(t) decreases to a level less thanεS0.

Proof: According to Lemma 5, ifS0 > U2, |dE/dt (t)|, will
decrease to a level less thanε in a period less thanε. Further
more, according to Lemma 3 and Lemma 4S(t2) < s ) ((k-1

+ k2)(E0 - ε))/k1ε, if S0 > U0.
If dE/dt (t) e ε (see Figure 4 for instance), then dE/dt (t2) e

ε for all t e t2 and |dE/dt (t)| e ε is kept in the time interval
betweenε and t2 by (34). Hence, a choice of

whereU0 and U2 are defined by (29) and (42), respectively,
completes the proof.

If dE/dt (t2) > ε (see Figure 5 for instance), then dE/dt (t2 -
1) e ε.

By integrating each side of the eq 23 over the interval [t1,
t2],

In virtue of this,

BecauseE(t1) ) E(t2) ) ε

According to Lemma 4, ifS0 > U0, E(t) will be less thanε at
time tε, which meanstε > t1. Thus

From inequalities (44), (45), and (30), it is obtained that

Therefore,E(t) e ε lasts for a period more than

whenS0 > U0. Thus, if

E(t) e ε lasts for a period more than (1+ ε). Thent2 > 1 + t1
+ ε.

Hence, dE/dt (t) e ε for all t e t2 - 1 and|dE/dt (t)| e ε is
kept in the time interval betweenε and t2 - 1 by (34).

By integrating each side of eq 23 fromt2 - 1 to t2, it yields

Thus,

Rearranging the terms in the above inequality yields

So, a choice of

whereU0 and U2 are defined by (29) and (42), respectively,
completes the proof.

Consider thatU3 defined by (47) is always larger than that
defined by (43), we will use (47) as the default low bound of
S0 for QSSL 2.

5. Examples

In section two, we proposed two laws in enzyme kinetics,
named by QSSL 1 and QSSL 2, respectively. And the proofs
of these two laws were given in sections 3 and 4. In this section,
we give some numerical examples to make our laws and their
proofs more readable.

5.1. Example I.As stated in QSSL 1, for any small positive
numberε, we can choose a proper positive numberU1 such
that C(t), that is,E0 - E(t), goes from 0 toE0 - ε in a period
less thanε and then stays in the interval betweenE0 andE0 -
ε until S(t)/S0 < ε, if S0 > U1.

In our proof, we give anU1 explicitly by (31).
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In the following numerical example, we assume that a single-
substrate-single-product reaction described by (1) has rate
constantsk1 ) 0.3, k2 ) 0.2, andk-1 ) 0.1. Meanwhile, we
giveE0 ) 0.5 as the initial concentration of enzyme to catalyze
this reaction.

If we chooseε ) 0.1, thenU1 ) 171.1767. Hence, choosing
S0 ) 200> 171.1767 producesE(t) that goes fromE0 ) 0.5 to
0.0988 in time 0.0273 (see Figure 6), and then it stays in the
interval [0, 0.1] untilS(t) e 3.9499413274517567 (see Figure 7).

By eq 7, we have thatC(t) goes toward from 0 to 0.4 in a
period of time less than 0.1, and then it stays in the interval
[0.4, 0.5] untilS(t) e 3.9499413274517567, which is less than
S0ε ) 20. Thus, this numerical example is completely consistent
with QSSL 1.

If some much smallerε was chosen, for example,ε ) 0.01,
then a low bound ofS0 is U1 ) 16716. So, when the initial
concentration of substrateS0 > 16716,C(t) goes toward from
0 to 0.49 in a period less than 0.01, and then it stays in the

Figure 4. Parameters:k1 ) 2, k2 ) 0.2,k-1 ) 0.1,E0 ) 5, S0 ) 20, andε ) 0.3. The top panel shows that the trajectory sequentially crosses line
E ) ε, hyperbolaQ(S,E) ) -ε, line E ) ε, and hyperbolaQ(S,E) ) ε at time 0.0892893, 0.1950208, 13.432252, and 15.345701, respectively, and
the corresponding intersections are (15.238097, 0.3), (14.8948, 0.059821), (2.18855, 0.3), and (0.784883, 0.641792). To see it clearly, we amplify
the corresponding parts of the top panel as the lower left and lower right panels.

Figure 5. Parameters:k1 ) 15, k2 ) 1, k-1 ) 0.1,E0 ) 5, S0 ) 20, andε ) 0.3. The top panel shows that the trajectory sequentially crosses line
E ) ε, hyperbolaQ(S,E) ) -ε, hyperbolaQ(S,E) ) ε, and lineE ) ε at time 0.011592, 0.035041, 2.642929, and 2.913193, respectively, and the
corresponding intersections are (15.26009, 0.3), (14.870496, 0.025875), (2.107647, 0.15895), and (0.956045, 0.3). To see it clearly, we amplify the
corresponding parts of the top panel as the lower left and lower right panels.
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interval [0.49, 0.5] untilS(t) < S0ε ) 0.01S0. Here, we do not
give this numerical example explicitly for simplicity, those who
are interested can verify it themselves.

5.2. Example II. As stated in QSSL 2, for any small positive
numberε, we can choose a proper positive numberU3 such
that |d/dt C(t)| goes to a level less thanε after a period less
thanε, and keep this state untilS(t)/S0 < ε, if S0 > U3.

In the proof of QSSL 2, we give anU3 explicitly by (47).
For convenience, we use the same reaction as in Example I,

which means that the rate constants are the same. Again,E0 )
0.5 is used to catalyzed this reaction.

By our proof, if ε ) 0.1 is chosen, thenU3 ) 6766.2 is a
low bound ofS0 for QSSL 2. In our numerical experiment by
choosingS0 ) 6770, which is larger thanU3 ) 6766.2,|d/dt
C(t)| goes to a level less than 0.1 in a period of time less than
0.1 (see Figure 8). Then, it holds this state, that is,|d/dt C(t)|
e 0.1, in the rest of the reaction (see Figure 9). Thus, this
numerical example is completely consistent with QSSL 2.

6. Conclusion

The Quasi-Steady-State Assumption is a fundamental as-
sumption in enzyme kinetics. As is proved by all the experiments

Figure 6. Top: concentrations of substrateS from time 0 to 0.1. Bottom: concentrations of enzymeE in the same period of time. The red point
is at time 0.0273 withE ) 0.0988.

Figure 7. Concentration of enzyme E in the interval [0, 0.1] for the majority of the reaction. It leaves this interval whenS) 3.9499413274517567.
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up to date, it provides a highly satisfactory description of
enzyme kinetics for large ensembles of enzyme molecules
when the concentration of substrate greatly exceeds that of
enzyme.

In this article, we reexpressed QSSA in two versions. The
first is: under the condition that the substrate is in great
excess over enzyme (S0 . E0), the enzyme-substrate
complex remains approximately constant in the major part of
the reaction process, i.e., the part after the initial transient stage
of the reaction and before the substrate is nearly exhausted. The
second is: under the condition that the substrate is in great
excess over enzyme (S0 . E0) again, the changing rate of

enzyme-substrate complex is extremely tiny in the major part
of the reaction process, i.e., the part after the initial transient
stage of the reaction and before the substrate is nearly exhausted.
These two versions are independent, and one cannot be deduced
from the other.

Furthermore, we proved that both these versions of QSSA
are always true by the qualitative theory of dynamical systems.
Because the reaction equations are based on the law of mass
action, which is the fundamental law of chemical kinetics, and
our proofs are mathematically rigorous, it is reasonable to call
them laws. And we name them Quasi-Steady-State Law 1 and
Quasi-Steady-State Law 2, respectively.

Figure 8. Top: global variation of d/dt C(t) from time 0 to 0.1. Bottom: amplified region near the intersection, from which we clearly see that
d/dt C(t) goes to a level less than 0.1 in a period less than 0.1.

Figure 9. Top: whole trajectory of (dC/dt, S) in our numerical experiment. Bottom: amplified version of the top panel, from which we find that
dC/dt stays in the interval [-0.1, 0.1] once it comes in.
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So far, to prove a law in chemistry or biology by mathematics
seems still novel, but we believe that such things will occur
more and more.
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