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Surface via a Global Diabatization Angle
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A double-sheeted double many-body expansion potential energy surface is reported for the ctApled 1
2%A' states of HN by fitting about 6000ab initio energies. All crossing seams are described to their full
extent on the basis of converged results. The lowest adiabatic sheet is fitted with a rmsd of 0.8 kéal mol
with respect to the calculated energies up to 100 kcal fratbove the absolute minimum, and the topology

of the first excited-state investigated with the aid of the upper adiabatic sheet. A new scheme that overcomes
obstacles in previous diabatization methods for modeling global double-sheeted potential energy surfaces is
also reported. The novel approach uses a global diabatization angle which allows the diabats to mimic both
the crossing seams and ateitiatom dissociation limits.

1. Introduction The first of the above-mentioned multisheeted formalisms
utilizes the diatomics-in-molecules (DIM) 18 theory to con-
struct the base potential matrix and introduces many-body terms
via dressing of the diatomic staté¥??° As a result, this
approach is also known as the dressed-Dliethod. The
second approach uses the standard strategy pioneered by Murrell
NH, + NO — products (1) and co-worker for directly modeling the diabatic potential
matrix but uses DMBE (rather than MBE) to model the various
matrix elements. For §t, the dressed-DIM formalism has led
to a highly accurate PESthat improved significantly over
previous DIM-related forms for the three lowest states of this
molecular ior?122The same technique has been applied t@,NO

source of error being likely due to the neglect of nonadiabatic yieldirlog an accurate description of the fi_rst two doublet A
effectst® This conjecture is supported by the disagreement States: Unfortunately, despite its appealing quantum back-

observed in trajectory calculatioh®r the N+ NH — N, + H ground, _the use of a minimal _basis set _Ieads forzltt_Da 8x
reaction, despite the fact that the reported single-sheeted8 potential matnx,. Wh|ch.reqU|re_s hgndlllng 64 m:?\tnx elements
potential energy surfadé (PES) reveals a high-degree of and hence complicates its application in dynamics (recall that

accuracy. The unavailability of a multisheeted PEf@n forbids the diagonalization time scales with the cube of the matrix
any evaluation of such nonadiabatic effects. Our main goal in dimension). )
this paper is therefore to model a global double-sheeted PES, a For HNy, no dressed-DIM construct has been reported. Since
natural step to follow our recerb initio study of the titte ~ OUr purpose here is a description of the intricate topology of
system in ref 5. the first two A states as described in detail elsewtene have

To construct a multisheeted PES we have proposed two ~ chosen to follow the strategy of modeling ax22 diabatic
approach&'ll that utilize in one form or another a double matrix within standard DMBE theory. The accuracy of such an
many_body expansion (DMBE§,12—14 theory; for references approach depends, however, not 0n|y on the formalism em-
to sing]e_sheeted forms inc|uding |arger p0|yat0mic SystemS, p|0yed but also on how the adiaba#b initio calculations are
the reader is referred to ref 15. In this theory, we have suggested@ssigned to the diabatic matrix elements. Thus, a careful analysis
for the first time to split the potential energy into its various Of the advantages and drawbacks of previous diabatization
short- and long-range components followed by a development Scheme¥~38 as applied for the construction of global multi-
of each term as a cluster or MBExpansion_ The DMBE sheeted PESs with polynomial IEChniqUES is ]UStIfled due to
strategy conforms therefore with the traditional perturbation being unavailable thus far. This will be given in section 2, with
theory partition of the interaction energy into short- and long- the rest of the manuscript being organized as follows. Section
range contributions or else with the molecular-orbital (MO) 3 describes how the multireference configuration interaélion
theory view of partitioning the total energy into an extended- (MRCI) point® employing the aug-cc-pWZ (AV TZ) basis set
Hartree-Fock contribution that includes the nondynamical Of Dunning®4tare corrected by the DMBE-SE€method to
correlation and the dynamical correlation itself. Thus, every term account for excitations beyond singles and doubles and for basis
in the DMBE can be expressed such as to conform with its Setincompleteness, while the diabatization scheme is discussed
correct asymptotic dependence on the interatomic distance(s)in section 4. Details on DMBE2"4 modeling of the diabats
are given in section 5, and the results discussed in section 6.
* Corresponding author. E-mail address: varandas@qtvsl.qui.uc.pt. Section 7 gathers the conclusions.
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The ground state of the title system has been the target of
several theoretical studis in recent years, mostly aiming to
establish reliable estimates for its lifetime as it has been
postulated as a product of the reaction

a primary step on the thermal B&Oy process. Although
previous estimates of such a lifetitfeconsistently fall into the
range 10°—10"11 s, significant discrepancies persist between
the theoretical and experimental estimat@gth an important
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2. Global Multisheeted Approaches Employing
Diabatization Schemes: A Synopsis

A wide variety of methods for producing diabatic state$®
has been reported in the literatdfe3® followed by many
multisheeted PES&2%-3547-55 For convenience, we divide them
in two categories. The first gathers approaches that yield directly
the diabatic state®s; 3536 either from ab initio energies or
diabatic electronic wave functions, thus without an intermediate
step. The second class includes methods that obtain the diabati

propertieds—38 such as dipole or transition moments.

The direct diabatization methods which are bd%ed on
finding electronic wave functions (and subsequently molecular
propertie8”) that behave smoothly at the neighborhood of
conical intersections, where the adiabats are known to vary
drastically and often in a discontinuous manner, frequently yield
diabatic states without a well-defined behavior at the atom
diatom asymptotes. From a first-principles investigation of the
photodissociation on the Chappuis band of ozone, Woyetod
al.#” applied a method?* for obtaining smoothly varying
complete-active-space self-consistent-field (CASSCF) wave
functions by employing MO theory with nearly constant linear
combination of atomic orbital (LCAQO) coefficients, followed
by block-diagonalizatioff of the Hamiltonian, to obtain slowly
varying configuration interaction (Cl) coefficients. By interpo-
lating the resulting diabatic pointgthey were able to achieve
highly non-varying diagonal diabatic representations for the
1TA"/2TA" states of @, which have been subsequently employed
in dynamics calculation®:5° Among the prominent features of
the reported statéS[covering wide regions of configuration
space, also for the'A’ ground state and transition dipole
moment (TDM) surfaces], we note that the diabats fail to merge
the adiabats at the atendiatom limits (the off-diagonal diabatic
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do not show a correct asymptotic behavior, with the diabats
not merging the adiabats at the atediatom dissociation limits.
Using a similar diabatization scheme, Dobbyn and Knotfles
have reported the same difficulty in a study of ##¢ states of
the water molecule. In turn, Simat al*° reported a new first-
principles study of to the coupled!A"/21A"" states of HS,
where they attempt to correct for failures of the previous study
for the same systef¥.By aiming at a substantial improvement
on the quality of theb initio description of the crossing seams

%nd avoided crossings of higher excited states, they have
states from the analysis of the behavior of separate molecular 9 g X y

employed a larger basis set with polarized functions and more
excited states (onéA’ state and sevedA' states on the
CASSCEF calculations, followed by oné\' state and three
IA" states in the subsequent MRCI calculations). A large
number of geometries has been computed with the new
diabatization scheme. On the basis of the principle of near spatial
invariance of the CI diabatic coefficients, they have generalized
the method of Domcke et &:2*by maximizing also the overlap
(@)D + ()l for all i, j MO pairs at the
current €) and neighbord’) geometries. Although the qualita-
tive picture remains identical to the previous dfe high
quantitative improvement has been observed in the subsequent
dynamics study. However, a large discrepancy between the
adiabats and diabats remains at the dissociation limits, which
has been interpreted as “an artifact of the diabatization
procedure”, and referred as an “unavoidable effect”.

Also for H,S, Kippel et al2 have implemented the diaba-
tization procedure of Thiel and pel2® where the main idea
is to remove only the part responsible for the singularities from
the nonadiabatic coupling term via a unitary transformation.
Their results were compared with those of Simethal.,*°
showing that their diabats do not merge either the adiabats at
the HS-S dissociation channel. In turn, Mahapatt al.63

term is nonvanishing at those limits since the adiabatic statesepPorted a PES for the lowest WA’ states of NQ by
can be recovered at any geometry through a diabatic-to-adiabatic€mPloying the same scheme, with linitio points reported

transformation). Quoting the authdfs;...we have to decide
where in nuclear coordinate space we want the diabatic

representation to coincide with the adiabatic representation....

for regions relevant to photodissociation in addition to further
calculations to map the conical intersection. Although satisfac-
tory in this region (the points have been interpolated), it is not

it appears natural to require that the diabatic states mergeclear whether their surfaces describe the atoiatom dissocia-

asymptotically with the adiabatic states of the fragments... this
definition would not lead, however, to a diabatic representation

tion limits.
A key feature of modeling strategies that employ MBS

which eliminates the singular part of the NAC at the conical that the electronic states, either adiabatic or diabatic, must have
intersection. We have therefore adopted the alternative optiona well-defined behavior at the asymptotes. As a result, the
of requiring the diabatic basis to coincide with the adiabatic topology of the diabats obtained from the above direct diaba-
basis on theC,, symmetry line... These adiabatic states, tization schemé3 284849t the asymptotes represent a serious
consequently, do not merge with @ O, adiabatic states  drawback for MBE-® modeling. We remark that the authors
asymptotically...”. In a more recent application to thi&\'l/ have themselves revealed skepticism on the hypothesis of
21A"" states of @, Nakamura and Truhl& reported a gener-  obtaining diabats that simultaneously account for the crossing
alization of the diabatization method proposed by Atchity and seams, show a vanishing diabatic coupling elenveqt| Vg|¢® >
Ruedenberg® They have observed a similar behavior for the (producing smoothly varying electronic wave functions over the
diabats at dissociation, although for LiFH#° such states do  whole configuration space), and merge the adiabats at the
appear to behave as expected at the asymptotes. asymptotes. Because this last issue is critical for dynamics, the
In an early attempt to establish a purely first-principles diabatic angle obtained from the above schefé$484%has
understanding of the photodissociation gS;iHeumanret al.8 often been artificially corrected such that the diabats so obtained
suggested a procedure for constructing mixing angles by show the proper asymptotic limits. In particular, when using
exploring at each geometry the CI coefficients of the reference the O; PESs of Woywocdkt al.,*” Flothmanet al®® fitted the
configurations that have the desired diabatic character at themixing angle to analytical expressions while polynomial forms

locus ofC,, symmetry. Theib initio calculation8! covered a
broad area of configuration space for the coupléd'12:A"
states, ground state'@’) as well as TDM surfaces, followed

were utilized for the adiabats at the ateniatom limits. The
diabatic description of this region, obtained by cubic-spline
fitting a grid of points originating from the fits of the mixing

by construction of a sequence of interpolated PESs for the threeangle has then been merged via switching forms with the diabats

diabats, adiabats, and TDM surfaces. In fact, their calculations
allowed a satisfactory description of the first absorption band
of H,S. However, as noted in ref 48, the resulting mixing angles

earlier obtained. Other modifications proved necessary. For
H,S /8 the mixing angler has been empirically written as=
Tcadl — f(R)] + 7/2f(R), wheretc,c is the actually calculated
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(asymptotically non-vanishing) mixing angle, affg) a switch-
ing function that enforces the diabats to merge the adiabats at
the H+ HS asymptote. Analytical forms to fit the mixing angle
have been used by Kurkat al% for the double-sheeted PES
of NO,(?A") with the diabatization scheme of Simah al.*®
However, variations with the. valence angle of up to 5.7 kcal
mol~! near the atomdiatom asymptote are observed for both
diabats and adiabats. Grebenshchikbal>! followed a similar
strategy to study the Chappuis band of ozone, with the diabatic
angle being obtained with the scheme of Siraaihl*® and fitted
as for NQ.5° Here too, the diabats do not merge the adiabats at
the atom-diatom limits.

Another direct diabatization scheme pioneered by Murrell and
co-worker§&2%-31 imposes the correct atontiatom behavior
of both diabats and adiabats by writing as MBE, DMBE or
modified London-Erying-Polani-Sato (LEP3)% forms the
diagonal elements of a standardx22 diabatic matrix,

Vi Vlz)
2
(VlZ Voo @

The off-diagonal term is chosen to warrant that the eigenvalues
of the above matrix

y/ag
8 w L (o]

=

y/ay
= [\V] w > o O

© H MM W oA ot @

1 1
V= 2 (Via+ Vo) £ E\/ (Vi — V22)2 + 4\/122 3

reproduce the adiabats to the desired extent. F@, Hhfter
expanding the diabats with the MBE formalism, Murrell and
co-workerg® obtained a zeroth-order representation of those
terms by considering regions where the off-diagonal term is x/ao
known to be zero or very small and the diabats can be assumed:g e 1. Key for predicted crossing seams=Ya(R); (~ —) U
to coincide with the adiabats, e.g., at linear arrangements andy---) g, . Key for ab initio crossing seams:Q) T-shaped; ¥) NNH;
points approaching the atendiatom dissociation limits. The  (a) NHN.
off-diagonal term is written as the product of a three-body
polynomial in the interatomic coordinates by damping functions vanishing form, which prevented a more satisfactory description
that kill the latter both at the atordiatom limits and at linear  of the conical intersections. Note that the position for minimum
geometries. Equation (3) will then yield adiabats that reproduce energy gap shown in their paper does not always correspond to
the conical intersection seam while dissociating correctly at the the location of the avoided intersections (this is clear from Figure
various atom-diatom limits. Regions wher&/1, should be 2 of ref 32, which shows that the minimum energy gap does
important €.g, those withCs symmetry) have been used for not coincide with the adiabatic crossing seam for linear
obtaining the data necessary to model the off-diagonal term. arrangements). A final remark to observe that no electronic
All zeroth-order solutions have finally been used in a nonlinear structure calculations have been performed for the Nal#
least-squares fit to their relatively small (in modern standards) channel (mostly because it is energetically inaccessible), and
number of adiabati@b initio energies via eq 3. The resulting that the diatomic coupling was allowed to vary along the fit for
adiabats fit the known topological features including the conical this channel. Similar steps have been followed by Hack and
seam, with the diabats properly merging the adiabats at the Truhla@® to construct a double-sheeted PES for MaFhey
atom—diatom limits. A refit of the HO PESs to a larger number modeled the diabats using modified LEPS forms, and added
of ab initio points with the DMBE method has been reportéd, long range forces to them. The off-diagonal term has been
although it is unclear whether a significant improvement has designed and fitted as in ref 32, and held constant along the
been achieved in comparison with the previSURES. rest of the fit. A notable difference from ref 32 refers to the
A similar approach has been employed in a series of double- off-diagonal term that has been chosen to vanish at any geometry
sheeted PES%3 for the interaction of metal atoms with  with Cy, symmetry, where the locus of conical intersections lies.
covalent diatomics. In all cases, a diabatic matrix as in eq 2 Using such an approach, they have been able to model the
has been used, with the diagonal states modeled by LEPS formscrossing seam over part of tli&, domain. However, despite
For NaFH, Topaleet al.3? utilized a functional form for the the use of a large number @b initio points, the authors
off-diagonal term that could account for the correct diatomic acknowledg& the method’s inability to attain quantitative
coupling at the atomdiatom limits as determined by using accuracy over the whole configuration space, which led them
transition dipole moment¥. The authors were the first to note  to focus on the exciplex and neighborhood of the crossing seam
that a reasonable approach for obtaining points that representvhich have been judged as the most relevant regions for their
such a state would be by setting the seam of avoiding purpose. More recently, Jasperal.34 reported a PES for LiFH
intersections of the adiabats (the line of minimal gap) as if they following a similar approach. Modified LEPS forms with long
were lines of diabatic crossings. According to eq 3, this would range forces have been used to model the diabats, while the
give Vi; = (VF — V7)/2 at such geometries. The off-diagonal functional form of the strictly nonvanishing off-diagonal téfm
terms were then fitted to the points so generated using a non-has once more been obtained from the requirement that the
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Figure 2. Adiabatic avoided intersections in Jacobi coordinate}. (
channel H-Ng; (b) channel N-NH. Solid circles represergb initio
calculations for the crossing seams from ref 5, and white circles
represent avoided intersection estimates from the adiabhtioitio
points (see text).

correct diatomic coupling were mimicked at the dissociation
limits. This term was fitted to points generated as befoté

and considered as a zeroth-order solution. The parameters in it
and in the diagonal diabatic states, have then been allowed to

simultaneous optimization in a final nonlinear fit using a large
number ofab initio points.

A handicap of the above approachés3 is that the
calibration of the diabats is not done by fitting diabatic energies.
The diabats are rather obtained via an indirect fit of eq 3 to

adiabatic energies. This requires ingenious albeit restrictive
methods for guessing the zeroth-order solutions of such diabats

In the application to KD by Murrell et al. 2% only certain regions

of the configuration space have indeed been used for such a
purpose, mostly because the authors wished to illustrate the

method. Similar applicatiod%3*but the one for Nakf® do not
yield strictly global PESsif., quantitatively describing all
channels).

The final type of direct diabatization here considered is a
procedure introduced by Hagt al3® for the study of the
photodissociation of ozone in the Hartley bah&®>5* These

authors have labeled the electronic states according to its
classification atC,, arrangements (where the diabatic states can
be exactly identified), and reassigned the adiabatic energies int
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Indirect diabatization schenmi§s3® offer the interesting
possibility of providing at low cos# the diabatization angle
from the analysis of a molecular property other than the energy.
The diabats so obtained would imply almost no additional cost
but the calculation of the adiabats, and would be reliable
wherever such diabatization angle were valid. The conditions
to be satisfied for usefulness of a given property as a diabati-
zation criterion were formally discussed by Macias and Riéra,
and a review on methods for diabatizations of this type can be
found elsewheré® From their work, Dobbyn and Knowlé&s
have concluded that the use of a transition angular momentum
employing a third state uncoupled from the others appears as
the most promising route. However, even for this property,
artificial corrections on the diabatization angle may be required,
although minor. That might represent a drawback for such
schemes. Dobbyet al5® reported a PES for the first tw\'
and lowestA" states of HGJ, where the adiabatic points were
diabatized via transition angular momentum and then fitted them
to a rotated-Morse cubic-spline form. It is difficult to fully assess
the merits of their diabatization procedure, since the grid of
points covered mostly the valence region. Indeed, the rotated-
Morse cubic-spline forms used for the diabats where subse-
quently merge®f with asymptotically correct forms to provide
a reliable representation. Another PES employing a diabatization
method based on molecular properties (the dipole moment) has
been reported by Boggio-Pascatal® for the first two 2A’
states of GH. As in ref 38, modifications had to be done on
the diabatization angle to correct the asymptotic behavior and
spurious diabatic crossings away from linearity where the locus
of conical intersection lies. The diabats were then modeled using
DMBE theory. Despite the good accuracy of the fit, the extent
'of agreement between the predicted and calculated crossing
seams has not been discussed in detail preventing further
appreciation.

3. Ab Initio Energies Revisited

The major topological features of the coupled adiabatic states
1?A" and 2A', including the seams of conical intersection, have
been covered by the grid of 30@® initio geometries reported
in ref 5, which extend over the regions defined by %.5y./ag
< 4.0, 1.0= Ry-n,/a = 10.0 and 0= y/deg = 90 for H—N
interactions, and 1.% ryp/ap < 3.3, 1.0< Ry-nw/ap < 6.0
and 0=< y/deg = 180 for N—NH interactionsy, R, andy are
atom—diatom Jacobi coordinates. The calculations have been
carried out at the MRCI level of theory including single and
double electronic excitations using state averaged full-valence-
complete-active space (FVCAB)wave functions as the refer-
ence, and employing the AN basis set. Such calculations
recover only a portion of the electronic dynamical correlation,

¢nd hence energy barriers and other stationary points, as well

diabatic ones. Each adiabatic energy was then identified “by &S relevant thermodynamic quantities, may suffer from signifi-
eye” as belonging to one of the diabatic states in the neighbor- cant errors? Furthermore, the amount of dynamical correlation

hood of arrangements witB,, symmetry. The same has been

done for arrangements far from the strong coupling region (e.g.,

atom—diatom limits), and the resulting diabatic states fitted with
the MBE® method. Despite the satisfactory resaftsthe
procedure is somewhat simplistién the sense that there is no

recovered by the MRCI calculations may differ with the
electronic state, changing the relative positioning of the various
states and hence the loci of the crossing seams, as observed in
the case of ozon®.Since part of the dynamical correlation will
unavoidably be missing in any MRCI calculation (but in the

rigorous way of recovering the adiabatic states. It can though case of a full Cl expansion), one is led to believe that also the

be justified due to the complexity arising from at least four
electronic states withA' symmetry strongly coupled by several
seams of conical intersections. As nobéd, rigorous electronic
structure study including a full modeling of the adiabatic or
diabatic topological features would be an “Herculian task”.

loci of crossing seams are subject to improvement.

In this work, we have used the DMBE-SEQOmethod to
correct the calculated MRCI energies for the incompleteness
of the basis set and truncation of the Cl expansion. For each
adiabatic state, the DMBE-SEC energy assumes the form
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V(R) = Veyeas(R) + VeedR) (4) TABLE 1. Stationary Points of the Lower Sheet of the 2 x
2 DMBE Potential Energy Surface
where property MRC# MRCIP DMBE® DMBEY DMBE®
2) Global Minimum
VrvenslR) = 5 Vi rvcasRre) +
3 Ry/ag 1.981 1.983 1.983 2.0073  1.982
V& cveasRag: Reer Rac) (5) E/En —0.3568 —0.3582 —0.3568 —0.3583 —0.3582
' AEf 459 3.71 4.59 3.65 3.71
and oi(N—H)lemt 2916 2977 2875 2798 3035
w(N—N)lcm™? 1818 1819 1842 1786 1801
2 5 wa(bend)lcmt 1118 1130 1096 1357 1125
VSEC(R) = g V;(AB,SEC(RAB) + V;(ABC,SEC(RAB’ RBC' RAC) (6) Saddle Point for H- N, Reaction
Ri/ag 2.124 2.125 2.125 21354 2121
R/ag 4.135 4.121 4.137 4.241 4.15
with the first two terms of the SEC series expansion being given Rda 2.685 2.684 2.688 26381 2712
by E/En —0.3399 —0.3413 —0.3399 —0.3414 —0.3413
AE9 10.62 10.62 10.62 10.62 10.62
2) 2) wi(N—H)lcm® 1619 1575 1624 1580 1496
V&BVSEC(RAB) = [V(AB'FVCAS_QSD(RAB) - w(N=N)lem? 2155 2167 2104 2095 2097
NG @ ws(bend)lcmt 762 755 778 783 834
AB,FVCAS(RAB)]/FAB (7) Saddle Point for HN, Isomerization
Ri/ao 2.324 2.309 2.326 2.331 2.299
Re/ag 2.285 2.312 2.281 2.262 2.265
and Ry/ag 2.285 2.312 2.281 2.2624  2.265
E/En —0.2867 —0.2866 —0.2868 —0.2768 —0.2866
3) R R.)= AE9 44.05 45.00 43.99 51.22 45.00
agc.sedRag: Recr Rac) wi(N—H)lcm? 2676 2604 2753 2311 2845
[ 3) (Rag Res Rac) — w(N—N)lcm™® 1660 1707 1671 1601 1766
ABC,FVCAS—CISD\""AB: TBC* TMAC wy(bend)lcm! 2274 2314 2275 1921 1771

3 3
V(AE)§C,FVCAS(RAB' Rec: RAC)]/F,(AE);C (8) aReference 2, from a fit to a Taylor-series expansion around the
stationary point? This work, from a fit to a Taylor-series expansion
Note that the summationgag run only over the correlated  around the stationary point; see the té&x8ingle-sheeted representation
diatomic pairs, which can be identified through the dissociation from ref 2. This work using preliminary estimate for coupled states;
schemes depicted in ref 5 see the texte This work, final PES; see the teXtRelative to H+ N,

. . asymptote (in kcal mol). 9 Relative to the corresponding global
According 2to'DMBE-SEC'S2 method, the two-body scaling miﬁimﬁjm (irf kcal mot?). ) P 99

parameterézgé in eq 7 have been chosen to reproduce the
bond dissociation energy of the corresponding diatom (AB).
At the level of calculation here reported, this Ieadsz@lzg+) relation has.then led to a raising in thg perimeter of the. structures
= 0-5491":&22)(32&) = 0-6408-F(n12)(3ng) = 0.6359, andzﬁﬂ,(gg.) = corresponding to the T-shaped and'lln.ear NHN crossing seams.
0.8669. In turn, the three-body factors have been taken to assume For the NNH crossing seam, a similar phenomenon occurs,
identical values for both adiabatic states. Specifically, the value With the perimeter of the triatomic structures at the seam always
of Fféc = 0.823 has been chosen such as to reproduce thelncreasing when adding dynamical correlation. Thus, for a fixed

same barrier height for dissociation of the metastable ground- Va!ue ofyin panel b of Figure 1, the inner (left-hand-side) part
state of HN as the PES reported by Poveda and Varahdas of_ the locus _has been pushed further inward wh|I_e_ the outer
which has utilized a larger AQZ basis set. This result as well  (Tight-hand-side) part has moved outward. Specifically, the

as a comparison between the stationary points reported by thos%nward shifts are typically~0.15 and~0.05 when passing
authoré and the values obtained in the current work is given in 1om FVCAS to MRCI and from MRCI to DMBE-SEC values

Table 1. Despite of the fact that both the resulting global €SPectively. The corresponding decrtleases in energyfor
minimum and saddle point for H N, reaction lie below the 1'9650 are Of”f39 and~10 kcal mof™. As for the outwgrd
values reported by Poveda and Varaidas about 0.88 kcal ~ SNifts, such variations are f0.1a0 and~0.0%, when going
mol-%, the normal-mode frequencies and geometries show fFom FVCAS to MRCIand from MRCI to DMBE-SEC values,
considerably smaller deviations. This suggests that the employedith the energy fomy = 1.96% decreasingv25 and~10
scaling factors can compensate for our use of a smaller basis cal mol™.

set, at least insofar as the stationary points and thermodynami
attributes are concerned.

We now address the influence of the above correlation scaling As discussed in section 2, approaches based on molecular
in theab initio crossing seams. For the-H\, channel, théy_n, properties could offer the advantage of obtaining at low%ost
coordinate at the crossing point tends to be slightly shifted the diabatization angle, which could therefore be used for
outward for both T-shaped and linear NHN seamsdiy15, generating zeroth-order solutions of the diabatic matrix. This
when passing from FVCAS to MRCI, and by0.05 in going was the approach that we have first followed. We start by noting
from MRCI to DMBE-SEC values. In turn, the corresponding that the A" state of HN is related with the second and third
energy values also vary. For the equilibrium geometgy,= 2A' states of the title system, and hence the use of the transition
2.074, the energy is found to be reduced B0 and~20 dipole moment as an auxiliary diabatization property would
kcal moit, respectively. In the NNH channel at the linear involve at least four states. Thus, we tried to use instead the
NHN crossing seam, thBy-ny coordinate at the crossing is  dipole moment, following previous work on a double-sheeted
raised by~0.1539 when passing from FVCAS to MRCI and DMBE PES for GH.? However, the implementation of this
~0.059 when going from MRCI to DMBE-SEC, with the  procedure for HN revealed itself quite cumbersome. As for
energies foryy = 1.965% decreasing now by45 and~10 H,0 38 the definition of the axis along which the component of

kcal molt, respectively. The increase in the dynamical cor-

C4. The Diabatization Procedure
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the dipole moment vector better describes the avoided crossing oy nr(R) = oy 2(R) - a(R) 12)
is not the same for every conical intersection of Mith
obvious inconsistencies arising between the diabatic points
generated from distinct choices of optimal directions. We have for the channel N-NH, with
then adopted the criterion of Dobbyn and Knowifesor
choosing the optimum orientation of the dipole moment. 1
Unfortunately, many profiles obtained in this way failed to show oy_y ,(R) = > {1 —tanhfy,(Ry_np2 — R&—NH,Z)]} (13)
the correct atomdiatom dissociation behavior, with spurious
intersections (diabatization angle equati@) even arising in
regions of relevance for the modeling. Such difficulties appeared . .
in particular for the N-NH channel where close to NNH Note that the product in eq 12 insures the correct permuta-
linearity, two conical intersections must be reproduced while, tional symmetry (N atoms denoted by 2 and 3). Note further
for NHN arrangements, only one is present. Although the results that RE|—N2 provides a single piece of data for any coordinate-
for each channel could be handled to produce acceptable resultspair (1, 61) in Cs symmetry where the argument in eq 11
serious difficulties arose when merging them all to get global vanishes and thus,—n,(R) = 0.5. For larger or smaller values
diabatic sheets. of Ru_n, €q 11 yieldsoy-n(R) — 0 andoy—n,(R) — 1. The
A new diabatization scheme had to be envisaged to obtain agame holds for the NNH channel by eq 13.
satisfactory global form for the diabatization angle. Although
not essential, we would like it to be simple and analytic. It ~ The simplest representation E&FNZ(FL 01) andRY 5 (12,
should also make unnecessary the usadofioclocal modifica- 6») is motivated by the interpretation of the symmetry allowed
tions 384858 which might add further inconsistencies in the crossing seams &,, and C.., symmetry as boundary curves.
diabatic data in addition to those caused by coupling of the target For the channel HN,, that would be
states with higher excited one4? In addition, a well-defined
behavior at all atomdiatom channels is mandatory. This does
not appear to have been given in early stud#$;51as judged RE,_NZ(rl, 0,) = TNz(rl)d(ZQl) + RL_NZ(rl)[l —d(20,)]
from the resulting diabats and adiab#t8! or by the fact that (14)
it does not contemplate all channédsFinally, the form
employed should allow the diabatization angle to describe all ) ) .
crossing seams to their full extend. whered(6) is the damping functior(#) = 0.5[1 + cos@)],

The algebraic form that we have envisaged to represent thewhich makesRi") vanish forC,, arrangements (denoted by

diabatization angle is the indexT) where 6; = 90°, and RL_NZ for NNH linear
arrangements whem@ = 0°. In turn, for the N-NH channel,
a(R) = f(aH—N21 Oty —NH) 9) we write

wherean-n, and an-nn are diabatization angles designed to
individually describe the HN; and N-NH channels, respec- R&—NH,z(rz- 0,) = rI‘,\,H(rz)d(ﬁz) + I#LTNH(rZ)[l —d(6,)] (15)
tively. This would allow one to reduce thé4problem to two

3D problems. Such a scheme has proved to be sufficiently
realistic for HN,, as will be clear in the following. Such a
separability has been further explored by the use of a product
form for f(an-n, an-nH), NAMely

with d(6) as in eq 14, now annihilatinB{"\, for NHN linear
arrangements wheré, = 0°, and Ri™,, for NNH linear
arrangements wheré, = 18C¢°. The functionsR}", K RL-NZ,

a(R) = oy, (R)oynw(R) (10) e and RY™M,, in egs 14 and 15, which represent the
Jacobi coordinate at the crossing points along the seams
The first property one seeks for such forms is thatn, and indicated by the superscripts (heavy solid lines in Figure 2),

an-nH Vanish at the corresponding asymptotic channels, as have been obtained by fitting the DMBE-SEC points described
imposed by the calculated data that indicate the nonexistencejn section 3. We have first written for the-HN, channel

of crossing seams at asymptotic atediatom distance3.By

further exploring the topology of the crossings and avoided

intersections, we have collected the latter points shown in Figure M

2 (these have been determined by sear[z:hing for the smgllest RL—Nz(rl) = ¥(r) and Iﬂ1Nz(rl) = Yol + 5 (16)
energy gap along rays corresponding to fixed atahiatom

Jacobi angles) with the requirement that they should evolve to

the corresponding crossing seams at the boundari€(dC..,, whereyy is the Jacobi distance between the H atom and the
or D, symmetry, for each value of the BC bond distance). This center of the diatom Nalong theC,, crossing seam, as a
led us to the existence of two surfaces of avoided intersections,function of the NN bond distance. In turn, yans is the bond
one for each individual channel. Witﬁ?ﬂ_N2 (r1, 61) and distance NH along the NNH crossing seam, also represented
Rﬁ,_NH‘Z (r2, 02) being the analytic representations of such as a function ofry. Finally, we considered for the ANNH
surfaces for the HN, and N-NH channels, a convenient channel

representation is

aH_Nz(R) - % {1- tanhb/l(RH_Nz N RE|_N2)]} (11) th\lT]NH(rz) = YonrlF2) + r_22 andRRlilnNH(rz) = Yon(r2) +r_22

for the channel HN,, and (17)
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whereynnn is the HN distance as a function of the NH distance  Although a satisfactory fit to the points shown in pahedf
r, along the linear NHN crossing seam awg, is the bond Figure 2 has been achieved, a small inaccuracy has appeared

distance NN, also as a function of the near T-shaped geometries by using the simple product in eq
To modelyr, we have chosen the form 12. This has been corrected by adding to eq 15 the form
yr(ry) = aglry + byry® expaygry) {1 + tanhB(r, — ro)]} PAry 0) = (8 + a,A0,)” exp(-aAb,’) +
(18) agr,[1 + tanhf/Ar,)] (24)

such thatyr asymptotically raises up to atomization as a linear Where AO2 = 02 — 05, and Ar, = r, — ry. The function
function ofr,, which would reproduce the most likely scenario Rﬂ,NH,Z is now defined as
for such kind of crossing seafriNote that we have chosem-

(r1) such as to assume very small valuesrfos 1.53, where Rﬁ_NH,Z(rZ, 0,) = rTNH(rz)d(BZ) +
no data is available. Fomn, we have considered RRITNH(rZ)[l — d(6,)] + PAr 6,) sin2(492) (25)
— _ 2 _
Ynnr"2) = @nnn €XPConn Ao 1~ Crnn M2 The parameters in eqs 22 and 24 are given in Table 1 of the

cnnh,BArﬁnh’g) (19) Supporting Information.

Panelsa andb of Figure 1 show the crossing seams predicted
whereArpnni= ri1 — rnnn,;, Which has been designed to reproduce by eq 11. As expected, this form gives by construction a correct
simultaneously the shape of NH as a functiom;af the interval description of theC,, and linear NNH crossing seams. We have
1.5 < ri/ag < 3.6 as well as the rapid decay for both smajl ( then proceeded with the diabatization using only eq 11, which
< 1.5a0) and large I, = 3.6ap) values of this coordinate. In  has revealed that the topology of the avoided intersections is

turn, the functional fornynn, was chosen as correctly described for the HN, channel over the whole range
of calculated points. No unpleasant features have been noted at
Yoner2) = @nnn 1T [Shhn, 1472 = Tan1d T Sahnadl2 = Fonad] + regions uncovered by thab initio data in this channel. In fact,
i 2T Shhn24T2 = Fann29] T @i 3T [Shhn.34T2 = Frnn.39] it has. even partly proved to predic_:t the crossing and avoided
' ' ' ' (20) crossing at the NNH channel for linear NNH arrangements.

As for the H-N; channel, a direct check of the predicted
with T(x) = 1 — tanh§). This functional form have been adopted crossing seams via eq 13 would give an excellent agreement
such that forr, = 0 we have a finite value foyu, While forr, with the points that have been used for fitting the boundary
> 2.53, one would havey,n, assuming very small values. To  curves in egs 20 and 21, but the situation at treN¥H channel
model the avoided intersections for the-NH channel, we ~ would not be so simple as we have also to ensure under the N
require the NNH crossing seam specifically for this channel as atom permutation via eq 12. Figure 1 shows the crossing seam

indicated in eqgs 17, having chosen the form predictions using eq 25 and eq 12. It is seen from paribht
such a product predicts th&., conical intersection, although
Yor(F2) = @nnd L — tanhis,, {1, = rpnngd) + slightly displaced from theb initio prediction. Moreover, it
SndT> — M1} (21) predicts the crossing of the diabatic states that evolves into such

a Don conical intersection. Panél shows the predicted linear

Naturally, the NNH crossing seam could not be fully NNH crossing seam, which reproduces #teinitio crossing
represented by a single valued expression like eq 21 as discusseg€am but forx < 2.5a,, which might be expected from our
in ref 5, since for a value of the NH bond distance we have choice of eq 21. Panel shows that the predicted linear NHN
two NNH conical intersections whenewgiy < 2.9a. We have crossing seam is only slightly shifted from thé initio locus
chosen to parametrize this function by focusing for each NH in accordance with the small shift observed for B conical

Separation on the conical intersection closer to the- NNH intersection in pane&. We have diabatized the adiabatic states
limit. Thus, ynnn has been made to assume small valuesfor ~ using the product in eq 12, with quite satisfactory results for
2 3.0a0, while fitting the conical intersection for, < 3.0ag the N—=NH channel. For each NH bond distance, the crossing

and assume a constant valuezat- 0. The optimum parameters ~ Of the diabatic states is found to evolve smoothly with -y
in egs 18-21 are given in Table 1 of the Supporting Informa- from the linear NHN conical intersection to the conical
tion. intersection closest to the aterdiatom limit at NNH linear

Some small adjustments turned out necessary to improve eqgifangements. In addition, we observe the correct merging of
14 and 15. FoRY,_,,, @ maximum arising in the radial value the diabatic states with the adiabatic ones at theé\IM atom-

for the avoided intersections at intermediate values of the Jacobidiatom limit.

angle (see pane) has been mimicked by adding Figure 1 further shows that the only significant deviations
observed in the crossing seams predicted by using the global
py(ry, 6;) = (8 + a,A0,2 + a,A0,%) exply,Ar; — y,Ar,?) diabatization angle in eq 10 is observed for the linear NNH
(22) arrangements in pandb. However, the resulting diabatic

profiles, depicted for the most representative geometries (1.8
< rnJap < 3.3 and 2.465< ryn/ap < 3.365) in Figures 3 and

to eq 14, whereAdy = 01 — 63, and Ary = ry — r}. The 4 show themselves to mimic correctly thk initio trends when
parameters in eq 22 have been fitted to the points shown inevolving from theC,, to linear arrangements (for the-H,
panela of Figure 2 by using the form channel) as well as for linear NNH and NHN. Therefore, such
oh deviations are expected to be irrelevant for modeling purposes.
R, (r ) = R (r)d(26,) + In addition, Figures 3 and 4 reveal that the global structure of

T . . the crossing-seams is in fact recovered by the diabatic states.
RH—Nz(rl)[l d(20)] + p(ry, ) S|n2(201) (23) This can be seen from panelof Figure 3 that shows the
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Figure 3. Adiabatic profiles andb initio energies for the HNN channel. The first row of panels and insets referxp= 1.854,, the second
to 2.574, and the third to 3.078. The angled in first column of panels is 1% in the second 4% and in the third 7% The insets in the first
column correspond to HNN linear arrangemeiits<0°), and in the third column to T-shaped arrangemefits ©0°). Key for symbols: @) 1?A’;
(m) 22A"; (Q) Vag; (©), Vzz (—) adiabatic states;« —) diabatic states; (---) PES for théAl state from ref 2.

increasing influence of th®.n conical intersection in the 5. Modeling of Diabatic States
diabatic states ag, increases to approach the valuex8.7ao. 5.1. Outline of 2 x 2 Diabatic DMBE Matrix. A primary

ﬁ‘]dd('jt.'ogal!y’ '»[Zl?uref(é shows that c:esplte:hzesg:erseﬁtlon of step on the expansion of the diagonal diabatic states in DMBE
the diabatic states TdTs arrangements aky = 2.8, such an theory is the formulation of the relevant dissociation scheme.
intersection smoothly disappears when approaching the NNH For Vi1, one had

and NHN linear arrangements as it should be from
Figure 1. 1+ 2

Finally, we note that the diagonal diabatic statesandV,, v, — { Ny( 3292 + H( 45)
merge into the corresponding adiabatic stafesand V/* for NH(CY ) +N('9
both channels as shown in Figures 3 and 4 when the off-diagonal
term V;, becomes vanishingly small. Thus, the diabatic states
generated from the relations

(28)

ForV,,, correlated at dissociation with the first excited adiabatic
state, we write

Vll(l a) V+(| a) Si” (1(' !) V—( ) ( ) N2(3H )k(X) N2(3§ )[1 k(X)] I I(ZS)
g u
22 {

NC’D)F(R) + NHCS ) (29)

V,(R) = V¥ (R) cog a(R) + V (R) sirf o(R)
V(R) = [VF(R) — V' (R)] sin a(R) cosa(R) (26)
wherek(x), andF(R) are auxiliary functions to be defined below.

employing the diabatization angle in eq 10 not only account In turn, the crossed diabatic state is chosen such\that> 0
for the crossing seams/avoided intersection topology but alsofor any dissociation channel.

fulfill the asymptotic relations In a previous study, we have showhat the first two excited
states of the H)?A') manifold are strongly coupled showing
i Vo, Vi, [V 0 at least two seams of conical intersections, one for T-shaped
RH'_',ZLOQ Vi, Vil o Va (27) geometries, the other for collinear ones. Concerning atom plus
o Ry_nH—o diatom dissociation, it has also been shown that the lin&sr 2

3%A’ seam imposes strong correlation between the involved
at both the H+ N, and N+ NH atom-diatom dissociation states. Thus, for reducing this multistate problem into a two-
limits. state one, one needs to treat them as narrowly avoided crossings.
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Figure 4. Adiabatic profiles andhb initio energies for the NNH channel. For the first row of panels and insets we have fixgadt 2.46%y, for
the second row at 2.8@pand for the third at 3.36%. In the first column of panel®? = 15, in the second 90 and in the third 45 The insets
in the first column correspond to HNN linear arrangemefits=(180°) and in the third to NHN linear arrangements=< 0°). Key for symbols is
as given in Figure 3.

For this purpose, we observe that at the M, dissociation the The asymptotic limits for ¥, in eq 29 will be warranted by
first excited-state behaves differently forOry,/ap < 1.95 and writing

1.95 < ryn,/ap. As suggested in eq 29, this can be modeled via
a one-dimensional (@) switching functionk(x). This function ) 3
becomes unity for the interval ® ry,/ap < 1.95 and vanishes VooR) = VEXR) + N,CTI)(ROK(R) +

for 1.95 < ry,/a, varying continuously but drastically between NLCT DR [1 — k(R)] + NHCT )(R,) +

those intervals. This will preserve the correct atom plus diatom 3c— 2y N4

behavior on each interval and simultaneously provides a simple NHCZ )Ry + IN(D) = NCSIF(R) (32)
mathematical structure to pass from one region to the other. As

shown in eq 30 for the NNH dissociation, a B switching where the two- and three-body terms are constructed as in eq
function F(R) must be employed to connect the intervals 0 31, and the difference KIP) — N(*S) accounts for the ND)
rnw/ag < 3.0 and 3.0 ryp/ao. one-body energy. According to DMBE theory, thé&),(R)

Given the asymptotic limits on eq 28, the DMBE expansion terms are constructed to vanish at the asymptotes whenever one
for the diabatic stat®1, will assume the form of the atoms is removed from the cluster, whi)(R) is
3) Tet semiempirically modeled to describe the atom plus diatom
Vi,(R) = VE(R) + N,('T)(R) + dynamical correlation. It is then clear that the diabatic state
NH(BZ_)(RZ) + NH(SZ_)(Rs) (30) V11(R) will respect the scheme in eq 28, with the same applying
to Vo5(R) and the scheme in eq 29 provided tRgR) in eq 32

whereVE)(R) and the diatomic potentials, as usually done in IS Suitably designed for this matter.

DMBE theory, are analytically split into their extended Hartree Besides the correct asymptotic description, the diabatic states
Fock and dynamical correlation components: must be designed such as to provide a correct description of
the conical intersections involving the corresponding adiabatic

VOR) = VO (R) + V(R) (31) states. Since the diagonal diabatic states are decoupled at the

neighborhood of the conical intersections, no further constraints
with n > 2. Since 2N{S) + H(2S is taken as the energy are required in eqs 30 and 32. The off-diagonal diabatic state
reference, no one-body energy terms will aris&/in. In fact, must, however, vanish at the crossing seams. In addition, it must
the DMBE expansion in eq 30 has the form employed for the satisfyVi, — 0 whenever any bond distance goes to infinity.
ground state of HM? We have chosen for this purpose the form
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VioAR) = V2 et d R (R)(R) (33)
where the extended Hartre€ock term in eq 33 has a similar
form as for the diagonal diabatic terms, which makggR)
vanish at any dissociation asymptote. To make vanish at
the linear [) andCy, (indexed byT) crossing seams, one uses
the functionsfi(R) andft(R). For the former, we use
f(R) = sin Byun (34)
where Oyun is the included angléINHN, thus makingVi,
vanish at both NNH and NHN linear arrangements. FoiGhe
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of Figure 5, we have considered two setsabfinitio points in

the fit, mainly due to the impossibility of covering the;
distance up to sufficiently large valueJhe triatom scaledb

initio points correspond to thed set of points in paneh of
Figure 5. Despite our effort to obtain a trendadf initio points

as smooth as possible, such results were always influenced by
the strong couplings with higher excited states, and thus
modelingh(R) as accurately as for the ground state of XiH
was out of the question. The second set of points, indicated by
(O), corresponds tab initio calculations in the diatomic state
NH(®Y), and were included to ensure a realistic description
where the triatomic averaged state calculations did not converge.

geometries, no simple form has shown to be appropriate. In A rmsd below 0.9 kcal mol has been obtained.

fact, the topology of the problem has forced us to employ a
nonanalytical form as described later.

5.2. The Switching Function F(R). When restricting the
multistate problem to a two-state one via eq 32, we will be
dealing with a problem similar to the one dealt by Varandas
and Povedd when obtaining a single valued representation of
the NH; PES. To accurately model a narrowly avoided crossing
at the N—-H, dissociative channel, they proposed the switching
form

f(R) = g(r)h(Ry)

whereR; is the distance between the hydrogen atoms rand

(39)

Finally, linear NHN plots ofF'(R) for fixed NH reveal a
barrier above 1 with a maximum at thH2.,, configurations,
which grows with the NH separation. Since we haleinitio
points covering this region, the three body terms in eq 32 would
be expected to compensate such a barrier if so required.
However, such a barrier arises at configurations far from
equilibrium which would be difficult to model with the extended
HF term (see eq 47). To overcome this difficulty, we have used
the function

F(R) = F'(R)(R, — Ry’ (39)

which keeps all the prescribed attributes &fR5.

the Jacobi coordinate separating the atom N from the geometric 5.3, Two-Body Terms and One-Dimensional Switching

center of the diatom § Such an approach offers a more realistic
treatment over the one suggested by Murrell and Cérter
obtaining a single-sheeted form for the water molecule. The
function h(Ry) is calibrated from scaledb initio calculations

on the fragments in order to control the2Rj — N(*S) decay,
while g(ry) is used to mimic the energy difference?mj —
N(*S when approaching intermediate interactions in the triatom.
With their approach, Varandas and Pov&dwt only obtained

a smoother behavior at all configuration space but also overcame

the well-known failures of the earlier MurreflCarter ap-
proach’?

For the N-NH channel of HN(2?A"), we must deal with
the N@D) — N(*S) decay of two nitrogen atoms, and the required
symmetrization. This has been achieved with

F'(R) = g(rh(Ry) + g(rah(Ry)

where the same notation as for WHhas been employed. Thus,
if the indexes i, j, K} number the atoms (1 for H; 2 and 3 for
N), r; represents the Jacobi coordinate separating atom
the geometric center of diatojk, whose internuclear distance
is denoted byR,. Note thatF'(R) ensures not only symmetriza-
tion, but also the requirements to be fulfilled f{iR) in eq 35.
Both functionsh(R) andg(r;) assume similar functional forms
as for NH, namely

h(R) = {1 — tanhfuy(R — Ry) + o,(R — R} (37)

(36)

and

o(r) = 3 {1+ tanhfu(r; — 9]} (38)
The inset of paned of Figure 5 shows the result of the least-
squares fit ofh(R), with N(2D) lying 0.08920979E;, above
N(*S). The resulting parameters are; = 0.995366 1, o, =
0.165409, 1, RS = 3.4935%, andR; = 4.6036%. In turn,
the parameters ig(r;) area = 1.5a0~1 andrg = 5.0ap, having

Function k(x). The diatomic potential curves 2(&23), N3
=) and NHEZ") have been modeled using the extended
Hartree-Fock approximate correlation energy method for
diatomic moleculesincluding the united atom lifffEHFACE2U),
with the available parameters being determined by fittiing
initio data. The dynamical correlation (“long-range”) part
assumes the forffh

Cn
Vdc(R) = Xn(R) —
R

n=6,8,10

(40)

whereyn(R) are damping functiong,(R) = [1 — exp(~An Rlp

— Bn R¥p?)]", andA, and B, are the auxiliary functiong, =
opn~% and B, = fo exp(—p1n); the “universal” dimensionless
parameters for all isotropic interactidAd®area, = 16.36606,
o = 0.70172,30 = 17.19338, angh; = 0.09574. In turn, the
scaling parameter is defined lpy= 5.5+ 1.25=), with Ry =
2[a23/2 + [Mg2[¥? determining® the onset of the undamped
R™" expansion, andiy?(the expectation value of the squared
radius for the outermost electrons of atom=4, B). The EHF-
type energy term assumes the general form

n

D .
Vene(R) = — R @+ ar)expyr) (41)

wherey = yo[1 + y1 tanh{2r)], r = R — Reis the displacement
from the equilibrium diatomic geometry, amanda(i = 1,
..., N) are adjustable parametés’3 For our purposes, it was
sufficient to calibrate the potential curves of these diatomic
potentials exclusivelly from the DMBE-SEC points described
in section 3. A rmsd of 5 cmt has been achieved for all
diatomics except M3I1g). All curves are displayed in Figure
5. The agreement with the more accurate results of ref 2 for
Ng(lzg) and NHEZ") is in the milihartree range, which is
likely to be within the accuracy of their own daf@.

For Ny(3I1g), a carefull analysis of thab initio data has shown

been chosen to ensure smoothness. As detailed in the subtitlean unexpected non-trivial behavior at dissociation. At the
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FVCAS level, a barrier of&1315 cnt?! above dissociation arises 0.5

at Ryn ~ 4.23,. However, it becomes-340 cmit at Ryy ~ ¢\ M #
4,539 when using the MRCI method, but now lyirg77 cnr?! 0.0 [ =
below dissociation. After DMBE-SEC scaling (see section 3), \/ ol NCD)
such a barrier is further reduced 4843 cn'l, now atRuy ~ 05 ¢ by
4.8ap but ~200 cn1! below dissociation; see the upper inset in & %05_
panel b of Figure 5. Note that we have repeated these -1.0 - Q g )
calculations with the ADZ basis, and the same pattern has w? 00 N NS
been observed. In an attempt to rationalize this barrier we have o -15 1 2 G P
performedab initio calculations for the excited states of this B 40 b
same symmetry looking for the possibility of such barrier to & e FVCAS
. . . . e ]
correspond to an avoided crossing. This could not be confirmed, g % Mgfﬁ%
thus establishing a pattern similar to thatfe®® CO(II). o 20 §9-°;f%®-"--
To model N(3I1g), we recalled previous work for CAQ), 3 % @09 DMBE-SEC
where it was suggest&lthat the above barrier could be = f fﬁ;o & - 90_
understood as a consequence of the repulsive behavior of the 0.0 - -
asymptotic exchange energy. It has been written as 'W
$ [
D noo 20F V¢ g0
VEHF(R) =- E (1 + airl) exp(—yr) + Vgizn(R)Xexc(R) ‘, § s g
I (42) 40 w ) _”1.71 20 ] 2.3
1.0 3.0 5.0 7.0 9.0

where the asymptotic exchange contribution has been made

o . bond distance/a,
explicit. For CO, this term has been shdWto assume the form

Figure 5. EHFACE2U potentials energy curves. Key for paaelO)
HN,(22A") with ryy fixed at forming an anglédunn with ther
VEZ(R) = (06, R — Box AR eXp-0,R)  (43) axisZ(fixe()j at= 5% ©) NH(?%O*); ©) gNH(5Z);g(—)F,|Nl%H(32*)(R) i

h(R); (= =), NH(Z")(R). The solid lines in the insets shdwR), with
Whereaexs fexe @anNdoeyc are parameters; the damping function  all points referred to the NHE™) diatomic. Key for paneb: (O) Nz-
yexdR) assumes the form ofs(R) defined previously for the — Ca); () N2(2g); @) No(Zy); (= - =) No(*Zg)(R); (— =) No(Ily)-
dynamical correlation; for further details, see the original (R): (=) N2(PZ;)(R). Filled symbols have been used to calibripe,
papers37° Instead of calculating the matrix elements of the With the solid lines showing MTIg)(RIK(R) + No(=Z)(R)[L — k(R)]-
asymptotic exchange contribution, we have pragmatically
determinedotexe, fexe @Ndoexc in €q 43 via a least-squares fit
of the EHF points at the neighborhood of the barrier. These
points were obtained as the difference between the DMBE-SEC
points and the semiempirical dynamical correlation contribution
in eq 40, with the parameters written in Table 2 of the
Supporting Information. Also in this table are the parameters
obtained by a linear least-squares fit to the EHF energies, which
were obtained by subtracting the asymptotic exchange contribu-
tion plus the semiempirical dynamical correlation from the
DMBE-SEC points. A rmsd smaller than 2.5 chnhas been
obtained close to the equilibrium distance and the barrier; its
value is around 8.0 cr for the whole curve, which is plotted

wherer;, 6; and R are internal Jacobi coordinates (for the
notation, see Figure 1 of ref 14), agd= 1/ 1 — tanhE(yR
— R — RY]} is a convenient damping function, with similar
expressions fog; andgx. Following recent work on HC& we
have fixedy = 6 and& = 1.0ap%. The damping functiomn(r)
was the same as for the diatomics, but using the center-of-mass
separation for the relevant aterdiatom channel instead &
The parametep for both diagonal diabatic states was the one
used for the single-sheeted potential energy surface of HN
(2A"),2 were Ry was taken as the average of the corresponding
parameters for NO and SiH, which leadspe= 15.9.

Forn=6, 8, and 10, the atorrdiatom dispersion coefficients

in panelb of Figure 5. are given by
After modeling the diatomic curves, we turned to fitting the 0 _ L
1D switching functionk(x) by using the form Ci (R, 6) = Z C,P.(cos6;) (46)
k() = 0.5 1+ tanhp(x = x,)]} (44) whereP_(cos);) denotes the.-th term of the Legendre poly-
. . . . 5 5 nomial expansion. For both diagonal diabatic stated tkeO,
W'+th o andxo being fitted via the form BTIgk(x) + Na( 2, and 4 components of this coefficients have been considered,
[ — k(3] (see eq 32) to the black points in partelof with the internuclear dependences estimated as in ref 82, i.e.,

Figure 5; all diatomic parameters were kept fixed at the values by using the genera"zed SlateKirkwood approximatioﬁS
obtained when modeling the respective diatomic states. Thejointly with the dipolar polarizabilities, which have been
valuesg = 48.237@% ! and X, = 2.0195@, were obtained,  calculated in the present work using the MRCI method with an
with the rmsd being 5 crt. As seen from the lower inset in  AvQZ basis set. The atordiatom dispersion coefficients so
panelb of Figure 5, the intersection between the diatomic curves cajculated were then fitted to the form given in ref 83. Fex,
is avoided smoothly. ) ) we have used the same dispersion coefficients as for the single-
5.4. Three-Body' Dynamical .Correlat|on Energy.For the' sheeted PESof HN,(2A'). For Vs,, the atom-diatom interac-
three-body dynamical correlation, we have used the semiem-tions must be understood under the constraints imposed by
pirical form?® dissociation scheme discussed above, which would imply using
_ two distinct atom-diatom dispersion coefficients for each
V& = — z Z aG(R)ICUR, 6.y, (r)r " (45) channel. For simplicity, for the HN; interaction, we have
o considered only the polarizabilities of 2@2:), thence
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Figure 6. Atom—diatom dispersion coefficients for for the diabatic
V3, state as a function of the corresponding internuclear distance.

reducing the atomdiatom dispersion interaction on this channel
to that for the H{S + N(3%) interaction, which is truly
applicable forry, 2 2.0a9. Similarly, for the N-NH channel,
we have considered only the atemiatom dispersion interaction
referring to NZD) + NH(3Z™), which is an approximation for
rnw 2 3.08p. The resulting parameters are in Table 3 of the
Supporting Information, with their internuclear dependences
shown in Figure 6. As discussed elsewH&nee have multiplied
the two-body dynamical correlation energy for tiia pair by
M= [1 — gi(R)], with corresponding factors for channgland

k, thus ensuringy that the only two-body contribution at the
i-th channel is that of JK.

5.5. Three-Body Extended HF Energy and Fit of Diagonal
Diabatic Terms. For these states, we start by removing, for a
given triatomic geometry, the sum of the relevant two-body
energy terms in eqs 30 and 32, modeled by EHFACE2U curves
as described in section 5.3, and the three-bod§ONE N(*S)]-

F(R) term in eq 32 from the points obtained in section 4. This
gives the total three-body energy for each of the diagonal
diabatic states from where we now subtract the three-body
dynamical correlation contribution modeled in section 5.4 to
yield the three-body extended HF energy for each diagonal
diabatic state referred to aéfl%HF(R) and \/232)1EHF(R) accord-

ing to eq 31. To model the terms so obtained, we have employed
the three-body distributed-polynomial foffn

[\ 3
Z P(Qy, Q, Q) $ {1 — tanhp), (R — R}
g - (47)

3 —
Vikrr =

where the polynomialﬁ’ﬂ)(Ql, Q2, Q) are written in terms of
symmetry coordinatesand the indexn labels the diagonal
diabatic state.

Regarding the linear fits, we follow basically the usual

J. Phys. Chem. A, Vol. 112, No. 16, 2008779

3
X/ao
Figure 7. T-shaped crossing seam. Key for paael(O) calculated
points; (- —) as obtained from fitted diagonal states; ) as
obtained from fitted adiabatic states without the damping function in
eq 53; ) as obtained from fitted adiabatic states with the above
damping function. The dashed-dot ¢- —) represents thg(x) curve
in eq 50. The numbers label the regions referred to in the text, while
the large open circle indicates thHgy, conical intersection of the
adiabatic states. Panklshows also energy countours for the ground
(—) and excited (---) states, in both cases startinBoat —0.364E,
and equally spaced h&Ey; = 0.038%:.

matters of convenience. The values)gf were then obtained

by trial-and-error, ensuring a representation of the crossing
seams as accurately as possible. After obtaining a globally
acceptable fit, we have centered lower-order polynomials at the
van der Walls regions, and fine-tuned the calibration such as to
obtain an accurate description of the long-range regions. The
final total rmsd were lower than 1.4 kcal méffor both diagonal
diabatic states.

Figures 7 and 8 show the crossings seams predicted by the
diagonal diabatic states, and Figures 3 and 4 illustrate the
agreement between the diabatic points from section 4 and the
fit. Panelsa, b, andc of Figure 3 and insets therein show cuts
of the diagonal diabatic terms from linear NNH to T-shaped
configurations forry, fixed at 1.854y. As seen, the crossing is
accurately mimicked, evolving smoothly to reproduce the
adiabatic crossing seams as shown in Figures 7 and 8. The same
behavior is exhibited for othery, distances: 2.43% and
3.374. Panelsa, b, and ¢ of Figure 4 and insets therein
illustrate the corresponding behavior for the other two channels
with ryy fixed at 2.46%,. Note the smooth evolution in going
from a two conical intersection situation in NNH to no
intersections for NHN linear arrangements. The remaining
panels illustrate that the regions out of the range of both linear
crossing seams is also accurately fitted, with the diabatic
intersection disappearing as expected at linear geometries. Note
that theC,, region below theab initio crossing seam in panel

criterion but having in account the further complications arising a of Figure 7 shows an evolution of the diabatic crossing with
from having stationary points at different geometries on the no support on thab initio calculations, as discussed in the next
various diabatic terms. Specifically, we have chosen to center section.

the polynomials at geometries close to the adiabatic stationary Figure 9 shows plots of the diagonal diabatic states for an
points, ensuring that each reference geometry was covered byatom moving around a partially relaxed diatomic. The notable
diabatic points. The actual location has been finally decided by feature is perhaps the fact that long range forces are smoothly
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since NCMgk() + N2(3,;) [1 — k(] + [N(?D) — N(*S)]-

F(R) > Nz(lzg), we must haveVy, > Vi3, which implies
another inversion and hence another crossing. The same
argument justifies why the crossing ends at g, point
signaled over the-axis. In fact, we could say that the labédls
and?2 define two distinct regions on they, plane according to

the crossing line, a dissociative region, characterized by relaxed
configurations and wher¥,, > Vi1, and an internal region,
whereVs, < Vi1.

Yet, theab initio calculations show that there is no support
for the Cy, diabatic crossing, which must then be removed from
the modeling. The solution requires that the conditiap= 0
holds only for a specific region of theé,, plane. Recall that we
have fitted the T-shaped crossing points tgr&) function in
eq 18. Since this gives the value of the coording#éx)
connecting the H atom to the center of dlong theC,, crossing
seam as a function of the NN bond distaxceve now require

the form
oY) = X({y) —d (50)
L O 1
! 1 9 3 4 with d > 0, wherext(y) corresponds to the NN bond distance
x/ay as a function ofy along theC,, crossing seam. For thigz(y)
Figure 8. Linear crossing seams. Key for panalsand b: (O) assumes the form
calculated points;+ - —) as obtained from fitted diagonal states:)( )
as obtained from fitted adiabatic states. Pasows energy countours X1(y) = ¢y + cy + c, exp[—y(y + Vo)] (51)

for NNH arrangements in the grouned) and excited (---) states, starting
atE, = —0.364F, and equally spaced byE, = 0.04. Paneb shows with the parameters given in Table 1 of the Supporting
goggurs for NHN arrangements witf, = —0.133%, and AE, = Information. In fact, the functiomy(X) maps two regions of the
e C,, plane, as shown in Figure 10, and we would prefer that the
conical intersection were not present in the adiabatic states at
region2. This would require involving a functiofi; that were
identically zero at regiorl but nonzero at regiog, such that
S\/12 = 0 at regionl and Vi, = 0 at region2. A function that

(and accurately as far as the quality of #ieinitio points allow)
described in the diabatic sheets, ensuring a reliable description
of the adiabatic long range behavior. The reference geometrie

| ref _ . . .
R, and decay parameteys; for the diabatic sheets are given  qajisfies such criteria can be adapted from one utilized by one
in Tables 4 and 5 of the Supporting Information. These will be ¢ g0 during the construction of a multisheeted DMBE PES
kept fixed when performing the final nonlinear least-squares ¢, NO,(2A"). We suggest using the analogous form
of the adiabatic sheets.

5.6. The Nondiagonal Diabatic Linear Least-Squares Fit. frxy) = 1—exp[—All/zxy) — 1]} ifz2x,y) <1

To understand the T-shaped diagonal diabatic crossing behavior = 0 if 2(x,y) > 1
shown in Figure 7, we must explore the consequences of two T
properties introduced into the two sheets through the diabati- (52)

zation procedure. The first refers to having a common dissocia-
tion with the adiabatic states as shown in eqgs 27, 30, and 32,where
and the second to the fact that the diagonal diabatic sheets
interchange their role when passing through a seam. z(x, y) = 1+ tanj ofXy(y) — x|}
The two numbers in Figure 7 label the two regions separated
by the conical intersection. According to the diabatization
procedure, we can state that closeltthe diagonal states will
follow the inequalityV2, > Vi1, while close to2 it will be Vs,
< Vy1. This inversion is responsible for the diagonal diabatic
states being able to reproduce the crossing seam when modele
via single valued forms as in egs 30 and 32.
If the molecule dissociates from regi@nvia a path parallel _ 2
to thex-axis, the three-body interaction will disappear and from f(R) = fr(x y) + Q(R) (53)
egs 30 and 32 one must have at a certain point onward

with all parameters defined in Table 1 of the Supporting
Information. Such a function is plotted in Figure 10. Note that
the integer parametetr in eq 52 determines the order of the
continuity. For our purposes, we have required continuity up
Ip the second derivative, thus = 3. The finalfr(R) function

in eq 33 will then be

whereQ(R) is the angle-like variablé

Vi, ~ Ny(PSH) 4+ NHEY ™ 48 R—Rs
1
and
responsible for removing the effects B{R) outside theC,,
~ N3 3ty 3c— plane. Note that regionsand?2 in Figure 10 [defined byy(y)
Va2 ¥ Np(TIgk(x) + No("3.)[1 k(2>()] + N':t( 2 )+ and used to create the functib(R)] have a distinct definition
[N(“D) — N("9]F(R) (49) from those labeled and2 in Figure 7 (defined according to
the relative magnitude of the diagonal diabatic states in eqs 30
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Figure 9. Panelsa andb show the diabatic staté;; for the H-N, and N—-NH channels, with panels andd showing the same plots but for the
diabaticV,; state. Initial isoenergy contouEs and spacingdE in E, are as follows &) —0.3641 and 0.015 (solid);0.3643 and 0.00001 (dotted);
(b) —0.26 and 0.0125 (solid):-0.134 and 0.0004 (dotted)¢)(—0.35 and 0.015 (solid);-0.13998 and 0.00075 (dottedd)(—0.42 and 0.015

(solid); —0.045 and 0.0005 (dotted). The energy has been optimized withing the rangeR\fa, < 2.4 (paneld); 1.8 < Run/ap < 2.3 (panels
b andd); 2.2 <= Ry/ap < 2.6 (panelc).

TABLE 2: Stratified Root-Mean Squared Deviations (in
0.7 kcal mol™1)
maximum deviation rmsd

0.5 energy no.ofpoints DMBE DMBE? DMBE2 DMBEP
10 398 1.719 1.829 0.306 0.204
0.3 20 569 2.283 1.829 0.465 0.268
30 714 4.954 2131 0.644 0.315
40 877 7.365 2.997 0.789 0.390
50 956 7.552 3.842 0.987 0.516
60 1058 7.806 3.842 1.058 0.559
0.0 0 70 1131 8.378 4265 1172  0.641
1.0 80 1188 8.378 5.432 1.242 0.694
90 1260 8.378 5.431 1.359 0.757
100 1451 8.378 5.688 1.463 0.800
y/ao 125 1745 9.270 7.917 1.683 1.141
150 2519 9.662 10.671 1.737 1.326
175 3596 9.769 11.652 1.732 1.495
x/ao 200 4561 9.953 13.696 1.822 1.631
i ) o . ) ) 300 5790 13.608 15.180 1.880 1.863
Figure 10. Damping function in eq 52. Also indicated is the region 400 5895 13.608 15.180 1.921 1.971
where it attains finite valuedl) and vanishes identically). The dots 500 5952 13.608 16.041 1.957 2.074
show the calculated seam, fitted ky(y) from eq 51 as shown by the 1000 6075 13.608 16.104 1.997 29231
dotted line, while the solid line shows the cumy) from eq 50, which 5000 6091 13.608 16.964 2.004 2.258

separates regiorfsand 2.

and 32), but their parallel significance encouraged us to employ s
the same notation.

Finally, theVi) . {(R) term in eq 33 is defined as

2 This work, using preliminary estimate for coupled states; see text.
This work, final PES; see text.

parameterszjlzj in eq 56 were determined by trial-and-error.

Ny The reference sé#fff were chosen following the convenience
Ve = pl) DI(R of the fitting, with special attention to the boundary conditions
12.BHF ]Z 12(Qu, Q2 QaID2AR) (55) imposed byfr andfi. Table 6 of the Supporting Information

_ gathers the final values gf ,; and R;5".
with the dumping functiordY), given by

6. Results and Discussion
3

DI(R) = exph/. (R — ReH2 56 The two adiabatic potentia™(R) andV~(R) in eq 3 can

1AR) D Pl (R — Riz;)7] (56) now be formally obtained from the diabatic matrix in egs 30,
32, and 33.

with notation as in eq 47. A linear least-squares fit procedure  As emphasized in sections 4 and 5, the adiabatic states inherit

was used to determine the linear coefficients, while the decay from the diabatic ones the correct behavior at atahiatom
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TABLE 3: Other Stationary Points in the Lower Sheet of the 2 x 2 DMBE Potential Energy Surface

feature property DMBE DMBE® DMBE®
T-shaped van der Waals Ri/ag 2.075 2.081 2.081
H-+*N; Ro/ag 7.112 6.7773 6.857
Ra/ag 7.112 6.7773 6.857
E/En —0.3642 —0.364287 —0.3642
AEY —-0.07 —0.1175 -0.1
w1(N—H)/cm™ 69 93 105
wz(N—=N)/ecm™ 2337 2342 2343
w3(bend)/cnt 18 8.5 21
linear van der Waals Ri/ag 2.081 2.081
H-++N; Ro/ag 6.6071 6.672
Ra/ag 8.6877 8.7527
AE® 1.1 15
w1(N—H)/cm™? 81 84
w(N—N)/ecm™ 2343 2343
w3(bend)/cnt 7.7 10
saddle point linking Ri/ag 2.081 2.081
van der Waals minimums Ro/ag 6.5759 6.6084
H---N, Ra/ag 7.9266 7.9096
AE® 4.0 6.6
w1(N—H)/cm™ 61 71
w2(N—N)/cm™ 2343 2343
w3(bend)/cnrt 18i 21i
linear TS Ri/ag 7.467 7.43 7.345
N—H---N Ro/ag 1.961 1.965 1.965
Ra/ag 5.506 5.465 5.380
E/En —0.1305 —0.1304 —0.1305
AED -0.2 —0.15 -0.2
w1(N—H)/cm 3198 4457 4444
wx(N—N)/em? 45 127 206
w3(bend)/cnt 16 52 278
linear TS Ri/ag 6.846 6.818 6.558
Ne--N—H Ro/ag 1.965 1.964 1.964
Ra/ag 8.811 8.783 8.522
E/En —0.1304 —0.1305 —0.1307
AE) -0.1 —0.16 -0.3
w1 (N—H)/cmt 4451 3260 4468
wa(N—N)/ecm™ 119 34 182
w3(bend)/cm?t 56i 22 80i
linear TS Ri/ag 4.758 4.740 4.6913
Nee+H-+-N Ro/ag 2.379 2.370 2.3457
Ra/ag 2.379 2.370 2.3457
E/En —0.0937 —0.0851 —0.0858
AED 22.9 28.35 27.91
w1(N—H)/cm™ 2828 3675 3929
w2(N—N)/cm™ 567 1368 2087
w3(bend)/cmt 907 794 333

a Single-sheeted representation from ref Zhis work, using preliminary estimate for coupled states; see the‘t&kis work, final PES; see
the text.d Relative to H+ N, asymptote (in kcal mol). € Relative to the corresponding T-shaped van der Walls minimum (iff)crinRelative to
the N+ NH asymptote (in kcal mak).

dissociation while reproducing also the known crossing seams. (fourth column for results of the coupled states), a satisfactory
However, the overall topography of the coupled states reveal description of the stationary point attributes within this energy
some discrepancies relative to thb initio points, mostly at  range, including normal-mode frequencies, has already been
the strong interaction region. To conform with thb initio achieved. For the long-range properties of the ground state such
calculations, we have carried out a nonlinear least-squares fitags van der Waals structures only minor discrepancies are
for the linear coefficients o¥12(R) in eq 55 using the values  ypserved, which is expected given the care taken in modeling
obtained from the linear fit in section 5.6 as a starting guess g, properties during the construction of the diagonal diabatic

j j ref
(the decay parameters,; and reference se®y; have been o I fact, a qualitative satisfactory agreement between the
Legendre componeris®6 of the ground state PESand the

held fixed at the values obtained from the linear fit). The
diagonal Q|abat|c §tates have beg:)n. kept unaltered, as well aspresent work is observed in Figure 13 up to reasonably high
the damping functiong;, fr, and D} in eqgs 33, 55, and 56. interaction regions
Thus, the atomdiatom dissociation limits remain identical as ) )
well as the locci of conical intersection. A careful analysis has been performed regarding not only
The fifth column in Table 2 shows the stratified rmsd, taking the adiabatic states themselves, but also the associated diabatic
the energy of the global minimun as reference. It is seen that Components. It has been found that many of the regions where
up to 100 kcal mo]l’ where the lowest Stationary points of the significant deviations from theb initio pOintS existed cor-
ground state are localized, such a DMBE PES would exhibit respond to relaxed molecular arrangements, were the polynomial
slightly larger rmsd than the single-sheeted DMBE PES of form used for the non-diagonal diabatic state was strongly
Poveda and Varand&dddowever, as shown in Tables 1 and 3 damped by the Gaussian terms in eq 56. This limited the fit at
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TABLE 4: Important Structures of the Excited-State Potential Energy Surface

feature property DMBE DMBEP
minimum energy conical intersection for linear HNN arrangements Ri/ag 2.169 2.163
Ro/ag 2.366 2.369
Re/ag 4.535 4531
E/E, —0.2729 —0.2728
AE® 53.7 53.7
minimum energy conical intersection fGs, arrangements Ri/ag 2.253 2.236
Ro/ag 2.824 2.775
Rs/ag 2.824 2.775
E/E, —0.2690 —0.2591
AE® 56.1 62.2
saddle point linking conical intersections Ri/ag 2.178 2.164
Ro/ag 3.922 3.763
Ra/ag 2.524 2.440
E/Ex —0.1855 —0.1905
AE® 108.5 105.4
w1(N—H)/cm™ 2863 3120
wo(N—N)/cm2 1100 1879
ws(bend)/cnt! 1280i 1051i
C,, local minimum Ri/ag 3.575 3.556
Ro/ag 2.395 2.397
Ras/ag 2.395 2.397
E/E, —0.1087 —0.1033
AE® 156.8 160.2
w1(N—H)/cm™ 2356 4172
wa(N—N)/cm 2 3179 2871
wz(bend)/cm? 1275 1449
barrier for H+ Nlinear insertion Ri/ag 2.452 2.427
Ro/ag 4.319 4.062
Rs/ag 6.771 6.489
E/E, —0.1276 —0.1297
AE? 4.9 3.6
D.n local minimum Ri/ag 4.141 4.114
Ro/ag 2.071 2.057
Ra/ag 2.071 2.057
E/E, —0.042 —0.042
AE® —0.63 —0.63
w1(N—H)/cm™ 2893 2850
w2(N—N)/cm™ 755 845
w3(bend)/cnrt 371 371
barrier for N+ HN linear insertion Ri/ag 4.765 4.895
Ro/ag 2.014 1.987
Ri/ag 2.751 2.908
E/E, —0.0329 —0.0332
AE® 5.1 4.9

2 This work, using preliminary estimate for coupled states; see t&ttis work, final PES; see text.Relative to the global minimum (in kcal
mol~Y). 4 Relative to the H+ N, asymptote (in kcal mol). ¢ Relative to the N+ NH asymptote (in kcal mot).

those regions and led us to speculate that it might have alsois the angle-like variable in eq 54. The indaxnumbers the
inhibited any improvement of the fit at the remaining regions. polynomials. Note thafi(R) andQ(R) ensure that the procedure
To improve the surfaces, we proceed with a more elaboratedleaves the crossing seams unaffected, while the Gaussian-
approach, consisting first of performing a nonlinear least-squaresdamped forms in eq 58 were chosen to warrant that the
with all diabatic states. For this, we have attempted to improve discrepancies were handled as independently as possible. Tables
the fit in relaxed molecular arrangements, mainly for the lower 7 and 8 of the Supporting Information display the resulting
sheet, where the PES from ref 2 has been used as a referencparameters.
for comparison. Special care has been taken to leave unaffected Shown in the last column of Table 2 is the resulting stratified
the crossing seams and ateufiatom dissociation channels,  rmsd for the final 2x 2 DMBE PES. A significant improvement
since the diagonal diabatic states were also involved in the fit. js observed up to 100 kcal mdlwith respect to the previous
After analyzing the fit, some small discrepancies have been fit, including the relevant stationary states; see Table 1 and panel
found to persist, mainly on the upper sheet. That may be g of Figure 11. Clearly, a smooth behavior has been achieved,
explained by the intricate topography of this statéhere at  with the major differences with respect to the single-sheeted
least two conical intersections are present. DMBE PES being the appearance of the conical intersections
The above discrepancies and other smaller ones have beemnd the topography of the long range regions. Note that the
removed by adding lower-order polynomials at the affected occurrence of a double van der Waals minimum is inherent to
regions. Specifically, we have used the form the MRCI/AVTZ calculations as shown by the quality of the
fit illustrated in the inset of panel of Figure 12. Note further
Pi(R) = VER)H(RIQR) (57) that this topology comes from the diabatic states and is insured
via the fitted diabatization angle; see paaadf Figure 9 and
where V&), is of the type of\/(fz)yEHFin eq 55 but with lower  eq 27. As also seen from the Legendre components of the
order (2 and 3)f|(R) is the damping function in eq 34 afR) potential in Figure 13, only minor changes have been introduced
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Figure 11. Panelsa andb show the adiabatic stat for the H-N, and N-NH channels, while panetsandd show the corresponding plots for
the adiabatid/* state. Initial isoenergy contouEs and spacing?E, in E, are as follows: ) —0.3641 and 0.008 (solid);-0.3643 and 0.00001
(dotted); b) —0.355 and 0.015 (solid);-0.134 and 0.0002 (dotted);)(—0.26 and 0.015 (solid);-0.13998 and 0.00075 (dottedy)(—0.42 and
0.015 (solid);—0.045 and 0.0004 (dotted). The energy has been optimized as in Figure 9.
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Figure 12. Adiabatic profiles anab initio points for interactions with diatomics fixed at the ground state equilibrium geometry @.@x4ry,,

and 1.965, for ryy). Panelsa andb refer to the H-NN channel and panetsandd to N—NH. Key for symbols: @ and—) 12A’; (O and— —)
22A"; (---) PES for the 3A’ state from ref 2. The points in the inset of paaedre referred tdc, = 228.8335 kcal mott.

with respect to the earlier fit. Interestingly, there is not much Keepingry, fixed at 2.074y in the H-N_ channel, we show in
difference from the corresponding attributes of the single-sheetedthe first row of Figure 12 that the major discrepancies occur in
PES? despite the occurrence of a double-minimum van der the vicinity of the crossing seams which the single-sheeted PES
Waals well. For the NNH channel, the corresponding differ-  cannot obviously reproduce. Note that in the neighborhood of

ences are also minor, except for the fact that the collinear saddley,o Cz, saddle point (shown in panetsandb of Figures 11
point in the present DMBE surface turns out to be a shallow and 7”_ note that it is visible as “minima” in Figure 7) the

minimum in ref 2. differences are smaller as indicated by the correspondin
The single-sheetédnd current 2« 2 PESs are also compared e X - as Indl y ponding
attributes in Table 1. Similarly, for the \NNH channel, the

in the profiles shown in Figures 3, 4, and 12. Except for the ¢ A
equilibrium diatomic geometry where the DMBE-SE@ethod differences between the single- and double-sheeted DMBE PESs
causes both surfaces to have the same energies at dissociatioi§ larger close to the conical intersections (see Figures 4 and
(see Figure 12), only small differences are exhibited due to 12 and insets therein). Figures 7 and 8 illustrate the shape of
differences in the one-electron basis sets and in the modeling.the crossing seams on the double-sheeted PES as predicted in
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Figure 13. Legendre components of the uppér and lowerV+
adiabatic potentials. Key for curves—] final double-sheeted PESs;
(---) preliminary adiabatic fit (see text):«—), single valued PES from
ref 2.

the earlier fit and the final one. Only small differences are
observed, especially close to the, Mquilibrium geometry
(2.074).
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where the present PES should obviously be preferred. For the
excited state, a transition state connecting the T-shaped and
NNH linear crossing seams as well as a linear barrier due to
the avoiding 2A'/3?A’ crossing seamsare reported. For this
state, two local minima, one fo€,, and the other foDwn
arrangements have been also reported.

To face the intricate topology of HiNa novel diabatization
scheme has been suggested. Although arbitrary to some extent
as any other diabatization schefieywe sustain that any
diabatization scheme should be constructed such as to suit best
a given application, with the proposed framework being found
most useful when using polynomial-fitting techniques as
employed in DMBE theory. The proposed scheme has the merit
of warranting by built-in construction that the diabatic states
will merge onto the adiabatic ones at the atediatom limits
as schematized in eq 27. Such a warranty is not insured by direct
diabatization schemes either providing diabatic wave func-
tions?647-51 or diabatic energie®% The method can be
classified as an indirect diabatization procedure that allows a
well-defined global zeroth-order solution. In fact, it provides a
diabatic grid of points with a proper description of the crossing
seams in their full dimensionality, which is key for the study
of nonadiabatic process#sindeed, it does not restrict neither

Regarding the excited state, we have three observations tothe description of the involved crossing seams nor the accuracy
make. First, the major discrepancies between the fit and the of the model by using restricted, yet ingenid8gd-32-3452means

calculatedab initio energies arise as expected near tB&'/2
32A! crossing seam (not modeled); see padedsidg (see inset
therein) of Figure 3 and panalof Figure 12. Such a crossing
shows as an avoided crossing (maximum) in panaf Figure
11. Second, the 2 2 DMBE PES shows the correct asymptotic
behavior on dissociation by built construction #gR) in eq
39 andk(x) in eq 44. Third, the attributes of the stationary points
are all reasonably well reproduced in the fit; see Table 4. As
for its long range part, th¥, andV, Legendre components of
the upper adiabatic PES for-HN, are shown in Figure 13.
Despite the negativé, values (which implies that the insertion
occurs preferentially with the atoadiatom vector aligned along
the diatomic axis), we recall that a small collinear barrier (due
to the maximum in panet of Figure 11) may prevent the
collinear attack of H to W This suggests that higher Legendre
components may still play a role.

As shown in Table 4, there are small local minima &,

for obtaining such zeroth-order solutions. Furthermore, it avoids
introducing irregularities in the diabatic points except unavoid-
able ones inherent to the many-state initio calculation$4°

This contrasts with the dipole-moment stratégy where
ambiguities arise both in defining the direction of dipole moment
used for diabatization and by corrections that are subsequently
required to obtain the diabatization angle. In fact, our experience
suggests that corrections on the diabatization atlé®.58which

are often necessary in many direct diabatization schéfés,
must be avoided whenever possible at least when dealing with
polynomial-fitting strategies. We emphasize that the method here
suggested makes such corrections unnecessary by construction.
Clearly, further applications using the current approach will be
required to assess the method’s usefulness. Work along these
lines is currently in progress.
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wherePy is an amplitude chosen to be 0.070&5in order to
correctly reproduce the same bending normal frequency as for
the preliminary fit show in Table 3Di, is a Gaussian-type
damping function as in eq 56 with parameters valyes, =
109 Y, y122 = y123 = 20a07%, Riz1 = 4.1148 and Ryz =
Ri23= 2.057% picked to localize the polynomial, with and References and Notes
fr used as above.
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