Effects of High Pressure on the Luminescence Spectra of Eu(SO₄)₂·NH₄ Microcrystals: Anisotropically Induced Structural Distortions

Concepción Cascales,*,† Alicia de Andrés,† and Javier Sánchez-Benitez^{†,‡}

Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain, and Centre for Science at Extreme Conditions, Erskine Williamson Building, The King's Building, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

Received: October 16, 2007; In Final Form: December 4, 2007

The possibilities of the use of Eu^{3+} in extracting information of the pressure effects on the nature of its crystal site in the NH₄·Eu(SO₄)₂ catalytic host are closely inspected through the study of emission spectra for applied pressures up to 87 kbar. The phenomenological crystal field analysis of these spectra reveals clear discontinuities, at ~30 kbar, the sharper ones, and then at ~70 kbar, in crystal field strength trends, which taken together with structure-based simulations of crystal field interactions indicate well-defined pressure-induced anisotropic distortions in Eu^{3+} local environments.

Introduction

The two series of trivalent rare earth R³⁺ ammonium double sulfates, monohydrated with stoichiometry NH₄R(SO₄)₂•H₂O for the smaller R as Y and Ho, or anhydrous R(SO₄)₂•NH₄, for larger R³⁺ cations as Nd and Eu, are interesting catalytic systems tested in hydrogenation of olefins and nitroaromatics as well as in oxidation of organic sulfides.^{1,2} These materials, which combine the advantages of the catalytic properties of R^{3+} centers and the solid phase, the mild conditions for reactions and the possibility of recycling and reusing, are well qualified for the development of environmentally benign methods. In oxidation reactions of organic sulfides the high selectivity found in competitive reactions is associated with the specific local environment of R³⁺ catalytic metallic centers.² Understanding these processes includes the study of the R³⁺ site features-the nature of the coordination sphere as controlled by electrostatic interactions and interligand steric contrains-in the corresponding structure. Fortunately, R³⁺ cations constitute very useful probes of crystal site environments in inorganic and organic systems.3,4

It is well-known that information on the nature of R^{3+} environments, in terms of symmetry and covalence of bonds to the ligands, can be derived from the crystal field analysis of the optical spectra of R^{3+} centers in their hosts. From this point of view, changes around R^{3+} involving variations in symmetry, interatomic distances, and covalence with neighboring ligands, as for those that result from the partial or total substitution for other R^{3+} ,^{5–7} or by tuning temperature and pressure, are usually tested from the crystal field analysis of spectroscopic data derived from optical absorption, photoluminescence (including the fluorescence line narrowing technique, for glass materials), and inelastic neutron scattering experiments.

Focusing on the pressure effects that characterize the R^{3+} optical spectra,⁸⁻¹⁶ and because Eu³⁺ is the obvious choice

among all R³⁺, this work presents a systematic evaluation of a number of pressure-dependent characteristics of local Eu³⁺ environments, i.e., the covalence, evolution of the spin-orbit interaction, and very especially the symmetry and distribution of the distances to the ligands in the stoichiometric Eu(SO₄)₂•NH₄ crystal, through the analysis of room-temperature photoluminescence spectra under different pressure conditions. The good resolution of the emission transitions, due to the ordered crystalline nature of Eu(SO₄)₂·NH₄, along with the sequence of observed energy levels corresponding to ${}^{5}D_{0} \rightarrow {}^{7}F_{I}$ transitions up to J = 4, beyond the ⁷F₂ usually studied for Eu³⁺ glass materials,^{13–15,17,18} are advantages for achieving accurate results in the current parametrization of Eu³⁺ crystal field interactions. Afterward, from the comparison with estimated crystal field parameters derived from crystallographic data by using the semiempirical Simple Overlap Model (SOM),19 an assessment and discussion on the possible origin of distortions affecting the Eu³⁺ environment will be derived. The current approach to this knowledge can help to interpreting mechanisms in the bonding of Eu^{3+} , that is, the catalytic center in $Eu(SO_4)_2 \cdot NH_4$, to its ligands in the formation of the catalytic intermediate complexes.

Experimental Section

Synthesis of the Sample and Crystallographic Background. Colorless crystals of Eu(SO₄)₂·NH₄ were synthesized hydrothermally from a reaction mixture containing Eu(NO₃)₃· 6H₂O, propylamine and dimethyl sulfoxide, heated in a stainless steel reactor at 170 °C during two weeks under autogenous pressure.¹

The crystal structure, established by single-crystal X-ray diffraction, is monoclinic, space group $P2_1/c$ (No. 14), with a = 8.8605(8) Å, b = 7.1183(7) Å, c = 10.669(1) Å, $\beta = 91.324$ (2)°, and $Z = 4.^1$ It can be conceived as constituted by sheets of composition [Eu(SO₄)₂]⁻_∞, Figure 1a, stacked parallel to the bc plane, Figure 1b, in which a honeycomb (6, 3) layer of EuO₉ edge sharing polyhedra is linked to two different kinds of isolated sulfate SO₄²⁻ tetrahedra. These sheets are bent along the *a* direction, as viewed in the Figure 1b. Inside the interblock

^{*} Corresponding author. E-mail: ccascales@icmm.csic.es. Fax: 34 913720623.

[†] Consejo Superior de Investigaciones Científicas.

[‡] The University of Edinburgh.

Figure 1. Views along (a) [100] and (b) [001] directions on the structure of $Eu(SO_4)_2$ ·NH₄. (c) Detailed view of the EuO₉ polyhedron and its environment. Large blue spheres represent Eu³⁺, and labels for coordinated oxygens are those previously used in the single-crystal X-ray diffraction study);¹ SO₄²⁻ are the larger tetrahedral groups, and the smaller ones represent NH₄⁺.

space are hosted rows of NH_4^+ running parallel to the *b* direction, connecting the layers through hydrogen bonds. The local structure around Eu^{3+} in the crystal, that is, its coordination polyhedron formed by oxygens as well as the nearest bonded SO_4^{2-} groups and NH_4^+ cations, is depicted in the Figure 1c.

Pressure Measurements and Photoluminescence Spectra. Pressure measurements were performed using a diamond anvil optical cell with steel gaskets with a typical 200 μ m diameter hole. Single crystals of Eu(SO₄)₂•NH₄ were deposited on the top surface of a NaCl pellet inserted in the cell. This procedure avoids nonhydrostatic conditions during measurements, performed at pressures up to 87 kbar at room temperature. Ruby microspheres were also placed in the cell to measure the pressure by the ruby luminescence method.²⁰ In conjuction with the above cell, a micro-Raman system was used to obtain the Raman and emission spectra. The system consists in a Jobin-Yvon HR 460 monochromator, a N₂-cooled CCD and a Kaiser-Notch-Plus

Figure 2. Room-temperature photoluminescence spectra for ${}^{5}D_{0} \rightarrow {}^{7}F_{0,1,2}$ transitions of Eu³⁺ in Eu(SO₄)₂·NH₄ for measured pressures up to 87 kbar.

filter used to suppress the elastic scattered light. The 514.5 nm line of an Ar-Kr laser from Spectra Physics was used to excite the luminescence of the sample. The scattered and incident beams were focused using an Olympus microscope with a long working distance x20 objective; thus the experiments have been done in the backscattering geometry. At each pressure the scattered light from the sample and from one ruby sphere was collected.

Experimental Results

Depending on the applied pressure the collected luminescence spectra of Eu(SO₄)₂·NH₄, consisting of sharp and well defined ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions observed for J = 0, 1, 2, 3, and 4, present diverse characteristics, mainly regarding the individual positions of energy levels and therefore the magnitude of the observed crystal field splitting for each ${}^{7}F_{J}$ state, as well as their relative intensity. The evolution of energy level shifts shows strong nonlinearity between specific ranges of applied pressure. On the other hand, no induced amorphization has been observed,²¹ and the small observed broadening for the single transition ${}^{5}D_{0}$ \rightarrow ⁷F₀ shows also nonlinear behavior with the compression. We shall hereafter refer to the optical features of these spectra-in terms of the position of the Stark energy levels, intensities of the corresponding transitions, and their line widths-as originating from Eu³⁺ at I, II, III, IV, V, VI, VII, VIII, and IX local environments, originated under pressures of 0, 14, 26, 37, 46, 57, 67, 77, and 87 kbar, respectively.

Figure 2 shows the spectra corresponding to the ${}^{5}D_{0} \rightarrow {}^{7}F_{0,1,2}$ transitions at increasing pressures from ambient up to 87 kbar. In all cases, the observation of a weak line for the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition indicates a site of C_{nv} , C_{n} , or C_{s} symmetry for Eu³⁺, as these symmetries allow the transition as an electric dipole process, according to the group theory selection rules, with a linear term in the crystal field expansion.^{22,23}

Figure 3 summarizes the effects of pressure on the single ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{0}$ transition. The energy of the transition for Eu³⁺ at I–IX environments is depicted in Figure 3a. Shifts to lower energies, from 17272 to 17239 cm⁻¹, are clearly observed when the pressure is getting higher. The red shift is very pronounced when the pressure was increased from ambient to 26 kbar, then the peak position remains practically unchanged between 26 and 37 kbar, showing a further moderate and continuous red shift above 37 kbar. In this way, two almost linear relationships, ${}^{7}\text{F}_{0}(\text{A}) = 17273 - 0.61P \text{ cm}^{-1}$, and ${}^{7}\text{F}_{0}(\text{B}) = 17267.8 - 0.34P$

Figure 3. Energy (cm⁻¹) (a) and full width at half-maximum fwhm (b) of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition of Eu³⁺ in Eu(SO₄)₂•NH₄ for measured pressures up to 87 kbar.

cm⁻¹, describe the dependence of the peak position with the pressure, with a clear change in the slope around 30 kbar, that separates the two main pressure-induced behavior regimes, A and B, as will be indicated below. Following previous arguments,^{8,24} and according to the nephelauxetic effect,²⁵ we can evaluate the overall Eu–O bonding covalence for the different successive I–X sites by using the variation of the energy of the ⁵D₀ \rightarrow ⁷F₀ transition. Therefore, we associate the red-shifted transitions with increasingly covalent Eu³⁺ environments, this effect being strongly observed for I–III pressure-induced sites up to 26 kbar, and after the discontinuity around 30 kbar the increase in covalence becomes more gradual and continuous up to 87 kbar.

In the evolution of the bandwidth (as fwhm) of the ${}^{5}D_{0} \rightarrow$ $^{7}F_{0}$ transition, Figure 3b, an important broadening is initially observed, followed by a reversal in the trend around 30 kbar to more reduced fwhm values that remains nearly constant up to approximately 60 kbar. Finally, for the higher pressures the ${}^{5}D_{0}$ \rightarrow ⁷F₀ transition smoothly broadens again. This feature in ⁵D₀ \rightarrow ⁷F₀ can be ascribed to the correlation between electronphonon coupling and crystal field strengths in a given pressureinduced Eu3+ environment.26 These results, and the three pressure ranges that the evolution of the bandwidths establish, properly correlate with data obtained from the analysis carried out for selected Raman phonons of the Eu(SO₄)₂•NH₄ compound.²⁷ The maximum fwhm for site III at 26 kbar, about 3 times that for site I, suggests an increasing electron coupling to local lattice vibrations associated to an enhancement of the crystal field strength up to 26 kbar, which is followed by some weakening of these effects across IV-VII environments, and a final regain in them above 67 kbar, for Eu³⁺ at VIII and IX sites.

For all applied pressures, the presence of three Stark levels for the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition and five levels in the hypersensitive ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ region, as Figure 2 shows, means that the degeneracy of these two states is completely lifted; that is, the crystal site of the Eu³⁺ optical center in I–IX surroundings possesses $C_{2\nu}$ or lower symmetry. Table 1 includes the energies of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition, ${}^{7}F_{1}$ and ${}^{7}F_{2}$ Stark levels, splittings, and centers of gravity for ${}^{7}F_{1}$ and ${}^{7}F_{2}$ states for Eu³⁺ in all I–IX environments.

The pressure is expected to increase the overlap between Eu³⁺ 4f wavefunctions and the ligand orbitals, yielding small variations on the Coulomb and spin-orbit coupling interactions. From the centers of gravity for $^{7}F_{2}$ and $^{7}F_{1}$ manifolds, an

indication of the evolution of the spin-orbit coupling parameter ξ_{4f} with the pressure can be extracted.⁸ Figure 4 gives the evolution with the compression of the average value ξ_{4f} . Initially, no variation is found, and the strong decrease of ξ_{4f} up to 37 kbar is followed by a plateau that extends to about 67 kbar, which turns even to increase at pressures above 67 kbar. Although the ξ_{4f} evolution for Eu³⁺ across I–IV pressure-induced sites has been explained as the result of the expansion of the 4f wavefunctions of Eu³⁺,⁸ a consequence of the screening of the nuclear charge by the increasingly overlap with orbitals from the ligands, the behavior above 37 kbar, with a minimum at 67 kbar (for site VII), would be the result of some axially induced stress effect, owing the sensitivity of ξ_{4f} to nonisotropic stresses,²⁸ although other effects⁸ could simultaneously influence the ξ_{4f} variation with the applied pressure.

By checking the variation of the intensity ratio of the induced electric dipole ED ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ to the magnetic dipole MD ${}^{5}D_{0}$ \rightarrow ⁷F₁ emissions, *I*_{ED/MD}(1), Figure 5, related to the Judd–Ofelt parameter Ω_2 ,²⁹ an assessment of the evolution of short-range effects such as the distortion and covalence degree of the Eu³⁺ site,^{3,9,13-15,29,30} can be derived. Although this relationship is \sim 2 for ambient pressure, it reaches a maximum value of \sim 2.5 for 46 kbar. These data indicate an enhancement of the electric dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition, which reveals increasing distortion and/or higher covalence in bonds to ligands surrounding Eu³⁺ in I-V pressure-induced sites. However, the variation of $I_{\text{ED/MD}}(1)$ does not display an unique trend along the series of emission spectra, and after reaching the maximum at 46 kbar, its behavior reverses to lower values, indicating some release of one or both indicated factors, and finally regains strength for the environment IX, corresponding to the highest applied pressure. The identification of the key factor to cause discontinuities will be discussed later, in connection with results of the crystal field analysis.

Among the remaining observed ${}^{5}D_{0} \rightarrow {}^{7}F_{3,4}$ transitions shown in Figure 6, the ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ transitions are detected with remarkable low intensity. In fact, these transitions are forbidden in first order by the ED and MD selection rules, and can be observed only as a consequence of the *J*-mixing, which mixes the ${}^{7}F_{3}$ wavefunctions with other ${}^{7}F_{J}$ ones, through the secondand fourth-order crystal field parameters. Lists with all observed energy levels for Eu³⁺ at corresponding I–IX surroundings for applied pressures are available in the Supporting Information.³¹

The variation of long-range effects around Eu³⁺, that is, those related to the bulk properties of our material and to the Judd-Ofelt parameter Ω_4 ,²⁹ can be followed through the intensity ratio $I_{\text{ED/MD}}(2)$ of ED ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{4}$ to MD ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}$ emissions; see Table 1. $I_{ED/MD}(2)$ experiences significant but scattered changes for increasing pressures, from ~ 1 for ambient pressure up to ~ 10 for 46 kbar and 87 kbar. At this point it is worth noting that the transition ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ develops a peculiarly high intensity for pressures above 14 kbar, being even stronger than the ${}^{5}D_{0}$ \rightarrow ⁷F₂ transition. This phenomenon can be interpreted in terms of the behavior of the Judd-Ofelt intensity parameters Ω_{λ} related to their dependence on the nature and local symmetry around Eu³⁺, in such a way that a particular combination of enhancement for Ω_4 upon Ω_2 , as derived from a long-range environment becoming more regular by the applied pressure, with the high polarizability of the chemical surroundings of Eu³⁺, has to be taken into account to explain it.32

The crystal field analysis and simulation of Eu^{3+} experimental energy levels constitutes an easy and powerful tool to evaluate the pressure-induced changes in symmetry and distances around Eu in $Eu(SO_4)_2$ ·NH₄. The whole series of luminescence spectra

TABLE 1: Energy of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ Emission (cm⁻¹), Energy Levels (cm⁻¹), Centers of Gravity CG (cm⁻¹), Splittings Δ (cm⁻¹) for ${}^{7}F_{1}$ and ${}^{7}F_{2}$ Multiplets, and Intensity Ratios of Transitions ${}^{5}D_{0} \rightarrow {}^{7}F_{2}/{}^{5}D_{0} \rightarrow {}^{7}F_{1}$, I(1), and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}/{}^{5}D_{0} \rightarrow {}^{7}F_{1}$, I(2), for Pressure-Induced P (kbar) Eu³⁺ Environments E in Eu(SO₄)₂·NH₄

				$^{7}\mathrm{F}_{1}$						$^{7}\mathrm{F}_{2}$						
Р	Е	$^{5}\mathrm{D}_{0}$	1	2	3	CG^a	$\Delta^7 F_1$	1	2	3	4	5	CG^a	$\Delta^7 F_2$	$I(1)^b$	$I(2)^{c}$
0	Ι	17272	302	387	422	370	120	944	1022	1072	1102	1197	1067	253	2.10	1.1
14	II	17265	302	379	434	372	132	949	1023	1076	1099	1198	1069	249	2.23	3.4
26	III	17257	313	379	422	371	109	947	1021	1076	1107		1038	160	2.27	1.9
37	IV	17256	298	368	451	372	153	924	953	1025	1078	1108	1018	184	2.45	3.8
46	V	17252	296	375	447	373	151	922	954	1024	1074	1112	1017	190	2.52	10.2
57	VI	17248	294	376	450	373	156	918	954	1025	1069	1117	1016	199	2.47	
67	VII	17245	284	376	463	374	179	917	958	1025	1069	1119	1016	202	2.42	
77	VIII	17242	275	374	481	377	206	920	968	1024	1106	1116	1027	196	2.37	4.1
87	IX	17239	268	375	485	376	217	921	976	1024	1108	1120	1030	199	2.38	9.8

^{*a*} CG have been calculated as the average energy of the three ${}^{7}F_{1}$ and five ${}^{7}F_{2}$ Stark levels, respectively. ^{*b*} $I_{ED/MD}(1) = ({}^{5}D_{0} \rightarrow {}^{7}F_{2})/({}^{5}D_{0} \rightarrow {}^{7}F_{1})$.

Figure 4. Effect of the applied pressure on the spin-orbit interaction ξ_{4f} normalized to the ξ_{4f} (p = 0 kbar) value.

Figure 5. Intensity ratio ${}^{5}D_{0} \rightarrow {}^{7}F_{2}/{}^{5}D_{0} \rightarrow {}^{7}F_{1}$, $I_{ED/MD}(1)$, as a function of the applied pressure.

for I–IX environments will be examined to parametrize their corresponding crystal field interactions. The phenomenological evaluation of trends in derived crystal field parameters CFPs and their comparison with those derived from a semiempirical structure–related crystal field model, will provide a way to develop a description of the pressure relationship with local environments of Eu³⁺ active sites,¹⁶ which must be consistent with all the results already pointed out.

Crystal-Field Analysis and Phenomenological Simulation of the Energy Level Schemes: Observed Trends. It is wellknown that Eu³⁺ is the best choice for a "crystal-field probe" in a given host.³³ By making use of the selection rules for induced electric dipole and magnetic dipole transitions, it is possible to discriminate between different point symmetries for an observed optical center in a given host. Moreover, there is a straightforward relation between the crystal field splitting of $^{2S+1}L_J$ levels with small J values, especially for J = 1 and 2, and the CFPs. In this case, CFPs can be deduced directly from the experiment. The $^{7}F_J$ levels are very adequate to be used in a crystal field analysis because of their large value for the

Figure 6. Room-temperature photoluminescence spectra for ${}^{5}D_{0} \rightarrow {}^{7}F_{3,4}$ transitions of Eu³⁺ in Eu(SO₄)₂•NH₄ for measured pressures up to 87 kbar.

reduced matrix elements, and furthermore they can be described rather well in a Russell–Saunders basis,³⁴ in contrast with levels at higher energies.

The strongly reduced basis of the ${}^{7}F_{JM}$ set alone, i.e., 49 \simeq LJM_J levels, can be used to conduct, with accurate results, the phenomenological crystal field simulation of the Eu³⁺ energy level scheme.³ Evidently, even with the *J*-mixing included, this basis does not take into account all interactions, as nondiagonal spin—orbit interactions that create small components of the ${}^{5}D_{J}$ levels into the ${}^{7}F_{J}$ wavefunctions. Therefore, "intermediate parameters" have to be introduced, one for each ${}^{7}F_{J}$ state, to overlap experimental and calculated centers of gravity.

The method used for calculating the energy levels of Eu³⁺ in a crystalline environment considers the single-particle crystal field theory. Following the formalism of Wybourne,³⁵ the crystal field Hamiltonian is expressed as a sum of products of tensor operators $(C_q^k)_i$, with real B_q^k and complex S_q^k parameters as coefficients, the latter appropriated to the Eu³⁺ site symmetry in the host.

$$H_{\rm CF} = \sum_{k=2}^{4,6} \sum_{q=0}^{k} [B_q^k (C_q^k + (-1)^q C_{-q}^k) + {\rm i} S_q^k (C_q^k - (-1)^q C_{-q}^k)]$$

The crystal field potential for Eu^{3+} in its initial environment in $Eu(SO_4)_2$ ·NH₄ possess C_1 symmetry¹ and thus involves 27 CFPs, but the simulation with such a high number of adjustable parameters is nonrealistic. Therefore, we proceeded by using

TABLE 2: Simple Overlap Model (SOM) Simulated, and Phenomenological Crystal Field Parameters and Crystal Field Strengths (cm^{-1}) for Eu³⁺ in Local Environments Induced by Pressure in Eu(SO₄)₂·NH₄

	SOM	Ι	II	III	IV	V	VI ^c	VII ^c	VIII	IX
B_0^2	359	306(8)	343(23)	332(17)	467(15)	468(16)	480(15)	518(12)	585(14)	609(14)
B_2^2	228	193(6)	174(18)	143(12)	146(14)	164(14)	172(15)	193(13)	223(14)	237(14)
$B_0^{\tilde{4}}$	-518	-905(12)	-888(34)	-951(25)	-375(28)	-405(29)	-426(30)	-401(23)	-237(27)	-214(30)
B_2^4	-108	-619(10)	-255(34)	-322(26)	-198(36)	-114(32)	-103(49)	-42(40)	-210(31)	-143(28)
$B_4^{ ilde{4}}$	32	-78(13)	-137(32)	-88(27)	-270(24)	-227(24)	-287(29)	-291(24)	-270(25)	-293(28)
S_2^4	-568	-320(18)	-697(29)	-761(17)	-530(20)	-546(25)	[-540]	[-540]	-504	-567(27)
$S_4^{\overline{4}}$	-107	-156(13)	-22(38)	-150(24)	-239(26)	-267(27)	[-267]	[-267]	-296	-293(32)
B_{0}^{6}	-51	-354(16)	-259(46)	-363(43)	-299(30)	-256(31)	-380(30)	-309(30)	-466(32)	-505(34)
B_2^{6}	-161	-271(16)	-448(40)	-304(37)	-17(35)	-73(36)	-29(36)	-198(32)	-120(50)	-179(48)
$B_4^{\tilde{6}}$	366	361(14)	371(38)	410(21)	501(24)	515(23)	640(23)	639(22)	436(35)	513(29)
$B_6^{\dot{6}}$	6	-296(16)	-336(53)	-735(23)	-718(39)	-828(32)	-756(34)	-713(32)	-953(27)	-1047(26)
S_{2}^{6}	199	314(14)	209(33)	174(20)	111(23)	68(26)	[70]	[70]	155(23)	204(24)
$S_{4}^{\bar{6}}$	-69	-231(18)	-130(28)	-266(20)	-370(24)	-303(29)	[-332]	[-332]	-478(24)	-477(22)
S_{6}^{6}	-122	-285(15)	-622(45)	-486(34)	-710(27)	-711(33)	[-643]	[-643]	-433(32)	-139(68)
S^{2a}	216	183	189	174	228	234	241	262	297	311
S^4	354	454	463	504	340	339	349	343	329	345
S^6	289	301	379	430	475	495	493	486	506	527
S^T	292	332	362	396	362	372	376	375	388	406
Ν		21	20	18	22	22	11	11	18	18
σ^b		0.7	5.9	2.5	3.3	3.5	3.1	1.9	3.1	3.4

^{*a*} $S^k = \{1/(2k+1)[(B_0^k)^2 + 2\sum_q [(B_q^k)^2 + (S_q^k)^2]]\}^{1/2}$, $S^T = [\frac{1}{3}\sum_k S^{k^2}]^{1/2}$. ^{*b*} $\sigma = [\sum (\Delta_i)^2/(N-p)]^{1/2}$, $\Delta = E_o - E_c$; N = number of Stark levels, p = number of parameters. ^{*c*} Complex CFPs, with values close to those for V, have not been varied in the fit.

the approximate C_2/C_s symmetry, for all I–IX environments, as the best approach. To make a meaningful simulation, we carry out the descending symmetry procedure fitting first the observed energy levels in the orthorhombic C_{2v} point group, the highest symmetry for which no crystal field degeneracy exists. Thus, second-, fourth-, and sixth-rank real C_{2v} CFPs can be derived from the adequate reproduction of separate 7F1,7F2 and the remaining observed ⁷F₃₋₄ splittings, respectively, before considering all observed energy levels and a free variation of all CFPs. This procedure often yields different sets of CFPs, all of them describing adequately the sequences of observed energy levels. This laborious procedure of searching reliable minima and accurate starting CFPs is facilitated by using predictive models for crystal field interactions,³⁶ that furthermore serve to assess the likeliness of present phenomenological parametrizations of crystal field effects in the Eu³⁺ initial I crystal site. We have applied the well-tested semiempirical Simple Overlap Model SOM.^{19,37} This simplified model of calculation of crystal field interactions uses the crystal structural data concerning the closer coordination sphere of ions around $\mathrm{Eu}^{3+},$ i.e., the distances in its coordination polyhedron.

SOM considers effective charges, located around the middle of the Eu³⁺-ligand (L) distances, which are assumed to be proportional to the magnitude of the overlap integral ρ between the 4f and the valence orbitals of Eu³⁺ and L (oxygen), respectively. The CFPs are written as

$$B_q^k = \langle r^k \rangle \sum_{\mathbf{L}} \rho_{\mathbf{L}} \left(\frac{2}{1 \pm \rho_{\mathbf{L}}} \right)^{k+1} A_q^k(\mathbf{L}) \qquad \rho_{\mathbf{L}} = \rho_0 \left(\frac{R_0}{R_{\mathbf{L}}} \right)^{3.5}$$

The sum over L is limited to the first coordination sphere; consequently, the required crystallographic data are restricted to the closest oxygen positions and thus $\langle r^k \rangle$ radial integral are not corrected from the spatial expansion. ρ varies for each L as a function of the distance *R*, according to the exponential law above indicate, R_0 being the shortest distance. A_q^k is the lattice sum and it takes into account the symmetry properties of the

 Eu^{3+} site, including the effective charge attributed to L. The sign \pm of the denominator stands for differentiating the type of L: when a single type of L is considered, a minus sign corresponding to the normal shift of the charge barycenter from the midpoint of the R bonding distance should be taken, and when different L are present the minus sign corresponds to the most covalent one. Crystallographic data for Eu(SO₄)₂•NH₄ were those from previous X-ray analysis,1 the effective charge for the oxygen was taken as -1.0, a value that is found not to vary much, and ρ was adjusted to a value of 0.05, intermediate between typical values for 4f^N configurations, 0.04 (mostly ionic compounds) and 0.08 (mostly covalent compounds).¹⁹ With this model, real B_q^k and complex S_q^k CFPs for the C_2/C_s symmetry of the initial environment I of Eu³⁺ in Eu(SO₄)₂·NH₄ have been estimated; see Table 2. These values together with the above phenomenological C_{2v} ones constitute the basis for subsequent C_2/C_s phenomenological fits of observed Eu³⁺ Stark energy levels.

To compare and evaluate changes in the crystal field interactions for Eu³⁺ in progressively pressure distorted local environments, the relative S^k (k = 2, 4, 6) and total S^T crystal field strength parameters have been also calculated; see definitions³⁸ at the bottom of Table 2. These S^2 , S^4 , and S^6 rotational invariants of the crystal field represent the short-, medium-, and long-range crystal field strengths, respectively, in connection to the spatial expansion of crystal field effects.

All the performed calculations were conducted with the aid of the matrix-diagonalizing program GROMINET,³⁹ which took into account the *J* mixing between wavefunctions with different *J* and *M* values. Least-squares refinements between experimental and calculated energy levels were carried out by minimizing the function σ , defined as indicated at the bottom of Table 2. Observed energy levels for Eu³⁺ at I–IX local fields, included in Table 1 of the Supporting Information, were used to determine the corresponding CFPs. These sequences include all wellresolved ⁷F₁ and ⁷F₂ Stark levels, which reduce possible uncertainties in calculated fourth rank CFPs, thus making their

Figure 7. Variation of B_q^2 (a), B_q^4 (b), and B_q^6 (c) crystal field parameters and crystal field strengths (d) as a function of the applied pressure for Eu³⁺ in Eu(SO₄)₂•NH₄.

values physically meaningful, and an important number of energy levels for 7F_3 and 7F_4 (excepting for 57 and 67 kbar measurements), which allows the fit of the sixth rank ones. In accordance with the reduced number of 7F_3 and 7F_4 observed energy levels in measurements at 57 and 67 kbar, complex fourand six-rank CFPs have not been varied in the fitting process, and their values were those obtained for the corresponding fit at 47 kbar. Final best fitted C_2/C_s CFPs for ambient and pressureinduced I–IX Eu³⁺ local environments in the studied ammonium sulfate matrix are listed in Table 2.

Despite the low point site symmetry of Eu^{3+} sites, the crystal field simulations have produced energy level sequences that show satisfying accordance with the observed data (see Table 2), and even more important, no individual discrepancies between experimental and calculated values of individual energy levels are observed. In the Supporting Information³¹ are included the experimental sequences of energy levels and the corresponding calculated schemes for Eu^{3+} at I–IX environments.

Analysis of Trends in Phenomenological CFPs along the Pressure Series. To analyze possible trends with the applied pressure, results of Table 2 are displayed in Figure 7a–d. Apart from the nature of the considered R³⁺, the crystal field potential around an optical center directly depends of the symmetry, distances, and bonding angles that characterize its crystal-lographic site in the host. If the applied pressure supposes some reduction in ligand distances around Eu³⁺, yielding either higher symmetry sites or, in contrast, more distorted sites with wider distribution of distances (i.e., with some distance(s) significantly smaller than the average distance), the short-range crystal field strength would increase.

As shown in Figure 7a, an evolution to higher magnitudes can describe the general behavior of B_0^2 for I to IX Eu³⁺ surroundings, related to some reduction in nearer Eu³⁺-ligand distances. However, a sudden jump in B_0^2 values is observed for pressures around 30 kbar, and after a continuous change to increased values, other less relevant discontinuity around 70 kbar up to 87 kbar is detected, delimiting three A, B, and C well-defined separate pressure-induced behaviors. Similar regions can be distinguished in the evolution of B_2^2 values, but for pressures below 30 kbar the evolution trend is reversed with regard to B_0^2 . The crystal field strength parameter S^2 , Figure 7d, which is a quantitative measure of the short-range crystal field interactions, smoothes to some extent the above opposite effects and, although it maintains the three differentiated pressure behavior ranges, evolves in a slightly increasing way across the series.

Concerning medium-range B_q^4 CFPs, Figure 7b, the B_0^4 parameter undergoes an abrupt reduction of absolute values around 30 kbar, remaining afterward almost unchanged up to \sim 70 kbar, and followed by a small increase for final pressures up to 87 kbar. Variations in the B_2^4 parameter, always with negative values, are weaker, but its trend delimits similar pressure ranges, with minima around 30 and 70 kbar. B_4^4 evolves depicting also the three indicated pressure schemes, with values going in the opposite direction with regard to B_0^4 . Taking into account all these individual behaviors, the S^4 plot, Figure 7d, defines well the three kinds of behavior for mediumrange Eu³⁺ crystal field interactions, and their corresponding pressure ranges, especially for the two first ones. Opposite trends of B_a^4 CFPs featuring VIII and IX Eu³⁺ environments, for 77 and ⁸7 kbar, respectively, cancel their differences with regard to IV-VII pressure-induced sites.

Being aware of the reduced number of experimentally observed ${}^{7}F_{3}$ and ${}^{7}F_{4}$ energy levels, and thus of the lower level of confidence, among B_{q}^{6} CFPs, Figure 7c, B_{0}^{6} behaves fluctuant, with negative values and with a slightly negative slope from the start to the end of the series. For the B_{2}^{6} parameter, also with negative values, after 30 kbar the pressure-induced Eu³⁺ environments show a reduction of its absolute value. The evolution of the B_{4}^{6} parameter, with positive values in the whole pressure range, shows a positive slope up to ~70 kbar, with somewhat lower values for the two environments corresponding to the higher pressures. Finally, the B_{6}^{6} parameter

proceeds with a general increase of their negative values, with little variation in the pressure range between 30 and 70 kbar, with higher negative values for higher-pressure Eu^{3+} environments. The general behavior of S⁶, Figure 7d, indicates a general enhancement of the strength in long-range crystal field interactions.

Locally Induced Pressure Effects around the Eu³⁺ Site: Discussion. Benefiting from the fact that the SOM model uses the crystallographic distances of the coordination polyhedron around Eu³⁺ in the estimation of CFPs, a qualitative evaluation of possible distortions induced in the Eu(SO₄)₂·NH₄ network by the applied pressure, through the adequate reproduction of the previously indicated trends in phenomenological CFPs, was attempted. Although the SOM is only a coarse approach, it is an attractive semiempirical crystal field model because of its simplicity correlating the crystal structure with CFPs. In SOM calculations only the first coordination sphere of neighbors around Eu³⁺, i.e., the EuO₉ polyhedron (maximum distance Eu- $O_{max} = 2.580$ Å), is considered, but under the applied pressure it would be possible that some other ligands can be at similar distances from Eu³⁺ than those in EuO₉, contributing also to the crystal field felt by Eu³⁺. Therefore, to extend our computations to a range of interatomic distances covering all possible ligands with effect over the Eu³⁺ crystal field, a modified model, SOMPLUS,⁴⁰ which also takes into account more distant ligands, S(1) and S(2) from SO_4^{2-} groups, NH_4^+ , and even next Eu^{3+} in a second cationic sphere, has been used here. Bearing in mind the anisotropy of the studied material, these calculations have explored, together with the effect of the hydrostatic compression (H) on the $Eu(SO_4)_2 \cdot NH_4$ crystal, the pressure effect on each single crystallographic direction, that is, the calculation of CFPs supposing volume compressions derived from the reduction of unit cell dimensions along a, b, or c crystal axes (thereafter shortly indicated as a, b, or c volume compressions).

Because phenomenological fits have yielded remarkable variations and well-defined trends in the evolution with the pressure for B_0^k (k = 2, 4, 6) parameters, and especially for B_0^2 and B_0^4 , the comparison with predictions derived from SOM and SOMPLUS will be focused on these CFPs. Figure 8a-c collects calculated B_0^k values vs volume compressions of the unit cell of Eu(SO₄)₂•NH₄, corresponding to Eu³⁺ surrounded by (i) oxygens of EuO₉ and (ii) ligands at larger distances, the above ones plus S(1) and S(2) from sulfate groups, NH_4^+ and a second sphere of Eu³⁺ cations, up to 7 Å. Due to the $1/R^{k+1}$ dependence, the consideration of environments including successive shells of ligands at a greater distance is supposed not much influence the crystal field. As can be seen in Figure 8ac, no important differences have been found between (i) and (ii) surroundings for either B_0^4 or B_0^6 parameters, in any crystal direction, even at the highest considered pressure. Divergences are larger for B_0^2 (1/R³ decreases slower than 1/R⁵ and 1/R⁷), with higher values for the extended environment of ligands. Therefore, the non-nearest neighbor ligands have a greater contribution to the parameters with k = 2, than those with k =4 and 6. Moreover, these calculations indicate that the evolution of the crystal field interactions in Eu(SO₄)₂•NH₄ is highly anisotropic, and only the effect of the compression along c is close to the effect of the hydrostatic compression. Thus, sudden changes in phenomenological CFPs as those observed mainly around 30 kbar could be attributed to an emerging dominant axial component of the pressure-induced volume compression of the unit cell of Eu(SO₄)₂•NH₄.^{8,11,28,41,42} In other words, changes in the main axial component of the nonhydrostatic

Figure 8. Variation of simulated (a) B_0^2 , (b) B_0^4 , and (c) B_0^6 Eu^{3+} crystal field parameters vs hydrostatic H (\blacksquare), a (\bigcirc), b (\blacktriangle) and c (\checkmark) volume compressions of Eu(SO₄)₂·NH₄. Open symbols are for calculations considering only the first shell of oxygens around Eu³⁺, and full symbols are for ligands up to 7 Å from Eu³⁺.

induced compression at a given pressure can account for important modifications of trends in CFPs.

Independently of the considered nearer or extended ligand field around Eu³⁺, from the comparison of the phenomenological B_0^2 vs pressure, Figure 7a, with the calculated curves, Figure 8a, it can be derived that if initially the pressure effect on the crystal field can be assimilated to this produced by a hydrostatic regime, the sudden jump in B_0^2 must be attributed to a short-range compression experienced mainly along the *a*-axis. This means that for pressures exceeding a given limit the compression specifically affects ligands situated near the *a*-axis, those labeled O2, O4, O3¹, and O5 in Figure 1c, whose individual distances to Eu³⁺ are clearly diminished with regard to the average Eu–O(P), yielding a larger distribution of distances around Eu³⁺, and thus stronger B_0^2 CFPs.⁴³

The evolution of calculated B_0^4 , Figure 8b, has negative slope for hydrostatic H as well as for both *a* and *c* volume compressions. On the contrary, it shows positive slope, going from strong negative to small positive values, for compressions induced along the *b*-axis. Thus, trends in phenomenological B_0^4 values could be reproduced through a change in the effect of the pressure, which specifically influences medium-range

Figure 9. (a) Evolution of average Eu–O distances d_{aver} (full symbols) and *R* ratio (open symbols) in the EuO₉ polyhedron for independent *a* and *b* volume compressions: (\blacklozenge) *a* volume compression; (\blacklozenge) *b* volume compression. (b) Evolution of d_{aver} (full symbols) and *R* ratio (open symbols) for mixed *b* and (left pointing triangle) 2%; (\blacklozenge) 4%; (right pointing triangle) 6%; (\blacksquare) 7%; (\blacklozenge) 8%; (\blacktriangle) 9%; (*) 10%; (\diamondsuit) 12% *a* volume compressions. (c) Evolution of *R* ratio for mixed *a* and (\blacksquare) 9% and (*) 10% *b* volume compressions.

distances around Eu³⁺ and supposes compression along the *b* direction. Above 30 kbar these effects at medium-range distances will result in a rather more regular environment of ligands around Eu, leading to weaker B_0^4 CFPs.

To better visualize the correlation between pressure effects with changes in the distribution of distances around Eu³⁺, we have carried out the analysis of the evolution of all EuO₉ distances. Initially, the calculations have been made for a and b volume compressions, each one independently considered, and the results are collected in Figure 9a. It can be observed that both individual a and b compressions lead to lower Eu-O average distances, daver. However, the corresponding ratio between the minimum and the average values of Eu-O distances, $R = d_{\min}/d_{aver}$, chosen as a figure of merit for the degree of regularity of the EuO₉ polyhedron, behaves differently. Though R values are nearly constant up to the 10% of a volume compressions, and then they diminish, a maximum is observed at \sim 5% of *b* volume compression, and then its lessening is even more accentuated than for compressions along a. Afterward, the mixed effect of a and b volume compressions on Eu–O distances was scanned in the 2-12% region, and the results are collected in Figure 9b,c. Because R maxima have been detected in Figure 9b for 9 and 10% b volume compressions,

both sets of data, for different *a* volume compressions, are displayed in Figure 9c. The two sets of combined *a* and *b* volume compressions yielding most regular EuO₉ environments, that is, *R* maxima, correspond to 6% a - 9% b and 8% a - 10% b effects.

Obviously, the evolution of B_0^2 toward higher values will be modulated and kept within narrower limits, mainly in the 37– 60 kbar range of applied pressure, by this now homogenized distribution of distances around Eu³⁺.

The phenomenological variation of B_0^6 with the pressure is not very well defined, and then its explanation is not as clear as that previously indicated for B_0^2 and B_0^4 . In any case, because expected B_0^6 are going to increased negative values for purely hydrostatic as well as for volume compressions along the *a* and *b* directions, only the effect of the compression along *c* would account for the initial raise (up to ~10% *c* volume) in observed B_0^6 values.

Conclusions

Although from ambient up to below ~ 30 kbar the expected effects of the hydrostatic applied pressure are manifested through gradual changes in emission spectra, which involve the enhancement of the covalence and distortion of Eu-O bonds, the increasing strength of the electron-phonon coupling, the rapid decrease of the spin-orbit coupling related to the screening of nuclear charges and to the expansion of the 4f wavefunctions, along with some increase in the crystal field strengths, clear discontinuities appear around 30 kbar. Thus, a strong decrease in the electron-phonon coupling and the stabilization of the average value the spin-orbit interaction as well as sharp changes to higher B_0^2 (and S^2) and to lower B_0^4 (and S^4) values are the main characteristic for Eu³⁺ environment in this pressure range. The origin of this behavior can be attributed to anisotropic compressions induced in the network by the applied pressure. Through data derived from phenomenological crystal field analyses and structure-based crystal field simulations, it can be described as the result of (1) a short-range distortion felt along the *a*-axis, which specifically minimizes distances to ligands aligned along a, enlarging the distribution of Eu-O distances with regard to Eu–O_{aver}, and therefore yields enhanced B_0^2 values, and (2) a compression along b, which specifically influences medium-range distances around Eu³⁺, generating more regular Eu³⁺ environments, and consequently lessens B_0^4 values. Reinforced trends to higher B_0^2 and lower B_0^4 CFPs for Eu³⁺ at VIII and IX environments resulting from applied pressures of 67-87 kbar can be understood not only by the strengthening of these anisotropies but also as related to the observed increase in the spin-orbit coupling, in which several effects, such as the increasing gradient with the distance of the effective potential or the increasing hybridization of 4f, 2s, and 2p orbitals, can be involved.⁸

An increase in the coordination number of ligands around Eu^{3+} in $Eu(SO_4)_2$ ·NH₄ with the applied pressure⁹ has been discarded because of results from simulations of CFPs for sufficiently larger distances.

Furthermore, the careful analysis of the evolution of Eu-O distances resulting from possible anisotropically induced volume compressions even provides a semiquantitative relationship between crystal field effects in specific ranges of pressure with the local distortion of the network around Eu^{3+} .

The developed approach to the assessment of the nature of the environment of Eu^{3+} as based on the analysis of its photoluminescence spectra, can be also extended, in a more

general way, to the study of other systems, among which monoand polymetallic molecular structures⁴ or important biological systems⁴⁴ can be included.

Acknowledgment. We acknowledge the support from Spanish projects and MAT2004-2001, MAT2005-06354-C03-01, and MAT2006-01004.

Supporting Information Available: Tables with observed and calculated energy levels for observed pressure-induced local environments of Eu³⁺ in Eu(SO₄)₂•NH₄ (PDF). This information is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Ruiz Valero, C.; Cascales, C.; Gómez Lor, B.; Gutiérrez Puebla, E.; Iglesias, M.; Monge, M. A.; Snejko, N. J. Mater. Chem. 2002, 12, 3073.
- (2) Cascales, C.; Gómez Lor, B.; Gutiérrez Puebla, E.; Iglesias, M.; Monge, M. A.; Ruiz Valero, C.; Snejko, N. Chem. Mater. 2004, 16, 4144.
 - (3) Cascales, C.; Balda, R.; Fernández, J. Opt. Express 2005, 13, 2141.
 - (4) Bünzli, J. C. G.; Piguet, C. *Chem. Soc. Rev.* 2005, *34*, 1048.
 (5) Zaldo, C.; Rico M.; Cascales, C.; Pujol, M. C.; Massons, J.; Aguiló,
- M.; Díaz, F; Porcher, P. J. Phys: Condens. Matter 2000, 12, 8531. (6) Cascales, C.; Zaldo, C.; Caldiño, U.; García Solé, J.; Luo, Z. D. J. Phys: Condens. Matter 2001, 13, 8071.
- (7) Cascales, C.; Balda, R.; Fernández, J.; Fernández-Navarro, J. M. J. Non-Cryst. Solids 2006, 352, 2448.
- (8) Huber, G.; Syassen, K.; Holzapfel, W. B. Phys. Rev. B 1977, 15, 5123.
 - (9) Lochhead, M. J.; Bray, K. L. Phys. Rev. B 1995, 52, 15763.
 - (10) Hua, H.; Vohra, Y. K. Appl. Phys. Lett. 1997, 71, 2602.
- (11) Manjón, F. J.; Jandl, S.; Syassen, K.; Gesland, J. Y. Phys. Rev. B 2001. 64. 235108.
- (12) Strässle, T.; Divis, M.; Rusz, J.; Janssen, S.; Juranyi, F.; Sadykov, R.; Furrer, A. J. Phys.: Condens. Matter 2003, 15, 3257.
- (13) Reinsfeld, R.; Zigansky, E.; Gaft, M. Mol. Phys. 2004, 102, 1319.
- (14) Jayasankar, C. K.; Ramanjaneya Setty, R.; Babu, P.; Tröster, T.; Holzapfel, W. B. Phys. Rev. B 2004, 69, 214108.
- (15) Surendra, Babu, S.; Babu, P.; Jayasankar, C. K.; Tröster, T.; Sievers, W.; Wortmann, G. J. Phys. Condes. Matter 2006, 18, 1927.

(16) Troster, T. Optical studies of non-metallic compounds under pressure. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A., Jr., Bünzli, J.C-G., Pecharski, V. K., Eds.; Elsevier

Science: Amsterdam, 2003; Vol. 33, p 51. (17) Zambelli, M.; Abril, M.; Lavin, V.; Speghini, A.; Bettinelli, M. J.

Non-Cryst. Solids 2004, 345, 386.

(18) Venkatramu, V.; Navarro-Urrios, D.; Babu, P.; Jayasankar, C. K.; Lavin, V. J. Non-Cryst. Solids 2005, 351, 929.

(19) Porcher, P.; Couto dos Santos, M.; Malta, O. Phys. Chem. Chem. Phys. 1999, 1, 397.

(21) Hua, H.; Mirov, S.; Vohra, Y. K. Phys. Rev. B 1996, 54, 6200. (22) Blasse, G.; Bril, A.; Nieuwpoort, W. C. J. Phys. Chem. Solids 1966, 27, 1587.

(23) Nieuwpoort, W. C.; Blasse, G. Sol. State Commun. 1966, 4, 227. (24) Chen, G.; Haire, R. G.; Peterson, J. R. J. Phys. Chem. Solids 1995, 56, 1095.

(25) Jørgensen, C. K. Prog. Inorg. Chem. 1962, 4, 73.

(26) Avouris, P.; Campion, A.; El-Saled, M. A. J. Chem. Phys. 1977, 67, 3397.

(27) de Andrés, A.; Sanchez-Benitez, J.; Cascales, C.; Snejko, N.; Gutierrez Puebla E.; Monge, M. A. Chem. Phys. Lett. 2008, 106-110, 451.

- (28) Adams, D. M.; Appleby, S. R.; Kharma, K. J. Phys. E 1976, 9, 5123.
- (29) Oomen, E. W. J. L.; van Dongen, A. M. A. J. Non-Cryst. Solids 1989, 111, 205.
- (30) Cascales, C.; Porcher, Fernández, P. J.; Oleaga, A.; Balda R.; Diéguez, E. J. Alloys Compd. 2001, 323-324, 260.

(31) See Supporting Information for lists with all observed and calculated energy levels for Eu3+ in Eu(SO4)2*NH4, for each applied pressure and corresponding I-IX surroundings.

(32) Sá Ferreira, R. A.; Nobre, S. S.; Granadeiro, C. M.; Nogueira, H. I. S.; Carlos, L. D. and Malta, O. L. J. Lumines. 2006, 121, 561.

(33) Görller-Walrand C.; Binnemans, K. Rationalization of Crystal-Field Parametrization. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A., Jr., Eyring, L., Eds.; Elsevier Science: Amsterdam, 1996; Vol. 23, p 121.

(34) Ofelt, G. S. J. Chem Phys. 1963, 38, 2171.

(35) Wybourne, B. G. Spectroscopic properties of Rare Earths; Wiley: New York, 1965.

(36) Garcia, D.; Faucher, M. Crystal-field in non-metallic (rare-earth) compounds. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A., Jr., Eyring, L., Eds.; Elsevier Science: Amsterdam, 1995; Vol. 21, p 263.

(37) Cascales, C.; Zaldo, C.; Sáez, Puche, R. Chem. Mater. 2005, 17, 2052

(38) Chang, N. C.; Gruber, J. B.; Leavitt, R. P.; Morrison, C. A. J. Chem. Phys. 1982, 76, 3877.

(39) Porcher, P. Fortran routine GROMINET for simulation of real and complex crystal field parameters on 4f⁶ and 4f⁸ configurations; 1995.

(40) Porcher P. Fortran routine SOMPLUS for simulation of real and complex crystal field parameters on 4^{fn} configurations in materials with local disorder: 2001.

(41) Hazen, R. M.; Finger, L. W.; Mariathasan, J. W. E. J. Phys. Chem. Solids 1985, 46, 253.

(42) Shen, Y.; Bray, K. L. Phys. Rev. Lett. 2000, 84, 3990.

(43) Haumesser, P. H.; Gaumé, R.; Viana, B.; Antic-Fidancev, E.; Vivien, D. J. Phys. Condens. Matter 2001, 13, 5427.

(44) See, for instance, Mundoma, C.; Greenbaum, N. L. Biopolymers 2003, 69, 100.