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A biomolecular chromophore can be viewed as a quantum system with a small number of degrees of freedom
interacting with an environment (the surrounding protein and solvent) which has many degrees of freedom,
the majority of which can be described classically. The system-environment interaction can be described by
a spectral density for a spin-boson model. The quantum dynamics of electronic excitations in the chromophore
are completely determined by this spectral density, which is of great interest for describing quantum decoherence
and quantum measurements. Specifically, the spectral density determines the time scale for the “collapse” of
the wave function of the chromophore due to continuous measurement of its quantum state by the environment.
Although of fundamental interest, there very few physical systems for which the spectral density has been
determined experimentally and characterized. In contrast, here, we give the parameters for the spectral densities
for a wide range of chromophores, proteins, and solvents. Expressions for the spectral density are derived for
continuum dielectric models of the chromophore environment. There are contributions to the spectral density
from each component of the environment: the protein, the water bound to the protein, and the bulk solvent.
Each component affects the quantum dynamics of the chromophore on distinctly different time scales. Our
results provide a natural description of the different time scales observed in ultrafast laser spectroscopy,
including three pulse photon echo decay and dynamic Stokes shift measurements. We show that even if the
chromophore is well separated from the solvent by the surrounding protein, ultrafast solvation can be still be
dominated by the solvent. Consequently, we suggest that the subpicosecond solvation observed in some
biomolecular chromophores should not necessarily be assigned to ultrafast protein dynamics. The magnitude
of the chromophore-environment coupling is sufficiently strong that the quantum dynamics of electronic
excitations in most chromophores at room temperature is incoherent, and the time scale for “collapse” of the
wave function is typically less than 10 fs.

1. Introduction

The functionality of many proteins is associated with a small
subsystem or active site such as a heme group, a couple of amino
acids involved in proton transfer, or a cofactor such as an
optically active molecule (chromophore). There is a diverse
range of optically active molecules that have an important
biological function.1 Examples include retinal (involved in
vision), green fluorescent protein, and porphyrins (photosyn-
thesis). For these chromophores, the protein acts as a trans-
ducer which converts optical excitation of the chromophore
into a change such as an electrical signal or conformational
change that, in turn, brings about the desired biological func-
tion. Many of these transducers operate with speeds, specifici-
ties, and efficiencies which nanotechnologists are striving to
mimic.2

The dynamics of a protein involves thousands of degrees of
freedom and, at room temperature, can be described by classical

mechanics and modeled using molecular dynamics methods. In
contrast, the functional subsystem involves only a few quantum
states, and their dynamics must be described quantum mechani-
cally. This has led to considerable effort at developing hybrid
QM/MM (quantum mechanical-molecular mechanical) meth-
ods.3,9 In most cases, the change in quantum state associated
with the functional event (e.g., transition to an excited electronic
state) is associated with a change in the electric dipole moment
of the subsystem. Since the protein contains polar residues and
is surrounded by a highly polar solvent (water),4-6,8 there is a
strong interaction between the functional subsystem and its
environment. Consequently, the environment can have a sig-
nificant effect on the quantum dynamics of the subsystem.
Indeed, chromophores such as retinal, photoactive yellow
protein,9 and green fluorescent protein exhibit distinctly different
dynamics in solution, in the gas phase, and in the protein
environment.10,11 For example, the speed, efficiency, and
selectivity with which excited retinal undergoes a conformational
change are all significantly less in water than those in the protein
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environment.6,7,12This interplay between quantum and classical
dynamics raises a number of questions of fundamental interest.
On what length and time scales does the crossover from quantum
to classical behavior occur? When are quantum mechanical
effects such as coherence (i.e., superposition states), entangle-
ment, tunneling, or interference necessary for biological func-
tion?13,14What aspects and details of the structure and dynamic
properties of the protein are crucial to biological function?

1.1. Biomolecular Chromophores.Most chromophores are
large conjugated organic molecules which are surrounded by a
protein which, in turn, is surrounded by a solvent. Figure 1
shows the photoactive yellow protein (PYP), including the
chromophore and the so-called “bound water” molecules which
reside with comparatively long lifetimes on the surface of the
protein.15 Most chromophores have large dipole moments which
change significantly upon optical excitation, leading to signifi-
cant relaxation of the polarizable environment. Combined
chromophore-protein-solvent systems exhibit a broad range
of time, length, and energy scales (see Figure 2). Typical values
of different time scales are shown in Table 3 in the Appendix.

In this paper, we focus on minimal model Hamiltonians since
we are seeking to understand general qualitative features and
identify crucial parameters for understanding qualitative changes
in behavior. We specifically consider chromophores which can
be described as two-level systems (TLS); for example, we only
need consider the ground and first excited state. The models
proposed here can also be extended to include internal nuclear
dynamics of the chromophore, such as conformational change.5

Questions of quantum coherence and the role of the environ-
ment are particularly pertinent and controversial in photosyn-
thetic systems.16-20 It has sometimes been claimed that the
excitons within the light-harvesting rings are quantum mechani-
cally coherent over some or all of the chromophores (sometimes
as many as 32) within the ring. It has also been suggested that
such coherence is important for optimum performance of the
system.22-24 On the other hand, inter-ring transfer of excitons
is incoherent, which ensures the desirable feature of irreversible
transport of energy toward the reaction center. Recently, the
question of delocalization of excitons over several base pairs
in DNA has be studied, motivated by a desire to understand
UV damage of DNA.25

1.2. Quantum Dynamics, Decoherence, and the Spin-
Boson Model. Understanding, the dynamics of a quantum
system which is strongly coupled to its environment is a
challenging theoretical problem that has attracted considerable

attention over the past few decades.34 Many consider that
decoherence is the key to resolving the quantum measurement
problem.35-37 These issues are receiving renewed interest
because decoherence is detrimental to quantum information
processing.38,42Substantial progress has been made by consider-
ing the simplest possible models such as the spin-boson
model,34 which describes a two-level system (the “spin”) which
is coupled linearly to an infinite “bath” of harmonic oscillators.

For biomolecular systems, the spin-boson model has previ-
ously been applied to electron transfer.3,43,44We have recently
shown the relevance of the spin-boson model to understanding
the effect of the environment on Fo¨rster resonant energy transfer
between two chromophores.4 Of particular interest is the case
where two molecules are coupled by resonance energy transfer
(RET), such as rings of chlorophyll molecules in photosynthesis
and in fluorescent resonance energy transfer spectroscopy
(FRET). Here, an excitation in one chromophore may be
transferred to a nearby chromophore by the Coulomb interaction,
typically dipole-dipole interactions. A coupled system of
molecules such as this may be mapped to the spin-boson
model,5 where the two quantum states refer to the location of
the excitation,ε is the difference in the two chromophore’s
excited energy levels, andJ(ω) describes the coupling of the
excitation to the environments surrounding each molecule. We
have previously shown5 that the appropriate spectral density is
simply the sum of the spectral density of each individual
chromophore-protein complex. The magnitude of the spectral
density then determines whether the transfer is coherent (oscil-
latory) or incoherent (one-way). There are several definite
experimental signatures of the coherent interaction of a pair of
chromophores. These include (Davydov) splitting of energy
levels,47 super- and subradiance (i.e., increase and reduction of
the radiative lifetime24,45), and changes in fluorescence aniso-
tropy.46 Both coherence (within a ring) and incoherence
(between rings) may play potentially important functional roles
in light-harvesting complexes.

1.2.1. The Hamiltonian.For the oscillators, this can be written
as
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Figure 1. The chromophore, protein, and bound water in photoactive
yellow protein (PYP). The isolated spheres represent the bound water,
the chromophore is shown by its van de Waals surface, and the protein
is shown by a cartoon representation. Observe that the protein
surrounding the chromophore reduces the contact of the chromophore
with the surrounding bulk water. Generated from the Protein Database
3PYP.pdb.26
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whereâ is an index denoting a particular oscillator with mass
mâ, frequencyωâ, momentumpâ, and positionqâ. We introduce
second quantized operatorsaâ andaâ

†, whereaâ ≡ xmâωâ/2p
(qâ + ipâ/(mâωâ)), and satisfy the boson commutation relations
[aâ, aγ

†] ) δâ,γ
The Hamiltonian of the whole system is

where

In terms of the second quantized operators, this can be written
as

whereσx andσz are Pauli spin matrices, theCâ describes the
coupling of the system to each bath modeâ, ε is the separation
of system energy levels, and∆ is the tunneling matrix element
coupling the two states. Another model is the spin-bath model,48

where the system of interest is coupled to specific localized
states of the environment, themselves treated as two-level
systems.

1.2.2. Spectral Density.For the spin-boson model, the
quantum dynamics of the two-level system (TLS) is completely
determined by a single function, the spectral density,34 which
is defined by

It describes how strongly the oscillators with a frequency near
ω are coupled to the two-level system. An important quantity
is the reorganization energy defined by

Many systems are described by ohmic dissipation, for which
J(ω) ) pRω below some cutoff frequency,ωc, related to the
relaxation rate of the environment, and if∆ , pωc, then at
frequencies higher than, this cutoff of the coupling to the bath
of oscillators can be neglected. The main purpose of this paper
is to derive physically realistic expressions for this spectral
density that are relevant to biological chromophores interacting
with their environment.

1.2.3. Known Results.If ε, ∆ , pωc; for ohmic dissipation,
R is a critical parameter for determining the qualitative properties
of the quantum dynamics.34,49At zero temperature, forR < 1/2,
the state of the TLS exhibits damped Rabi oscillations, a
signature of quantum coherence and interference. This can be
described by considering the time dependence of the probability
that the system is in one of the two levels, which can be related
to the expectation value〈σz(t)〉. For 1/2< R < 1, the system
exhibits incoherent relaxation (exponential decay of〈σz(t)〉), and
for R > 1, the system is localized in its initial statesan example
of the quantum Zeno effect.50 A nonzero temperature reduces
the range ofR over which coherent oscillations can occur (see
Figure 21.2 in ref 34).

If ∆ > pωc, then the results of refs 34 and 49 do not apply.51

The bath responds slower than the relevant time scale for the
dynamics of the TLS. Consequently, in order to destroy coherent
oscillations, the bath must couple more strongly to the two-
level system than for the case∆ , pωc. System dynamics has
been studied with quantum Monte Carlo simulations52 whenε

) 0. Coherent oscillations in〈σz(t)〉 may be present forR > 1.
Figure 13 in ref 52 shows that when∆ ) 6pωc, then coherent
oscillations can exist even forR ) 30. Figure 8 of ref 53 shows
that for∆ ) pωc, numerical renormalization group calculations
predict that coherent oscillations exist forR < 1.5. Figure 3 of
ref 54 shows that a renormalization flow equation approach
predicts that when∆/pωc increases from very small values to
0.3, the allowed parameter range for coherent oscillations
increases toR < 1.5. The coherent-incoherent transition is
associated with the delocalization-localization transition that
has been studied in the Creutz-Taube ion and the special pair
in photosynthetic systems.28

The quantum dynamics of the spin boson model (eq 4) for a
general spectral densityJ(ω) will be largely determined by the
magnitude and frequency dependence ofJ(ω) for ω ∼ ∆. For
example, when the bath is weakly coupled (i.e.,J(∆) , ∆) to
an unbiased (ε ) 0) two-level system, coherent oscillations exist,
and the relevant decoherence rate given by Fermi’s Golden Rule
is34

Figure 2. Schematic representation of the time scales for different processes relevant to the dynamics of biomolecular chromophores. ET stands
for electron transfer and PS RC for photosynthetic reaction center. Specific numbers and references can be found in the Appendix.
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1.3. The Chromophore Environment: Protein, Bound
Water, and Bulk Water. The structures and dynamics associ-
ated with the interaction of proteins with water is extremely
rich and a challenge to model and to understand.6,8,55,56,59One
can classify the water molecules associated with proteins into
several categories: (i) water which is distant from the protein
and has the same properties as bulk water; (ii) water at the
surface of the protein molecule. The first layer of molecules is
referred to as the first hydration or solvation layer. These
molecules are weakly bound to the charged residues found at
the protein surface; and (iii) water buried inside of the protein
and which often binds to specific sites in the protein via multiple
hydrogen bonds. The water inside of and at the surface of the
protein can exchange with the bulk water.

Advances in experimental probes such as neutron scattering,55

nuclear magnetic resonance (NMR),8 femtosecond laser spec-
troscopy,59 and dielectric dispersion57 have allowed a quantita-
tive description of the properties of the water molecules
associated with specific parts of the solvated protein. Key
quantities that can be determined include (a) the occupancy (i.e.,
the probability that a water molecule will be found at the site),
(b) the residence time (the time scale for exchange of the water
molecule with the surrounding bulk water), and (c) the “order
parameter”, which is a measure of the rotational freedom of
the water molecule at the site. NMR measurements suggest that
the molecules at the surface exchange with the bulk water on
time scales ranging from 10 ps to 1 ns.8 In contrast, buried
molecules exchange with the solvent on time scales on the order
of 1 ns to 1µs.8

The term “biological water” has been used to describe water
in proximity to a biological macromolecule.58 Dielectric relax-
ation is significantly different in biological water.60 Whereas
in bulk water the dominant dielectric relaxation time is 8.3 ps,
for bound water, this can be 2-4 orders of magnitude larger.
Dielectric spectroscopy measurements of proteins in aqueous
solutions found four dielectric relaxation times.57 For myoglobin,
these times were attributed to (1) reorientation of bulk water (8
ps), (2) relaxation of water associated with the protein (10 and
150 ps), and (3) reorientation of the whole protein molecule
(15 ns).

Given the structural, chemical, and dynamical complexity of
these environments, we briefly discuss the limitations of some
of the underlying simplifications and approximations we assume
in our models. Although these simplifications may lead to
quantitative differences between the predictions of our models
and real systems, we do not anticipate qualitative differences.

1.3.1. Spherical Symmetry.We assume that the chromophore
is located at the center of a spherical cavity inside of a spherical
protein. Similar assumptions have been made in some other
studies of dielectric relaxation in proteins.39,61It has been found21

that there are only small quantitative differences between the
dielectric relaxation associated with elliptical cavities compared
to that for spherical ones. Clearly, our results will be most
relevant to globular proteins with a chromophore toward the
center. A more serious concern is that some chromophores can
be located near the protein surface and therefore more exposed
to the solvent. They may be better modeled by a spherical
vacuum cavity at the planar interface between two different
dielectric media. Similar geometric considerations apply to
transmembrane photosynthetic proteins and systems containing
lipid membranes. The approach used here could be extended
to such cases by considering continuum dielectric models with
different geometries.84,93

1.3.2. Point Dipole Approximation.The chromophore is
treated as a point dipole, and its spatial extent is neglected. More
realistic treatments of spatially extended distributions inside of
solvent cavities84 do not lead to qualitatively different behaviors.

1.3.3. Neglect of the Nuclear Dynamics of the Chromophore.
Most electronic transitions will be associated with some
structural change of the chromophore. Except for the case of
chromophores (such as retinal and PYP) which undergo
conformational change upon photoexcitation, generally, the
reorganization energy (and associated Stokes shifts) for modes
with frequencies less than 1000 cm-1 is typically on order of
tens of cm-1 and, therefore, much smaller than those associated
with the solvent and protein.81 Furthermore, intramolecular
vibrations with substantial reorganization energies have suf-
ficiently high frequencies that they occur on time scales much
faster than most of the experiments we consider and are not
thermally excited at room temperature.

1.4. Overview of the Paper.In this paper, we consider five
distinct dielectric continuum models of the environment of a
biological chromophore. For each model, we derive an expres-
sion for the spectral density (eq 5). This allows us to explore
how the relative importance of the dielectric relaxation of the
solvent, bound water, and protein depends on the relevant length
scales (the relative size of the chromophore, the protein, and
the thickness of the layer of bound water) and time scales (the
dielectric relaxation times of the protein, bound water, and the
solvent), as is discussed in section 5. Many experimentally
obtained spectral densities can be fitted to a sum of Lorentzians
(see Table 2). For a protein that is large compared to the size
of the binding pocket of the chromophore and the width of the
bound water layer, our models predict a spectral density given
by the sum of three Lorentzians which correspond to the
dynamics of the protein, bound water, and bulk water dynamics.
An essential feature is the separation of time scales associated
with the solvation coming from each of the three components
of the environment.

Specifically, to a good approximation, the spectral density is
given by

TABLE 1: Comparison of the Matrix Element ∆ Which
Couples Two Quantum States for Various Processes in
Proteins with the Solvation Rates Due to the Interaction of
the Quantum System with Different Parts of Its
Environment. The Quantum Dynamics of the Process Will
Be Determined Largely by the Part of the Environment
Which Undergoes Solvation Relaxation at a Rate
Comparable to ∆a

process ∆ energy (meV) ref

Förster coupling between chromophores
in FRET spectroscopy

0.2-2

inter-ring Förster coupling between
chromophores in LHI and LHII

0.3 [22]

intra-ring Förster coupling between two
chlorophyl molecules in LHI

50-100 [22]

Förster coupling between infrared amide
modes in proteins

0.1-1 [27]

electron transfer in photosynthetic
reaction center (PRC)

1-10 [30]

electron transfer in PRC radical cation 10-100 [28]
electron transfer in proteins 10-4-10-2 [31]
proton transfer 0.05 [32]
level crossing for nonradiative decay 40 [33]
solvation rate due to bulk water 10 [103]
solvation rate due to bound water 0.1-1 [104]
solvation rate due to protein 0.004-0.04 [29]

a LHI and LHII refer to light-harvesting complexes I and II in
photosynthetic purple bacteria.
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The subscripts x) p, s, and b refer to the protein, solvent, and
bound water, respectively. We show that when the dielectric
relaxation of the different components of the environment are
treated in a Debye approximation, the relaxation times can be
expressed as

whereεx,s, εx,i, and τD,x are, respectively, the static dielectric
constant, high-frequency dielectric constant, and relaxation times
of a Debye model for each medium, x) p, s, and b. The high-
frequency dielectric constant is related to the refractive index
nx by εx,i ) nx

2.

We show that the reorganization energies associated with each
part of the environment are given byRx/τx, where

In particular, for typical systems, the above three quantities can
be of the same order of magnitude, that is
Due to the large separation of time scales, the spectral density
(eq 8) will have peaks at approximately,ω ) 1/τx. Hence, the
peaks are of approximate magnitude,J(ω ) 1/τx) ∼ Rx/τx, and
can be of the same order of magnitude. This is because although
each contribution involves different dielectric constants, they
only have a limited range of values, and the ratios of the different
dielectric constants that appear on the right-hand side of the
above expressions are all of order one. This is supported by
experimental data (see Table 2) where several relaxation times
are observed which vary by several orders of magnitude but
whose relative contributions are of comparable magnitude.
Hence, in many cases, only a single component of the
environment (protein, bound water, or bulk solvent) will be
relevant to a given process.

1.4.1. The Effect of the Protein.The expression in eq 13
allows us obtain how the ultrafast solvation associated with the
solvent is modified in the presence of a protein. Water is a highly
polar medium withεs,s = 80, εs,i = 4, and fast dielectric
relaxation,τD,s = 8 ps. Hence, we see that even ifεp,i is as

TABLE 2: Solvation Relaxation Times for Various Chromophores in Different Protein and Solvent Environments. The
Parameter Values Given below Completely Parametrize the Spectral Density Which Describes the Chromophore-Environment
Interactiona

chromophore protein solvent ref ER (cm-1) A1, τ1 (ps) A2, τ2 (ps) A3, τ3 (ps)

Trp none water [76] 0.65, 0.16 0.35, 1.1
Trp none water [110] 2193 0.55, 0.34 0.45, 1.6
Trp SC buffer [111] 1440 0.6, 0.8 0.4, 38
Trp monellin buffer [104] 960 0.46, 1.3 0.54, 16
Trp SNase-WT buffer [112] 850 0.46, 5 0.54, 153
Trp SNase-K110A buffer [112] 876 0.77, 3 0.23, 96
Trp HSA water, pH 7 [113] 1156 0.39, 5 0.61, 133
Trp HSA water, pH 9 [113] 1015 0.3, 1.6 0.7, 46
dansyl SC water [111] 1180 0.94, 1.5 0.06, 40
DCM HSA Tris buffer [77] 515 0.25, 600 0.75, 1000
prodan none buffer [78] 2313 0.47, 0.130 0.53, 0.77
prodan HSA buffer [78] 916 0.19, 0.78 0.56, 2.6 0.25, 32
acrylodan HSA buffer [78] 1680 0.23, 0.71 0.41, 3.7 0.36, 57
acrylodan HSA 0.2 M Gdn‚HCl [78] 0.16, 0.28 0.36, 5.4 0.48, 61
acrylodan HSA 0.6 M Gdn‚HCl [78] 0.2, 0.12 0.55, 2 0.25, 13.5
MPTS none buffer [81] 2097 0.8, 0.020 0.2, 0.34
MPTS Ab6C8 buffer [81] 1910 0.85, 0.033 0.1, 2 0.05, 67
bis-ANS GlnRS (native) water [29] 750 0.45, 170 0.55, 2400
bis-ANS GlnRS (molten) urea [29] 500 0.63, 60 0.37, 960
4-AP GlnRS (native) water [29] 1330 0.85, 40 0.15, 580
4-AP GlnRS (molten) urea [29] 700 0.77, 50 0.23, 900
Zn-porphyrin cytochrome-c water [114] 170 0.4, 250 0.6, 1500

a The values of relaxation times and their relative weights are determined by fitting the time dependence of the dynamic Stokes shift (eq 47) to
the functional form (eq 49).ER is the reorganization energy, given by eq 6, and equals the total Stokes shift. Note that there is some variation in
estimates of the reorganization energy depending on whether one estimates it from the maxima in the absorption and emission spectra or from the
first frequency moment of the spectra.15 It should be noted that the time resolution is different in the various experiments. Some did not have access
to femtosecond time scales, and therefore, we have left the relevant columns blank. SC is subtilisin Carlsberg. HSA is human serum albumin.
SNase-WT is Staphylococcus nuclease in the wild type. SNase-K110A is a specific mutant of Staphylococcus nuclease. HSA is in its native folded
form in the buffer but denatures in concentrations of Gdn.HCl (guanidine hydrogen chloride) greater than about 5 M and at a pH above 7. Trp is
the amino acid tryptophan, acrylodan is 6-acryloyl-2-(dimethylamino)naphthalene, prodan is 6-propionyl-2-(dimethylamino)naphthalene, AP is
amino-pyridine, DCM is 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran, MPTS is 8-methoxypyrene-1,3,6-trisulfonate, and
bis-ANS is 1,1-bis(4-anilino)naphthalene-5,5′ disulfonic acid.

J(ω) )
Rpω

1 + (ωτp)
2

+
Rbω

1 + (ωτb)
2

+
Rsω

1 + (ωτs)
2

(8)

τp

τD,p
)

2εp,i + 1

2εp,s + 1
(9)

τs

τD,s
)

2εs,i + εp,i

2εs,s+ εp,i
(10)

τb ) τD,b (11)

Rp

τp
)

3(∆µ)2

πε0a
3

(εp,s - εp,i)

(2εp,s + 1)(2εp,i + 1)
(12)

Rs

τs
)

3(∆µ)2

πε0b
3
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(2εs,s+ εp,i)(2εs,i + εp,i) ( 9εp,i

(2εp,i + 1)2) (13)
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τb
)

3(∆µ)2

2πε0b
3 (c - b

b ) (εb,s
2 + 2εs,s

2 )(εb,s - εb,i)

εb,s
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2
(14)

Rs

τs
∼ Rb

τb
∼ Rp

τp
(15)
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large as 5, the solvation time associated with the solvent is only
50% larger compared to the time of 0.3 ps, which occurs in the
absence of the protein. The effect of the protein on the strength
of the coupling of the chromophore to the solvent is more
substantial. In eq 13, the coupling scales with the inverse cube
of the power of the radius of the protein. Hence, if the diameter
of the protein is four times the size of the chromophore, the
couplingRs will be reduced by 2 orders of magnitude. The above
results show that even a distant solvent can lead to ultrafast
solvation comparable to that found in the absence of the protein.
This leads us to suggest that some studies which claim to have
identified ultrafast dielectric relaxation of proteins94,95 may, in
fact, be detecting the fast response of the distant solvent.

1.4.2. Order of Magnitude Estimates ofRx. Typical values
of the parameters area ∼ 3 Å, b ∼ 10 Å, ∆µ ∼ 1 D, and
therefore, the reorganization energy isRxp/τx ∼ 10 meV∼ 100
cm-1. From Figure 2 and Table 3 in the Appendix, we see that
p/τx is on the order of 10, 1, and 0.01 meV for the solvent,
bound water, and protein, respectively. Hence, the dimensionless
couplings areRs ∼ 1, Rb ∼ 10, andRp ∼ 100. Hence, the only
quantum dynamics that is likely to be coherent is that which
occurs on time scales comparable to or faster than the relaxation
of the bulk water, that is, less than a picosecond.

The outline of the paper is as follows. In section 2, we
describe how the interaction between a chromophore and its
protein and solvent environment may be modeled by an
independent boson model. We show how the interaction with
the environment leads to decoherence of the electronic states
of the chromophore. In section 3, we propose a set of continuum
dielectric models suitable for describing the environment around
a chromophore and use them to obtain an expression for the
spectral density in each case. In section 4, we consider particular
limits of these spectral densities and obtain simple expressions
for the contribution of each component of the environment
(protein, bound water, and bulk water) to the total spectral
density. In particular, we are able to obtain expressions that
can be used to evaluate the relative importance of each
component of the environment. We find that even when the
chromophore is completely surrounded by a protein, it is
possible that the ultrafast solvation (on the ps time scale) is
dominated by the bulk solvent surrounding the protein. In section
5, we discuss methods for obtaining spectral densities from
optical spectroscopy and compare the predictions of our models
to experimental data. In section 6, we relate our results for the
spectral density due to dielectric relaxation to what has been
learned from molecular dynamics simulations on specific protein
systems.

2. Quantum Dynamics of the Independent Boson Model

It can be shown5 that the coupling of the electronic excitations
in a chromophore to its environment may be modeled by an
independent boson model,96 which has the Hamiltonian

We note that this is the spin-boson model (eq 4) with∆ ) 0.
Here, the chromophore is treated as a two-level system with an
energy gapε between the ground and excited state. The first
term describes the energy of the isolated chromophore described
by the Pauli sigma matrixσz. The second term is the energy of
the surrounding environment (protein and solvent), where the
environment is modeled as a bath of harmonic oscillators.5 The
final term describes the coupling of the state of the chromophore

σz to the environment. In this case, the coupling97,98 is due
to electrostatic interactions between the chromophore dipole
and the “cage” of polarized solvent and protein molecules
around it, as will be described in more detail below. The effect
of this coupling on the quantum dynamics of the chromophore
is completely specified by the spectral density, defined by
eq 5.96

If the two-level system is initially (t ) 0) in a coherent
superposition state,|Ψ> ) a|1> + b|2>, which is not coupled
to the environment. An ultrafast laser pulse can create such a
state. Then, at timet, the TLS is described by a 2× 2 reduced
density matrix,F(t). It has matrix elements99

whereθ(t) is a phase shift given by

and

describes the decoherence due to interaction with the environ-
ment.

The phase shift can be used to define a time-dependent Stokes
shift of the energy separation of the two levels. The instanta-
neous energy is found by taking the derivative of eq 18 with
respect to time21,72

Hence, the spectral density can be determined by taking the
Fourier transform of measurements ofν(t), as discussed in
section 5.

Depending on the relative size of the timet to the time scales
defined by 1/ωc (the relaxation time of the bath) andp/kBT,
there are three different regimes of time dependence. For short
timesωct < 1

and therefore, there is a Gaussian decay of coherence,73,75on a
time scaleτg given by

If, in addition, kBT . pωc, this reduces to

whereER is the reorganization energy given by eq 6.
For intermediate times, 1/ωc < t < p/kBT (the quantum

regime;38 it only exists if kBT < pωc)

H )
1

2
εσz + ∑

â

ωâaâ
†aâ + σz ∑

â

Câ(aâ + aâ
†) (16)

F11(t) ) F11(0) ) |a|2

F22(t) ) F22(0) ) |b|2 ) 1 - F11(0)

F12(t) ) F21
/ (t) ) a*b exp(-iεt + iθ(t) - Γ(t, T)) (17)

θ(t) ) ∫0

∞
dωJ(ω)

[ωt - sin(ωt)]

ω2
(18)

Γ(t, T) ) ∫0

∞
dωJ(ω)coth( ω

2kBT) (1 - cosωt)

ω2
(19)

ν(t) ) ε -
dθ(t)

dt
) ε - ER - ∫0

∞
dω

J(ω)
ω

cos(ωt) (20)

Γ(t, T) ) t2

2τg
2

(21)

1

τg
2

) ∫0

∞
dωJ(ω)coth( ω

2kBT) (22)

p
τg

) x2ERkBT (23)
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where R ≡ J′(ω ) 0), leading to a power law decay of
coherence.

For long times (t . p/kBT, the thermal regime)

giving exponential decay of coherence.
The crossover from Gaussian to exponential decay has been

explored in quantum measurement theory in the context of
continuous measurement and the quantum Zeno effect.50 The
decay of the off-diagonal part of the density matrix results from
decoherence from the interaction of the TLS with the environ-
ment. Thus, we see the effect of the environment on the TLS is

Hence, the time scaleτd can be interpreted as the time scale
associated with the “collapse” of the wave function of the TLS
due continuous measurement of the state of the TLS by the
environment.36,37,50 We will see that by using the spectral
densities, we extract from experiment and from our continuum
dielectric models that typically haveR > 1, and therefore, at
room temperature,τd < 10 fs.

3. The Spectral Density for the Different Continuum
Models of the Environment

In the simplest continuum model39 picture of protein-pigment
complexes, the chromophore can be treated as a point dipole
inside of a spherical dielectric,39,98 representing a globular
protein surrounded by a uniform polar solvent with complex
dielectric constantεs(ω).97 This can also apply to a chro-
mophore-protein complex embedded in a solid dielectric
medium. In a previous work,5 the spectral density was deter-
mined for a free chromophore in a solvent. However, many
chromophores are inside of the proteins, which may have a
significant effect on the coupling to the environment, if only in
increasing the distance between the chromophore and the
solvent.

Several continuum dielectric models for the protein environ-
ment have previously been proposed (see, for example, Figure
2 in ref 39 and Figure 2 in ref 40). These models often provide
good qualitative and rough quantitative agreement.61 We
consider five distinct models, illustrated in Figure 3. In every
case, the central chromophore dipole polarizes the surrounding
cage of protein and solvent, which, in turn, produces an electric
field inside of the cavity called the reaction field.97,98 The
interaction of this field with the central dipole is responsible
for the interaction between the chromophore and its environ-
ment. The independent boson model can be obtained by writing
the reaction field in terms of its normal modes and quantizing
the coefficients in the standard second quantization method,5

and the fluctuation dissipation theorem is used to relate
fluctuations in the reaction field to the appropriate spectral
density.5 A detailed derivation applicable to all models consid-
ered below is given in the Appendix.

Model 1. This describes a free chromophore with no
surrounding protein. The molecule sits inside of a spherical
cavity of radiusa, approximately the van de Waals radius of
the molecule, inside of a solvent with dielectric constantεs(ω).
The spectral density is21

wherea is the radius of the cavity containing the chromophore,
εs(ω) is the complex dielectric function of the solvent, andεc

is the (static) dielectric constant of the cavity. The∆µ is the
difference between the dipole moment of the chromophore in
the ground and excited states.

Model 2. This is a somewhat analogous situation to Model
1, but in this case, the chromophore is surrounded by an in-
finite, uniform protein with complex dielectric constantεp(ω).
This chromophore is again inside of a cavity of radiusa,
which would be approximately the same radius as that for
Model 1. Such a model may be appropriate when the protein is
very large. The spectral density has a similar form to that of
Model 1, except it involves the dielectric constant of the protein
εp(ω)

Γ(t, T) ≈ R ln(ωct) (24)

Γ(t, T) ≈ 2RkBTt/p ≡ t/τd (25)

F(t ) 0) ) (|a|2 a*b

ab* |b|2 )f F(t f ∞) ) (|a|2 0

0 |b|2) (26)

Figure 3. The five continuum dielectric models considered for a
chromophore-protein-solvent system. The chromophore is modeled
as a point dipole. In Model 1, the chromophore is modeled to sit at the
center of a cavity of radiusa roughly of the van de Waals size of the
chromophore, surrounded by a uniform polar solvent with complex
dielectric constantεs(ω). In Model 2, the chromophore is surrounded
by an infinite protein, modeled as a uniform, continuous dielectric
medium, with complex dielectric constantεp(ω). In Model 3, the
chromophore sits in a protein of radiusb surrounded by the solvent.
In Model 4, the chromophore sits in a cavity inside of the dynamic
protein, surrounded by solvent. In Model 5, the static protein is
surrounded by a thin shell of bound water of radiusc, surrounded by
the bulk solvent.

J1(ω) )
(∆µ)2

2πε0a
3

Im
(εs(ω) - εc)

2εs(ω) + εc

(27)
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Model 3. The chromophore is surrounded by a uniform
dielectric sphere representing the protein. This protein spherehas
radius b and (constant) dielectric constantεp. The spectral
density is

whereεs(ω) is the complex dielectric function of the solvent.
Model 4. In a more detailed picture, (see Figure 4 in the

Appendix), Models 2 and 3 are combined so that the chro-
mophore sits inside of a hollow cavity within the protein. The
cavity has radiusa (typically the size of the chromophore) and
vacuum dielectric constantε0, while the protein again has radius
b and is now described by complex dielectric constantεp(ω).
Further detail may be added by treating the outer layer of the
protein sphere as a separate, higher dielectric medium39

representing the charged surface groups.41 In all cases, the
chromophore is treated as a point dipole. The spectral density
is given by

whereb is the radius of the protein containing the chromophore,
a is the radius of the cavity containing the chromophore (usually
the size of the chromophore),εs is the complex dielectric
function of the solvent, andεp is now the complex dielectric
function of the protein. Note that the frequency dependence of
the dielectric constants has been omitted for clarity. We see
that for appropriate limits ((a/b) f 0, εp ) εs, εp ) 1, etc.),
Models 1 and 2 can be recovered, as expected. (To obtain Model
3, one would have to allow the center cavity in Model 4 to
have an arbitrary dielectric constant.)

Model 5. The chromophore sits in a static protein (no cavity)
and is surrounded by a thin shell of bound water with a different
dielectric constant than that of the bulk solvent. To obtain the
spectral density, we can use the results for Model 4, withεp f
εb, εc f εp, a f b, andb f c

Note that εp refers to a constant (typically high-frequency)
protein dielectric, namely, Model 2;εb is the complex dielectric
of the bound water.

3.1. Debye Model for the Frequency Dependence of the
Dielectric Constants.To specify the dielectric constant of each
component of the environmentεx(ω) (x ) s, p, b), we consider
the Debye form of the dielectric constant21

whereτD,x is the Debye relaxation time,εx,s is the static dielectric

constant, andεx,i is the high-frequency dielectric constant, within
the range of physically relevant frequencies. For water at room
temperature,εs,s ) 78.3,εs,i ) 4.21, andτD,s ) 8.2 ps.100 For
comparison, for THF (tetrahydrofuran), the values areεs,s )
8.08,εs,i ) 2.18, andτD,s ) 3 ps.63

In Model 4, the protein is treated as a complex frequency-
dependent dielectric with dielectric constantεp(ω) and, as such,
is allowed to relax and respond to the chromophore. We will
consider the case of a Debye dielectric,62 but a more complicated
model including multiple relaxation times is also possible.64

Typical values forεp,sare between 4 and 40, depending on which
part of the protein is of interest.39,65,101Studies also suggest that
charged groups on the surface of the protein can skew the
average value of the protein dielectric, and it may be more
appropriate to model such proteins as having an inner and an
outer shell with two different dielectric constants. The high-
frequency constant, which is the only value used by many
studies, is more difficult to determine but is generally assumed
to be between 1.5 and 2.5.24,66Section 6 discusses determinations
of εp(ω) from molecular dynamics simulations.

The appropriate dielectric relaxation time of the protein may
be different from the protein relaxation times, which can be on
the order of milliseconds,47 as there are processes (e.g., vibration
of bonds) on the order of femtoseconds (page 132, Table 3.13
of ref 47) which may contribute to the dielectric function. These
may be missed in studies of the dielectric constant on the
nanosecond time scale67 and is perhaps unobservable for
aqueous solutions of proteins (e.g., see ref 68). Molecular
dynamics simulations101 suggest a protein dielectric relaxation
time of 10 ns for a peptide, while vibrations may be on the
order of 100 fs, which may apply in certain situations. Other
studies have found no single relaxation times, with relaxation
processes occurring across the entire experimental range of 20
ps-20 ns.77,105

For Model 3, an appropriate value for the constant dielectric
of the protein must be chosen, which will depend on the
frequency range of physical interest. For example, for frequen-
cies greater than 1/τp, whereτp is approximately the protein
dielectric relaxation time, the protein will be well approximated
by its high-frequency value. The hydration shell of hydrogen-
bonded water molecules surrounding the protein will have a
dielectric constant different from that of the bulk solvent and
have a longer Debye relaxation time.

4. Analysis of Models 4 and 5

4.1. Model 4: Dynamic Protein and Dynamic Solvent.The
full spectral density describes the total coupling to the protein
and solvent and, because of the multiple time scales involved,
is non-Ohmic in certain frequency ranges. However, there are
cases where the use of one of the simpler descriptions (Models
1-3) would be preferable. For example, if the frequency-
dependent dielectric constant of either the protein or solvent
was not known, it would be useful to have a simple criteria to
establish whether obtaining these parameters is worthwhile. If
the protein contributes negligible coupling beyond pushing the
solvent back to a new distance, then specially obtaining its
dielectric through experiment or simulation would be unneces-
sary.

If either the solvent or the protein can be deemed unimportant,
then simulations of the chromophores do not require their
inclusion, saving valuable computational power. Conversely,
if (for example) the solvent can be shown to have a significant
effect on the chromophore, then treating the protein only will
be insufficient, and solvent effects must be included. Hence,

J2(ω) )
(∆µ)2

2πε0a
3

Im
(εp(ω) - εc)

2εp(ω) + εc

(28)

J3(ω) )
(∆µ)2

2πε0b
3

Im
(εs(ω) - εp)

2εs(ω) + εp

(29)

J4(ω) )

(∆µ)2

2πε0a
3

Im
(εp + 2)(εs - εp)a

3 + (εp - 1)(2εs + εp)b
3

2(εp - 1)(εs - εp)a
3 + (2εp + 1)(2εs + εp)b

3

(30)

J5(ω) )

(∆µ)2

2πε0b
3

Im
(εb + 2εp)(εs - εb)b

3 + (εb - εp)(2εs + εb)c
3

2(εb - εp)(εs - εb)b
3 + (2εb + εp)(2εs + εb)c

3

(31)

εx(ω) ) εx,i +
εx.s - εx,i

1 - iωτD,x
(32)
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we explore under what conditions the protein dynamics may
be neglected. The following discussion assumes that the
dielectric relaxation time of the protein is longer than that of
the solvent, which is expected to be true in the vast majority of
cases.

4.1.1. Limit of a Small Chromophore Surrounded by a Large
Protein. In the case of an “infinite” proteina/b f 0, the full
spectral density (Model 4) reduces toJ2(ω), the spectral density
for Model 2. In this limit, the solvent can be neglected when
compared to the protein. We might naively assume then that,
since the ratioa/b appears cubed, when the protein is several
times larger than the chromophore, the above spectral density
can be used, and the coupling to the protein is far stronger than
that to the solvent. However, a closer examination of eq 30
shows that ifεp(ω) ≈ 1, the solvent will be more significant
even for large values ofb/a, and a more appropriate expression
for the spectral density describes the chromophore in a cavity
of radius b surrounded by solvent. Hence, we seek a more
precise statement for when the protein can be ignored. The
spectral density can be rewritten

We expand this expression in ((εs - εp)/(2εs + εp))(a3/b3). Note
that although this is a complex quantity, provided that both the
real and imaginary parts are small compared to unity, we can
use the Taylor series expression (ax + b)/(cx + 1) ≈ b + (a -
bc)x. Furthermore, both the real and imaginary parts of the
prefactor of this expansion coefficient will be less than unity,
and a sufficient condition for this expansion to be valid is that
a/b be small. We find

whereJs(ω) represents the solvent contribution to the spectral
density. Note that the dynamics of the protein only contribute
to the first term, which conversely contains no reference to the
solvent. The second term includes the solvent dynamics plus
the high-frequency limit of the protein dielectric constant as
the only relevant protein property. Thus, we identify the first
term with the protein contribution and the second term with
the solvent, modified by the presence of the protein’s high-
frequency dielectric.

4.1.2. ReleVance of ProteinVersus SolVent. By comparing
the magnitudes of these two terms in eq 34, we can establish
the relative importance of the solvent and protein over different
frequency ranges. We might expect that aroundω ) 1/τp and
ω ) 1/τs, the protein and solvent contributions should dominate,
respectively. Therefore, there should be a crossover point where
the two contributions are roughly equal, somewhere in the range
of 1/τp , ω , 1/τs, which is what we look for now.

As defined above, the cutoff frequency isωp ) 1/τp.
Assuming a Debye dielectric for the protein, eq 28 can be
approximated to first order inωp/ω as

Therefore, the tail end of the spectral densities given fall off as
1/ω (as compared to their linear rise forω , ωp). Noting that
the reorganization energy for this spectral density isEp ) Rpωp,
we write the spectral density forω . ωp asJ2(ω) ) Epωp/ω.
(This is quite different from the spectral density forω , ωp,
which is J(ω) ) Epω/ωp.)

The second term in eq 34 is somewhat more difficult to
evaluate. We will again Taylor expand in 1/(τpω). We note,
however, that by extracting a factor of 1/a3 from both terms of
eq 34, the second term is proportional to (a/b)3, which we
already assumed is “small” in the first Taylor expansion.
Therefore, when we again Taylor expand aroundωp/ω, we need
only work to zeroth order so that our total final approximation
for J4(ω) is to first order in two small expansion variables. This
yields

whereJ3(ω) is the spectral density for Model 3, withεp ≡ εp,i,
that is, the chromophore inside of a constant dielectric (high-
frequency) protein with no cavity, surrounded by the solvent.
The solvent contribution is therefore ohmic, with a dimension-
less coupling constant,Rs, given by eq 13.

Therefore, equating the two spectral densities suggests a
crossover between solvent and protein dominance at frequency
ωco

This ratio is always much larger than one for typical values of
dielectric constants and relaxation times.

For frequencies above this limit, provided we are in the
regime whereb . a, we would expect that the protein dynamics
are irrelevant for the system, and the dynamics of the chro-
mophore is “slaved” to the solvent fluctuations. Similar effects
have been observed in enzyme kinetics.106 At low frequencies
(ω , ωco), the protein dynamics dominate, and the details of
the solvent are mostly irrelevant. Hence, we expect that even
when the chromophore is “shielded” from the solvent by the
protein, the short time (∼1 ps) dynamics can still be dominated
by the solvent. This raises questions about the recent assignment
of the observed ultrafast solvation to protein dynamics.69,94,95

4.2. Model 5: Bound Water.Our goal is to obtain analytic
criteria which tell us when the bound water is relevant. If the
dielectric contribution of the bound water dominates over that
of the protein, we can use Model 5 to describe the system.
Instead of the chromophore pocket being treated as the cavity,
now the entire protein is treated as a cavity of radiusb with
frequency-independent dielectricεp. This is surrounded by a
shell of bound water with radiusc (so the shell has widthc -
b) and dielectricεb(ω) (with the subscript representing the bound
water). We expect that the layer of bound water (typically15

about 4.5 Å) will be thin compared to the rest of the protein (b
∼ 20 Å), and therefore, we are interested in the limitb ≈ c.

We simplify the spectral density (eq 31) in the same way as
in section 4.1. Taylor expanding in (c - b)/b yields

The first term represents the spectral density of a chromophore
inside of a cavity of radiusb with dielectric constantεp

surrounded by a bulk solvent, and therefore, it is the spectral

J4(ω) )
(∆µ)2

2πε0a
3

( εp + 2

2εp + 1) ( εs - εp

2εs + εp
) a3

b3
+ ( εp - 1

2εp + 1)
(2(εp - 1)

2εp + 1 ) ( εs - εp

2εs + εp
) a3

b3
+ 1

(33)
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(∆µ)2

2πε0b
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Im [ εs(ω) - εp

2εs(ω) + εp] ( 9εp

(2εp + 1)2)
) J2(ω) + Js(ω) (34)

J2(ω) ≈ ωp
2Rp/ω ω . ωp (35)

Js(ω) ≈ 9εp,i

(2εp,i + 1)2
J3(ω) (36)

ωco

ωpe
) xRp
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(37)

J5(ω) ) J3(ω) + Jbw(ω) (38)
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density in the absence of the bound water, as described by Model
3. The second term is proportional to the ratio (c - b)/b, a
measure of the thickness of the bound water, and can be
identified with the contribution to the spectral density of the
bound water

Then, the bound water term can be expressed as

Using a Debye form for the bound water spectral density gives
Im[εb(ω)] ) (εb,s - εb,i)(ωτb/(1 + ω2τb

2)). However, we must
also include the|εb(ω)|2 contribution to the frequency depen-
dence. If we consider frequencies much less than the bulk
solvent relaxation time 1/τs, then we again find an ohmic spectral
density for the bound water contribution, with dimensionless
coupling given by eq 14.

In comparison with the solvent contribution

We would typically expectεs,s . εs,i, εb,s . εb,i, andεs,s . εb,s

and the protein static dielectric constant to be small compared
to any static frequency but perhaps comparable to the high-
frequency values of the dielectric constants of bulk or bound
water. Therefore

which we expect to be of order one. Therefore, we would usually
expect

Hence, ifτb . τs, as is observed,70,71then we would expect the
bound water to be the dominant effect. Further, since the heights
of the peaks are approximately given by their reorganization
energy (J(ωc) ) Rωc ∼ ER), we find

whereEb andEs are the reorganization energies of the bound
water and solvent, respectively.

The crossover frequency between the bound water and bulk
water contributions dominating the spectral density can be
estimated by the conditionJs(ωco) ) Jb(ωco). Assuming that
the bulk and bound water time scales are sufficiently separated
so that at the crossover pointJb(ω) is in the decaying tail and
Je(ω) is in the linear region, the crossover frequency is given
by

5. Spectral Densities Determined from Ultrafast Optical
Spectroscopy

The spectral functionJ(ω) associated with optical transitions
in chromophores can be extracted from ultrafast laser spectros-
copy.59,72,107Two widely used techniques for doing this are the
dynamical Stokes shift and three photon echo spectroscopy.

5.1. Dynamical Stokes shift.The time dependence of the
Stokes shift in the fluorescence spectrum, whereν(t) is the
maximum (or the first frequency moment) of the fluorescence
spectrum at timet, can be normalized as

such thatC(0) ) 1 andC(∞) ) 0 when the fluorescence maxima
has reached its equilibrium value. Using eq 20, this is related
to the spectral density by

whereER is the total reorganization energy given in eq 6, which
also equals the total Stokes shift associated with solvation.

The functionC(t) is sometimes referred to as the hydration
correlation function, and experimental results are often fitted
to several decaying exponentials

whereA1 + A2 + ... ) 1. From eq 48, this corresponds to a
spectral density of the form

The dimensionless couplingsRj (j ) 1, 2, ...) are related to the
total reorganization energy by

Table 2 gives values of the fitting parameters (ER, Aj, τj)
determined by fast laser spectroscopy for a range of chro-
mophores and different environments, both protein and solvent.
We do not claim that the list is exhaustive of all of the published
values, but it is meant to be indicative (for example, see also
refs 27, 74, 79, 80, 94, 95, and 108). We note the following
general features.

(i) The Stokes shift varies significantly between different
environments, both solvent and protein. Generally, the presence
of the protein reduces the total Stokes shift and the relative
contribution of the ultrafast component, which can be assigned
to the solvent. The less exposed the chromophore is to the
solvent, the smaller the solvent contribution to the spectral
density. This is also seen in measurements of the dynamic Stokes
shift for a chromophore placed at three different sites in the B1
domain of protein G (see Figure 3C of ref 109). Denaturing the
protein tends to expose the chromophore to more solvent, an
increase of the total Stokes shift, and and increase of the relative
contribution of the ultrafast component.
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(ii) The different decay times observed for a particular system
can vary by as many as 4 orders of magnitude, ranging from
tens of femtoseconds to a nanosecond.

(iii) The relative contributions of the ultrafast (hundreds of
femtoseconds) and slow (tens of picoseconds) response are often
of the same order of magnitude, consistent with eq 15.

(iv) Even when the chromophores are inside of the protein,
the coupling of the chromophore to the solvent is large. For
example, Prodan is in a hydrophobic pocket of HSA, well away
from the surface, and yet,Rs ∼ 50. Even for the “buried”
chromophores (Leu7 and Phe30) in GB1,109 the solvent contribu-
tion is AsER ∼ 100 cm-1, τs ∼ 5 ps, and therefore,Rs ∼ 100.
There are several proteins for which a very slow (approximately
tens of nanoseconds) dynamic Stokes shift has been observed
and has been assigned to dielectric relaxation of the protein
itself.77,105

(v) The values of the dimensionless couplingsRj that we
obtain from eq 51 are comparable to the rough estimates we
made in section 1.4.

5.2. Three Pulse Photon Echo Spectroscopy.This technique
is analogous to stimulated spin echo measurements used in
nuclear magnetic resonance to extract the phase relaxation time
T2. For “long” times, it can be shown107 that the time-dependent
echo peak shiftS(t), wheret is the time delay between the second
and third pulses, is related to the correlation functionC(t), given
in eq 48, by

where τg is the decoherence time scale given in eq 22 and
associated with the “collapse of the wave function.”

The solvation dynamics of the fluorescein dye eosin bound
to lysozyme in an aqueous solution was studied and compared
to that for eosin in water without the protein.15 For both systems,
ultrafast solvation relaxation occurred in about 10 fs and was
assigned to bulk water. However, for the lysozyme-eosin
complex, a slower relaxation also occurred on the scale of 100
ps. This was assigned as predominantly due to water bound to
the protein, mostly in the first hydration shell. This can be
compared with dielectric dispersion measurements82 which
suggest that there are two solvation relaxation times of 4 and
270 ps. A molecular dynamics simulation of lysozyme in an
explicit solvent environment of 5345 water molecules found a
single solvation relaxation time of 100 ps.83 Jordanides et al.15

used the dynamic dielectric continuum model of Song and
Chandler84 to extract the spectral density based on four different
dielectric models. The full time dependence of the solvation
was best described by a model which included the frequency
dependence of the dielectric constant of both the lysozyme and
the water bound at the protein surface. These models for the
lysozyme complex can be compared to our models if some
simplifying assumptions are made. In particular, we need to
treat the lysozyme protein as spherical with the eosin complex
at its center. Models I and II in ref 15 then correspond to our
Models 3 and 5, respectively. Models III and IV (ref 15) are
approximately our Model 4, with the appropriate choice for the
protein dielectric constant of the protein.

6. Comparison with Spectral Densities Determined from
Molecular Dynamics Simulations

For several specific proteins, molecular dynamic simulations
have been used to determine several quantities relevant to this
work: the static dielectric constant of the protein, the frequency-

dependent dielectric constant, solvation dynamics, or the spectral
density associated with an optical transition in a chromophore
or an electron transfer.3,39,65,83,85-92,101,102We hope that our work
will stimulate further simulations of the spectral density for
specific chromophores and proteins in an aqueous environment.
To determine it, one needs to calculate time correlations of the
(reaction field) electric field at the location of the chromophore
within the protein. Equivalently, the spectral density can be
related to the fluctuations in the energy difference between the
ground and excited states of the system.87 We now briefly review
some of the results on specific proteins that are relevant to this
paper.

6.1. Tryptophan in Monellin and Water. Molecular dy-
namics was used to calculate the time correlation functionC(t)
for trajectories of a few nanoseconds.91 For free Trp in bulk
water,C(t) was fit to a biexponential decay function withA1 )
0.86( 0.04,τ1 ) 70 ( 10 fs, andA2 ) 0.14( 0.04,τ2 ) 0.7
( 0.2 ps. For Trp-3 in the protein monellin,C(t) was fit to a
triexponential form withA1 ) 0.66 ( 0.02,τ1 ) 70 ( 10 fs;
A2 ) 0.22 ( 0.02,τ2 ) 1.0 ( 0.1 ps; andA3 ) 0.12 ( 0.01,
τ3 ) 23 ( 2 ps. The total reorganization energy was calculated
as ER ) 3200 cm-1. The two faster decays were assigned to
the bulk water, and the slowest component (τ3 ) 23 ( 2 ps)
was assigned to protein dynamics including the motion of the
chromophore within the protein. This assignment is consistent
with the interpretation of NMR measurements but is different
from that given in the associated experimental measurements104

of the time-dependent Stokes shift. The latter assigned the slower
time scale (∼20 ps) to the dynamic exchange between water
bound at the protein surface (the first hydration shell) with bulk
water.

6.2. Protein GB1 in Water. The dynamic Stokes shift of a
chromophore at the site of several different amino acid residues
within the B1 domain of the protein G was measured.109 The
residues were replaced with an Aladin chromophore at sites that
were “buried” (Leu7 and Phe30), partially exposed (Trp43), and
exposed (Ala24), to the solvent. The more exposed the site, the
larger the dynamic Stokes shift, and the faster the relaxation.
Motivated by these experiments, Golosov and Karplus per-
formed molecular dynamic simulations for this 56 residue
protein in a solvent of 6205 water molecules.115 They calculated
the time-dependent correlation function for the electrostatic
interaction energy of the site residue with the rest of the system.
This quantity should scale with the energy gap correlation
function. For 11 different sites, the solvent coverage (defined
as the ratio of the surface area of the residue that is accessible
to the solvent to the surface area of the isolated residue) ranged
from 5 to 45%. The hydration correlation function was found
to vary significantly between sites, but all contained components
that could be assigned to ultrafast decay (on the 100 fs and 1
ps time scales, due to the surrounding water) and much slower
relaxation (on the hundreds of picoseconds time scale) that could
be assigned to coupled hydration and protein conformational
dynamics. However, there was no simple correlation between
the slow relaxation time scale and the extent of the exposure of
the site to the solvent, contrary to the correlation found by
others.116

6.3. Frequency-Dependent Dielectric Properties of an
HIV1 Zinc Finger Peptide in Water. This peptide consisted
of 18 amino acid residues and was simulated in a periodic box
containing 2872 water molecules.101 It was simulated for 13.1
ns and exhibited a clear separation of time scales associated
with dielectric relaxation of the different parts of the system.
The water had a dielectric relaxation time of 7 ps, comparable

S(t) )
τg

xπ
C(t) (52)

2172 J. Phys. Chem. A, Vol. 112, No. 11, 2008 Gilmore and McKenzie



to that for bulk water. Dielectric relaxation of the protein was
dominated by a time scale of 4.3 ns, comparable to that found
in simulations of other proteins and comparable to the time scale
for rotation of the whole protein. The static dielectric constant
of the peptide was estimated to be 15.

6.4. Frequency-Dependent Dielectric Properties of Ubiq-
uitin in Water. Ubiquitin is a small globular protein composed
of 76 amino acids. It was simulated in a cubic box containing
5523 water molecules for runs of 5 ns duration.102 Time-
dependent correlation functions (which are the Fourier trans-
form of the frequency-dependent dielectric constant) could
be fit to sums of two decaying exponentials with different
weights and relaxation times. For the dielectric relaxation, the
three dominant time scales observed were 7 ps, 2.6 ns, and 1.9
ns. These were associated with the bulk water, with rotation of
the whole protein, and the bound water and side chains at the
protein surface, respectively. Recently, the same group extended
the simulations to 20 ns and also calculated the frequency-
dependent dielectric constant of solutions of the proteins apo-
calbindin D9K and the C-terminal domain of phospholipase
C-γ1.90

7. Conclusions and Future Outlook

The focus of this paper has been on the coupling of optical
transitions in biological chromophores to their environment.
However, the approach and results presented here can be readily
adapted to other transitions involving two quantum states which
differ in the value of their electric dipole moment. Examples
include intersystem crossing, nonradiative decay via a conical
intersection, electron transfer, and proton transfer.

We hope our work will stimulate more work considering the
following general claims, which this paper has elucidated.

(i) A valuable approach to modeling quantum dynamics in
specific biomolecular systems may be in terms of “minimal”
models such as the spin-boson model, where the system
parameters such as the spectral density are extracted from
experiment and/or quantum chemistry and molecular dynamics.

(ii) Even when the active site of a biomolecule is shielded
from bulk water, the latter can still have a significant effect on
the quantum dynamics of the active site, especially if the time
scale of interest is comparable to the solvation time associated
with the bulk water. This can lead to solvent fluctuations
dominating protein dynamics and function.106

(iii) The environment of the active site can be divided into
three distinct components, the surrounding protein, water at the
protein surface, and bulk water. The times scales associated with
the dielectric relaxation of each component usually differs by
several orders of magnitude, and therefore, each makes a unique
contribution to the coupling of the quantum dynamics of the
active site to the environment. Furthermore, the relative
importance of each component depends on how the time (or
energy) scale of the quantum dynamics compares to the time
scale of the solvation associated with each of the components
of the environment. Table 1 compares the associated energy
scales.

(iv) The time scales associated with decoherence and the
“collapse of the wave function” in these biomolecular systems
are experimentally accessible. Given the high tunability of these
systems, they could potentially be used in fundamental studies
concerning quantum measurement theory.
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Appendix

A. Time Scales B. Solution for the Reaction Field.A
change in the dipole moment of the chromophore leads to a
reorganization of the environment, which produces a reaction
field acting back on the dipole. This is shown schematically in
Figure 4.

Figure 4. Model 4 for the interaction between a chromophore and its
environment. The chromophore is treated as a point dipole sitting in a
cavity of radiusa in the center of a spherical, uniform protein which
is treated as a homogeneous dielectric medium of radiusb. The protein-
pigment complex is surrounded by a solvent, typically water, which is
again treated as a homogeneous dielectric medium, though actual
molecules are shown for clarity of explanation. The chromophore’s
dipole moment polarizes its environment, which, in turn, produces an
electric field, the “reaction field”, which interacts with the chromophore.
Fluctuations in the environment will translate to fluctuations in the
chromophore’s energy.

TABLE 3: Time Scales for Various Processes in
Biomolecules and Solutions. The Radiative Lifetime of a
Chromophore is Orders of Magnitude Longer than All
Other Time Scales, Except Perhaps Protein Dielectric
Relaxation. MD Refers to Results from Molecular Dynamics
Simulations. Of Particular Relevance to This Work is the
Separation of Time Scales,τs , τb , τp (compare Figure 2)

process time scale ref

radiative lifetime 10 ns [47]
internal conversion 10fs [47]
bulk water dielectric relaxation 8 ps [100]
protein dielectric relaxation (MD),τD,p 1-10 ns [101,102]
ultrafast solvation in water 10’s of fs [103]
fast solvation in water,τs 100's of fs [103]
solvation due to bound water,τb 5-50 ps [104]
solvation due to protein,τp 1-10 ns [29]
covalent bond vibrations 10-100 fs [47]
elastic vibrations of globular regions 1-10 ps [47]
rotation of surface side chains 10-100 ps [47]
reorientation of whole protein 4-15 ns [102]
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The reaction field for these models can be obtained by a
generalization of the techniques in ref 98 as follows: The
electric potential,φ(x, y, z), satisfies Poisson’s equation∇2φ )
-F/ε, whereε is the local dielectric constant of the medium
andF is the local charge density. Away from the point dipole
and surface boundaries,F ) 0, and we must solve Laplace’s
equation∇2φ ) 0. At the dielectric boundaries (and in general),
φ must be continuous, and because there are no free charges,DB
) εEB ) -ε∇φ is also continuous across the boundaries.

Although the protein is spherically symmetric, because of
the point dipole, the system has only cylindrical symmetry. If
the spherically symmetric electric potential in each concentric
dielectric shell is given byφ1(r), φ2(r), ..., we can expandφi in
terms of spherical harmonics98

We consider explicitly the case where we have a cavity
surrounded by a single dielectric shell inside of a bulk solvent.
The central cavity has radiusa, dielectricεc, and potentialφc(r,
ω); the shell has total radiusb (thicknessb - a), dielectricεp,
and potentialφp(r, θ); and the bulk environment is described
by dielectricεe and potentialφe(r, ω).

We can then apply the boundary conditions

The first condition is that the potential must go to zero at infinity.
This means that all coefficients with positive powers ofr must
vanish, that is,Ae,n ) 0 for all n.

The second condition is the field from a point dipole. As
this is the only free charge in the cavity, this is the only source
term (inverse power ofr) that will contribute to the potential
φ(r, θ). Since P1(cos θ) ) cos θ, only the n ) 1 term is
involved. Therefore,Bc,n)1 ) µ and Bc,n *1 ) 0. (Nothing is
said aboutAc,n.)

The final terms describe the continuity of the potential and
its derivative over the boundary. The first condition gives

Because the spherical harmonicsPn are orthogonal, we can
consider each term of this sum as being equal, therefore

In a similar way, the remaining boundary conditions can be
applied to produce a set of linear equations on theAi,n andBi,n.

We have six boundary conditions and six variables (each, of
course, a function ofn), and therefore, we are able to solve for
all parameters. However, we are only interested in the field
inside of the cavity and, in particular, the unknown partAc,n.
We find that all of theAc,n values are zero except forn ) 1.
Thus, the potential due to the surface charges is given byφc,surf

) -øµr cosθ ) -øµẑ, where we find

The actual electric field in the cavity due to the surface charges
but not the dipole itselfsthe reaction fieldsis thenRB ) Rẑ)
-∇φe,surf(x, y, z) ) øµẑ, which will be a constant throughout
the cavity, parallel to the dipole, and proportional to the dipole
momentµ. The spectral density describing coupling of changes
in the chromophore state to this environment is related to the
zero temperature fluctuations in the reaction field5

This can be shown by writing the reaction fieldR(t) in terms of
its normal modes’ creation and annihilation operators;∆µ is
the change in chromophore dipole moment on the transition
from the ground to excited states. The fluctuations in the reaction
field 〈R(t)R(0)〉 are obtained5 from the fluctuation dissipation
theorem and are proportional to the imaginary part ofø(ω) in
eq 56 above, yielding

Note that the use of zero temperature fluctuations is a
mathematical derivation only, and provided that the appropriate
temperature parameters for the solvent and protein are used,
the resulting spectral density is applicable to all temperatures.
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