
How Accurate Are Approximate Methods for Evaluating Partition Functions for Hindered
Internal Rotations?

Ching Yeh Lin, Ekaterina I. Izgorodina, † and Michelle L. Coote*
ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Research School of Chemistry,
Australian National UniVersity, Canberra ACT 0200, Australia

ReceiVed: October 26, 2007; In Final Form: December 3, 2007

The accuracy of several low-cost methods (harmonic oscillator approximation, CT-Cω, SR-TDPPI-HS, and
TDPPI-HS) for calculating one-dimensional hindered rotor (1D-HR) partition functions is assessed for a test
set of 644 rotations in 104 organic molecules, using full torsional eigenvalue summation (TES) as a benchmark.
For methods requiring full rotational potentials, the effect of the resolution at which the rotational potential
was calculated was also assessed. Although lower-cost methods such as Pitzer’s Tables are appropriate when
potentials can be adequately described by simple cosine curves, these were found to show large errors (as
much as 3 orders of magnitude) for non-cosine curve potentials. In those cases, it is found that the TDPPI-
HS method in conjunction with a potential compiled at a resolution of 60° offers the best compromise between
accuracy and computational expense. It can reproduce the benchmark values of the partition functions for an
individual mode to within a factor of 2; its average error is just of a factor of 1.08. The corresponding error
in the overall internal rotational partition functions of the molecules studied is less than a factor of 4 in all
cases. Excellent cost-effective performance is also offered by CT-Cω, which requires only the geometries,
energies, and frequencies of the distinguishable minima in the potential. With this method the geometric
mean error in individual partition functions is 1.14, the maximum error is a modest 2.98 and the resulting
error in the total 1D-HR partition function of a molecule is less than a factor of 5 in all cases.

1. Introduction

An important application of computational chemistry is the
a priori prediction of thermochemistry. However, this entails
the calculation of partition functions to relate the electronic
structure information generated by ab initio molecular orbital
calculations to the enthalpies and entropies of molecules at some
nonzero temperature. The partition function (Q) serves as a
bridge between the quantum mechanical states of a system and
its thermodynamic properties and is given by the formula

In this equation,kB is the Boltzmann constant and theεi values
are the energy levels of the system, each having a number of
degenerate statesgi, as obtained by solving the Schro¨dinger
equation at the specified temperatureT. In theory, this equation
should be solved for all active modes but in practice the
calculations are greatly simplified by making a number of
approximations. In particular, the partition function is usually
separated into the product of the translational, rotational,
vibrational and electronic terms. This approximation is generally
considered to be valid, provided the reaction takes place on a
single electronic surface. Simple analytical expressions for these
separate terms can then be obtained, provided one further
assumes that the reacting species are ideal gas molecules that
satisfy the rigid rotor/harmonic oscillator approximation. The

resulting equations, which are frequently implemented in
computational chemistry software packages, allow one to
calculate the partition functions and associated thermodynamic
properties of a molecule at a given temperature on the basis of
its geometry, frequencies, and electronic state.

The accuracy of computational thermochemistry depends not
only on the accuracy of the electronic-structure calculations but
also on the validity of the approximations used in calculating
the partition functions. Although most of the above approxima-
tions are reasonable, at least for gas-phase reactions occurring
on a single electronic surface, the use of the harmonic oscillator
approximation can be a potentially large source of error. For
example, in radical addition to CdS double bonds, the use of
the harmonic oscillator approximation can cause one to under-
estimate the equilibrium constant by as much as 2 orders of
magnitude,1 and significant errors have also been reported for
many other systems, including the thermochemistry ofn-
alkanes2 and propagation rate coefficients in free-radical po-
lymerization.3 The errors arise because the harmonic oscillator
approximation assumes that, for each normal mode, the potential
field associated with the molecule’s distortion from the equi-
librium geometry is a parabolic well. Though this is reasonable
for bond stretching motions, many of the low-frequency torsional
modes would be more appropriately treated as hindered internal
rotations. Unfortunately, there is no simple analytical solution
to the Schro¨dinger equation for the case of a hindered internal
rotation, and, moreover, the numerical solution requires the
calculation of the full rotational potential for each relevant mode.
As a result, the correct treatment of the low-frequency torsional
modes can add considerably to the computational cost of the
calculations, especially for larger molecules. The development
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of low-cost methods for predicting the hindered internal
rotational partition functions is highly desirable.

To reduce the computational cost of obtaining partition
functions, we have four main options available to us: (1)
reducing the level of theory of the electronic structure calcula-
tions themselves; (2) reducing the dimensionality of the problem
by ignoring coupling between modes; (3) reducing the number
of points at which the potential energy surface is evaluated; (4)
simplifying the solution of the Schro¨dinger equation. With
regard to option 1, it is clear that identifying cost-effective
accurate methods for calculating the geometries, frequencies,
and rotational potentials is crucial. However, because the
performance of computational methods is often very system-
specific, a general evaluation of this factor is beyond the scope
of the present work. Nonetheless, it is worth noting that the
type of electronic structure information normally required to
calculate partition functions (geometries, frequencies and rota-
tional potentials) can usually be obtained with a sufficiently
high degree of accuracy at much lower levels of theory than
are required for studying the energetics of reactions due to the
greater degree of systematic error cancellation.4 For the types
of species studied in the present work, assessment studies5

have indicated that low levels of theory such as B3LYP/
6-31G(d) are usually adequate for calculating the geometries,
frequencies, and partition functions, provided transition struc-
tures are corrected to a higher level of theory via an IRCmax6

technique.
With regard to option 2, in the present work we ignore

coupling between internal modes altogether and restrict our-
selves to one-dimensional hindered rotor (1D-HR) problems.
This approximation is made necessary by the large size of the
molecules under study. Although even a well-implemented 1D-
HR model is potentially subject to error, a large part of this
error can be mitigated by choosing an appropriate method for
combining the hindered rotor partition for the specific mode
with the harmonic oscillator partition functions for the remaining
vibrational modes. For example, Van Cauter et al.7 have shown
that excellent results are possible if one applies the harmonic
oscillator approximation to all 3N - 6 internal modes of a
molecule, and then multiplies the resulting vibrational partition
function by a correction factor for each internal hindered rotor
partition function. This factor is then calculated as the ratio of
the 1D-HR partition function to the corresponding “pure”
vibrational partition function, as calculated from second deriva-
tive of the rotational potential. Using approximations such as
this, the 1D-HR model has been shown to provide reasonable
results in situations where testing against more sophisticated
treatments is possible.8

On the basis of the 1D-HR model, in the present work we
examine whether further simplifications through (3) and (4) can
be achieved without compromising the accuracy of the results
obtained. A wide range of approximate methods for solving the
1D-HR problem have been developed, varying both in the
amount of electronic structure information required and in the
manner in which the Schro¨dinger equation is solved. The most
accurate require a full rotational potential for the relevant mode,
use this to solve numerically the Schro¨dinger equation for a
one-dimensional rigid rotor, and then obtain the partition
function via eigenvalue summation as in eq 1. Even using this
approach, further savings are possible if one can increase the
step size at which the potential is evaluated. In the extreme case,
by assuming that the rotational potential follows a simple cosine
curve with a known symmetry numberσ, it is possible to obtain
the entire rotational potential on the basis of the calculated

rotational barrier. Moreover, for this special case, the well-
known Pitzer Tables9 contain tabulated numerical solutions to
the 1D-HR problem, and the requirement of solving the one-
dimensional rigid rotor Schro¨dinger equation can also be
avoided. More generally, Truhlar and co-workers have derived
several simple analytical formulas of varying accuracy for
evaluating the partition function on the basis of the electronic
structure information available. Their simplest method, called
CT-Cω, requires only the geometry and frequencies of the
distinguishable minima on the internal rotational potential;10 at
the other extreme, the TDPPI-HS method, evaluates the partition
function on the basis of the entire rotational potential.11 Further
details for several of these methods are provided in the following
section.

Recently, Ellingson et al.11 evaluated a number of the
available methods for calculating hindered rotor partition
functions for the case of H2O2. On the basis of this study they
recommended that, if a full internal rotational potential is
available, TDPPI-HS offered an accurate alternative to the full
tosional eigenvalue summation (TES) approach. Alternatively,
when the energies at all of the stationary points (i.e., local
minima and transition structures) of the internal rotational
potential surface are available, SR-TDPPI-HS was the most
efficient method. In cases where only the geometries and
frequencies of the distinguishable minima were available, CT-
Cω was the preferred option.10 In the present work, we examine
the applicability of these results to the internal rotational modes
of a large test set of organic molecules including various types
of C-C, C-O, C-S rotations. We compare the accuracy of
TDPPI-HS, SR-TDPPI-HS, CT-Cω, and the Pitzer Tables
against the TES approach for a 1D-HR. We also compare the
results with those obtained under harmonic oscillator (HO)
approximation. For those methods requiring full rotational
potentials, we also examine whether the use of a resolution of
60° instead of the customary 10° has a large impact on the
accuracy of the results.

2. Theoretical Procedures

In the present work, 1D-HR partition functions were calcu-
lated using five different methods of varying accuracy and
computational expense for a test set of 644 rotations in 104
organic molecules. The corresponding harmonic oscillator
partition functions were also calculated for purposes of com-
parison. The most accurate 1D-HR methods required full
rotational potentials for the relevant modes, and these were
evaluated as relaxed scans at two different resolutions, 60° and
10°. The electronic-structure information (rotational potentials,
geometries and frequencies) needed to evaluate the partition
functions was obtained at a consistent level of theory, B3-LYP/
6-31G(d), and were taken largely from earlier studies involving
the reactions of these molecules.12 Electronic-structure informa-
tion for the remainder were calculated using the same software,
GAUSSIAN 03,13 and the same procedures, B3-LYP/6-31G-
(d), as in these earlier studies. Our assessment studies5 have
shown that this simple level of theory provides excellent
approximations to the geometries and rotational potentials of
the types of molecular species in our test set. In the present
work, we use this information (or the relevant subsets of it) to
calculate the partition functions for the various modes at 298.15
K using the alternative methods so that the performance of the
lower-cost methods can be assessed. The calculations were
carried out using an in-house program called T-Chem.14 The
methods used for calculating the partition functions are described
below; Table 1 summarizes the relative costs of the studied
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methods with respect to both the electronic structure information
required and the calculation of the partition function from this
information.

TES. At our benchmark level of theory, 1D-HR partition
functions were calculated by solving the eigenvalues of the one-
dimensional Schro¨dinger eq 2 for a rigid rotor.

In this equationΨ is the wavefunction,ε is the energy,Ir is the
reduced moment of inertia, andV(θ) is the rotational potential.
As noted above, at our benchmark level of theory,V(θ) was
calculated as a relaxed scan through 360° in steps of 10°. The
resulting potential was then fitted with a Fourier series of up to
18 terms and evaluated at a resolution of 1.2°. The reduced
moment of inertia (Ir) is assumed to be independent ofθ and
was calculated from the optimized geometry using the equation
for I(2,3), as defined by East et al.15 Equation 2 was converted
into the Hill differential equation to solve for the eigenvalues,
ε, using the program T-Chem.14 The resulting energy levelsεi

were then summed to obtain the partition functionQTES, as
follows:

whereσ is the symmetry number associated with that rotation.
It should be noted that there are two different conventions in

use in the literature for reporting the partition functions for the
internal modes. In the first, the zero of energy is taken as the
“bottom of the potential well”; in the second, “V ) 0”, the zero
of energy is taken as the first vibrational level. The resulting
partition functions that are calculated under the alternative
conventions differ by the zero-point vibrational energy. In the
“bottom of the potential well convention” zero-point energy is
included in the 1D-HR partition function of each individual
mode; in the “V ) 0” convention, the total zero-point vibrational
energy of the molecule is calculated separately, and added to
the 0 K energy barrier or enthalpy of the reaction. Because the

Pitzer Tables use the “V ) 0” convention,9 we have adopted
this for the present work. Thus, in the TES method, the energy
levels are corrected so that the first energy level is set as the
zero of energy, prior to summing them, as in eq 3. However,
the TDPPI-HS, SR-TDPPI-HS, and CT-Cω methods of Truhlar
and co-workers10,11 have been designed to follow the “bottom
of the potential well” convention. As a result, the partition
functions obtained under these methods need to have the zero-
point vibrational energy removed from them, so that they can
be compared with the partition functions calculated under the
TES and Pitzer Tables methods. To do this, we have included
the inverse of the zero-point vibrational energy, ZPE-1, as a
pre-factor in their respective formulas.

where ωe is the frequency of the mode at the equilibrium
geometry. It will be seen that, for simplicity, the ZPE has been
calculated under the harmonic oscillator approximation, whereas
when built into the TDPPI-HS, SR-TDPPI-HS and CT-Cω
formulas it is effectively calculated as a hindered internal
rotation. However, unlike the overall partition function, the
differences in the ZPE as calculated under the various alternative
methods are very small and are not expected to affect the
comparisons made.

TDPPI-HS. The TDPPI-HS method was developed by
Truhlar and co-workers11 as a simpler alternative to TES for
cases where the full one-dimensional rotational potential is
known. It uses the displaced points path integral (DPPI) method
applied in one dimension only to the torsional degree of freedom
(TDPPI) with harmonic sampling (TDPPI-HS). The partition
function is given by

As noted above, we have introduced the pre-factor, exp(pωe/
2kBT) to remove the contribution from zero point vibrational
energy so that the partition function follows the “V ) 0”
convention and can be compared directly with the TES and
Pitzer Table methods. In the present work, the reduced moment
of inertia, Ir, is calculated using the equation forI(2,3), as
described previously15 and is thus identical to the value used in
the TES benchmark calculations. The rotational potential is also
the same as the one used in the TES calculation,V(θ), but the
torsional angle is shifted by a constant,c/2, which depends on
the temperature (T), the reduced moment of inertia (Ir), and
frequency at the equilibrium geometry (ωe) as follows:

The frequency at the equilibrium geometry,ωe, is derived from
the second derivative of the potentialV(θ).

SR-TDPPI-HS. The SR-TDPPI-HS method has been de-
signed by Truhlar and co-workers11 for situations in which the

TABLE 1: Relative Cost of Alternative 1D-HR Methods for
Different Symmetry Numbers (σ)

electronic structure informationa

method σ ) 1 σ ) 2 σ ) 3
partition function

calculationb

HO 1 1 1 1
CT-Cω Pc Pc Pc 1
Pitzer Tables 2 2 2 1
SR-TDPPI-HS 2P 2P 2P 1
TDPPI-HS 60° 6 3 2 1
TDPPI-HS 10° 36 18 12 1
TES 60° 6 3 2 86400
TES 10° 36 18 12 86400

a Number of points on the rotational potential for which optimized
geometries are required.P is the number of distinguishable minima on
the rotational potential energy surface (the total number of minimaM
is given by the product,σP). In the present work, when implementing
SR-TDPPI-HS, we look for a maximum of three distinguishable minima
when σ ) 1, and one whenσ ) 2 or 3. b Relative amount of CPU
time required to perform the partition function calculation (assuming
all necessary electronic structure data is already available) on a on 2
GHz G5 Mac PowerPC.c Although onlyP points are required in this
calculation, frequency calculations are required in addition to geometry
optimizations and energy calculations.

ZPE-1 ) exp( pωe

2kBT) (4)

QTDPPI-HS ) exp( pωe
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geometries and energies atall stationary points (i.e., local
minima and transition structures) in the potential energy surface
are known, in addition to the energy, geometry, and frequencies
of the equilibrium structure. Once the energies of the stationary
points are obtained, the segmented reference (SR) approximation
is used to fit the rotational potential between each peak and
minimum using a simple cosine function. The potential can be
written as

whereWj
L and Wj

R are the left and right barrier andUj is the
energy at thejth distinguishable minimum of the rotation. Here,
P is the number of distinguishable minima andM is the total
number of minima in the range [0, 2π]. The only difference
between this method and TDPPI-HS scheme is the potential
used in the scheme. Therefore, the partition functionQSR-TDPPI-HS

is also calculated using eq 5 butV(θ) is calculated using (8)
rather than the full one-dimensional rotational potential.

Because SR-TDPPI-HS only requires the stationary points
on the rotational potential, this method usually requires sub-
stantially less structure-reactivity information than the TES and
TDPPI-HS methods except when the full potentials required
for these latter methods are calculated at coarse resolutions.

However, for complicated potentials (which may contain a large
number of distinguishable minima) it may in practice be difficult
to identify all of the stationary points in rotational potential
without first calculating the entire rotational potential at a fine
resolution. Because this would completely sacrifice the com-
putational advantage of the SR-TDPPI-HS method, in the
present work we have tested a pragmatic version of this method
in which we limit the number of stationary points that are sought
on the basis of the nature of the rotating bonds. Thus, for
rotations involving spM centers, a maximum ofM minima (and
M associated transition structures) are sought. As a result, the
computational cost of this method (in terms of the electronic-
structure information required) is the same as that of the TDPPI-
HS and TES methods, when these latter methods are applied
using a rotational potential compiled at a 360°/2M step size. In
the present work, this means that for rotations involving sp3

centers, the cost is the same as the 60° resolution TDPPI-HS
and TES methods; for sp2 centers the cost of SR-TDPPI-HS is
slightly lower.

Pitzer Tables.When the rotational potential follows a simple
cosine curve, it is possible to generate the entire potential on
the basis of the rotational barrier and symmetry number. This
greatly reduces the amount of electronic-structure information
required to evaluate the partition function: instead of calculating
the geometry and energy at 35 points (for the customary step
size of 10°) on rotational potential energy surface in addition

Figure 1. Correlation between the benchmark TES 10° ID-HR partition functions and the various low-cost methods examined.

V(θ) ) ∑
j

P (Wj
L - Wj

R)

4
[1 - cosM(θ - θj)] + Uj (8)
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to equilibrium structure, it is only necessary to calculate one
additional point, the rotational transition state. In such cases,
the partition function can be calculated using a tabulated
numerical solution to one-dimensional Schro¨dinger equation,
known as the Pitzer Tables.9 To use the Tables, one requires
the barrier height of the potential and the inverse of the partition
function of free rotor,QFR, which is defined in.

In practice few rotational potentials can be adequately
described by simple cosine curves. Nonetheless, it is of interest
to determine the extent to which this assumption compromises
the accuracy of the calculated partition functions for typical
types of rotational modes. Clearly, when the rotational potential
does not follow a simple cosine curve, selecting an appropriate
value for the rotational barrier, so as to best approximate the
potential as a cosine curve, can be problematic. In the present
work, we have thus chosen the highest energy barrier to rotation
throughout the entire potential. In practice, if one were to
calculate single rotational transition structure, one would not
necessarily locate the maximum barrier to rotation. We have
thus also performed the analysis using the lowest rotational
barrier throughout the entire potential. Consideration of these
two extremes should provide a guide to the possible level of
error in the results.

CT-Cω. The other low-cost method for evaluating the
hindered-rotor partition function that is tested in the present
work, CT-Cω,10 requires the geometry and the frequencies at
all of the distinguishable minima. Thus, when the potential
follows a simple cosine curve it requires less structure-reactivity
data than the Pitzer Tables; for more complicated potentials it
requires slightly more, according to the number of distinguish-
able minima. For a given potential, the method requires
information on only half the data points required by SR-TDPPI-
HS; however, unlike SR-TDPPI-HS, the frequencies as well as
energies are required at each optimized geometry. As in the
case of SR-TDPPI-HS, we have set a pragmatic limit on the
number of distinguishable minima that are sought for nonregular

potentials. Thus, for rotations involving spM centers, a maximum
of M minima are sought.

Under the CT-Cω method, the partition function is evaluated
via

whereQFR is the partition function of free rotor and is given
by eq 9 above,QMC-HO is the multiconformer harmonic partition
function and is given by eq 11 andQI is the intermediate
partition function for intermediate temperature region and is
given by eq 12. The frequency,ωj, is obtained from electronic

structure calculations atjth minimum of the rotation, andUj is
the local minimum atjth minimum of the rotation. As explained
above, to follow the “V ) 0” convention, the ZPE contribution
has been removed from eq 11.

HO. The corresponding partition function for each internal
rotational mode in the test set was also calculated under the
harmonic oscillator approximation (HO), the default procedure
in most computational chemistry software packages. This was
done to allow us to compare the errors incurred in using
approximate methods for calculating the partition function with
those associated with doing nothing at all and retaining the
harmonic oscillator calculations. Under the harmonic oscillator
approximation, the partition function associated with an indi-
vidual vibrational mode under the “V ) 0” convention is given
by

whereω is the harmonic frequency. In the present work, we
calculate the HO partition function using the frequency estimated
from the second derivative of the rotational potential at the
equilibrium structure via eq 7. As noted above, recent work7,8

suggests that, when coupling between modes is not dealt with
explicitly, this is the most appropriate manner in which to
estimate the contribution of a internal rotational mode to the
total partition function under the HO approximation so that it
can then be corrected using the corresponding 1D-HR value.

3. Results and Discussion

To evaluate the accuracy of lower-cost methods for calculat-
ing 1D-HR partition functions, we considered a test set of 644
rotations in 104 organic molecules. The test set is described in
full in the Supporting Information and comprised a variety of
different C-C, C-O, and C-S rotations in both open- and
closed-shell molecules including aromatic and aliphatic hydro-
carbons, halides, esters and dithioesters, and involving a range
of functional groups. For each rotation in the test set, 1D-HR
partition functions were calculated via the five methods
described above (CT-Cω, Pitzer’s tables, SR-TDPPI-HS, TD-
PPI-HS, and TES), and the corresponding value of the partition
function under the harmonic oscillator approximation (HO) was

TABLE 2: Maximum (MAX) and Geometric Mean (GM)
Deviations of the Calculated 1D-HR Partition Functions
from the Benchmark Values (TES 10°) for the Rotations in
the Test Seta

methyl rotationsb non-methyl rotationsc totald

method MAX GM MAX GM MAX GM

HO 2.84 1.16 5.25 1.36 5.25 1.28
CT-Cω 1.39 1.13 2.98 1.14 2.98 1.14
Pitzer Tables

(max. barrier)
1.20 1.02 296.60 4.79 296.60 2.73

Pitzer Tables
(min. barrier)

1.22 1.02 48.52 4.26 48.52 2.54

SR-TDPPI-HS 1.10 1.02 5.70 1.17 5.70 1.12
TDPPI-HS

(60° resolution)
1.10 1.02 1.97 1.12 1.97 1.08

TES
(60° resolution)

1.08 1.01 1.94 1.12 1.94 1.08

TDPPI-HS
(10° resolution)

1.08 1.03 1.73 1.02 1.73 1.02

TES
(10° resolution)

1 1 1 1 1 1

a The errors in a calculated partition function were defined as the
ratio of the calculated value to the benchmark 10° TES value, with
numerator and denominator chosen such that the ratio was greater than
or equal to one.b The subset of 233 methyl rotations.c The subset of
411 non-methyl rotations.d The complete test set of 644 rotations.

QFR )
x2πIrkBT

pσ
(9)

QCT-Cω ) QMC-HO tanh(QFR

QI ) (10)

QMC-HO ) ∑
j)1

P exp(-Uj/kBT)

1 - exp(-pωj/kBT)
(11)

QI ) ∑
j)1

P exp(-Uj/kBT)

pωj/kBT
(12)

QHO ) 1

1 - exp(- pω
kBT)

(13)
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also calculated for purposes of comparison. For the methods
requiring full rotational potentials, TES and TDPPI-HS, the
rotational potential was obtained for two different step sizes,
10° and 60°. The resulting individual values of the partition
function at the various levels of theory are plotted against the
corresponding benchmark data in Figure 1; the corresponding
numerical values are provided in Table S1 of the Supporting
Information.

From Figure 1, it is seen that there is a wide variation in the
1D-HR partition functions calculated via the alternative methods.
Only the 10° TDPPI-HS values, which require the same
electronic-structure information as the benchmark values, appear
to show close agreement with the benchmark 10° TES values.
The 60° TDPPI-HS and TES values show reasonable agreement
with the benchmark data, though with increased scatter. This is
also true of SR-TDPPI-HS and CT-Cω, though in these cases
there are some significant outliers with much larger errors. The
Pitzer Tables generally underestimate the benchmark data and
appear to show larger errors than those incurred under the
harmonic oscillator approximation, though there are several
exceptional cases where the errors are much smaller.

To facilitate a more quantitative analysis of the results, the
errors in the lower-cost methods (versus the TES 10° benchmark
values) were estimated and are summarized in Table 2. Because
the partition function contributes to the calculated rate or
equilibrium constant in a multiplicative manner, errors in the
partition functionQi were calculated as the ratio ofQi to the
corresponding benchmark TES value, with the numerator and
denominator chosen such that the ratio was always greater than

1. The overall error for the test set was then calculated as the
geometric mean (GM),

wheren is the number of rotations in the test set. Because the
performance of many of the methods tested is likely to be
affected by how well the rotational potential can be described
by a simple cosine curve, the geometric mean errors are also
calculated separately for the 233 methyl rotations in the test
set (as these might be expected to have rotational potentials
that can be approximated by a simple cosine curve), and for
the remaining 411 rotations (which would be expected to have
more complicated rotational potentials). The results are now
discussed in turn.

Methyl Rotations. If we examine first the subset of 233
methyl rotations, we note that the errors in all of the alternative
methods are relatively small. This is not surprising. All of the
methods examined (with the exception of HO and CT-Cω)
should in principle be exact when compared with the benchmark
TES values if the potential follows a cosine curveexactly. For
most of the methyl rotations in the test set, the rotational
potentials do follow a simple cosine curve, and the errors are
thus negligible. For some of the rotations studied there are small

Figure 2. Methyl rotational potentials for which the deviations from the Pitzer Tables exceed a factor of 1.03 (deviations shown in brackets). The
potential compiled at 10° resolution is shown in black; the corresponding cosine fit based on the rotational barrier and symmetry number is shown
in blue. Structure and dihedral numbers are defined in Figure S1 of the Supporting Information.

GM ) (∏
i)1

n

xi)1/n {xi )
Qi

TES

Qi

for Qi < Qi
TES

xi )
Qi

Qi
TES

for Qi > Qi
TES

(14)
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deviations from this functional form (see Figure 2), and these
deviations result in the errors observed. Nonetheless, the errors
are modest and it is clear that even these cases, the Pitzer Tables
are adequate. Perhaps more importantly, the results of Table 2
confirm that the lowest-cost 1D-HR method examined, CT-Cω,
also offers a modest improvement over the harmonic oscillator
approximation, despite requiring no additional electronic-

structure calculations for these types of potential. This method
would thus be a cost-effective approach to modeling 1D-HR
partition functions for simple cosine rotational potentials.

Non-Methyl Rotations. For the remaining test set of
rotations, the rotational potential does not follow a simple
cosine curve (see, for example, Figure 3), and the errors in
the lower-cost methods are, not surprisingly, much larger. In

Figure 3. Typical rotational potentials from test set, as interpolated at 10° resolution and 60° resolution (red dots fitted by blue line). The deviations
of the 1D-HR partition functions estimated under the TES method from the 60° potential, compared with the corresponding values under the more
accurate 10° potential are shown in parentheses. Structure and dihedral numbers are defined in Figure S1 of the Supporting Information.
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particular, regardless of how the rotational barrier is
chosen, the Pitzer Tables lead to errors that are much greater
than those incurred under the harmonic oscillator approximation,
are thus best avoided. It would seem that, if the rotational
potential is complicated, it is essential that further electronic-
structure information is obtained so that it can be properly
characterized.

The other 1D-HR methods tested (CT-Cω, SR-TDPPI-HS,
TDPPI-HS, TES) do sample additional points on the rotational
potential and perform much better. Not surprisingly, the best
results were obtained using the methods requiring the full
rotational potential (i.e., TDPPI-HS and TES). These methods
had maximum errors of less than a factor of 2 and geometric
mean errors of less than a factor of 1.12, even when applied
using a 60° step size in the potential. At this step size they
required the same number of data points as the SR-TDPPI-HS
method (whenσ ) 1 or 3, they required one additional point
whenσ ) 2) but were significantly more reliable. Compiling
the rotational potential at a 60° resolution, in place of the
customary 10°, offers a 6-fold saving in the amount of
electronic-structure data required with minimal additional error
in the resulting TDPPI-HS or TES partition functions. In the
present work, this is true even when minor qualitative differ-
ences in the interpolated potential at 60° and 10° were apparent
(see, for example, Figure 3) and would imply that the use of a
60° resolution could be adopted for most rotational potentials
without significantly affecting the accuracy of the results. At
this resolution, there is no significant difference in the accuracy
of the TES and TDPPI-HS procedures, and the latter method,
which requires fewer flops in its Fortran routine, would be
preferred. When extremely accurate results are required, one
would of course revert to a 10° step size in compiling the
rotational potential. At that step size, the TDPPI-HS method
occasionally deviates from TES by up to a factor of 1.7, and
this level of error, though small, would not justify the additional
computational expense entailed in obtaining the additional points
on the rotational potential. In that situation, TES would then
be preferred over the TDPPI-HS.

Of the lower-cost methods examined, CT-Cω, showed
excellent performance and is thus promising as a low-cost
method for larger molecules. This method out-performed SR-
TDPPI-HS, despite requiring electronic-structure information
on only half of the data points required by SR-TDPPI-HS. Its
geometric mean error was just 1.14 (compared with 1.17 for
SR-TDPPI-HS), and its the maximum error was just 2.98
(compared with 5.70 for SR-TDPPI-HS). For comparison, the
geometric mean error under the harmonic oscillator approxima-
tion was 1.36, and the maximum error was of a factor of 5.25.
It should be reiterated that for the more complicated potentials,
such as many of those shown in Figure 3, the accuracy of SR-
TDPPI-HS (and possibly also CT-Cω) could have been im-
proved by obtainingall of the stationary points in the rotational
potential instead of the 4 or 6 we opted for in the present work
(according to whether the rotating bonds involved sp2 or sp3

centers). However, this would have sacrificed its computational
advantage over the more accurate TDPPI-HS and TES methods,
as it would then have been necessary to scan the entire rotational
potential using a reasonably small step size to ensure that all of
the stationary points were identified. It would thus appear that
TDPPI-HS and TES, when applied at a 60° resolution, offers
the best compromise between accuracy and computational
expense when a high degree of accuracy is required. However,
CT-Cω is promising as a lower-cost method for studying larger
molecules.

Practical Implications. It is clear that there is a wide
variation in the accuracy of the lower-cost methods for calculat-
ing the 1D-HR partition functions, and to some extent this
accuracy depends upon the type of rotation being studied. Given
that the error in the partition function is multiplicative, and given
that any given molecule may have several low-frequency
torsional modes, it is of interest to examine the impact of these
errors on the overall 1D-HR partition function for a molecule.
To this end, for each molecule studied, we calculated the ratio
of the product of its partition functions under a given ap-
proximate method to that calculated using the 10° TES method.
We then compiled a histogram of the results for the entire test
set (see Figure 4). The analysis was carried out for the 60°
TDPPI-HS method, which appeared to show the best compro-
mise between accuracy and computational expense, and the CT-
Cω method, which is promising as a lower-cost method for
larger molecules. The errors under the harmonic oscillator
approximation are also shown for purposes of comparison.

From Figure 4 we find that the 60° TDPPI-HS method
reproduces the total 1D-HR partition function of every molecule
studied to within an order of magnitude. Indeed the maximum
errors for this method were actually less than a factor of 4, and
appear to be relatively random with approximately half of the
molecules showing an underestimate and half showing an
overestimate. What is encouraging is that the lower-cost method,
CT-Cω, also reproduces the total 1D-HR partition function of
every molecule studied to within a factor 5, despite requiring
information for only half of the data points required by the 60°
TDPPI-HS method. Not surprisingly, the harmonic oscillator
approximation shows larger errors, with a small but significant
portion of the molecules deviating by as much as 2 orders of
magnitude. In general, both it and CT-Cω tend to underestimate
the partition function, though for a small fraction of the
molecules the total partition function is overestimated instead.

4. Conclusions

On the basis of our analysis of a test set of 644 rotations in
104 organic molecules, it would appear that, for simple methyl
rotations, low-cost methods for calculating 1D-HR partition
functions such as the Pitzer tables or CT-Cω offer an excellent
approximation to compiling a high-resolution rotational potential
and performing torsional eigenvalue summation (i.e., our
benchmark 10° TES method).

For more complicated rotations, there is a greater variation
in accuracy among the alternative methods with the Pitzer Tables
in particular showing very large errors. Methods that utilize the
entire rotational potential are required to obtain highly accurate

Figure 4. Histogram of the deviations of the total 1D-HR partition
function from the TES 10° benchmark values under various approximate
methods for each of the 104 molecules.
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results; however, significant computational savings are possible,
if the potential is compiled using a 60° step size, rather than
the customary 10°, and the TDPPI-HS method is used to
evaluate the partition function, in place of TES. Using this
method, the partition function of an individual mode in our test
set can be reproduced to within a factor of 2 (with a geometric
mean error of just 1.08); the total 1D-HR partition for a molecule
can be reproduced to within a factor of 4.

Excellent cost-effective performance is also offered by CT-
Cω, which requires only the geometries, energies and frequen-
cies of the distinguishable minima in the potential. With this
method the geometric mean error in individual partition func-
tions is 1.14, the maximum error is a modest 2.98 and the
resulting error in the total 1D-HR partition function of a
molecule is less than a factor of 5 in all cases.
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