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The nuclear-electronic orbital (NEO) method was modified and extended to positron systems for studying
mixed positronic-electronic wavefunctions, replacing the mass of the proton with the mass of the positron.
Within the modified NEO framework, the NEO-HF (Hartree-Fock) method provides the energy corresponding
to the single-configuration mixed positronic-electronic wavefunction, minimized with respect to the molecular
orbitals expressed as linear combinations of Gaussian basis functions. The electron-electron and electron-
positron correlation can be treated in the NEO framework with second-order perturbation theory (NEO-MP2)
or multiconfigurational methods such as the full configuration interaction (NEO-FCI) and complete active
space self-consistent-field (NEO-CASSCF) methods. In addition to implementing these methods for positronic
systems, strategies for calculating electron-positron annihilation rates using NEO-HF, NEO-MP2, and NEO-
FCI wavefunctions were also developed. To apply the NEO method to the positronium hydride (PsH) system,
positronic and electronic basis sets were optimized at the NEO-FCI level and used to compute NEO-MP2
and NEO-FCI energies and annihilation rates. The effects of basis set size on NEO-MP2 and NEO-FCI
correlation energies and annihilation rates were compared. Even-tempered electronic and positronic basis
sets were also optimized for the e+LiH molecule at the NEO-MP2 level and used to compute the equilibrium
bond length and vibrational energy.

1. Introduction

Dirac predicted the existence of the positron as the antiparticle
of the electron in 1928.1 In 1932, the first experimental
indications of an unknown particle were found in cloud-chamber
photographs of cosmic rays, and this particle was later identified
as the positron. Annihilation of the positron with electrons in
matter was studied in the 1940s. An important early discovery
was that energy and momentum conservation during the
annihilation process could be utilized to study properties of
solids.2 Recent advances in the use of trap-based, slow positron
beam sources have enabled the study of low-energy positron
interactions with atoms and molecules.3,4 Energy-resolved
measurements of Barnes et al.4 present direct evidence for the
enhancement of annihilation rates due to the existence of
vibrational Feshbach resonances. These experimental data
provide motivation for the development of efficient computa-
tional methods for the study of positronic systems.

A variety of computational methods have been employed to
accurately compute positron and positronium binding to atoms.5

The PsH system, consisting of a proton, two electrons, and a
positron, was studied with restricted Hartree-Fock6 and con-
figuration interaction (CI) methods7 in the 1960s. In 1970,
Schrader presented a self-consistent-field theory for one-positron
many-electron systems that included electron-positron correla-
tion explicitly in the electronic molecular orbitals (MOs).8 Kurtz

and Jordan9 studied positron-molecule complexes with
Hartree-Fock (HF) theory in 1981. More recently, the quantum
Monte Carlo method,10 the stochastic variational method,11,12a
perturbative geminal approach,13 explicitly correlated Gaussian
variational approaches,14,15and various configuration interaction
(CI) approaches16-21 have been used to study PsH and other
small molecular positronic systems. In addition, Bubin and
Adamowicz have applied a highly accurate variational approach
using explicitly correlated Gaussian functions to PsH and e+-
LiH.22,23 Although these approaches have achieved impressive
levels of accuracy, they are not easily extended to larger
positronic systems.

The objective of the present work is to introduce and illustrate
a modified nuclear-electronic orbital (NEO) method for calcula-
tions of positronic-electronic systems. The NEO approach was
developed to include nuclear quantum effects directly within
electronic structure calculations and has been successfully
applied to proton transfer and hydrogen tunneling problems.24-32

In the extension of the NEO method to positronic systems, the
positrons are treated quantum mechanically on the same level
as the electrons. At the NEO-HF level of theory, mixed
positronic-electronic wavefunctions are calculated iteratively
using variational MO techniques. Electron-electron and electron-
positron correlation can be included by second-order perturba-
tion theory (NEO-MP2), the complete active space self-
consistent field (NEO-CASSCF) method, and the full config-
uration interaction (NEO-FCI) approach. In addition to imple-
menting all of these methods, we derived the expressions for
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calculating electron-positron annihilation rates based on NEO-
HF, NEO-MP2, and NEO-FCI wavefunctions.

To illustrate the NEO method, we applied it to the PsH system
and to the e+LiH system. Both of these systems have been
studied previously with a variety of computational methods.6-23,33

The NEO approach is not expected to be more accurate than
these other methods but is designed to be more easily extendable
to larger systems. For the PsH system, we optimized positronic
and electronic Gaussian basis sets at the NEO-FCI level. These
basis sets were subsequently used to compute NEO-MP2
energies for PsH. We also assessed the basis set dependence of
the total energies and the electron-electron and electron-
positron correlation energies at the NEO-MP2 and NEO-FCI
levels. For the e+LiH system, we optimized even-tempered
electronic and positronic Gaussian basis sets for PsH and Li at
the NEO-MP2 and MP2 levels, respectively. At the same level
of theory with a reoptimized positronic basis set, we mapped
the potential energy surface for e+LiH and calculated the
equilibrium geometry and the shift of the vibrational frequency
caused by addition of a positron to LiH.

2. Theory and Computational Method

2.1. Modifications to the NEO Formulation. The original
NEO method, which was incorporated into a recent version of
the GAMESS code,34 includes nuclear quantum effects directly
within electronic structure calculations. It has been used mainly
to treat protons quantum mechanically. For simplicity, here we
consider the special case of systems withNe paired electrons, a
single quantum proton, andNc classical nuclei. The extension
to multiple quantum nuclei is straightforward. In this case, the
Hamiltonian is

where the unprimed indicesi andj refer to electrons, the primed
indicesi′ andj′ refer to quantum protons, the indexA refers to
classical nuclei, andmp is the proton mass. The charges and
distances are denoted byZ and r, respectively, with the
appropriate subscripts.

In the NEO-HF approach, the nuclear-electronic wavefunction
is the product of an electronic and a nuclear Slater determinant

Here re represents all electronic coordinates,r i
e will represent

the coordinate of theith electron, andrp represents the
coordinate of the single quantum proton. For the case of a single
quantum proton, the nuclear Slater determinant is a nuclear MO.
In the NEO-HF approach, the energy is minimized variationally
with respect to the electronic and nuclear MOs, which are
expanded in Gaussian basis sets. The MP2 corrections to the
NEO-HF energy are derived in ref 28. These previous studies
illustrate that eq 1 is a suitable reference Hamiltonian for NEO-
MP2 calculations. The NEO-CASSCF and NEO-CI formulations
are presented in ref 24.

In principle, modifying the NEO method in GAMESS for
the calculation of positronic systems is as simple as substituting
the proton’s mass with that of the positron. The initial
implementation of NEO in GAMESS was developed to model
quantum effects for nuclei, however, and does not allow nuclear
basis functions to be centered on classical nuclei, where the

electronic basis functions are located. Due to the nature of the
positronic wavefunction, the optimal configuration for positronic
basis functions is to be centered on classical nuclei with the
electronic basis functions. The code was modified to allow for
this situation in the extension of the NEO method for the
calculation of mixed positronic-electronic wavefunctions.

The resulting modified NEO approaches for positronic
systems are analogous to their counterparts for quantum nuclear
systems. In the modified NEO-HF method, the energy corre-
sponding to the single-configurational mixed positronic-
electronic wavefunction is minimized with respect to the MOs.
In the NEO-CASSCF method, the energy is minimized with
respect to the MOs, as well as the CI coefficients, including all
possible CI configurations that result from the chosen positronic
and electronic active spaces in an analogous manner to the
existing electronic structure method CASSCF. Within the NEO-
CASSCF framework, if all of the quantum particles (i.e.,
electrons and positrons) in the system are active and the active
space includes all of the available MOs, then the calculation is
termed NEO-FCI. In this case, the energy is minimized with
respect to only the CI coefficients. Dynamical electron-electron
and electron-positron correlation effects can also be included
in the NEO framework using second-order perturbation theory
(NEO-MP2).

2.2. Positron Basis Set Development.In addition to modify-
ing the existing NEO code in GAMESS, new positronic and
modified electronic basis sets were needed before applying NEO
to a molecular positronic-electronic system. For PsH, we
optimized the basis function exponents in [6s], [6s1p], [6s2p],
[6s3p], [6s2p1d], and [6s3p1d] basis sets for both electrons and
the positron at the NEO-FCI level, using the same size basis
sets for the electronic and positronic wavefunctions. These
particular basis set sizes were chosen for direct comparison to
results of Tachikawa,16 in which basis function exponents for
both electrons and the positron were optimized using a fully
variational CI method. The optimized electronic and positronic
basis sets for PsH were then used to compute NEO-MP2 and
NEO-FCI energies. The effect of the basis set size on the amount
of electron-electron and electron-positron correlation energy
captured is discussed in section 3.

We also developed even-tempered electronic and positronic
basis sets for Li and PsH, respectively, at the MP2 and NEO-
MP2 levels, respectively. Note that the variational theorem does
not apply to the second-order perturbation theory energy, which
is not an expectation value of the Hamiltonian. Nevertheless,
as noted previously,35 this method is useful for including
correlation in basis set development. In the even-tempered
scheme, the radial functions of the primitives are chosen such
that thekth exponent,úk,l of the set of Gaussian primitives of
symmetry typel is specified with the even-tempered parameters
Rl andâl

k by the equation

Starting with an even-tempered basis on H- and Li consisting
of six s-type Gaussian primitives [6s],Rs andâs were optimized
with respect to the MP2 energy using the QDFIT2 program.36

This optimization procedure was similar to that of Schmidt and
Ruedenberg in that Gaussian primitives of each type were
systematically added to the basis set until the improvement in
the MP2 energy fell below a specified threshold. This initial
basis set was then expanded by adding s-functions, one at a
time, and theRs andâs were re-optimized using the optimum
parameters from the previous iteration as the initial guess. The
shell was considered full when the MP2 energy decreased by
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less than 0.1 milli-Hartree. This procedure was then repeated
for p-and d-type Gaussian primitives, beginning with three
functions in each of the higher angular momentum shells. All
even-tempered parameters were optimized at each step. Thus,
the final step involved a six-parameter optimization (i.e.,R and
â for s, p, and d-type Gaussian primitives) for each electronic
basis set. In some instances where four or more even-tempered
parameters were optimized, the potential energy surface was
found to be very flat, and the QDFIT2 program did not find
the minimum of the MP2 energy. For these cases, we used the
Hooke-Jeeves generalized pattern search algorithm, implemented
in the GenOpt program,37 to locate the optimumR’s andâ’s.

The even-tempered electronic and positronic basis sets for
PsH were then optimized by starting with the electronic basis
sets developed for H- and an initial even-tempered positronic
basis set consisting of three s-type Gaussian primitives [3s].
The positronic basis set size was then increased using the same
methodology as prescribed above while the electronic basis set
size was held fixed at the size optimized for H-. All even-
tempered parameters for both electrons and positrons were
optimized at each step, ultimately resulting in a 12-parameter
optimization (i.e., R and â for s, p, and d-type Gaussian
primitives for electrons and positrons) to obtain the final mixed
positronic-electronic basis sets. After the optimum positronic
basis set size was found for PsH, we increased the electronic
basis set size in each shell and re-optimized the parameters to
confirm that the electronic basis set size was still optimum. We
found this to be the case. The resulting even-tempered basis
sets were used to compute the optimized geometry and
vibrational frequency of e+LiH.

2.3. Annihilation Rate. Using mixed positronic-electronic
wavefunctions obtained with the NEO method, electron-
positron annihilation rates can be computed at the NEO-HF,
NEO-MP2, and NEO-FCI levels. Neglecting three-photon
annihilation, the electron-positron annihilation rate for a bound
state wavefunction,Ψ0, consisting ofNe electrons and a single
positron is given by38

where the integration is over all electronic coordinates and the
positronic coordinate. For simplicity, the equations in this paper
are given for systems with a single positron, but the extension
to systems with multiple positrons is straightforward.

At the NEO-HF level, forN doubly occupied electronic MOs,
eq 4 simplifies to

whereSiji ′j′ is the four-center integral

in which r ) re ) rp, r0 is the classical electron radius,c is the
speed of light, andφi(i′) is the i(i′)th electron (positron) MO.
Again, we use unprimed (primed) indices to denote electron
(positron) MOs. Note that the spatial coordinates in the four
MOs in eq 6 are the same because of the Dirac delta function
in eq 4, andSiji ′j′ has units of a.u.-3.

Within the NEO-MP2 framework, the first-order correction
to the annihilation rate is

where the summation is over the RHF (restricted Hartree-Fock)
occupied and virtual electron MOs (a andr, respectively) and
the virtual positron MOs (r′). εi(i′)is the eigenvalue for theith
(i′th) electron (positron) MO, and〈ii ′|jj ′〉 is the electron-positron
Coulomb integral

The NEO-MP2 annihilation rate is then given by
λMP2 ) λHF + λ(1).

The NEO-CI wavefunction has the form

where ΦI
e(re) and ΦI'

p(rp) are determinants of spin orbitals
representing the electrons and positron, respectively, and
CII ′ are CI coefficients. Here there areNCI

e electronic determi-
nants andNCI

p positron determinants, leading to a total of
NCI ) NCI

e × NCI
p positronic-electronic configurations. For the

NEO-CI wavefunction in eq 9 with only a single positron, the
annihilation rate is given by

Here ∑I<J*
NCI

e

denotes a summation over unique pairs of elec-
tronic determinants, denoted by the indicesI andJ, that differ
by one and only one MO, corresponding to the MO indicesi
and j, respectively. In this expression,Ii represents theith
electronic MO of theΦI

e(re) electronic determinant. Since eq
10 is for only a single positron, the indicesI′ andJ′ denote the
positron MO rather than a determinant. The module for
computing annihilation rates based on eqs 5-10 has been
incorporated into NEO in GAMESS.

3. Results and Discussion

In a positronic-electronic system, both electron-electron and
electron-positron correlation energies substantially impact the
total ground state energies and annihilation rates. We investi-
gated how these correlation energies vary between the NEO-
MP2 and NEO-FCI methods and with different basis set sizes
for PsH. In Table 1, NEO-HF, NEO-MP2, and NEO-FCI
energies and annihilation rates are given for PsH with [6s],
[6s1p], [6s2p], [6s3p], [6s2p1d], and [6s3p1d] basis sets with
exponents optimized at the NEO-FCI level. Also provided are
the electron-electron and electron-positron correlation energies
recovered with NEO-MP2. The total correlation energy recov-
ered with NEO-MP2 is then compared to the NEO-FCI
correlation energy. The annihilation rates are also plotted in
Figure 1.

Two significant trends are evident from the data in Table 1
and the plot in Figure 1. As the basis set size is increased, the
following trends are observed: (1) the magnitudes of the
electron-electron and electron-positron correlation energies
increase, providing virtually all of the improvement in the NEO-
MP2 and NEO-FCI energies and annihilation rates (i.e., the
change in the NEO-HF energy and annihilation rate is negli-
gible), and (2) the fraction of the correlation energy recovered
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with NEO-MP2 versus NEO-FCI decreases slightly. The
increasing values for the electron-electron and electron-
positron correlation energy seen in the first trend indicate that
the larger basis set yields a better set of orbitals for recovery of
dynamical correlation through perturbation and multiconfigu-
rational methods. The increase in the electron-positron cor-
relation energy corresponds to an increase in the electron-
positron annihilation rate. The second trend illustrates that the
increase in the NEO-MP2 correlation energy with basis set size
is slower than the increase in the NEO-FCI correlation energy.
The multiconfigurational character of the NEO-FCI wavefunc-
tion can be determined by examination of the natural orbital
occupation numbers (NOONs).39 The highest NOON value for
the positron changes from 0.9872 for the [6s] basis set to 0.8837
for the [6s3p1d] basis, a decrease of 10.4%. This decrease
indicates that the NEO-FCI wavefunction becomes more mul-
ticonfigurational for this choice of orbitals as the basis set
increases.

We also optimized even-tempered basis sets for H-, Li, and
PsH using the procedure outlined in section 2.2. The even-
tempered parameters are given in Table 2. We found that the
optimum electronic basis set sizes are [9s5p4d] and [13s6p4d]
for H- and Li, respectively, and the optimum positronic basis
set size for PsH is [6s4p4d]. In general, we found that the
optimal electronic and positronic basis sets have approximately
the same number of p- and d-type primitives, while the
positronic basis set has fewer s-type primitives than the
electronic basis set. The NEO-MP2 energy of PsH with the
resulting [9s5p4d-6s4p4d] basis set is-0.731866 Hartree, which
is 0.00356 Hartree lower than the best NEO-MP2 result achieved
with the FCI-optimized basis sets of Table 1; however, it is

still 0.027099 Hartree higher than the best NEO-FCI result
given.

Subsequent to this even-tempered basis set optimization, we
computed the potential energy surface (PES) for e+LiH at the
NEO-MP2 level with the Li and PsH even-tempered basis sets.
We found that the energy of e+LiH decreased significantly when
the even-tempered parameters for the positronic basis set on
the hydrogen atom and the internuclear distance were simulta-
neously optimized to minimize the NEO-MP2 energy. The
resulting e+LiH positronic basis set is provided in Table 2.

A summary of the results obtained with the even-tempered
basis sets optimized for the LiH and e+LiH systems is provided
in Table 3. This table includes the NEO-HF and NEO-MP2
energies, Li-H bond lengths (Re and R0), and vibrational
energies (ν). Also given is the dissociation energy (4) for the
lowest-energy dissociation channel, e+LiH f Li+ + PsH. The
values ofRe, R0, andν were determined by computing the PES
along the Li-H distance,RLiH, and fitting the data to a Morse
potential, as depicted in Figure 2. The Morse potential was
determined with a least-squares fitting method using the data
points for 1.25 Å< RLiH < 2.5 Å, and the eigenvalues and
eigenfunctions of this Morse potential were computed analyti-
cally.40 The values ofR0 were obtained from the average of
RLiH over the ground state vibrational wavefunction, and the
vibrational energies were determined from the splitting between
the lowest two vibrational states for this Morse potential. The
computed values forR0 andν of the nonpositronic LiH molecule
agree well with the experimental values of 1.5957 Å and 1406
cm-1, respectively.41 The values ofR0 andν computed for e+-
LiH are 1.6691 Å and 1160 cm-1, respectively. Thus, the vibra-
tional energy of e+LiH is computed to be approximately 30
meV less than that of LiH. We calculated the dissociation energy
for the e+LiH f Li+ + PsH dissociation channel to be 1.626
eV, which is higher than the dissociation energies of 0.77275
eV calculated with the stochastic variational method,12 1.03(7)
eV calculated with the quantum Monte Carlo method,10 and
0.99452 eV calculated with a non-Born-Oppenheimer varia-
tional method with explicitly correlated Gaussian functions.22

We have also considered whether positron basis functions
should be centered on only the more electronegative H atom or
on both the H and Li atoms in e+LiH. To explore this issue,
we determined optimum electronic and positronic basis sets for
LiPs using the same method that was applied to PsH above.
Then we determined the optimum positronic molecular basis
set and internuclear distance at the NEO-MP2 level for e+LiH,

TABLE 1: Comparison of NEO-MP2 and NEO-FCI Results for PsHa,b

[6s] [6s1p] [6s2p] [6s3p] [6s2p1d] [6s3p1d]

EHF -0.666766 -0.666791 -0.666783 -0.666784 -0.666865 -0.666872
EMP2 -0.683835 -0.715107 -0.721801 -0.723411 -0.726725 -0.728306
EFCI -0.691010 -0.732176 -0.743336 -0.745807 -0.756408 -0.758965

EMP2
ee -0.010649 -0.020459 -0.024004 -0.025103 -0.025226 -0.026309

EMP2
ep -0.006420 -0.027858 -0.031014 -0.031525 -0.034634 -0.035125

EMP2
corr -0.017070 -0.048316 -0.055018 -0.056628 -0.059860 -0.061435

EFCI
corr -0.024244 -0.065385 -0.076553 -0.079023 -0.089544 -0.092094

EMP2
corr / EFCI

corr 0.704079 0.738948 0.718686 0.716599 0.668503 0.667083

λHF (ns-1) 0.297218 0.297585 0.297870 0.297660 0.297895 0.297736
λMP2 (ns-1) 0.349059 0.464326 0.493770 0.503096 0.528715 0.537651
λFCI (ns-1) 0.372328 0.639403 0.719402 0.751466 0.866199 0.899299

a NEO-HF, NEO-MP2, and NEO-FCI energies (EHF, EMP2, andEFCI, respectively) and annihilation rates (λHF, λMP2, andλFCI, respectively) were
obtained for PsH with basis sets optimized at the NEO-FCI level. The correlation energy recovered with NEO-MP2 (EMP2

corr ) EMP2 - EHF ) EMP2
ee

+ EMP2
ep ) and NEO-FCI (EFCI

corr ) EFCI - EHF), the second-order electron-electron (EMP2
ee ) and electron-positron (EMP2

ep ) corrections that comprise the
NEO-MP2 correction, and the fraction of the NEO-CI correlation energy recovered with NEO-MP2 (EMP2

corr /EFCI
corr) are also provided.b Accurate

values of the energies and annihilation rates for PsH are given in the text.

Figure 1. NEO-HF (b), NEO-MP2 (9), and NEO-FCI (() annihilation
rates for PsH.
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optimizing even-tempered parameters for positronic basis sets
on both the H and the Li atoms. The resulting minimum energy
was-8.069102 Hartrees, a decrease of only 0.000243 Hartree
compared to the calculation with positron basis functions on
only the H atom. We also computed the potential energy surface
for this system, and the equilibrium bond length and vibrational
energy were 1.6673 Å and 1159 cm-1, respectively, which are
very close to the numbers obtained previously. From these
results, we conclude that for e+LiH, placement of the positronic
basis functions on only the more electronegative hydrogen atom
is sufficient at the NEO-MP2 level.

We emphasize that the NEO-FCI and NEO-MP2 methods
are not quantitatively accurate tools for computing energies and
annihilation rates for positronic systems. Our most reliable NEO-
FCI energy and annihilation rate for PsH are-0.758965 Hartree
and 0.899299 ns-1, respectively. For comparison, well-
converged stochastic variational method calculations provide a
PsH energy of-0.78919674 Hartree and an annihilation rate
of 2.47178 ns-1,11 and highly accurate variational calculations
with explicitly correlated Gaussian functions provide a PsH

energy of-0.78919765251 Hartree and an annihilation rate of
2.471406 ns-1.23 As illustrated in Table 1 and Figure 1, the
NEO-FCI annihilation rate converges very slowly with respect
to the positronic basis set and is not yet converged in the present
work. Mitroy et al.21,33 have performed more extensive CI
calculations on PsH beyond the NEO-FCI calculations presented
here and have also identified difficulties with convergence in
the application of traditional CI approaches to systems in which
electron-positron correlation is important. Perturbative ap-
proaches such as NEO-MP2 are even more problematic for these
types of systems.

On the other hand, the NEO framework provides a foundation
upon which future methods for studying large positronic
molecular systems can be built. The quantitative accuracy of
the NEO approach may be improved by developing larger
positron basis sets and extending the method to include more
electron-electron and electron-positron correlation energy. In
particular, explicit electron-positron correlation can be included
directly into the NEO self-consistent-field framework using
Gaussian-type geminals, as implemented in ref 31 for electron-
proton correlation. This explicitly correlated Hartree-Fock
(NEO-XCHF) approach has been shown to converge much
faster than the NEO-FCI approach and is computationally
practical for many-electron systems with a relatively small
number of positrons because only electron-positron correlation
is treated explicitly.

4. Conclusions

Our modified NEO approach provides a potentially useful
framework for computing mixed positronic-electronic wave-
functions. We demonstrated its utility by computing the potential
energy surface of e+LiH, allowing the prediction of its equi-
librium geometry, vibrational energy, and dissociation energy.
We also calculated the energy and the annihilation rate for PsH
at the NEO-MP2 and NEO-FCI levels. We compared the amount
of electron-electron and electron-positron correlation energy
captured with the NEO-MP2 and NEO-FCI methods for PsH.
In the process of extending the NEO method for positrons, we
demonstrated a systematic approach for developing even-
tempered electronic and positronic basis sets for NEO calcula-
tions. Basis sets developed using atomic calculations were found
to provide a reasonable starting point for molecular calculations.
Further optimization of the positronic basis set parameters,
however, was necessary to accurately describe the potential

TABLE 2: H -, Li, PsH, and e+LiH Even-tempered Basis Set Parameters and Associated Energies Optimized with MP2 and
NEO-MP2 Methods

system basis Rs âs Rp âp Rd âd EMP2

H- e- 9s5p4d 0.004082 3.12031 0.018186 2.74250 0.033809 2.77814 -0.516892

Li e- 13s6p5d 0.010651 2.65645 0.066641 2.77175 0.329441 2.81975 -7.472392

PsH e- 9s5p4d 0.018298 2.66531 0.029626 2.46850 0.041616 2.66534 -0.731866
e+ 6s4p4d 0.012420 3.91161 0.029026 2.36631 0.022201 2.55911

e+LiH e+ 6s4p4d 0.007373 1.76822 0.004573 3.32930 0.016052 2.31927 -8.068859

TABLE 3: LiH and e +LiH MP2 and NEO-MP2 Resultsa

EHF EMP2
ee EMP2

ep EMP2
d Re (Å) R0 (Å)b ∆ (eV)c ν (cm-1)b

LiH -7.987210 -0.069001 -8.056211 1.5892 1.5979 1410
e+LiH -7.991805 -0.068397 -0.008657 -8.068859 1.6652 1.6691 1.625510 1164

a The Hartree-Fock energies (EHF), MP2 energies (EMP2), and electron-electron and electron-positron correlation contributions to the MP2
energies (EMP2

ee and EMP2
ep , respectively) are provided. Also given are the bond lengths (Re and R0), dissociation energy (4), and vibrational

energies (ν). Energies are in Hartrees unless otherwise specified.b The experimental LiH bond length and vibrational frequency are 1.5957 Å and
1406 cm-1, respectively.41 c The e+LiH dissociation energy is computed for the e+LiH f Li + + PsH dissociation channel, using an Li+ MP2
energy of-7.274638 Hartree computed with the Li MP2-optimized [13s6p4d] even-tempered basis set and the PsH NEO-MP2 energy given in
Table 2.d An accurate value of the energy for e+LiH is -8.1047 Hartrees.22

Figure 2. Comparison of LiH and e+LiH MP2 and NEO-MP2 potential
energy surfaces with associated electronic and positronic basis sets from
Table 2. The Morse potential fts used to compute the vibrational
energies are also shown.
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energy surface of the molecule. The quantitative accuracy of
energy calculations can be improved by the inclusion of explicit
electron-positron correlation directly into the NEO self-
consistent-field framework using Gaussian-type geminals.31

Since the NEO method is implemented in the GAMESS code,
it can be coupled to many existing electronic structure methods,
including the multi-level methods that are available for studying
large systems. In the future, we plan to apply this method to
positron spectroscopy for larger molecules. The feedback
between theory and experiment will assist in the further
improvement of the methodology.
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