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The domain Green’s function Monte Carlo method has been used to calculate the ground-state energy of the
atoms Sc through Zn. The fixed node approximation with single-configuration explicitly correlated wave
functions is used. A comparison with variational Monte Carlo energies is carried out. The quality of the
ground-state energies reported here is similar to that achieved for few-electron atoms using similar techniques.

1. Introduction

Quantum Monte Carlo (QMC) methods provide the ground-
state energy of a quantum system by using random walks.
Nowadays, QMC methods are considered as powerful tech-
niques that are used in a wide range of many-body problems,
obtaining accurate results.1 Seminal applications of QMC to the
electronic structure of atomic and molecular systems were based
on the formal analogue between the time-dependent Schro¨dinger
equation and the diffusion equation and were restricted to few-
electron systems.2-4 Contrary to other many-fermion systems,
such as, for example, liquid3He for which simulations with
more than 100 particles have been carried out, only atoms with
a few number of electrons have been systematically studied by
using QMC techniques; see, for example, refs 5-12. Applica-
tions to heavier atoms in all-electron calculations are much more
scarce.13-16 Some atomic species, such as, for example, transi-
tion-metal atoms, present a very complex electronic structure
with many electrons located in small regions and a strongly
inhomogeneous charge distribution induced by the shell structure
of the electronic density. These facts along with the large
fluctuations induced by the core electrons have hindered the
application of QMC to these atoms.

Our purpose in this work is to use QMC methods to
systematically study medium size atoms in an all-electron
calculation. In particular, we tackle here the calculation of the
ground-state energy of the 3d transition-metal atoms, that is,
from Sc to Zn. We use the domain Green’s function Monte
Carlo (GFMC)17 with the fixed node approximation; see, for
example, ref 18. The structure of this work is as follows: in
section 2, we discuss the methodology, giving some details of
the guiding function; in section 3, we show the results here
obtained. Finally, Conclusion and Perspectives of this work can
be found in section 4. Atomic units are used throughout this
work.

2. Methodology and Wave Function

In QMC methods, the system is represented as a set of
coordinates usually called walkers. An iterative procedure is

applied to these walkers, making the set of configurations evolve
in the configuration space of the system. Convergence is
achieved when the distribution of the walkers is governed by
the ground-state wave function. Formally, we start from the
following integral equation17

whereR stands for the set of coordinates of the particles,Et is
taken approximately equal to the ground-state energy,Ec is a
positive constant chosen such that the spectrum is positive, and
G(R, R′) is the time-independent Green’s function

In the limit of largem, Ψ(m) converges to the lowest-energy
eigenvector of the Hamiltonian. In practice, the value of the
constantEc does not affect the result; it is only relevant for the
rate of convergence of the solution. In this work, we have used
a value ofEc that is about 3% larger than the absolute value of
the ground-state energy.

The Green’s function is not known analytically for the
N-electron Hamiltonian. In the domain GFMC method, the
Green’s function is expanded in an infinite series in terms of a
known N-particle Green’s function. In this series, the exact
Green’s function is obtained recursively. The series is summed
exactly by using Monte Carlo, that is, by sampling each term
of the series with a probability proportional to its weight. Once
one term is selected, its contribution to the integral given in eq
1 is simulated by using random walks. This leads to the fact
that a GFMC step consists of an intermediate walk. Depending
on the element of the series sampled, the new walker generated
may not be part of the new generation and must be iterated
again. Once all of the intermediate walkers and all their offspring
have been processed and no new intermediate walkers have been
created, one continues to the next generation.1 The size of the
intermediate walk depends on theEc value;19 a large value of
this constant reduces the number of intermediate walkers, in
such a way that in the limit of infiniteEc, one obtains the short-
time-step approximation with only one step, that is, diffusion
Monte Carlo. The larger theEc value, the larger the number of
GFMC steps that must be taken in order to achieve convergence;
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if one reducesEc, each step is more involved, but a lower
number of them is required to sample the configuration space.
With the Ec values used here, the number of internal steps for
the system studied here varies between 500 and 600. For a
detailed discussion of the method, see, for example, refs 17-
19.

The procedure is exact for bosons and is effected only by
the statistical error. For fermions, the fixed node approxima-
tion3,4 is applied. This is a modification of the method that
provides an upper bound to the exact ground-state energy. It is
based in an approximate knowledge of the nodes of the exact
wave function that are included as an additional boundary
condition to the Green’s function.18 If the exact nodes were used,
one would obtain the exact energy.

Finally, a key point in practical implementation of the QMC
methods in quantum chemistry problems is the use of the
importance sampling technique. This is a variance reduction
method that becomes very important in order to reduce the
statistical fluctuations of the simulations and to obtain accurate,
in the sense of low numerical uncertainty, results. The idea is
to use an approximate wave functionΨt(R) to guide the walk
toward those regions where the system has a high probability.
The more accurate the trial function, the larger the reduction of
the statistical noise for a given simulation size. More details
can be found in refs 1 and 19.

The trial wave functions for the atomic systems studied here
are the explicitly correlated wave functions of ref 20. These
functions are also used in the implementation of the fixed node
approximation. The form of these trial functions is

where F(R) is the correlation factor andΦ(R) the model
function. The correlation factor depends explicitly on the
interelectronic coordinates and is written as6

where

and

The parametersck are fixed variationally,20 andb andd are taken
to be equal to one. The model function is antisymmetric and
yields the proper values of the angular momentum and parity
quantum numbers of the state under description. In this work,
we use a single-configuration model function, which, in general,
is a linear combination of Slater determinants with orbitals fixed,
by using the parametrized optimized effective potential method.21

3. Results

In Table 1, we report the GFMC results for the ground-state
energy of the atoms Sc to Zn. The corresponding Hartree-Fock
energy as well as the variational Monte Carlo (VMC) energy
obtained from these trial wave functions is also shown. In
parentheses, we show the statistical error in the calculation,
whereas in square brackets, the percentage of correlation energy

recovered in the present calculation is shown. To calculate this
percentage of correlation energy, we have considered as “exact”
values the nonrelativistic energy reported in ref 22. It is worth
mentioning that the accuracy of the “exact” values reported in
ref 22 is not really known. All of the calculations have been
carried out with average populations of 500 walkers and random
walks of 20 blocks with 200 steps per block, and the number
of internal steps was typically 500.

The absolute value of the correlation energy recovered in the
present GFMC calculation is shown in Figure 1 where it is
compared with the corresponding VMC result.20 This value
increases smoothly with the atomic number in any of the two
calculations, with a difference between the VMC and QMC
energies that is nearly constant for the atoms studied here.

The atoms in the first half of the 3d shell as well as the iron
atom present a percentage of correlation appreciably greater than
90%. Then, it decreases as the atomic number increases up to
values around 90% and then decreases to 86% for Zn. These
values are similar to the GFMC results obtained for the first-
row atoms starting from trial functions with the same structure;
see, for example, refs 8, 9, 12, and 25. For Cr and Cu, we have
obtained that the percentage of correlation energy recovered is
appreciably higher than that of their neighbor atoms, especially
for Cu. This can be due to the near-degeneracy effect for which
a pair of electrons in thens shell can be promoted to thenp
shell. This is a nondynamic correlation effect that is not properly
described by the correlation Jastrow factor. Near degeneracy
does not appear for Cr and Cu, for which the ground-state
electronic configuration is [Ar]4s3d5 and [Ar]4s3d10, respec-
tively. For these atoms, one expects that the nodal surface of a
single-configuration model wave function, as that used here,
constitutes a better approximation to the exact one than that
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Figure 1. Correlation energy obtained in both GFMC and VMC
calculations. The difference between those two calculations is plotted
in the bottom part of the picture.

TABLE 1: HF, VMC, and GFMC Ground-State Energies
for the Different Atoms Considered Here. In Parentheses,
We Give the Statistical Error and in Square Brackets the
Percentage of Correlation Energy Recovered. The Ground-
State Configuration for the Different Atoms is [Ar]4s23dn,
except for Cr and Cu, Which are [Ar]4s3dk, k ) 5 and 10,
Respectively

atom EHF
23 EVMC

20,24 EGFMC

Sc [2D] -759.73572 -760.411(2)[77] -760.522(8)[90]
Ti [ 3F] -848.40600 -849.115(3)[77] -849.28(1)[95]
V [4F] -942.88434 -943.642(3)[78] -943.81(2)[95]
Cr [7S] -1043.3564 -1044.190(3)[86] -1044.30(1)[97]
Mn [6S] -1149.8663 -1150.737(3)[82] -1150.88(1)[95]
Fe [5D] -1262.4437 -1263.376(2)[79] -1263.56(2)[94]
Co [4F] -1381.4146 -1382.426(3)[77] -1382.61(2)[91]
Ni [ 3F] -1506.8709 -1507.981(4)[77] -1508.17(2)[90]
Cu [2S] -1638.9637 -1640.231(3)[79] -1640.44(2)[92]
Zn [1S] -1777.8481 -1779.119(2)[73] -1779.34(2)[86]
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for the rest of the atoms where configuration mixing is more
important. At the variational level and working with a explicitly
correlated wave function, a significant lowering in the ground-
state energy was observed when a two-configuration wave
function accounting for the near degeneracy of the single-particle
levels was employed.24 A similar improvement can be expected
in a QMC calculation due to the variational nature of the fixed
node approximation.

Finally, let us mention that very few quantum Monte Carlo
results for 3d transitions-metal atoms have been found. It is
worth mentioning here that in ref 15, a value of-1640.411(5)
au was obtained for the ground state of the Cu atom. This value
practically coincides with the corresponding GFMC one here
reported.

4. Conclusions and Perspectives

A systematic study using the all-electron quantum Monte
Carlo method of the correlation energy of the ground state of
the 3d transition-metal atoms has been carried out. Most of the
previous similar studies had been restricted to light atoms or
are based on the use of a pseudopotential. The present
calculation yields an accurate value of the correlation energy
of these systems, effected only by the fixed node error. The
quality of the results is similar for all of the atoms studied.

Future work includes the use of multideterminant wave
functions to improve the quality of the nodes and the study of
excited states and charged species. These calculations would
provide excitation energies, ionization potentials, and electron
affinities. In order to compare with the experimental value, it
is necessary to include relativistic effects, at least perturbatively
as, for example, in refs 15 and 16.
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