
HN2(2A′) Electronic Manifold. II. Ab Initio Based Double-Sheeted DMBE Potential Energy
Surface via a Global Diabatization Angle

Vinı́cius C. Mota and António J. C. Varandas*
Departamento de Quı´mica, UniVersidade de Coimbra, 3004-535 Coimbra, Portugal

ReceiVed: NoVember 5, 2007; In Final Form: January 18, 2008

A double-sheeted double many-body expansion potential energy surface is reported for the coupled 12A′/
22A′ states of HN2 by fitting about 6000ab initio energies. All crossing seams are described to their full
extent on the basis of converged results. The lowest adiabatic sheet is fitted with a rmsd of 0.8 kcal mol-1

with respect to the calculated energies up to 100 kcal mol-1 above the absolute minimum, and the topology
of the first excited-state investigated with the aid of the upper adiabatic sheet. A new scheme that overcomes
obstacles in previous diabatization methods for modeling global double-sheeted potential energy surfaces is
also reported. The novel approach uses a global diabatization angle which allows the diabats to mimic both
the crossing seams and atom-diatom dissociation limits.

1. Introduction

The ground state of the title system has been the target of
several theoretical studies1-3 in recent years, mostly aiming to
establish reliable estimates for its lifetime as it has been
postulated4 as a product of the reaction

a primary step on the thermal De-NOx process. Although
previous estimates of such a lifetime1,3 consistently fall into the
range 10-9-10-11 s, significant discrepancies persist between
the theoretical and experimental estimates,3 with an important
source of error being likely due to the neglect of nonadiabatic
effects.1,3 This conjecture is supported by the disagreement
observed in trajectory calculations3 for the N+ NH f N2 + H
reaction, despite the fact that the reported single-sheeted
potential energy surface2,3 (PES) reveals a high-degree of
accuracy. The unavailability of a multisheeted PES5 then forbids
any evaluation of such nonadiabatic effects. Our main goal in
this paper is therefore to model a global double-sheeted PES, a
natural step to follow our recentab initio study of the title
system in ref 5.

To construct a multisheeted PES,6-8 we have proposed two
approaches9-11 that utilize in one form or another a double
many-body expansion (DMBE)7,8,12-14 theory; for references
to single-sheeted forms including larger polyatomic systems,
the reader is referred to ref 15. In this theory, we have suggested
for the first time to split the potential energy into its various
short- and long-range components followed by a development
of each term as a cluster or MBE6 expansion. The DMBE
strategy conforms therefore with the traditional perturbation
theory partition of the interaction energy into short- and long-
range contributions or else with the molecular-orbital (MO)
theory view of partitioning the total energy into an extended-
Hartree-Fock contribution that includes the nondynamical
correlation and the dynamical correlation itself. Thus, every term
in the DMBE can be expressed such as to conform with its
correct asymptotic dependence on the interatomic distance(s).

The first of the above-mentioned multisheeted formalisms
utilizes the diatomics-in-molecules (DIM)16-18 theory to con-
struct the base potential matrix and introduces many-body terms
via dressing of the diatomic states.7,19,20 As a result, this
approach is also known as the dressed-DIM7 method. The
second approach uses the standard strategy pioneered by Murrell
and co-workers6 for directly modeling the diabatic potential
matrix but uses DMBE (rather than MBE) to model the various
matrix elements. For H3+, the dressed-DIM formalism has led
to a highly accurate PES11 that improved significantly over
previous DIM-related forms for the three lowest states of this
molecular ion.21,22The same technique has been applied to NO2,
yielding an accurate description of the first two doublet A′
states.10 Unfortunately, despite its appealing quantum back-
ground, the use of a minimal basis set leads for NO2 to a 8×
8 potential matrix, which requires handling 64 matrix elements
and hence complicates its application in dynamics (recall that
the diagonalization time scales with the cube of the matrix
dimension).

For HN2, no dressed-DIM construct has been reported. Since
our purpose here is a description of the intricate topology of
the first two A′ states as described in detail elsewhere,5 we have
chosen to follow the strategy of modeling a 2× 2 diabatic
matrix within standard DMBE theory. The accuracy of such an
approach depends, however, not only on the formalism em-
ployed but also on how the adiabaticab initio calculations are
assigned to the diabatic matrix elements. Thus, a careful analysis
of the advantages and drawbacks of previous diabatization
schemes23-38 as applied for the construction of global multi-
sheeted PESs with polynomial techniques is justified due to
being unavailable thus far. This will be given in section 2, with
the rest of the manuscript being organized as follows. Section
3 describes how the multireference configuration interaction39

(MRCI) points5 employing the aug-cc-pVTZ (AVTZ) basis set
of Dunning40,41 are corrected by the DMBE-SEC42 method to
account for excitations beyond singles and doubles and for basis
set incompleteness, while the diabatization scheme is discussed
in section 4. Details on DMBE7,12-14 modeling of the diabats
are given in section 5, and the results discussed in section 6.
Section 7 gathers the conclusions.* Corresponding author. E-mail address: varandas@qtvs1.qui.uc.pt.

NH2 + NO f products (1)
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2. Global Multisheeted Approaches Employing
Diabatization Schemes: A Synopsis

A wide variety of methods for producing diabatic states43-46

has been reported in the literature,23-38 followed by many
multisheeted PESs.9,29-35,47-55 For convenience, we divide them
in two categories. The first gathers approaches that yield directly
the diabatic states,23-35,36 either from ab initio energies or
diabatic electronic wave functions, thus without an intermediate
step. The second class includes methods that obtain the diabatic
states from the analysis of the behavior of separate molecular
properties36-38 such as dipole or transition moments.

The direct diabatization methods which are based23-26 on
finding electronic wave functions (and subsequently molecular
properties57) that behave smoothly at the neighborhood of
conical intersections, where the adiabats are known to vary
drastically and often in a discontinuous manner, frequently yield
diabatic states without a well-defined behavior at the atom-
diatom asymptotes. From a first-principles investigation of the
photodissociation on the Chappuis band of ozone, Woywodet
al.47 applied a method23,24 for obtaining smoothly varying
complete-active-space self-consistent-field (CASSCF) wave
functions by employing MO theory with nearly constant linear
combination of atomic orbital (LCAO) coefficients, followed
by block-diagonalization27 of the Hamiltonian, to obtain slowly
varying configuration interaction (CI) coefficients. By interpo-
lating the resulting diabatic points,47 they were able to achieve
highly non-varying diagonal diabatic representations for the
11A′′/21A′′ states of O3, which have been subsequently employed
in dynamics calculations.58,59Among the prominent features of
the reported states47 [covering wide regions of configuration
space, also for the 11A′ ground state and transition dipole
moment (TDM) surfaces], we note that the diabats fail to merge
the adiabats at the atom-diatom limits (the off-diagonal diabatic
term is nonvanishing at those limits since the adiabatic states
can be recovered at any geometry through a diabatic-to-adiabatic
transformation). Quoting the authors,47 “...we have to decide
where in nuclear coordinate space we want the diabatic
representation to coincide with the adiabatic representation....
it appears natural to require that the diabatic states merge
asymptotically with the adiabatic states of the fragments... this
definition would not lead, however, to a diabatic representation
which eliminates the singular part of the NAC at the conical
intersection. We have therefore adopted the alternative option
of requiring the diabatic basis to coincide with the adiabatic
basis on theC2V symmetry line... These adiabatic states,
consequently, do not merge with O+ O2 adiabatic states
asymptotically...”. In a more recent application to the 11A′′/
21A′′ states of O3, Nakamura and Truhlar26 reported a gener-
alization of the diabatization method proposed by Atchity and
Ruedenberg.25 They have observed a similar behavior for the
diabats at dissociation, although for LiFH26,60 such states do
appear to behave as expected at the asymptotes.

In an early attempt to establish a purely first-principles
understanding of the photodissociation of H2S, Heumannet al.48

suggested a procedure for constructing mixing angles by
exploring at each geometry the CI coefficients of the reference
configurations that have the desired diabatic character at the
locus ofC2V symmetry. Theirab initio calculations61 covered a
broad area of configuration space for the coupled 11A′′/21A′′
states, ground state (11A′) as well as TDM surfaces, followed
by construction of a sequence of interpolated PESs for the three
diabats, adiabats, and TDM surfaces. In fact, their calculations
allowed a satisfactory description of the first absorption band
of H2S. However, as noted in ref 48, the resulting mixing angles

do not show a correct asymptotic behavior, with the diabats
not merging the adiabats at the atom-diatom dissociation limits.
Using a similar diabatization scheme, Dobbyn and Knowles38

have reported the same difficulty in a study of the1A′ states of
the water molecule. In turn, Simahet al.49 reported a new first-
principles study of to the coupled 11A′′/21A′′ states of H2S,
where they attempt to correct for failures of the previous study
for the same system.48 By aiming at a substantial improvement
on the quality of theab initio description of the crossing seams
and avoided crossings of higher excited states, they have
employed a larger basis set with polarized functions and more
excited states (one1A′ state and seven1A′′ states on the
CASSCF calculations, followed by one1A′ state and three
1A′′ states in the subsequent MRCI calculations). A large
number of geometries has been computed with the new
diabatization scheme. On the basis of the principle of near spatial
invariance of the CI diabatic coefficients, they have generalized
the method of Domcke et al.23,24by maximizing also the overlap
|〈φi(q′)|φi(q)〉|2 + |〈φj(q′)|φj(q)〉|2 for all i, j MO pairs at the
current (q) and neighbor (q′) geometries. Although the qualita-
tive picture remains identical to the previous one,48 a high
quantitative improvement has been observed in the subsequent
dynamics study. However, a large discrepancy between the
adiabats and diabats remains at the dissociation limits, which
has been interpreted as “an artifact of the diabatization
procedure”, and referred as an “unavoidable effect”.

Also for H2S, Köppel et al.62 have implemented the diaba-
tization procedure of Thiel and Ko¨ppel,28 where the main idea
is to remove only the part responsible for the singularities from
the nonadiabatic coupling term via a unitary transformation.
Their results were compared with those of Simahet al.,49

showing that their diabats do not merge either the adiabats at
the HS-S dissociation channel. In turn, Mahapatraet al.63

reported a PES for the lowest two2A′ states of NO2 by
employing the same scheme, with 315ab initio points reported
for regions relevant to photodissociation in addition to further
calculations to map the conical intersection. Although satisfac-
tory in this region (the points have been interpolated), it is not
clear whether their surfaces describe the atom-diatom dissocia-
tion limits.

A key feature of modeling strategies that employ MBE6,8 is
that the electronic states, either adiabatic or diabatic, must have
a well-defined behavior at the asymptotes. As a result, the
topology of the diabats obtained from the above direct diaba-
tization schemes23-28,48,49at the asymptotes represent a serious
drawback for MBE6,8 modeling. We remark that the authors
have themselves revealed skepticism on the hypothesis of
obtaining diabats that simultaneously account for the crossing
seams, show a vanishing diabatic coupling element< φd|∇R|φd >
(producing smoothly varying electronic wave functions over the
whole configuration space), and merge the adiabats at the
asymptotes. Because this last issue is critical for dynamics, the
diabatic angle obtained from the above schemes23-28,48,49has
often been artificially corrected such that the diabats so obtained
show the proper asymptotic limits. In particular, when using
the O3 PESs of Woywodet al.,47 Flöthmanet al.58 fitted the
mixing angle to analytical expressions while polynomial forms
were utilized for the adiabats at the atom-diatom limits. The
diabatic description of this region, obtained by cubic-spline
fitting a grid of points originating from the fits of the mixing
angle has then been merged via switching forms with the diabats
earlier obtained. Other modifications proved necessary. For
H2S,48 the mixing angleτ has been empirically written asτ )
τcalc[1 - f(R)] + π/2f(R), whereτcalc is the actually calculated
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(asymptotically non-vanishing) mixing angle, andf(R) a switch-
ing function that enforces the diabats to merge the adiabats at
the H+ HS asymptote. Analytical forms to fit the mixing angle
have been used by Kurkalet al.50 for the double-sheeted PES
of NO2(2A′) with the diabatization scheme of Simahet al.49

However, variations with theR valence angle of up to 5.7 kcal
mol-1 near the atom-diatom asymptote are observed for both
diabats and adiabats. Grebenshchikovet al.51 followed a similar
strategy to study the Chappuis band of ozone, with the diabatic
angle being obtained with the scheme of Simahet al.49 and fitted
as for NO2.50 Here too, the diabats do not merge the adiabats at
the atom-diatom limits.

Another direct diabatization scheme pioneered by Murrell and
co-workers6,29-31 imposes the correct atom-diatom behavior
of both diabats and adiabats by writing as MBE, DMBE or
modified London-Erying-Polani-Sato (LEPS)64-66 forms the
diagonal elements of a standard 2× 2 diabatic matrix,

The off-diagonal term is chosen to warrant that the eigenvalues
of the above matrix

reproduce the adiabats to the desired extent. For H2O, after
expanding the diabats with the MBE formalism, Murrell and
co-workers30 obtained a zeroth-order representation of those
terms by considering regions where the off-diagonal term is
known to be zero or very small and the diabats can be assumed
to coincide with the adiabats, e.g., at linear arrangements and
points approaching the atom-diatom dissociation limits. The
off-diagonal term is written as the product of a three-body
polynomial in the interatomic coordinates by damping functions
that kill the latter both at the atom-diatom limits and at linear
geometries. Equation (3) will then yield adiabats that reproduce
the conical intersection seam while dissociating correctly at the
various atom-diatom limits. Regions whereV12 should be
important (e.g., those withCs symmetry) have been used for
obtaining the data necessary to model the off-diagonal term.
All zeroth-order solutions have finally been used in a nonlinear
least-squares fit to their relatively small (in modern standards)
number of adiabaticab initio energies via eq 3. The resulting
adiabats fit the known topological features including the conical
seam, with the diabats properly merging the adiabats at the
atom-diatom limits. A refit of the H2O PESs to a larger number
of ab initio points with the DMBE method has been reported,52

although it is unclear whether a significant improvement has
been achieved in comparison with the previous30 PES.

A similar approach has been employed in a series of double-
sheeted PESs32-34 for the interaction of metal atoms with
covalent diatomics. In all cases, a diabatic matrix as in eq 2
has been used, with the diagonal states modeled by LEPS forms.
For NaFH, Topaleret al.32 utilized a functional form for the
off-diagonal term that could account for the correct diatomic
coupling at the atom-diatom limits as determined by using
transition dipole moments.37 The authors were the first to note
that a reasonable approach for obtaining points that represent
such a state would be by setting the seam of avoiding
intersections of the adiabats (the line of minimal gap) as if they
were lines of diabatic crossings. According to eq 3, this would
give V12 ) (V+ - V-)/2 at such geometries. The off-diagonal
terms were then fitted to the points so generated using a non-

vanishing form, which prevented a more satisfactory description
of the conical intersections. Note that the position for minimum
energy gap shown in their paper does not always correspond to
the location of the avoided intersections (this is clear from Figure
2 of ref 32, which shows that the minimum energy gap does
not coincide with the adiabatic crossing seam for linear
arrangements). A final remark to observe that no electronic
structure calculations have been performed for the NaH+ F
channel (mostly because it is energetically inaccessible), and
that the diatomic coupling was allowed to vary along the fit for
this channel. Similar steps have been followed by Hack and
Truhlar33 to construct a double-sheeted PES for NaH2. They
modeled the diabats using modified LEPS forms, and added
long range forces to them. The off-diagonal term has been
designed and fitted as in ref 32, and held constant along the
rest of the fit. A notable difference from ref 32 refers to the
off-diagonal term that has been chosen to vanish at any geometry
with C2V symmetry, where the locus of conical intersections lies.
Using such an approach, they have been able to model the
crossing seam over part of theC2V domain. However, despite
the use of a large number ofab initio points, the authors
acknowledge33 the method’s inability to attain quantitative
accuracy over the whole configuration space, which led them
to focus on the exciplex and neighborhood of the crossing seam
which have been judged as the most relevant regions for their
purpose. More recently, Jasperet al.34 reported a PES for LiFH
following a similar approach. Modified LEPS forms with long
range forces have been used to model the diabats, while the
functional form of the strictly nonvanishing off-diagonal term32

has once more been obtained from the requirement that the

(V11 V12

V12 V22
) (2)

V( ) 1
2

(V11 + V22) ( 1
2x(V11 - V22)

2 + 4V12
2 (3)

Figure 1. Key for predicted crossing seams: (s) R(R); (- -) RH-N2;
(---) RN-NH. Key for ab initio crossing seams: (O) T-shaped; (3) NNH;
(4) NHN.
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correct diatomic coupling were mimicked at the dissociation
limits. This term was fitted to points generated as before32,33

and considered as a zeroth-order solution. The parameters in it,
and in the diagonal diabatic states, have then been allowed to
simultaneous optimization in a final nonlinear fit using a large
number ofab initio points.

A handicap of the above approaches6,29-34 is that the
calibration of the diabats is not done by fitting diabatic energies.
The diabats are rather obtained via an indirect fit of eq 3 to
adiabatic energies. This requires ingenious albeit restrictive
methods for guessing the zeroth-order solutions of such diabats.
In the application to H2O by Murrellet al.,30 only certain regions
of the configuration space have indeed been used for such a
purpose, mostly because the authors wished to illustrate the
method. Similar applications32,34but the one for NaH233 do not
yield strictly global PESs (i.e., quantitatively describing all
channels).

The final type of direct diabatization here considered is a
procedure introduced by Hayet al.35 for the study of the
photodissociation of ozone in the Hartley band.35,53,54 These
authors have labeled the electronic states according to its
classification atC2V arrangements (where the diabatic states can
be exactly identified), and reassigned the adiabatic energies into
diabatic ones. Each adiabatic energy was then identified “by
eye” as belonging to one of the diabatic states in the neighbor-
hood of arrangements withC2V symmetry. The same has been
done for arrangements far from the strong coupling region (e.g.,
atom-diatom limits), and the resulting diabatic states fitted with
the MBE6 method. Despite the satisfactory results,54 the
procedure is somewhat simplistic67 in the sense that there is no
rigorous way of recovering the adiabatic states. It can though
be justified due to the complexity arising from at least four
electronic states with1A′ symmetry strongly coupled by several
seams of conical intersections. As noted,54 a rigorous electronic
structure study including a full modeling of the adiabatic or
diabatic topological features would be an “Herculian task”.

Indirect diabatization schemes36-38 offer the interesting
possibility of providing at low cost38 the diabatization angle
from the analysis of a molecular property other than the energy.
The diabats so obtained would imply almost no additional cost
but the calculation of the adiabats, and would be reliable
wherever such diabatization angle were valid. The conditions
to be satisfied for usefulness of a given property as a diabati-
zation criterion were formally discussed by Macias and Riera,36

and a review on methods for diabatizations of this type can be
found elsewhere.38 From their work, Dobbyn and Knowles38

have concluded that the use of a transition angular momentum
employing a third state uncoupled from the others appears as
the most promising route. However, even for this property,
artificial corrections on the diabatization angle may be required,
although minor. That might represent a drawback for such
schemes. Dobbynet al.55 reported a PES for the first two1A′
and lowest1A′′ states of HCl2, where the adiabatic points were
diabatized via transition angular momentum and then fitted them
to a rotated-Morse cubic-spline form. It is difficult to fully assess
the merits of their diabatization procedure, since the grid of
points covered mostly the valence region. Indeed, the rotated-
Morse cubic-spline forms used for the diabats where subse-
quently merged68 with asymptotically correct forms to provide
a reliable representation. Another PES employing a diabatization
method based on molecular properties (the dipole moment) has
been reported by Boggio-Pascuaet al.9 for the first two 2A′
states of C2H. As in ref 38, modifications had to be done on
the diabatization angle to correct the asymptotic behavior and
spurious diabatic crossings away from linearity where the locus
of conical intersection lies. The diabats were then modeled using
DMBE theory. Despite the good accuracy of the fit, the extent
of agreement between the predicted and calculated crossing
seams has not been discussed in detail preventing further
appreciation.

3. Ab Initio Energies Revisited

The major topological features of the coupled adiabatic states
12A′ and 22A′, including the seams of conical intersection, have
been covered by the grid of 3000ab initio geometries reported
in ref 5, which extend over the regions defined by 1.5e rN2/a0

e 4.0, 1.0e RH-N2/a0 e 10.0 and 0e γ/dege 90 for H-N2

interactions, and 1.3e rNH/a0 e 3.3, 1.0e RN-NH/a0 e 6.0
and 0e γ/dege 180 for N-NH interactions;r, R, andγ are
atom-diatom Jacobi coordinates. The calculations have been
carried out at the MRCI level of theory including single and
double electronic excitations using state averaged full-valence-
complete-active space (FVCAS)69 wave functions as the refer-
ence, and employing the AVTZ basis set. Such calculations
recover only a portion of the electronic dynamical correlation,
and hence energy barriers and other stationary points, as well
as relevant thermodynamic quantities, may suffer from signifi-
cant errors.70 Furthermore, the amount of dynamical correlation
recovered by the MRCI calculations may differ with the
electronic state, changing the relative positioning of the various
states and hence the loci of the crossing seams, as observed in
the case of ozone.47 Since part of the dynamical correlation will
unavoidably be missing in any MRCI calculation (but in the
case of a full CI expansion), one is led to believe that also the
loci of crossing seams are subject to improvement.

In this work, we have used the DMBE-SEC42 method to
correct the calculated MRCI energies for the incompleteness
of the basis set and truncation of the CI expansion. For each
adiabatic state, the DMBE-SEC energy assumes the form

Figure 2. Adiabatic avoided intersections in Jacobi coordinates. (a)
channel H-N2; (b) channel N-NH. Solid circles representab initio
calculations for the crossing seams from ref 5, and white circles
represent avoided intersection estimates from the adiabaticab initio
points (see text).
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where

and

with the first two terms of the SEC series expansion being given
by

and

Note that the summations∑AB run only over the correlated
diatomic pairs, which can be identified through the dissociation
schemes depicted in ref 5.

According to DMBE-SEC42 method, the two-body scaling
parametersFAB

(2) in eq 7 have been chosen to reproduce the
bond dissociation energy of the corresponding diatom (AB).
At the level of calculation here reported, this leads toFN2(

1Σg
+)

(2)

) 0.5491,FN2(
3Σu

+)
(2) ) 0.6408,FN2(

3Πg)
(2) ) 0.6359, andFNH(3Σ-)

(2) )
0.8669. In turn, the three-body factors have been taken to assume
identical values for both adiabatic states. Specifically, the value
of FABC

(3) ) 0.823 has been chosen such as to reproduce the
same barrier height for dissociation of the metastable ground-
state of HN2 as the PES reported by Poveda and Varandas2

which has utilized a larger AVQZ basis set. This result as well
as a comparison between the stationary points reported by those
authors2 and the values obtained in the current work is given in
Table 1. Despite of the fact that both the resulting global
minimum and saddle point for H+ N2 reaction lie below the
values reported by Poveda and Varandas2 by about 0.88 kcal
mol-1, the normal-mode frequencies and geometries show
considerably smaller deviations. This suggests that the employed
scaling factors can compensate for our use of a smaller basis
set, at least insofar as the stationary points and thermodynamic
attributes are concerned.

We now address the influence of the above correlation scaling
in theab initio crossing seams. For the H-N2 channel, theRH-N2

coordinate at the crossing point tends to be slightly shifted
outward for both T-shaped and linear NHN seams by≈0.15a0

when passing from FVCAS to MRCI, and by≈0.05a0 in going
from MRCI to DMBE-SEC values. In turn, the corresponding
energy values also vary. For the equilibrium geometry,rN2 )
2.074a0, the energy is found to be reduced by≈30 and≈20
kcal mol-1, respectively. In the N-NH channel at the linear
NHN crossing seam, theRN-NH coordinate at the crossing is
raised by≈0.15a0 when passing from FVCAS to MRCI and
≈0.05a0 when going from MRCI to DMBE-SEC, with the
energies forrNH ) 1.965a0 decreasing now by≈45 and≈10

kcal mol-1, respectively. The increase in the dynamical cor-
relation has then led to a raising in the perimeter of the structures
corresponding to the T-shaped and linear NHN crossing seams.

For the NNH crossing seam, a similar phenomenon occurs,
with the perimeter of the triatomic structures at the seam always
increasing when adding dynamical correlation. Thus, for a fixed
value ofy in panel b of Figure 1, the inner (left-hand-side) part
of the locus has been pushed further inward while the outer
(right-hand-side) part has moved outward. Specifically, the
inward shifts are typically≈0.15a0 and≈0.05a0 when passing
from FVCAS to MRCI and from MRCI to DMBE-SEC values
respectively. The corresponding decreases in energy forrNH )
1.965a0 are of≈30 and≈10 kcal mol-1. As for the outward
shifts, such variations are of≈0.1a0 and≈0.05a0 when going
from FVCAS to MRCI and from MRCI to DMBE-SEC values,
with the energy forrNH ) 1.965a0 decreasing≈25 and≈10
kcal mol-1.

4. The Diabatization Procedure

As discussed in section 2, approaches based on molecular
properties could offer the advantage of obtaining at low cost38

the diabatization angle, which could therefore be used for
generating zeroth-order solutions of the diabatic matrix. This
was the approach that we have first followed. We start by noting
that the 12A′′ state of HN2 is related with the second and third
2A′ states of the title system, and hence the use of the transition
dipole moment as an auxiliary diabatization property would
involve at least four states. Thus, we tried to use instead the
dipole moment, following previous work on a double-sheeted
DMBE PES for C2H.9 However, the implementation of this
procedure for HN2 revealed itself quite cumbersome. As for
H2O,38 the definition of the axis along which the component of

V(R) ) VFVCAS(R) + VSEC(R) (4)

VFVCAS(R) ) ∑
AB

VAB,FVCAS
(2) (RAB) +

VABC,FVCAS
(3) (RAB, RBC, RAC) (5)

VSEC(R) ) ∑
AB

VAB,SEC
(2) (RAB) + VABC,SEC

(3) (RAB, RBC, RAC) (6)

VAB,SEC
(2) (RAB) ) [VAB,FVCAS-CISD

(2) (RAB) -

VAB,FVCAS
(2) (RAB)]/FAB

(2)

(7)

VABC,SEC
(3) (RAB, RBC, RAC) )

[VABC,FVCAS-CISD
(3) (RAB, RBC, RAC) -

VABC,FVCAS
(3) (RAB, RBC, RAC)]/FABC

(3) (8)

TABLE 1: Stationary Points of the Lower Sheet of the 2×
2 DMBE Potential Energy Surface

property MRCIa MRCIb DMBEc DMBEd DMBEe

Global Minimum
R1/a0 2.227 2.225 2.226 2.2150 2.226
R2/a0 3.586 3.592 3.595 3.590 3.591
R3/a0 1.981 1.983 1.983 2.0073 1.982
E/Eh -0.3568 -0.3582 -0.3568 -0.3583 -0.3582
∆Ef 4.59 3.71 4.59 3.65 3.71
ω1(N-H)/cm-1 2916 2977 2875 2798 3035
ω2(N-N)/cm-1 1818 1819 1842 1786 1801
ω3(bend)/cm-1 1118 1130 1096 1357 1125

Saddle Point for H+ N2 Reaction
R1/a0 2.124 2.125 2.125 2.1354 2.121
R2/a0 4.135 4.121 4.137 4.241 4.15
R3/a0 2.685 2.684 2.688 2.6381 2.712
E/Eh -0.3399 -0.3413 -0.3399 -0.3414 -0.3413
∆Eg 10.62 10.62 10.62 10.62 10.62
ω1(N-H)/cm-1 1619i 1575i 1624i 1580i 1496i
ω2(N-N)/cm-1 2155 2167 2104 2095 2097
ω3(bend)/cm-1 762 755 778 783 834

Saddle Point for H-N2 Isomerization
R1/a0 2.324 2.309 2.326 2.331 2.299
R2/a0 2.285 2.312 2.281 2.262 2.265
R3/a0 2.285 2.312 2.281 2.2624 2.265
E/Eh -0.2867 -0.2866 -0.2868 -0.2768 -0.2866
∆Eg 44.05 45.00 43.99 51.22 45.00
ω1(N - H)/cm-1 2676 2604 2753 2311 2845
ω2(N-N)/cm-1 1660 1707 1671 1601 1766
ω3(bend)/cm-1 2278i 2314i 2275i 1921i 1771i

a Reference 2, from a fit to a Taylor-series expansion around the
stationary point.b This work, from a fit to a Taylor-series expansion
around the stationary point; see the text.c Single-sheeted representation
from ref 2. d This work using preliminary estimate for coupled states;
see the text.e This work, final PES; see the text.f Relative to H+ N2

asymptote (in kcal mol-1). g Relative to the corresponding global
minimum (in kcal mol-1).
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the dipole moment vector better describes the avoided crossing
is not the same for every conical intersection of HN2, with
obvious inconsistencies arising between the diabatic points
generated from distinct choices of optimal directions. We have
then adopted the criterion of Dobbyn and Knowles38 for
choosing the optimum orientation of the dipole moment.
Unfortunately, many profiles obtained in this way failed to show
the correct atom-diatom dissociation behavior, with spurious
intersections (diabatization angle equal toπ/4) even arising in
regions of relevance for the modeling. Such difficulties appeared
in particular for the N-NH channel where close to NNH
linearity, two conical intersections must be reproduced while,
for NHN arrangements, only one is present. Although the results
for each channel could be handled to produce acceptable results,
serious difficulties arose when merging them all to get global
diabatic sheets.

A new diabatization scheme had to be envisaged to obtain a
satisfactory global form for the diabatization angle. Although
not essential, we would like it to be simple and analytic. It
should also make unnecessary the use ofad hoclocal modifica-
tions,9,38,48,58 which might add further inconsistencies in the
diabatic data in addition to those caused by coupling of the target
states with higher excited ones.5,49 In addition, a well-defined
behavior at all atom-diatom channels is mandatory. This does
not appear to have been given in early studies,48,50,51as judged
from the resulting diabats and adiabats,50,51 or by the fact that
it does not contemplate all channels.48 Finally, the form
employed should allow the diabatization angle to describe all
crossing seams to their full extend.

The algebraic form that we have envisaged to represent the
diabatization angle is

whereRH-N2 and RN-NH are diabatization angles designed to
individually describe the H-N2 and N-NH channels, respec-
tively. This would allow one to reduce the 4D problem to two
3D problems. Such a scheme has proved to be sufficiently
realistic for HN2, as will be clear in the following. Such a
separability has been further explored by the use of a product
form for f(RH-N2, RN-NH), namely

The first property one seeks for such forms is thatRH-N2 and
RN-NH vanish at the corresponding asymptotic channels, as
imposed by the calculated data that indicate the nonexistence
of crossing seams at asymptotic atom-diatom distances.5 By
further exploring the topology of the crossings and avoided
intersections, we have collected the latter points shown in Figure
2 (these have been determined by searching for the smallest
energy gap along rays corresponding to fixed atom-diatom
Jacobi angles) with the requirement that they should evolve to
the corresponding crossing seams at the boundaries (ofC2V, C∞V,
or D∞V symmetry, for each value of the BC bond distance). This
led us to the existence of two surfaces of avoided intersections,
one for each individual channel. WithRH-N2

0 (r1, θ1) and
RN-NH,2

0 (r2, θ2) being the analytic representations of such
surfaces for the H-N2 and N-NH channels, a convenient
representation is

for the channel H-N2, and

for the channel N-NH, with

Note that the product in eq 12 insures the correct permuta-
tional symmetry (N atoms denoted by 2 and 3). Note further
that RH-N2

0 provides a single piece of data for any coordinate-
pair (r1, θ1) in Cs symmetry where the argument in eq 11
vanishes and thusRH-N2(R) ) 0.5. For larger or smaller values
of RH-N2, eq 11 yieldsRH-N2(R) f 0 andRH-N2(R) f 1. The
same holds for the N-NH channel by eq 13.

The simplest representation ofRH-N2

0 (r1, θ1) andRN-NH,2
0 (r2,

θ2) is motivated by the interpretation of the symmetry allowed
crossing seams ofC2V andC∞V symmetry as boundary curves.
For the channel H-N2, that would be

whered(θ) is the damping functiond(θ) ) 0.5[1 + cos(θ)],
which makesRH-N2

nnh vanish forC2V arrangements (denoted by
the index T) where θ1 ) 90°, and RH-N2

T for NNH linear
arrangements whereθ1 ) 0°. In turn, for the N-NH channel,
we write

with d(θ) as in eq 14, now annihilatingRN-NH
hnn for NHN linear

arrangements whereθ2 ) 0°, and RN-NH
nhn for NNH linear

arrangements whereθ2 ) 180°. The functionsRH-N2

nnh , RH-N2

T ,
RN-NH

nhn , and RN-NH
hnn in eqs 14 and 15, which represent the

Jacobi coordinate at the crossing points along the seams
indicated by the superscripts (heavy solid lines in Figure 2),
have been obtained by fitting the DMBE-SEC points described
in section 3. We have first written for the H-N2 channel

whereyT is the Jacobi distance between the H atom and the
center of the diatom N2 along theC2V crossing seam, as a
function of the NN bond distancer1. In turn, ynnh is the bond
distance NH along the NNH crossing seam, also represented
as a function ofr1. Finally, we considered for the N-NH
channel

R(R) ) f(RH-N2
, RN-NH) (9)

R(R) ) RH-N2
(R)RN-NH(R) (10)

RH-N2
(R) ) 1

2
{1 - tanh[γ1(RH-N2

- RH-N2

0 )]} (11)

RN-NH(R) ) R′N-NH,2(R)R′N-NH,3(R) (12)

R′N-NH,2(R) ) 1
2

{1 - tanh[γ2(RN-NH,2 - RN-NH,2
0 )]} (13)

RH-N2

0 (r1, θ1) ) RH-N2

nnh (r1)d(2θ1) + RH-N2

T (r1)[1 - d(2θ1)]
(14)

RN-NH,2
0 (r2, θ2) ) RN-NH

nhn (r2)d(θ2) + RN-NH
hnn (r2)[1 - d(θ2)] (15)

RH-N2

T (r1) ) yT(r1) andRH-N2

nnh (r1) ) ynnh(r1) +
r1

2
(16)

RN-NH
hnn (r2) ) yhnn(r2) +

r2

2
andRN-NH

nhn (r2) ) ynhn(r2) +
r2

2
(17)
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whereynhn is the HN distance as a function of the NH distance
r2 along the linear NHN crossing seam andyhnn is the bond
distance NN, also as a function of ther2.

To modelyT, we have chosen the form

such thatyT asymptotically raises up to atomization as a linear
function ofr1, which would reproduce the most likely scenario
for such kind of crossing seam.5 Note that we have chosenyT-
(r1) such as to assume very small values forr1 j 1.5a0, where
no data is available. Forynnh, we have considered

where∆rnnh,i ) r1 - rnnh,i, which has been designed to reproduce
simultaneously the shape of NH as a function ofr1 in the interval
1.5 j r1/a0 j 3.6 as well as the rapid decay for both small (r1

j 1.5a0) and large (r1 J 3.6a0) values of this coordinate. In
turn, the functional formynhn was chosen as

with T(x) ) 1 - tanh(x). This functional form have been adopted
such that forr2 ) 0 we have a finite value forynhn, while for r2

g 2.5a0 one would haveynhn assuming very small values. To
model the avoided intersections for the N-NH channel, we
require the NNH crossing seam specifically for this channel as
indicated in eqs 17, having chosen the form

Naturally, the NNH crossing seam could not be fully
represented by a single valued expression like eq 21 as discussed
in ref 5, since for a value of the NH bond distance we have
two NNH conical intersections wheneverrNH j 2.9a0. We have
chosen to parametrize this function by focusing for each NH
separation on the conical intersection closer to the N+ NH
limit. Thus, yhnn has been made to assume small values forr2

J 3.0a0, while fitting the conical intersection forr2 j 3.0a0

and assume a constant value atr2 f 0. The optimum parameters
in eqs 18-21 are given in Table 1 of the Supporting Informa-
tion.

Some small adjustments turned out necessary to improve eqs
14 and 15. ForRH-N2

0 , a maximum arising in the radial value
for the avoided intersections at intermediate values of the Jacobi
angle (see panela) has been mimicked by adding

to eq 14, where∆θ1 ) θ1 - θ1
0, and ∆r1 ) r1 - r1

0. The
parameters in eq 22 have been fitted to the points shown in
panela of Figure 2 by using the form

Although a satisfactory fit to the points shown in panelb of
Figure 2 has been achieved, a small inaccuracy has appeared
near T-shaped geometries by using the simple product in eq
12. This has been corrected by adding to eq 15 the form

where ∆θ2 ) θ2 - θ2
0, and ∆r2 ) r2 - r2

0. The function
RN-NH,2

0 is now defined as

The parameters in eqs 22 and 24 are given in Table 1 of the
Supporting Information.

Panelsa andb of Figure 1 show the crossing seams predicted
by eq 11. As expected, this form gives by construction a correct
description of theC2V and linear NNH crossing seams. We have
then proceeded with the diabatization using only eq 11, which
has revealed that the topology of the avoided intersections is
correctly described for the H-N2 channel over the whole range
of calculated points. No unpleasant features have been noted at
regions uncovered by theab initio data in this channel. In fact,
it has even partly proved to predict the crossing and avoided
crossing at the N-NH channel for linear NNH arrangements.

As for the H-N2 channel, a direct check of the predicted
crossing seams via eq 13 would give an excellent agreement
with the points that have been used for fitting the boundary
curves in eqs 20 and 21, but the situation at the N-NH channel
would not be so simple as we have also to ensure under the N
atom permutation via eq 12. Figure 1 shows the crossing seam
predictions using eq 25 and eq 12. It is seen from panela that
such a product predicts theD∞h conical intersection, although
slightly displaced from theab initio prediction. Moreover, it
predicts the crossing of the diabatic states that evolves into such
a D∞h conical intersection. Panelb shows the predicted linear
NNH crossing seam, which reproduces theab initio crossing
seam but forx j 2.5a0, which might be expected from our
choice of eq 21. Panelc shows that the predicted linear NHN
crossing seam is only slightly shifted from theab initio locus
in accordance with the small shift observed for theD∞h conical
intersection in panela. We have diabatized the adiabatic states
using the product in eq 12, with quite satisfactory results for
the N-NH channel. For each NH bond distance, the crossing
of the diabatic states is found to evolve smoothly withθN-NH

from the linear NHN conical intersection to the conical
intersection closest to the atom-diatom limit at NNH linear
arrangements. In addition, we observe the correct merging of
the diabatic states with the adiabatic ones at the N-NH atom-
diatom limit.

Figure 1 further shows that the only significant deviations
observed in the crossing seams predicted by using the global
diabatization angle in eq 10 is observed for the linear NNH
arrangements in panelb. However, the resulting diabatic
profiles, depicted for the most representative geometries (1.8
< rN2/a0 < 3.3 and 2.465< rNH/a0 < 3.365) in Figures 3 and
4 show themselves to mimic correctly theab initio trends when
evolving from theC2V to linear arrangements (for the H-N2

channel) as well as for linear NNH and NHN. Therefore, such
deviations are expected to be irrelevant for modeling purposes.
In addition, Figures 3 and 4 reveal that the global structure of
the crossing-seams is in fact recovered by the diabatic states.
This can be seen from paneli of Figure 3 that shows the

yT(r1) ) aT[r1 + bTr1
3 exp(-RTr1)]{1 + tanh[âT(r1 - rT)]}

(18)

ynnh(r1) ) annh exp(cnnh,1∆rnnh,1- cnnh,2∆rnnh,2
2 -

cnnh,8∆rnnh,8
8 ) (19)

ynhn(r2) ) anhn,1T[snhn,11(r2 - rnhn,11) + snhn,12(r2 - rnhn,12)] +
anhn,2T[snhn,21(r2 - rnhn,21)] + anhn,3T[snhn,31(r2 - rnhn,31)]

(20)

yhnn(r2) ) ahnn{1 - tanh[shnn,1(r2 - rhnn,1) +
shnn,2(r2 - rhnn,2)]} (21)

p1(r1, θ1) ) (a0 + a2∆θ1
2 + a4∆θ1

4) exp(γ1∆r1 - γ2∆r1
2)

(22)

RH-N2

0 (r1, θ1) ) RH-N2

nnh (r1)d(2θ1) +

RH-N2

T (r1)[1 - d(2θ1)] + p(r1, θ1) sin2(2θ1) (23)

p2(r2, θ2) ) (a0 + a1∆θ2)
2 exp(-R∆θ2

2) +
a3r2[1 + tanh(γ∆r2)] (24)

RN-NH,2
0 (r2, θ2) ) RN-NH

nhn (r2)d(θ2) +

RN-NH
hnn (r2)[1 - d(θ2)] + p2(r2, θ2) sin2(θ2) (25)
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increasing influence of theD∞h conical intersection in the
diabatic states asrN2 increases to approach the value of≈3.7a0.
Additionally, Figure 4 shows that despite the intersection of
the diabatic states forCs arrangements atrNH J 2.8a0, such an
intersection smoothly disappears when approaching the NNH
and NHN linear arrangements as it should be from
Figure 1.

Finally, we note that the diagonal diabatic statesV11 andV22

merge into the corresponding adiabatic statesV- and V+ for
both channels as shown in Figures 3 and 4 when the off-diagonal
term V12 becomes vanishingly small. Thus, the diabatic states
generated from the relations

employing the diabatization angle in eq 10 not only account
for the crossing seams/avoided intersection topology but also
fulfill the asymptotic relations

at both the H+ N2 and N + NH atom-diatom dissociation
limits.

5. Modeling of Diabatic States

5.1. Outline of 2× 2 Diabatic DMBE Matrix. A primary
step on the expansion of the diagonal diabatic states in DMBE
theory is the formulation of the relevant dissociation scheme.
For V11, one has2

ForV22, correlated at dissociation with the first excited adiabatic
state, we write

wherek(x), andF(R) are auxiliary functions to be defined below.
In turn, the crossed diabatic state is chosen such thatV12 f 0
for any dissociation channel.

In a previous study, we have shown5 that the first two excited
states of the HN2(2A′) manifold are strongly coupled showing
at least two seams of conical intersections, one for T-shaped
geometries, the other for collinear ones. Concerning atom plus
diatom dissociation, it has also been shown that the linear 22A′/
32A′ seam imposes strong correlation between the involved
states. Thus, for reducing this multistate problem into a two-
state one, one needs to treat them as narrowly avoided crossings.

Figure 3. Adiabatic profiles andab initio energies for the H-NN channel. The first row of panels and insets refer torN2 ) 1.854a0, the second
to 2.574a0, and the third to 3.074a0. The angleθ in first column of panels is 15°, in the second 45°, and in the third 75°. The insets in the first
column correspond to HNN linear arrangements (θ ) 0°), and in the third column to T-shaped arrangements (θ ) 90°). Key for symbols: (b) 12A′;
(9) 22A′; (<) V11; (]), V22; (s) adiabatic states; (- -) diabatic states; (---) PES for the 12A′ state from ref 2.

V11(R) ) V+(R) sin2 R(R) + V-(R) cos2 R(R)

V22(R) ) V+(R) cos2 R(R) + V-(R) sin2 R(R)

V12(R) ) [V+(R) - V-(R)] sin R(R) cosR(R) (26)

lim
RH-N2f∞

or RN-NHf∞

(V22 V12

V12 V11) ) (V+ 0

0 V- ) (27)

V11 f {N2(
1∑g

+) + H(2S)

NH(3∑-) + N(4S)
(28)

V22 f {N2(
3Πg)k(x) + N2(

3∑u
+)[1 - k(x)] + H(2S)

N(2D)F(R) + NH(3∑-)
(29)
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For this purpose, we observe that at the H-N2 dissociation the
first excited-state behaves differently for 0< rN2/a0 j 1.95 and
1.95j rN2/a0. As suggested in eq 29, this can be modeled via
a one-dimensional (1D) switching functionk(x). This function
becomes unity for the interval 0< rN2/a0 j 1.95 and vanishes
for 1.95j rN2/a0, varying continuously but drastically between
those intervals. This will preserve the correct atom plus diatom
behavior on each interval and simultaneously provides a simple
mathematical structure to pass from one region to the other. As
shown in eq 30 for the N-NH dissociation, a 3D switching
function F(R) must be employed to connect the intervals 0<
rNH/a0 j 3.0 and 3.0j rNH/a0.

Given the asymptotic limits on eq 28, the DMBE expansion
for the diabatic stateV11 will assume the form

whereV11
(3)(R) and the diatomic potentials, as usually done in

DMBE theory, are analytically split into their extended Hartree-
Fock and dynamical correlation components:

with n g 2. Since 2N(4S) + H(2S) is taken as the energy
reference, no one-body energy terms will arise inV11. In fact,
the DMBE expansion in eq 30 has the form employed for the
ground state of HN2.2

The asymptotic limits for V22 in eq 29 will be warranted by
writing

where the two- and three-body terms are constructed as in eq
31, and the difference N(2D) - N(4S) accounts for the N(2D)
one-body energy. According to DMBE theory, theVEHF

(n) (R)
terms are constructed to vanish at the asymptotes whenever one
of the atoms is removed from the cluster, whileVdc

(n)(R) is
semiempirically modeled to describe the atom plus diatom
dynamical correlation. It is then clear that the diabatic state
V11(R) will respect the scheme in eq 28, with the same applying
to V22(R) and the scheme in eq 29 provided thatF(R) in eq 32
is suitably designed for this matter.

Besides the correct asymptotic description, the diabatic states
must be designed such as to provide a correct description of
the conical intersections involving the corresponding adiabatic
states. Since the diagonal diabatic states are decoupled at the
neighborhood of the conical intersections, no further constraints
are required in eqs 30 and 32. The off-diagonal diabatic state
must, however, vanish at the crossing seams. In addition, it must
satisfyV12 f 0 whenever any bond distance goes to infinity.
We have chosen for this purpose the form

Figure 4. Adiabatic profiles andab initio energies for the N-NH channel. For the first row of panels and insets we have fixedrNH at 2.465a0, for
the second row at 2.865a0 and for the third at 3.365a0. In the first column of panels,θ ) 150°, in the second 90°, and in the third 45°. The insets
in the first column correspond to HNN linear arrangements (θ ) 180°) and in the third to NHN linear arrangements (θ ) 0°). Key for symbols is
as given in Figure 3.

V11(R) ) V11
(3)(R) + N2(

1∑g
+)(R1) +

NH(3∑-)(R2) + NH(3∑-)(R3) (30)

V(n)(R) ) VEHF
(n) (R) + Vdc

(n)(R) (31)

V22(R) ) V22
(3)(R) + N2(

3∏g)(R1)k(R1) +

N2(
3∑u

+)(R1) [1 - k(R1)] + NH(3∑-)(R2) +

NH(3∑-)(R3) + [N(2D) - N(4S)]F(R) (32)
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where the extended Hartree-Fock term in eq 33 has a similar
form as for the diagonal diabatic terms, which makesV12(R)
vanish at any dissociation asymptote. To makeV12 vanish at
the linear (l) andC2V (indexed byT) crossing seams, one uses
the functionsfl(R) and fT(R). For the former, we use

where θNHN is the included angle∠NHN, thus makingV12

vanish at both NNH and NHN linear arrangements. For theC2V
geometries, no simple form has shown to be appropriate. In
fact, the topology of the problem has forced us to employ a
nonanalytical form as described later.

5.2. The Switching Function F(R). When restricting the
multistate problem to a two-state one via eq 32, we will be
dealing with a problem similar to the one dealt by Varandas
and Poveda71 when obtaining a single valued representation of
the NH2 PES. To accurately model a narrowly avoided crossing
at the N-H2 dissociative channel, they proposed the switching
form

whereR1 is the distance between the hydrogen atoms andr1

the Jacobi coordinate separating the atom N from the geometric
center of the diatom H2. Such an approach offers a more realistic
treatment over the one suggested by Murrell and Carter72 for
obtaining a single-sheeted form for the water molecule. The
function h(R1) is calibrated from scaledab initio calculations
on the fragments in order to control the N(2D) - N(4S) decay,
while g(r1) is used to mimic the energy difference N(2D) -
N(4S) when approaching intermediate interactions in the triatom.
With their approach, Varandas and Poveda71 not only obtained
a smoother behavior at all configuration space but also overcame
the well-known failures of the earlier Murrell-Carter ap-
proach.72

For the N-NH channel of HN2(22A′), we must deal with
the N(2D) - N(4S) decay of two nitrogen atoms, and the required
symmetrization. This has been achieved with

where the same notation as for NH2
71 has been employed. Thus,

if the indexes (i, j, k) number the atoms (1 for H; 2 and 3 for
N), ri represents the Jacobi coordinate separating atomi from
the geometric center of diatomjk, whose internuclear distance
is denoted byRi. Note thatF′(R) ensures not only symmetriza-
tion, but also the requirements to be fulfilled byf(R) in eq 35.
Both functionsh(Ri) andg(ri) assume similar functional forms
as for NH2, namely

and

The inset of panela of Figure 5 shows the result of the least-
squares fit ofh(Ri), with N(2D) lying 0.08920979Eh above
N(4S). The resulting parameters are:R1 ) 0.995366a0

-1, R2 )
0.165409a0

-1, R0
1 ) 3.49359a0, andR0

2 ) 4.60365a0. In turn,
the parameters ing(ri) areR ) 1.5a0

-1 andr0 ) 5.0a0, having
been chosen to ensure smoothness. As detailed in the subtitles

of Figure 5, we have considered two sets ofab initio points in
the fit, mainly due to the impossibility of covering theR1

distance up to sufficiently large values.5 The triatom scaledab
initio points correspond to the (O) set of points in panela of
Figure 5. Despite our effort to obtain a trend ofab initio points
as smooth as possible, such results were always influenced by
the strong couplings with higher excited states, and thus
modelingh(Ri) as accurately as for the ground state of NH2

71

was out of the question. The second set of points, indicated by
(0), corresponds toab initio calculations in the diatomic state
NH(5∑), and were included to ensure a realistic description
where the triatomic averaged state calculations did not converge.
A rmsd below 0.9 kcal mol has been obtained.

Finally, linear NHN plots ofF′(R) for fixed NH reveal a
barrier above 1 with a maximum at theD∞h configurations,
which grows with the NH separation. Since we haveab initio
points covering this region, the three body terms in eq 32 would
be expected to compensate such a barrier if so required.
However, such a barrier arises at configurations far from
equilibrium which would be difficult to model with the extended
HF term (see eq 47). To overcome this difficulty, we have used
the function

which keeps all the prescribed attributes of F′(R).
5.3. Two-Body Terms and One-Dimensional Switching

Function k(x). The diatomic potential curves N2(1Σg
+), N2(3

Σu
+) and NH(3Σ-) have been modeled using the extended

Hartree-Fock approximate correlation energy method for
diatomicmoleculesincludingtheunitedatomlimit73(EHFACE2U),
with the available parameters being determined by fittingab
initio data. The dynamical correlation (“long-range”) part
assumes the form74

whereøn(R) are damping functionsøn(R) ) [1 - exp(-An R/F
- Bn R2/F2)]n, andAn andBn are the auxiliary functionsAn )
R0n-R1 andBn ) â0 exp(-â1n); the “universal” dimensionless
parameters for all isotropic interactions12,13areR0 ) 16.36606,
R1 ) 0.70172,â0 ) 17.19338, andâ1 ) 0.09574. In turn, the
scaling parameter is defined byF ) 5.5 + 1.25R0, with R0 )
2[〈rA

2〉1/2 + 〈rB
2〉1/2] determining75 the onset of the undamped

R-n expansion, and〈rX
2〉 the expectation value of the squared

radius for the outermost electrons of atom X()A, B). The EHF-
type energy term assumes the general form

whereγ ) γ0[1 + γ1 tanh(γ2r)], r ) R- Re is the displacement
from the equilibrium diatomic geometry, andD andai(i ) 1,
..., n) are adjustable parameters.13,73 For our purposes, it was
sufficient to calibrate the potential curves of these diatomic
potentials exclusivelly from the DMBE-SEC points described
in section 3. A rmsd of 5 cm-1 has been achieved for all
diatomics except N2(3Πg). All curves are displayed in Figure
5. The agreement with the more accurate results of ref 2 for
N2(1Σg

+) and NH(3Σ-) is in the milihartree range, which is
likely to be within the accuracy of their own data.76

For N2(3Πg), a carefull analysis of theab initio data has shown
an unexpected non-trivial behavior at dissociation. At the

V12(R) ) V12,EHF
(3) (R)fl(R)fT(R) (33)

fl(R) ) sin θNHN (34)

f(R) ) g(r1)h(R1) (35)

F′(R) ) g(r2)h(R2) + g(r3)h(R3) (36)

h(Ri) ) {1 - tanh[R1(Ri - R0
1) + R2(Ri - R0

2)5]} (37)

g(ri) ) 1
2

{1 + tanh[R(ri - r1
0)]} (38)

F(R) ) F′(R)(R2 - R3)
2 (39)

Vdc(R) ) - ∑
n)6,8,10

øn(R)
Cn

Rn
(40)

VEHF(R) ) -
D

R
(1 + ∑

i)1

n

air
i) exp(-γr) (41)
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FVCAS level, a barrier of≈1315 cm-1 above dissociation arises
at RNH ≈ 4.2a0. However, it becomes≈340 cm-1 at RNH ≈
4.5a0 when using the MRCI method, but now lying≈77 cm-1

below dissociation. After DMBE-SEC scaling (see section 3),
such a barrier is further reduced to≈43 cm-1, now atRNH ≈
4.8a0 but≈200 cm-1 below dissociation; see the upper inset in
panel b of Figure 5. Note that we have repeated these
calculations with the AVQZ basis, and the same pattern has
been observed. In an attempt to rationalize this barrier we have
performedab initio calculations for the excited states of this
same symmetry looking for the possibility of such barrier to
correspond to an avoided crossing. This could not be confirmed,
thus establishing a pattern similar to that for77,78 CO(1Π).

To model N2(3Πg), we recalled previous work for CO(1Π),
where it was suggested79 that the above barrier could be
understood as a consequence of the repulsive behavior of the
asymptotic exchange energy. It has been written as

where the asymptotic exchange contribution has been made
explicit. For CO, this term has been shown79 to assume the form

whereRexc, âexc, andσexc are parameters; the damping function
øexc(R) assumes the form ofø5(R) defined previously for the
dynamical correlation; for further details, see the original
papers.78,79 Instead of calculating the matrix elements of the
asymptotic exchange contribution, we have pragmatically
determinedRexc, âexc, andσexc in eq 43 via a least-squares fit
of the EHF points at the neighborhood of the barrier. These
points were obtained as the difference between the DMBE-SEC
points and the semiempirical dynamical correlation contribution
in eq 40, with the parameters written in Table 2 of the
Supporting Information. Also in this table are the parameters
obtained by a linear least-squares fit to the EHF energies, which
were obtained by subtracting the asymptotic exchange contribu-
tion plus the semiempirical dynamical correlation from the
DMBE-SEC points. A rmsd smaller than 2.5 cm-1 has been
obtained close to the equilibrium distance and the barrier; its
value is around 8.0 cm-1 for the whole curve, which is plotted
in panelb of Figure 5.

After modeling the diatomic curves, we turned to fitting the
1D switching functionk(x) by using the form

with σ and x0 being fitted via the form N2(3Πg)k(x) + N2(3

Σu
+)[1 - k(x)] (see eq 32) to the black points in panelb of

Figure 5; all diatomic parameters were kept fixed at the values
obtained when modeling the respective diatomic states. The
valuesσ ) 48.2379a0

-1 and x0 ) 2.01950a0 were obtained,
with the rmsd being 5 cm-1. As seen from the lower inset in
panelb of Figure 5, the intersection between the diatomic curves
is avoided smoothly.

5.4. Three-Body Dynamical Correlation Energy.For the
three-body dynamical correlation, we have used the semiem-
pirical form80

where ri, θi and Ri are internal Jacobi coordinates (for the
notation, see Figure 1 of ref 14), andgi ) 1/2{1 - tanh[ê(ηRi

- Rj - Rk)]} is a convenient damping function, with similar
expressions forgj andgk. Following recent work on HCN81 we
have fixedη ) 6 andê ) 1.0a0

-1. The damping functionøn(ri)
was the same as for the diatomics, but using the center-of-mass
separation for the relevant atom-diatom channel instead ofR.
The parameterF for both diagonal diabatic states was the one
used for the single-sheeted potential energy surface of HN2-
(2A′),2 wereR0 was taken as the average of the corresponding
parameters for NO and SiH, which leads toF ) 15.9.

Forn ) 6, 8, and 10, the atom-diatom dispersion coefficients
are given by

wherePL(cosθi) denotes theL-th term of the Legendre poly-
nomial expansion. For both diagonal diabatic states theL ) 0,
2, and 4 components of this coefficients have been considered,
with the internuclear dependences estimated as in ref 82, i.e.,
by using the generalized Slater-Kirkwood approximation83

jointly with the dipolar polarizabilities, which have been
calculated in the present work using the MRCI method with an
AVQZ basis set. The atom-diatom dispersion coefficients so
calculated were then fitted to the form given in ref 83. ForV11,
we have used the same dispersion coefficients as for the single-
sheeted PES2 of HN2(2A′). For V22, the atom-diatom interac-
tions must be understood under the constraints imposed by
dissociation scheme discussed above, which would imply using
two distinct atom-diatom dispersion coefficients for each
channel. For simplicity, for the H-N2 interaction, we have
considered only the polarizabilities of N2(3Σu

+), thence

VEHF(R) ) -
D

R
(1 + ∑

i)1

n

air
i) exp(-γr) + Vexc

asym(R)øexc(R)

(42)

Vexc
asym(R) ) (RexcR

2 - âexcR)R1/2 exp(-σexcR) (43)

k(x) ) 0.5{1 + tanh[σ(x - x0)]} (44)

Vdc
(3) ) - ∑

i
∑

n

gi(R)Cn
(i)(Ri, θi)øn(ri)ri

-n (45)

Figure 5. EHFACE2U potentials energy curves. Key for panela: (O)
HN2(22A′) with rNN fixed at 8a0 forming an angleθHNN with the rNH

axis fixed at) 5°; (]) NH(3Σ-); (0) NH(5Σ); (s), NH(3Σ-)(R) +
h(R); (- -), NH(3Σ-)(R). The solid lines in the insets showh(R), with
all points referred to the NH(3Σ-) diatomic. Key for panelb: (O) N2-
(3Πg); (]) N2(1Σg

+); (0) N2(3Σu
+); (- - -) N2(1Σg

+)(R); (- -) N2(3Πg)-
(R); (---) N2(3Σu

+)(R). Filled symbols have been used to calibratek(x),
with the solid lines showing N2(3Πg)(R)k(R) + N2(3Σu

+)(R)[1 - k(R)].

Cn
(i)(Ri, θi) ) ∑

L

Cn
LPL(cosθi) (46)
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reducing the atom-diatom dispersion interaction on this channel
to that for the H(2S) + N2(3Σu

+) interaction, which is truly
applicable forrN2 J 2.0a0. Similarly, for the N-NH channel,
we have considered only the atom-diatom dispersion interaction
referring to N(2D) + NH(3Σ-), which is an approximation for
rNH J 3.0a0. The resulting parameters are in Table 3 of the
Supporting Information, with their internuclear dependences
shown in Figure 6. As discussed elsewhere,80 we have multiplied
the two-body dynamical correlation energy for thei-th pair by
∏l*i [1 - gl(R)], with corresponding factors for channelsj and
k, thus ensuring80 that the only two-body contribution at the
i-th channel is that of JK.

5.5. Three-Body Extended HF Energy and Fit of Diagonal
Diabatic Terms. For these states, we start by removing, for a
given triatomic geometry, the sum of the relevant two-body
energy terms in eqs 30 and 32, modeled by EHFACE2U curves
as described in section 5.3, and the three-body [N(2D) - N(4S)]-
F(R) term in eq 32 from the points obtained in section 4. This
gives the total three-body energy for each of the diagonal
diabatic states from where we now subtract the three-body
dynamical correlation contribution modeled in section 5.4 to
yield the three-body extended HF energy for each diagonal
diabatic state referred to as V11,EHF

(3) (R) and V22,EHF
(3) (R) accord-

ing to eq 31. To model the terms so obtained, we have employed
the three-body distributed-polynomial form84

where the polynomialsPn
(j)(Q1, Q2, Q3) are written in terms of

symmetry coordinates,6 and the indexn labels the diagonal
diabatic state.

Regarding the linear fits, we follow basically the usual
criterion but having in account the further complications arising
from having stationary points at different geometries on the
various diabatic terms. Specifically, we have chosen to center
the polynomials at geometries close to the adiabatic stationary
points, ensuring that each reference geometry was covered by
diabatic points. The actual location has been finally decided by

matters of convenience. The values ofγn,i
j were then obtained

by trial-and-error, ensuring a representation of the crossing
seams as accurately as possible. After obtaining a globally
acceptable fit, we have centered lower-order polynomials at the
van der Walls regions, and fine-tuned the calibration such as to
obtain an accurate description of the long-range regions. The
final total rmsd were lower than 1.4 kcal mol-1 for both diagonal
diabatic states.

Figures 7 and 8 show the crossings seams predicted by the
diagonal diabatic states, and Figures 3 and 4 illustrate the
agreement between the diabatic points from section 4 and the
fit. Panelsa, b, andc of Figure 3 and insets therein show cuts
of the diagonal diabatic terms from linear NNH to T-shaped
configurations forrN2 fixed at 1.854a0. As seen, the crossing is
accurately mimicked, evolving smoothly to reproduce the
adiabatic crossing seams as shown in Figures 7 and 8. The same
behavior is exhibited for otherrN2 distances: 2.431a0 and
3.374a0. Panelsa, b, and c of Figure 4 and insets therein
illustrate the corresponding behavior for the other two channels
with rNH fixed at 2.465a0. Note the smooth evolution in going
from a two conical intersection situation in NNH to no
intersections for NHN linear arrangements. The remaining
panels illustrate that the regions out of the range of both linear
crossing seams is also accurately fitted, with the diabatic
intersection disappearing as expected at linear geometries. Note
that theC2V region below theab initio crossing seam in panel
a of Figure 7 shows an evolution of the diabatic crossing with
no support on theab initio calculations, as discussed in the next
section.

Figure 9 shows plots of the diagonal diabatic states for an
atom moving around a partially relaxed diatomic. The notable
feature is perhaps the fact that long range forces are smoothly

Figure 6. Atom-diatom dispersion coefficients for for the diabatic
V22 state as a function of the corresponding internuclear distance.

Vn,EHF
(3) ) ∑

j)1

Nn

Pn
(j)(Q1, Q2, Q3) ∑

i)1

3

{1 - tanh[γn,i
j (Ri - Rn,i

j,ref)]}

(47)

Figure 7. T-shaped crossing seam. Key for panela: (O) calculated
points; (- - -) as obtained from fitted diagonal states; (- -) as
obtained from fitted adiabatic states without the damping function in
eq 53; (s) as obtained from fitted adiabatic states with the above
damping function. The dashed-dot (- ‚‚ -) represents thex0(x) curve
in eq 50. The numbers label the regions referred to in the text, while
the large open circle indicates theD2h conical intersection of the
adiabatic states. Panelb shows also energy countours for the ground
(s) and excited (---) states, in both cases starting atE0 ) -0.3641Eh

and equally spaced by∆E0 ) 0.0385Eh.
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(and accurately as far as the quality of theab initio points allow)
described in the diabatic sheets, ensuring a reliable description
of the adiabatic long range behavior. The reference geometries
Rn,i

j,ref and decay parametersγn,i
j for the diabatic sheets are given

in Tables 4 and 5 of the Supporting Information. These will be
kept fixed when performing the final nonlinear least-squares
of the adiabatic sheets.

5.6. The Nondiagonal Diabatic Linear Least-Squares Fit.
To understand the T-shaped diagonal diabatic crossing behavior
shown in Figure 7, we must explore the consequences of two
properties introduced into the two sheets through the diabati-
zation procedure. The first refers to having a common dissocia-
tion with the adiabatic states as shown in eqs 27, 30, and 32,
and the second to the fact that the diagonal diabatic sheets
interchange their role when passing through a seam.

The two numbers in Figure 7 label the two regions separated
by the conical intersection. According to the diabatization
procedure, we can state that close to1 the diagonal states will
follow the inequalityV22 > V11, while close to2 it will be V22

< V11. This inversion is responsible for the diagonal diabatic
states being able to reproduce the crossing seam when modeled
via single valued forms as in eqs 30 and 32.

If the molecule dissociates from region2 via a path parallel
to thex-axis, the three-body interaction will disappear and from
eqs 30 and 32 one must have at a certain point onward

and

Since N2(3∏g)k(x) + N2(3∑u
+) [1 - k(x)] + [N(2D) - N(4S)]-

F(R) > N2(1∑g
+), we must haveV22 > V11, which implies

another inversion and hence another crossing. The same
argument justifies why the crossing ends at theD2h point
signaled over thex-axis. In fact, we could say that the labels1
and2 define two distinct regions on theC2V plane according to
the crossing line, a dissociative region, characterized by relaxed
configurations and whereV22 > V11, and an internal region,
whereV22 < V11.

Yet, theab initio calculations show that there is no support
for theC2V diabatic crossing, which must then be removed from
the modeling. The solution requires that the conditionV12 ) 0
holds only for a specific region of theC2V plane. Recall that we
have fitted the T-shaped crossing points to ayT(x) function in
eq 18. Since this gives the value of the coordinateyT(x)
connecting the H atom to the center of N2 along theC2V crossing
seam as a function of the NN bond distancex, we now require
the form

with d > 0, wherexT(y) corresponds to the NN bond distance
as a function ofy along theC2V crossing seam. For this,xT(y)
assumes the form

with the parameters given in Table 1 of the Supporting
Information. In fact, the functionx0(x) maps two regions of the
C2V plane, as shown in Figure 10, and we would prefer that the
conical intersection were not present in the adiabatic states at
region2. This would require involving a functionf ′T that were
identically zero at region1 but nonzero at region2, such that
V12 ) 0 at region1 andV12 * 0 at region2. A function that
satisfies such criteria can be adapted from one utilized by one
of us10 during the construction of a multisheeted DMBE PES
for NO2(2A′). We suggest using the analogous form

where

with all parameters defined in Table 1 of the Supporting
Information. Such a function is plotted in Figure 10. Note that
the integer parameternT in eq 52 determines the order of the
continuity. For our purposes, we have required continuity up
to the second derivative, thusnT ) 3. The finalfT(R) function
in eq 33 will then be

whereQ(R) is the angle-like variable13

responsible for removing the effects offT(R) outside theC2V
plane. Note that regions1 and2 in Figure 10 [defined byx0(y)
and used to create the functionf ′T(R)] have a distinct definition
from those labeled1 and2 in Figure 7 (defined according to
the relative magnitude of the diagonal diabatic states in eqs 30

Figure 8. Linear crossing seams. Key for panelsa and b: (O)
calculated points; (- - -) as obtained from fitted diagonal states; (s)
as obtained from fitted adiabatic states. Panela shows energy countours
for NNH arrangements in the ground (s) and excited (---) states, starting
atE0 ) -0.3641Eh and equally spaced by∆E0 ) 0.04Eh. Panelb shows
contours for NHN arrangements withE0 ) -0.1335Eh and ∆E0 )
0.02Eh.

V11 ≈ N2(
1∑g

+) + NH(3∑-) (48)

V22 ≈ N2(
3Πg)k(x) + N2(

3∑u
+)[1 - k(x)] + NH(3∑-) +

[N(2D) - N(4S)]F(R) (49)

x0(y) ) xT(y) - d (50)

xT(y) ) c0 + c1y + c2 exp[-γ(y + y0)
2] (51)

f ′T(x, y) ) 1 - exp{-â[1/z(x, y) - 1]nT} if z(x, y) < 1

) 0 if z(x, y) g 1

(52)

z(x, y) ) 1 + tanh{R[x0(y) - x]}

fT(R) ) f ′T(x, y) + Q(R)2 (53)

Q(R) )
R2 - R3

R1
(54)
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and 32), but their parallel significance encouraged us to employ
the same notation.

Finally, theV12,EHF
(3) (R) term in eq 33 is defined as

with the dumping functionD12
(j) given by

with notation as in eq 47. A linear least-squares fit procedure
was used to determine the linear coefficients, while the decay

parametersγ12,i
j in eq 56 were determined by trial-and-error.

The reference setR12,i
j,ref were chosen following the convenience

of the fitting, with special attention to the boundary conditions
imposed byfT and fl. Table 6 of the Supporting Information
gathers the final values ofγ12,i

j andR12,i
j,ref.

6. Results and Discussion

The two adiabatic potentialsV+(R) andV-(R) in eq 3 can
now be formally obtained from the diabatic matrix in eqs 30,
32, and 33.

As emphasized in sections 4 and 5, the adiabatic states inherit
from the diabatic ones the correct behavior at atom-diatom

Figure 9. Panelsa andb show the diabatic stateV11 for the H-N2 and N-NH channels, with panelsc andd showing the same plots but for the
diabaticV22 state. Initial isoenergy contoursE0 and spacings∆E0 in Eh are as follows (a) -0.3641 and 0.015 (solid);-0.3643 and 0.00001 (dotted);
(b) -0.26 and 0.0125 (solid);-0.134 and 0.0004 (dotted); (c) -0.35 and 0.015 (solid);-0.13998 and 0.00075 (dotted); (d) -0.42 and 0.015
(solid); -0.045 and 0.0005 (dotted). The energy has been optimized withing the range 1.8e RN2/a0 e 2.4 (panela); 1.8 e RNH/a0 e 2.3 (panels
b andd); 2.2 e RN2/a0 e 2.6 (panelc).

Figure 10. Damping function in eq 52. Also indicated is the region
where it attains finite values (1) and vanishes identically (2). The dots
show the calculated seam, fitted byxT(y) from eq 51 as shown by the
dotted line, while the solid line shows the curvex0(y) from eq 50, which
separates regions1 and2.

V12,EHF
(3) ) ∑

j)1

N12

P12
(j)(Q1, Q2, Q3)D12

(j)(R) (55)

D12
(j)(R) ) ∏

i)1

3

exp[γ12,i
j (Ri - R12,i

j,ref)2] (56)

TABLE 2: Stratified Root-Mean Squared Deviations (in
kcal mol-1)

maximum deviation rmsd

energy no. of points DMBEa DMBEb DMBEa DMBEb

10 398 1.719 1.829 0.306 0.204
20 569 2.283 1.829 0.465 0.268
30 714 4.954 2.131 0.644 0.315
40 877 7.365 2.997 0.789 0.390
50 956 7.552 3.842 0.987 0.516
60 1058 7.806 3.842 1.058 0.559
70 1131 8.378 4.265 1.172 0.641
80 1188 8.378 5.432 1.242 0.694
90 1260 8.378 5.431 1.359 0.757

100 1451 8.378 5.688 1.463 0.800
125 1745 9.270 7.917 1.683 1.141
150 2519 9.662 10.671 1.737 1.326
175 3596 9.769 11.652 1.732 1.495
200 4561 9.953 13.696 1.822 1.631
300 5790 13.608 15.180 1.880 1.863
400 5895 13.608 15.180 1.921 1.971
500 5952 13.608 16.041 1.957 2.074

1000 6075 13.608 16.104 1.997 2.231
5000 6091 13.608 16.964 2.004 2.258

a This work, using preliminary estimate for coupled states; see text.
b This work, final PES; see text.
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dissociation while reproducing also the known crossing seams.
However, the overall topography of the coupled states reveal
some discrepancies relative to theab initio points, mostly at
the strong interaction region. To conform with theab initio
calculations, we have carried out a nonlinear least-squares fit
for the linear coefficients ofV12(R) in eq 55 using the values
obtained from the linear fit in section 5.6 as a starting guess
(the decay parametersγ12,i

j and reference setsR12,i
j,ref have been

held fixed at the values obtained from the linear fit). The
diagonal diabatic states have been kept unaltered, as well as
the damping functionsfl, fT, and D12

(j) in eqs 33, 55, and 56.
Thus, the atom-diatom dissociation limits remain identical as
well as the locci of conical intersection.

The fifth column in Table 2 shows the stratified rmsd, taking
the energy of the global minimun as reference. It is seen that
up to 100 kcal mol-1, where the lowest stationary points of the
ground state are localized, such a DMBE PES would exhibit
slightly larger rmsd than the single-sheeted DMBE PES of
Poveda and Varandas.2 However, as shown in Tables 1 and 3

(fourth column for results of the coupled states), a satisfactory
description of the stationary point attributes within this energy
range, including normal-mode frequencies, has already been
achieved. For the long-range properties of the ground state such
as van der Waals structures only minor discrepancies are
observed, which is expected given the care taken in modeling
such properties during the construction of the diagonal diabatic
states. In fact, a qualitative satisfactory agreement between the
Legendre components85,86 of the ground state PES2 and the
present work is observed in Figure 13 up to reasonably high
interaction regions.

A careful analysis has been performed regarding not only
the adiabatic states themselves, but also the associated diabatic
components. It has been found that many of the regions where
significant deviations from theab initio points existed cor-
respond to relaxed molecular arrangements, were the polynomial
form used for the non-diagonal diabatic state was strongly
damped by the Gaussian terms in eq 56. This limited the fit at

TABLE 3: Other Stationary Points in the Lower Sheet of the 2× 2 DMBE Potential Energy Surface

feature property DMBEa DMBEb DMBEc

T-shaped van der Waals R1/a0 2.075 2.081 2.081
H‚‚‚N2 R2/a0 7.112 6.7773 6.857

R3/a0 7.112 6.7773 6.857
E/Eh -0.3642 -0.364287 -0.3642
∆Ed) -0.07 -0.1175 -0.1
ω1(N-H)/cm-1 69 93 105
ω2(N-N)/cm-1 2337 2342 2343
ω3(bend)/cm-1 18 8.5 21

linear van der Waals R1/a0 2.081 2.081
H‚‚‚N2 R2/a0 6.6071 6.672

R3/a0 8.6877 8.7527
∆Ee) 1.1 1.5
ω1(N-H)/cm-1 81 84
ω2(N-N)/cm-1 2343 2343
ω3(bend)/cm-1 7.7 10

saddle point linking R1/a0 2.081 2.081
van der Waals minimums R2/a0 6.5759 6.6084
H‚‚‚N2 R3/a0 7.9266 7.9096

∆Ee) 4.0 6.6
ω1(N-H)/cm-1 61 71
ω2(N-N)/cm-1 2343 2343
ω3(bend)/cm-1 18i 21i

linear TS R1/a0 7.467 7.43 7.345
N-H‚‚‚N R2/a0 1.961 1.965 1.965

R3/a0 5.506 5.465 5.380
E/Eh -0.1305 -0.1304 -0.1305
∆Ef) -0.2 -0.15 -0.2
ω1(N-H)/cm-1 3198 4457 4444
ω2(N-N)/cm-1 45 127 206
ω3(bend)/cm-1 16 52i 278i

linear TS R1/a0 6.846 6.818 6.558
N‚‚‚N-H R2/a0 1.965 1.964 1.964

R3/a0 8.811 8.783 8.522
E/Eh -0.1304 -0.1305 -0.1307
∆Ef) -0.1 -0.16 -0.3
ω1(N-H)/cm-1 4451 3260 4468
ω2(N-N)/cm-1 119 34 182
ω3(bend)/cm-1 56i 22i 80i

linear TS R1/a0 4.758 4.740 4.6913
N‚‚‚H‚‚‚N R2/a0 2.379 2.370 2.3457

R3/a0 2.379 2.370 2.3457
E/Eh -0.0937 -0.0851 -0.0858
∆Ef) 22.9 28.35 27.91
ω1(N-H)/cm-1 2828i 3675i 3929i
ω2(N-N)/cm-1 567 1368 2087
ω3(bend)/cm-1 907 794i 333i

a Single-sheeted representation from ref 2.b This work, using preliminary estimate for coupled states; see the text.c This work, final PES; see
the text.d Relative to H+ N2 asymptote (in kcal mol-1). e Relative to the corresponding T-shaped van der Walls minimum (in cm-1). f Relative to
the N + NH asymptote (in kcal mol-1).
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those regions and led us to speculate that it might have also
inhibited any improvement of the fit at the remaining regions.

To improve the surfaces, we proceed with a more elaborated
approach, consisting first of performing a nonlinear least-squares
with all diabatic states. For this, we have attempted to improve
the fit in relaxed molecular arrangements, mainly for the lower
sheet, where the PES from ref 2 has been used as a reference
for comparison. Special care has been taken to leave unaffected
the crossing seams and atom-diatom dissociation channels,
since the diagonal diabatic states were also involved in the fit.
After analyzing the fit, some small discrepancies have been
found to persist, mainly on the upper sheet. That may be
explained by the intricate topography of this state5 where at
least two conical intersections are present.

The above discrepancies and other smaller ones have been
removed by adding lower-order polynomials at the affected
regions. Specifically, we have used the form

whereVEHF
(3) is of the type ofV12,EHF

(3) in eq 55 but with lower
order (2 and 3),fl(R) is the damping function in eq 34 andQ(R)

is the angle-like variable in eq 54. The indexn numbers the
polynomials. Note thatfl(R) andQ(R) ensure that the procedure
leaves the crossing seams unaffected, while the Gaussian-
damped forms in eq 58 were chosen to warrant that the
discrepancies were handled as independently as possible. Tables
7 and 8 of the Supporting Information display the resulting
parameters.

Shown in the last column of Table 2 is the resulting stratified
rmsd for the final 2× 2 DMBE PES. A significant improvement
is observed up to 100 kcal mol-1 with respect to the previous
fit, including the relevant stationary states; see Table 1 and panel
a of Figure 11. Clearly, a smooth behavior has been achieved,
with the major differences with respect to the single-sheeted
DMBE PES2 being the appearance of the conical intersections
and the topography of the long range regions. Note that the
occurrence of a double van der Waals minimum is inherent to
the MRCI/AVTZ calculations as shown by the quality of the
fit illustrated in the inset of panela of Figure 12. Note further
that this topology comes from the diabatic states and is insured
via the fitted diabatization angle; see panela of Figure 9 and
eq 27. As also seen from the Legendre components of the
potential in Figure 13, only minor changes have been introduced

TABLE 4: Important Structures of the Excited-State Potential Energy Surface

feature property DMBEa DMBEb

minimum energy conical intersection for linear HNN arrangements R1/a0 2.169 2.163
R2/a0 2.366 2.369
R3/a0 4.535 4.531
E/Eh -0.2729 -0.2728
∆Ec 53.7 53.7

minimum energy conical intersection forC2V arrangements R1/a0 2.253 2.236
R2/a0 2.824 2.775
R3/a0 2.824 2.775
E/Eh -0.2690 -0.2591
∆Ec 56.1 62.2

saddle point linking conical intersections R1/a0 2.178 2.164
R2/a0 3.922 3.763
R3/a0 2.524 2.440
E/Eh -0.1855 -0.1905
∆Ec 108.5 105.4
ω1(N-H)/cm-1 2863 3120
ω2(N-N)/cm-1 1100 1879
ω3(bend)/cm-1 1280i 1051i

C2V local minimum R1/a0 3.575 3.556
R2/a0 2.395 2.397
R3/a0 2.395 2.397
E/Eh -0.1087 -0.1033
∆Ec 156.8 160.2
ω1(N-H)/cm-1 2356 4172
ω2(N-N)/cm-1 3179 2871
ω3(bend)/cm-1 1275 1449

barrier for H+ N2 linear insertion R1/a0 2.452 2.427
R2/a0 4.319 4.062
R3/a0 6.771 6.489
E/Eh -0.1276 -0.1297
∆Ed 4.9 3.6

D∞h local minimum R1/a0 4.141 4.114
R2/a0 2.071 2.057
R3/a0 2.071 2.057
E/Eh -0.042 -0.042
∆Ee -0.63 -0.63
ω1(N-H)/cm-1 2893 2850
ω2(N-N)/cm-1 755 845
ω3(bend)/cm-1 371 371

barrier for N+ HN linear insertion R1/a0 4.765 4.895
R2/a0 2.014 1.987
R3/a0 2.751 2.908
E/Eh -0.0329 -0.0332
∆Ee 5.1 4.9

a This work, using preliminary estimate for coupled states; see text.b This work, final PES; see text.c Relative to the global minimum (in kcal
mol-1). d Relative to the H+ N2 asymptote (in kcal mol-1). e Relative to the N+ NH asymptote (in kcal mol-1).

P(n)(R) ) VEHF
(3) (R)fl(R)Q(R)2 (57)
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with respect to the earlier fit. Interestingly, there is not much
difference from the corresponding attributes of the single-sheeted
PES,2 despite the occurrence of a double-minimum van der
Waals well. For the N-NH channel, the corresponding differ-
ences are also minor, except for the fact that the collinear saddle
point in the present DMBE surface turns out to be a shallow
minimum in ref 2.

The single-sheeted2 and current 2× 2 PESs are also compared
in the profiles shown in Figures 3, 4, and 12. Except for the
equilibrium diatomic geometry where the DMBE-SEC42 method
causes both surfaces to have the same energies at dissociation
(see Figure 12), only small differences are exhibited due to
differences in the one-electron basis sets and in the modeling.

KeepingrN2 fixed at 2.074a0 in the H-N2 channel, we show in
the first row of Figure 12 that the major discrepancies occur in
the vicinity of the crossing seams which the single-sheeted PES
cannot obviously reproduce. Note that in the neighborhood of
the C2V saddle point (shown in panelsa and b of Figures 11
and 7; note that it is visible as “minima” in Figure 7) the
differences are smaller as indicated by the corresponding
attributes in Table 1. Similarly, for the N-NH channel, the
differences between the single- and double-sheeted DMBE PESs
is larger close to the conical intersections (see Figures 4 and
12 and insets therein). Figures 7 and 8 illustrate the shape of
the crossing seams on the double-sheeted PES as predicted in

Figure 11. Panelsa andb show the adiabatic stateV- for the H-N2 and N-NH channels, while panelsc andd show the corresponding plots for
the adiabaticV+ state. Initial isoenergy contoursE0 and spacings∆E0 in Eh are as follows: (a) -0.3641 and 0.008 (solid);-0.3643 and 0.00001
(dotted); (b) -0.355 and 0.015 (solid);-0.134 and 0.0002 (dotted); (c) -0.26 and 0.015 (solid);-0.13998 and 0.00075 (dotted); (d) -0.42 and
0.015 (solid);-0.045 and 0.0004 (dotted). The energy has been optimized as in Figure 9.

Figure 12. Adiabatic profiles andab initio points for interactions with diatomics fixed at the ground state equilibrium geometry (2.074a0 for rN2,
and 1.965a0 for rNH). Panelsa andb refer to the H-NN channel and panelsc andd to N-NH. Key for symbols: (b ands) 12A′; (O and- -)
22A′; (---) PES for the 12A′ state from ref 2. The points in the inset of panela are referred toE0 ) 228.8335 kcal mol-1.
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the earlier fit and the final one. Only small differences are
observed, especially close to the N2 equilibrium geometry
(2.074a0).

Regarding the excited state, we have three observations to
make. First, the major discrepancies between the fit and the
calculatedab initio energies arise as expected near the 22A′/
32A′ crossing seam (not modeled); see panelsd andg (see inset
therein) of Figure 3 and panela of Figure 12. Such a crossing
shows as an avoided crossing (maximum) in panelc of Figure
11. Second, the 2× 2 DMBE PES shows the correct asymptotic
behavior on dissociation by built construction viaF(R) in eq
39 andk(x) in eq 44. Third, the attributes of the stationary points
are all reasonably well reproduced in the fit; see Table 4. As
for its long range part, theV0 andV2 Legendre components of
the upper adiabatic PES for H-N2 are shown in Figure 13.
Despite the negativeV2 values (which implies that the insertion
occurs preferentially with the atom-diatom vector aligned along
the diatomic axis), we recall that a small collinear barrier (due
to the maximum in panelc of Figure 11) may prevent the
collinear attack of H to N2. This suggests that higher Legendre
components may still play a role.

As shown in Table 4, there are small local minima forC2V
and D∞h arrangements. Since they lie at high energies above
dissociation (see panelsb of Figures 7 and 8), we only pay
attention to theD∞h that we have certified at theab initio level.
To correctly impose its location, we have added to the upper
sheet the extra polynomial

whereP0 is an amplitude chosen to be 0.07015Eh in order to
correctly reproduce the same bending normal frequency as for
the preliminary fit show in Table 3,D12 is a Gaussian-type
damping function as in eq 56 with parameters valuesγ12,1 )
10a0

-1, γ12,2 ) γ12,3 ) 20a0
-1, R12,1 ) 4.114a0 and R12,2 )

R12,3 ) 2.057a0 picked to localize the polynomial, withfl and
fT used as above.

7. Concluding Remarks

We have reported an accurate global double-sheeted DMBE
PES for the 12A′/22A′ states of HN2. All crossing seams were
described to their full extent, with the ground state PES showing
good agreement with the previously reported single-sheeted
DMBE PES2 except for regions close to the crossing seams

where the present PES should obviously be preferred. For the
excited state, a transition state connecting the T-shaped and
NNH linear crossing seams as well as a linear barrier due to
the avoiding 22A′/32A′ crossing seams5 are reported. For this
state, two local minima, one forC2V and the other forD∞h

arrangements have been also reported.
To face the intricate topology of HN2, a novel diabatization

scheme has been suggested. Although arbitrary to some extent
as any other diabatization scheme,87 we sustain that any
diabatization scheme should be constructed such as to suit best
a given application, with the proposed framework being found
most useful when using polynomial-fitting techniques as
employed in DMBE theory. The proposed scheme has the merit
of warranting by built-in construction that the diabatic states
will merge onto the adiabatic ones at the atom-diatom limits
as schematized in eq 27. Such a warranty is not insured by direct
diabatization schemes either providing diabatic wave func-
tions26,47-51 or diabatic energies.62,63 The method can be
classified as an indirect diabatization procedure that allows a
well-defined global zeroth-order solution. In fact, it provides a
diabatic grid of points with a proper description of the crossing
seams in their full dimensionality, which is key for the study
of nonadiabatic processes.88 Indeed, it does not restrict neither
the description of the involved crossing seams nor the accuracy
of the model by using restricted, yet ingenious,29,30,32-34,52means
for obtaining such zeroth-order solutions. Furthermore, it avoids
introducing irregularities in the diabatic points except unavoid-
able ones inherent to the many-stateab initio calculations.5,49

This contrasts with the dipole-moment strategy9,38 where
ambiguities arise both in defining the direction of dipole moment
used for diabatization and by corrections that are subsequently
required to obtain the diabatization angle. In fact, our experience
suggests that corrections on the diabatization angle,9,38,48,58which
are often necessary in many direct diabatization schemes,48,58

must be avoided whenever possible at least when dealing with
polynomial-fitting strategies. We emphasize that the method here
suggested makes such corrections unnecessary by construction.
Clearly, further applications using the current approach will be
required to assess the method’s usefulness. Work along these
lines is currently in progress.
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