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The domain Green'’s function Monte Carlo method has been used to calculate the ground-state energy of the
atoms Sc through Zn. The fixed node approximation with single-configuration explicitly correlated wave
functions is used. A comparison with variational Monte Carlo energies is carried out. The quality of the
ground-state energies reported here is similar to that achieved for few-electron atoms using similar techniques.

1. Introduction applied to these walkers, making the set of configurations evolve

. in the configuration space of the system. Convergence is
Quantum Monte Carlo (QMC) methods provide the ground- -pieved when the distribution of the walkers is governed by

state energy of a quantum system by using random walks.he ground-state wave function. Formally, we start from the
Nowadays, QMC methods are considered as powerful teCh'foIIowing integral equatioH

nigues that are used in a wide range of many-body problems,
obtaining accurate resultSeminal applications of QMC to the
electronic structure of atomic and molecular systems were based
on the formal analogue between the time-dependent Siclyer
equation and the diffusion equation and were restricted to few-
electron system&:4 Contrary to other many-fermion systems, ! i 7.
such as, for example, liquieHe for which simulations with positive constant ch(_)sen such that the s,pectrum is positive, and
more than 100 particles have been carried out, only atoms with G(R R) is the time-independent Green’s function

a few number of electrons have been systematically studied by
using QMC techniques; see, for example, refsl2. Applica-
tions to heavier atoms in all-electron calculations are much more o
scarcé® 16 Some atomic species, such as, for example, transi- In the limit of largem, W(™ converges to the lowest-energy
tion-metal atoms, present a very complex electronic structure €igenvector of the Hamiltonian. In practice, the value of the
with many electrons located in small regions and a strongly constante; does not affect the re_sult; it |s_only relevant for the
inhomogeneous charge distribution induced by the shell structurerate of convergence of the solution. In this work, we have used
of the electronic density. These facts along with the large a value ofE; that is about 3% larger than the absolute value of

fluctuations induced by the core electrons have hindered thethe ground-state energy. .
application of QMC to these atoms. The Green’s function is not known analytically for the

N-electron Hamiltonian. In the domain GFMC method, the
Green’s function is expanded in an infinite series in terms of a
known N-particle Green’s function. In this series, the exact
Green’s function is obtained recursively. The series is summed
exactly by using Monte Carlo, that is, by sampling each term
of the series with a probability proportional to its weight. Once
one term is selected, its contribution to the integral given in eq
¢ 1 is simulated by using random walks. This leads to the fact
that a GFMC step consists of an intermediate walk. Depending
on the element of the series sampled, the new walker generated
may not be part of the new generation and must be iterated
again. Once all of the intermediate walkers and all their offspring
have been processed and no new intermediate walkers have been
created, one continues to the next generatidhe size of the
intermediate walk depends on tke valuel® a large value of

In QMC methods, the system is represented as a set ofthis constant reduces the number of intermediate walkers, in
coordinates usually called walkers. An iterative procedure is such away that in the limit of infinit&, one obtains the short-

time-step approximation with only one step, that is, diffusion
t Part of the “William A. Lester, Jr., Festschrift”. Monte Carlo. The larger thE value, the larger the number of
*To whom correspondence should be addressed. GFMC steps that must be taken in order to achieve convergence;

¥R = (E +E) [[dRGR RWP™IR) (1)

whereR stands for the set of coordinates of the particlgss
taken approximately equal to the ground-state endegys a

(H+ EY)G(R R)=9J0(R R)

Our purpose in this work is to use QMC methods to
systematically study medium size atoms in an all-electron
calculation. In particular, we tackle here the calculation of the
ground-state energy of the 3d transition-metal atoms, that is,
from Sc to Zn. We use the domain Green’s function Monte
Carlo (GFMC}’ with the fixed node approximation; see, for
example, ref 18. The structure of this work is as follows: in
section 2, we discuss the methodology, giving some details o
the guiding function; in section 3, we show the results here
obtained. Finally, Conclusion and Perspectives of this work can
be found in section 4. Atomic units are used throughout this
work.

2. Methodology and Wave Function
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if one reducesE;, each step is more involved, but a lower L6 — T T T T T T T T T
number of them is required to sample the configuration space. 14k ©
With the E; values used here, the number of internal steps for :
the system studied here varies between 500 and 600. For a 2| T ]
detailed discussion of the method, see, for example, refs 17 1k AT -
19. ) S ¥ |Egrmc — Bur| —o—
The procedure is exact for bosons and is effected only by <1 " [ ¥ |Bvmc = Byl - ]
the statistical error. For fermions, the fixed node approxima- 0.6 - |Earmc — Evmc| - 4
tion34 is applied. This is a modification of the method that 04 L i
provides an upper bound to the exact ground-state energy. It is
based in an approximate knowledge of the nodes of the exact ~ 2[ e.——# — 2., g -® - oo poo® 4
wave function that are included as an additional boundary ol L L L L L L L L L
condition to the Green'’s functiotf.If the exact nodes were used, 22 3 24 % 260 27 2829 30
one would obtain the exact energy. Z

Finally, a key point in practical implementation of the QMC  Figure 1. Correlation energy obtained in both GFMC and VMC
methods in quantum chemistry problems is the use of the calculations. The difference between those two calculations is plotted
. . . o . . in the bottom part of the picture.
importance sampling technique. This is a variance reduction
met'ho.d that becpmes very [mport@nt in order to .reduce the TABLE 1: HF, VMC, and GFMC Ground-State Energies
statistical fluctuations of the simulations and to obtain accurate, for the Different Atoms Considered Here. In Parentheses,
in the sense of low numerical uncertainty, results. The idea is We Give the Statistical Error and in Square Brackets the

; ; ; Percentage of Correlation Energy Recovered. The Ground-
to use an approximate wave functiif(R) to guide the walk State Configuration for the Different Atoms is [Ar]4s23d",

toward those regions where the system has a high probability. gy cent for Cr and Cu, Which are [Ar4s3d, k = 5 and 10,
The more accurate the trial function, the larger the reduction of Respectively

the statistical noise for a given simulation size. More details

. atom Enr?e Eymc?024 Ecrmc
can be found in refs 1 and 19.

The trial wave functions for the atomic systems studied here Sc PD] —759.73572  —-760.411(2)[77] = —760.522(8)[90]
il . Ti [3F] —848.40600 —849.115(3)[77] —849.28(1)[95]

are the explicitly correlated wave functions of ref 20. These ,, 9] —042.88434 —943.642(3)[78] —943.81(2)[95]
functions are also used in the implementation of the fixed node cr[’S] —1043.3564 —1044.190(3)[86] —1044.30(1)[97]
approximation. The form of these trial functions is Mn[fS] —1149.8663 —1150.737(3)[82] —1150.88(1)[95]
FePD] —1262.4437 —1263.376(2)[79] —1263.56(2)[94]

Y(R) = F(RP(R) @) Co[fF] —1381.4146 —1382.426(3)[77] —1382.61(2)[91]

Ni[3F] —1506.8709 —1507.981(4)[77] —1508.17(2)[90]
CuPS] —1638.9637 —1640.231(3)[79] —1640.44(2)[92]
Zn['S] —1777.8481 —1779.119(2)[73] —1779.34(2)[86]
recovered in the present calculation is shown. To calculate this
percentage of correlation energy, we have considered as “exact”
z uj values the nonrelativistic energy reported in ref 22. It is worth
F=e a mentioning that the accuracy of the “exact” values reported in
ref 22 is not really known. All of the calculations have been
carried out with average populations of 500 walkers and random

where F(R) is the correlation factor andb(R) the model
function. The correlation factor depends explicitly on the
interelectronic coordinates and is writterf as

where walks of 20 blocks with 200 steps per block, and the number
Ne of internal steps was typically 500.
Up = S o F™ P + T Firox The absolute value of the correlation energy recovered in the
kZl b Lo present GFMC calculation is shown in Figure 1 where it is

compared with the corresponding VMC resfiltThis value
and increases smoothly with the atomic number in any of the two

calculations, with a difference between the VMC and QMC

by _dr energies that is nearly constant for the atoms studied here.
=17 br, N =17 dr. The atoms in the first half of the 3d shell as well as the iron
: atom present a percentage of correlation appreciably greater than

The parameters; are fixed variationall?® andb andd are taken ~ 90%. Then, it decreases as the atomic number increases up to
to be equal to one. The model function is antisymmetric and values around 90% and then decreases to 86% for Zn. These
yields the proper values of the angular momentum and parity Values are similar to the GFMC results obtained for the first-
quantum numbers of the state under description. In this work, row atoms starting from trial functions with the same structure;
we use a single-configuration model function, which, in general, s€e, for example, refs 8, 9, 12, and 25. For Cr and Cu, we have
is a linear combination of Slater determinants with orbitals fixed, Obtained that the percentage of correlation energy recovered is
by using the parametrized optimized effective potential method. appreciably higher than that of their neighbor atoms, especially

for Cu. This can be due to the near-degeneracy effect for which
3. Results a pair of electrons in thes shell can be promoted to tmp
shell. This is a nondynamic correlation effect that is not properly
described by the correlation Jastrow factor. Near degeneracy
does not appear for Cr and Cu, for which the ground-state
electronic configuration is [Ar]4s3dand [Ar]4s3d° respec-
tively. For these atoms, one expects that the nodal surface of a
single-configuration model wave function, as that used here,
¥onstitutes a better approximation to the exact one than that

In Table 1, we report the GFMC results for the ground-state
energy of the atoms Sc to Zn. The corresponding HartFexek
energy as well as the variational Monte Carlo (VMC) energy
obtained from these trial wave functions is also shown. In
parentheses, we show the statistical error in the calculation,
whereas in square brackets, the percentage of correlation energ
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