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Fluorescence correlation spectroscopy (FCS) is valuable in many scientific domains where diffusion plays a
fundamental role. One important experimental realization is based on fluorescence induced by two-photon
excitation (TPE). In comparison with one-photon excitation (OPE), TPE-FCS defines better the interrogation
volume and the background noise is sensibly reduced. Within this context and for overfilled objective lenses,
the three-dimensional Gaussian (3DG) approximation, according to which the spectroscopic interaction is
spatially defined by Gaussian profiles only, guarantees a simple analytical data interpretation. By contrast,
the volume illuminated by the laser beam focused with partially filled objective lenses follows a Gaussian-
Lorentzian (GL) distribution that is taken into account by means of numerical methods only. Here we show
that contrary to common belief, the assumption of a GL volume does not hamper analytical treatment of
TPE-FCS. Differences and similarities in comparison with the 3DG approximation are discussed.

1. Introduction

In the 35 years since its introduction,1 fluorescence correlation
spectroscopy (FCS) has gained the status of a well-established
spectroscopic technique that is used to investigate a wide variety
of physical and chemical phenomena summarized in textbooks
and reviews.2-8

The basics of FCS are rather simple. Very briefly, the
spectroscopic strategy begins first with the acquisition of time
trajectories of laser-induced fluorescenceF(t). Having obtained
the average signal〈F(t)〉, the fluctuationsδF(t) ) F(t) - 〈F(t)〉
are then useful to determine the correlation functionG(τ) )
〈δF(t + τ)δF(t)〉/〈F(t)〉2, whose shape can be decoded to sort
out the information about physical and chemical phenomena
taking place within the volume confined by the laser beam. The
decay ofG(τ) is, indeed, rich in information and its expression
depends on the interrogation volume described by the function
æ(r ), that is

where ψ(r - r ′,τ) ) 〈δC(r ,t + τ)δC(r ′,t)〉 indicates the
fluctuating contributionδC(r ,t) of particle concentrationC with
average〈C〉.

One of the major achievements of the approach recalled in
eq 1 is the understanding of diffusion processes.1-8 This
understanding has a key role in several contexts of primary
importance. Some examples include chemical reaction kinetics,1

transport in tumors,9 protein dynamics,10,11 intracellular interac-
tions,12,13diagnostics of Alzheimer’s disease,14 dual fluorophore
assays,15 diffusion in nanoscopic structures,16 diffusion of
nanocrystals,17-19 dynamics of DNA chains,20 and single
molecule detection;21 many other examples can be found in
literature.2-8 Most of these possible applications have in
common that the diffusive nature of FCS is brought out by a

well-known correlation function that was calculated more than
30 years ago by Arago´n and Pecora under the so-called 3DG
approximation.22 This assumption dictates that the interrogation
or observation volume, captured by the microscope objective,
is constrained within Guassian profiles along the main three
spatial axes and, after some algebra, the solution of eq 1 is

The approximated correlation functionG3DG(τ) is derived from
a Brownian diffusion model (with no compensation for other
sources of fluctuation) and is very popular among FCS users.
It contains four parameters: the first two being the laser beam
waist w0 and the axial widthz3DG, which are intrinsic to the
optical setup, whereas the correlation amplitudeG3DG(0) and
the diffusion timeτD tie in with the molecule under study. In
particular, the amplitude is inversely proportional to the number
N3DG of molecules in the interrogation volumeV3DG, i.e.,G3DG-
(0) ) 2-3/2/N3DG with N3DG ) 〈C〉V3DG. Another inverse
proportionality relates the diffusion time to the diffusion constant
D, i.e., τD ) w0

2/(4nD) with n ) 1 for one-photon excitation
(OPE) andn ) 2 for two-photon excitation (TPE).

Although eq 2 is formally identical for OPE and TPE, its
reliability is surely weaker for OPE. This is a consequence of
the confocal pinhole necessary in OPE to limit the noise from
spatial regions that are out of focus,23 and in this regard, all the
measurements based on the 3DG approximation could be easily
criticized. On the contrary, the approximation seems to hold
well for the interpretation of TPE-FCS measurements,23,24where
the use of the confocal pinhole is not contemplated but the
condition of overfilled microscope objective lenses must be
obeyed to obtain diffraction-limited focal spots. For partially
filled objective lenses, however, the focal volume is no longer
Gaussian in the axial direction (i.e., the direction of the optical
axis, here calledz-axis). More precisely, while Gaussian
distributions still characterize the interrogation volume along
radial directions (here calledx and y), the axial direction is
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G(τ) )
∫∫æ(r ) ψ(r - r ′,τ)æ(r ′) dr dr ′

(〈C〉 ∫æ(r ) dr )2
(1)

G3DG(τ) ) G3DG(0)
1

1 + τ/τD

1

[1 + (w0/z3DG)2τ/τD]1/2
(2)
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instead characterized by a Lorentzian distribution.2,12,25,26The
appearance of this combination of spatial dependences is not
new in laser spectroscopy,2 because the three-dimensional
Gaussian-Lorentzian (GL) distribution is recognized as the
fundamental mode of laser beams.2,27,28 However, in marked
contrast to the importance of such spatial shape of laser
excitation, a rigorous analysis of the associated TPE-FCS
correlation function is lacking in literature.

In an attempt to clarify this matter, we will try to conceive
an answer to a problem that has long puzzled scientists using
FCS for various applications, i.e., the problem of an analytical
calculation of the correlation function of molecular diffusion
studied by means of TPE fluorescence emitted from GL
volumes.29-31 To put this problem in the right perspective, it
must be made clear that the method developed here differs from
the companion analysis applied recently to treat GL volumes
in the context of OPE-FCS.32 But, in analogy with that work32

and the 3DG approximation leading toG3DG(τ) of eq 2, we will
restrict ourselves to considering normal diffusion only (i.e.,
diffusion with time independent diffusion coefficient).33

In general, it is known that TPE-FCS of molecular diffusion
within GL volumes is solved by means of numerical methods,29-31

but these have two main limitations. First of all, they do not
provide any physical insight into the expected decay of the
correlation function. As a matter of fact, correlation decays are
obtained from numerical solutions of an integral whose physical
significance is lost in favor of the neutral mathematical necessity
for manageable results. Second, the fitting routines, used to
extract the relevant parameters from the correlation function,
are decidedly less convenient if they have to include for each
run the calculation of a numerical integral.

In this work, the flaws in diffusive TPE-FCS for GL volumes
are circumvented as a result of analytical treatment of the
correlation function. The mathematical complexity is such that
the organization of the paper revolves around the next two
Sections, where the method used in the current theoretical
investigation is reported with scrupulous attention to detail. The
results clearly indicate that the TPE fluorescence correlation is
governed by the real part of the complex error function
(otherwise called Voigt function) appearing in many other
spectroscopic problems.2,27,34On this basis, comparisons with
the 3DG correlation function of eq 2 are given in the Section
dedicated to the results. Last, considering the difficulties of the
mathematical formalism that might be too severe for researchers
that are not familiar with more advanced mathematical concepts
and tools, a simplification of the calculation is shown to ease
the application of the achievements of this work.

2. Theoretical Method: Comparison between 3DG and
GL Distributions

Before going through the calculation, it is instructive to
visualize the peculiarities of the 3DG approximation valid for
a two-photon excitation. In this special case, it is straightforward
to write the spatial dependence of fluorescence emission as

Correspondingly, the GL distribution is

where w2(z) ) w0
2[1 + (z/zR)2], w0 is the laser beam waist

(assumed equal for both spatial distributions), andz3DG andzR

are the confocal and Rayleigh lengths, respectively. The first
obvious consideration is thatæ3DG(r) andæGL(r) coincide nearby
the focal plane (withz ) 0) in virtue of the commonx andy
dependences. The problematic dependence is, instead, on the
axial variablez that appears with different functional forms.
But it must be observed that, taking (x,y) ) (0,0), the axial
dependences in eqs 3 and 4 are similar provided thatz3DG )
1.658zR. This is shown in Figure 1, where the 3DG and GL
lobes are well-superimposed. This similarity suggests that some
common features should be reflected in the correlation functions
pertaining toæ3DG(r ) andæGL(r ). However, the GL profile and
the closest 3DG curve differ in the higher wings expected for
the Lorentzian component ofæGL(r ), and despite being small,
this difference is not without consequences.

Another important comparison is between the total volumes
determined by

and it is soon realized that the conditionV3DG ) VGL is fulfilled
only if z3DG ) 2 xπzR corresponding to the broader Gaussian
profile of Figure 1. This relationship betweenz3DG and zR is
slightly more than two times the relationship found before by
equating the widths of the axial profiles as in Figure 1. This is
easily understood, because the 3DG distribution must broaden
to compensate for the volume contained in the Lorentzian tails
of æGL(r ).

The two conditionsz3DG ) 1.658zR andz3DG ) 2 xπzR will
be very useful to orientate the discussion after the calculation
of the correlation functionGGL(τ) for GL volumes. This
calculation is laid out in the next section.

3. Theoretical Method: Calculation of the Correlation
Function

Having introduced the spatial distributionæGL(r ) of GL
volumes, it is now possible to illustrate how to get at the
analytical form of the correlation function given in eq 1. To
that end, we first notice that the numerator ofG(τ) contains an
integral with respect to six variables. In view of the arduous
solution of such a multiple integral, we purposely recall that
Fourier decomposition is particularly useful to simplify difficult
problems set in real space. The simplification is obtained by
means of the corresponding analysis within the conjugate space
of momenta [here indicated with the notationq ) (qx, qy, qz)].
In this respect, FCS does not make an exception, but although
the application of Fourier analysis to FCS is given elsewhere,32

we have to face that the problematic dependence on the axial

æ3DG(r ) ) exp{-4[(x2 + y2)/w0
2 + z2/z3DG

2]} (3)

æGL(r ) )
exp[- 4(x2 + y2)/w2(z)]

(1 + z2/zR
2)2

(4)

Figure 1. Axial profiles of æ3DG(r ) and æGL(r ). The GL profile
(continuous line) nearly coincides with the 3DG profile (dashed line)
if the parameterz3DG is set equal to 1.658zR. The broader Gaussian
profile is plotted forz3DG ) 2 xπzR.

V3DG ) ∫æ3DG(r )dr ) (π/4)3/2w0
2z3DG (5)

VGL ) ∫æGL(r ) dr ) π2w0
2zR/4 (6)
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variable does not disappear. For this reason, we are forced to
follow a modified version of the theory used to find the
analytical correlation function for OPE set-ups.32

Complying with this warning means that the calculation starts
with the definition of a new functionΦ̃(qx, qy, z) taken as the
Fourier transform of the radial component ofæ(r )

In this manner, the complete Fourier transform ofæ(r ) will be

Now, eq 8 can be used in the known result32

that reduces the numeratorG(τ) to a multiple integral with
respect to three integration variables only. The calculation on
the right-hand side of eq 9 is feasible when the Fourier transform
Ψ(q, τ) of ψ(r , τ) is not too complicated. This is true for
diffusion characterized by a constant coefficientD.33 In
this instance, the Fourier transform ofψ(r - r ′,τ) )
〈C〉(4πDτ)-3/2 exp(-|r - r ′|2/4Dτ) is still Gaussian,
Ψ(q,τ) ) 〈C〉exp(-Dτq2)/(2π)3/2 with q2 ) qx

2 + qy
2 + qz

2.
Using this result in eq 9 leads to

and observing thatΦ̃GL(qx, qy, z) ) (w0
2/8)exp[-(qx

2 + qy
2) ×

w2(z)/16], the resulting calculation of eq 10 for GL volumes
becomes

wheret ) τ/τD, â ) zR/w0, and the functionLâ(t) is

In eq 12,ê1 ) â x2/t (-ú + i) and ê2 ) â x2/t (-ú + i

x2(1+t)+ú2 ) are complex variables, whereas Re[W(ê)] indi-
cates the real part of the complex error functionW(ê),34

otherwise known as Voigt function, which characterizes the
homogeneous (i.e., Lorentzian) and inhomogenous (i.e., Gauss-
ian) broadening of spectroscopic line intensities.2,27 It is then
not surprising that the appearance of the Voigt function in the
context of FCS is again indicative of an interplay between
Lorentzian and Gaussian components (here, they belong to the
spatial scales on which diffusion occurs). More importantly, in
eqs 11 and 12, all the dependences are on the dimensionless
variablest ) τ/τD, â ) zR/w0, ú ) z/zR, and for this reason,
Lâ(t) can be tabulated once and for all. In such a manner,Lâ(t)
can be taken as an analytical function similarly to many other
special functions that have integral representation and are

encountered in several mathematical and physical prob-
lems.2,27,33,34Alternatively,Lâ(t) can be obtained in close form
as linear combination of four different values of the complex
error functionW

wherecj(t) are time dependent coefficients and the variablesηj

depend on bothâ and t (see the Supporting Information).
As a final step of the calculation, taking into account the

normalization to the GL volume,VGL, we can conclude that
the TPE correlation function is

with GGL(0) ) 3/(16NGL) andNGL ) 〈C〉VGL.

4. Results: Comparisons between 3DG and GL
Correlations

Next, we focus on the main finding of this work to compare
the new correlation functionGGL(τ) with the well-known but
approximated correlation functionG3DG(τ) given in eq 2. To
achieve this aim, we suppose equal average molecular concen-
tration〈C〉 regardless of the model adopted to discuss the results
of the current investigation. Additionally, in defining the 3DG
approximation, we initially take on the Gaussian profile that
best reproduces the GL profile along the axial direction, so that
z3DG ) 1.658zR as in Figure 1. Because the similarity of the
central portion of the axial profiles, this first comparison will
be useful to understand the effect of the Lorentzian wings on
the correlation amplitude. The decays ofG3DG(τ) and GGL(τ)
are shown in Figure 2 for typical values ofw0 andâ (0.5 µm
and 5, respectively). The most striking feature is that the
amplitudesG3DG(0) andGGL(0) differ by about 75% (see inset),
although they refer to the same average concentration〈C〉. The
difference in the amplitudes remains even though the optical
parameters are varied. For example,â ) 2 implies thatGGL(0)
is still 75% smaller thanG3DG(0). This difference has an
immediate explanation in terms of the discrepancy between the
volumes (the GL volume being about 2.1 times larger than the
3DG volume).

In principle, one way to equilibrate the amplitudes is to
broaden the apparent axial Gaussian profile. For instance, this

Figure 2. Correlation functionsG3DG(τ) and GGL(τ) versus the
normalized delayt ) τ/τD. The 3DG approximation is applied in such
a manner that it reproduces the GL axial profile of Figure 1. Optical
parameters arew0 ) 0.5 µm, â ) 5. Note that the absolute values are
normalized to a common average concentration〈C〉 ) 1 × 1015

molecule/L so that one molecule is guaranteed within a volume of 1
fL. In the inset, the relative difference [G3DG(τ) - GGL(τ)]/G3DG(τ) is
provided.

Lâ(t) ) π2∑
j)1

4

cj(t)W(ηj) (13)

GGL(τ) ) GGL(0)
29/2

3π3/2

â

xτ/τD

Lâ(τ/τD) (14)

Φ̃(qx, qy, z) ) 1
2π∫æ(r )exp[i(qxx + qyy)] dx dy (7)

Φ(q) ) 1

(2π)1/2∫Φ̃(qx, qy, z)exp(iqzz) dz (8)

∫∫æ(r ) ψ(r - r ′, τ)æ(r ′) dr dr ′ )

(2π)3/2∫Ψ(q,τ)|Φ(q)|2 dq (9)

∫∫æ(r )ψ(r - r ′,τ)æ(r ′) dr dr ′ )

〈C〉∫exp(-Dτ q2)|Φ(q)|2 dq (10)

∫∫æGL(r )ψ(r - r ′,τ)æGL(r ′) dr dr ′ )

〈C〉x2πw0zR
2

4xt
Lâ(t) (11)

Lâ(t) ) π∫ 1

1 + ú2

1

1 + 2t + ú2
{Re[W(ê1)] -

Re[W(ê2)]/x2(1 + t) + ú2} dú (12)
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results from the equalityV3DG ) VGL discussed in Section 2.
Under this condition, the broader axial Gaussian profile (found
for z3DG ) 2 xπzR = 3.54zR) is shown in Figure 1, whereas
the correlation curves are reported in Figure 3. Here, for the
sake of comparison, the same vertical and horizontal axes of
Figure 2 have been used again. It is rather straightforward to
observe that, despite this 3DG volume being larger than the
3DG volume used to generate Figure 2, the new correlation
function G3DG(τ) still does not agree with the theoretical GL
correlation function. The relative deviation is around 45% atτ
, τD and decreases to about 25% at time delays where the
correlation vanishes (see inset). In this latter time range,
however, the indicated deviation is not meaningful because
potential differences between the correlation functions would
be lost in the experimental noise. The same conclusion is
reached for comparisons where different values ofâ are
employed.

Further increase in the Gaussian volume is of course necessary
to matchG3DG(0) andGGL(0). Indeed, the correlation amplitudes
become identical forz3DG ) 6.69zR, which is considerably larger
than z3DG ) 1.658zR or z3DG ) 2 xπzR. Following a parallel
reasoning, the exact match between the amplitudes could also
be obtained by equating the 3DG and GL volumes calculated
by means of the alternative definition found, for example, in
eq 23 of ref 23. But, regardless of how the conditionG3DG(0)
) GGL(0) is reached, there is a residual dissimilarity as to the
time decay. This can be better analyzed if we normalize
G3DG(τ) andGGL(τ) to their own values at vanishing times. The
result is shown in Figure 4, where the decays of eqs 2 and 14
are plotted for normalized amplitudes, i.e.,G3DG(0) ) GGL(0)
) 1. As easily noted, the two time behaviors are distinct from
each other and it is obvious to conclude that a TPE-FCS
measurement dealt with the 3DG approximation provides an
outcome meaningfully different from the elaboration based on
the GL approach here discussed. This conclusion is even more
remarkable if amplitude dissimilarities (Figures 2 and 3) add
to the time deviations reported in Figure 4. But this is not the
end of the story. For instance, the symbols in Figure 4 mark
the decay ofG3DG(τ) obtained as best fit toGGL(τ) for a diffusion
time that is about 25% larger than the corresponding value
obtained under the GL approach (the increase reaches 30% for
â ) 2). In other words, reversing the above-mentioned conclu-
sion, TPE-FCS measurements can be equally understood in
terms ofG3DG(τ) or GGL(τ) at the expense of noteworthy flaws
arising from an unsuitable model and including extractions of

incorrect optical parameters, molecular concentrations, diffusion
constants, and so on.

Finally, it must be said that the whole situation depicted in
Figure 4 corresponds to what is declared by some authors.29

They noticed that TPE-FCS measurements are well replicated
by either the 3DG or GL correlation function, but only the latter
ensured a correct understanding of their data. Last, as a final
comment, it should be mentioned that the numerical model of
ref 29 was also compared to the analytical result of eq 14 and
the simulations confirmed complete equivalence.

5. Results: Simplified Formulation of the GL Correlation

After the discussion about the numerical differences between
the general results valid for the 3DG and GL correlation
functions of TPE fluorescence of a molecule following three-
dimensional Brownian diffusion, it is useful to consider another
significant difference that characterizes the two theoretical
approaches. This is manifest in the comparison between the easy
application of eq 2 and the difficult use of the analytical result
for GGL(τ). Although mathematical tools are nowadays available
to support researchers in the handling of complicated functions
(as this work demonstrates), an attempt to simplify the analytical
structure of eq 14 was made. The result is described in this
Section.

The starting point is the fundamental approximation of the
complex error function with purely imaginary argument (see
the Supporting Information)

The approximation holds for large values of the real variableê
and corresponds to the realistic conditions under which eqs 12
and 13 are calculated. The translation of eq 15 into the formalism
of Lâ(τ/τD) (it does not matter which representation is chosen
between the two in eqs 12 and 13) leads to the following result

It is at once evident that the approximated result forLâ(τ/τD) is
much simpler than eq 12 or 13. In particular, the dependences
on the time delayτ are made of a combination of very basic
functions, namely rational and algebraic functions similar to
what is seen in eq 2. With this new result in hand, we obtain a

Figure 3. Correlation functionsG3DG(τ) and GGL(τ) versus the
normalized delayt ) τ/τD. The 3DG approximation is applied in such
a manner that the 3DG and GL volumes are equal (this corresponds to
z3DG ) 2 xπ zGL). Optical parameters arew0 ) 0.5 µm, â ) 5. Note
that the absolute values are normalized to a common average
concentration〈C〉 ) 1 × 1015 molecule/L so that one molecule is
guaranteed within a volume of 1 fL. In the inset, the relative difference
[G3DG(τ) - GGL(τ)]/G3DG(τ) is provided.

Figure 4. Normalized correlation functions. The decays ofG3DG(τ)
andGGL(τ) are indicated by the continuous lines for the parameters of
Figure 2 (w0 ) 0.5 µm, â ) 5) and z3DG ) 6.69zR. The symbols
represent instead the decay ofG3DG(τ) obtained as best fit toGGL(τ).
The fit with the 3DG approximation is identical to the decay ofGGL(τ)
provided that the diffusion time is about 25% larger than the
corresponding value for the GL approach.

W(iê) = 1

xπê
(15)

Lâ(τ/τD) = π3/2

25/2âxτ/τD
[1 + 2

τD

τ ( 1

x1 + τ/τD

- 1)] (16)
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simplified expression of the correlation function

The star in the superscript ofGGL
/ (τ) indicates that eq 17 is

an approximated result of eq 14, and apart from the obvious
simplicity of GGL

/ (τ) containing similar functional dependenc-
es ofG3DG(τ), the other relevant comparison with eq 2 is about
the role of the axial width. In the classical 3DG model, adopted
by most researchers, the correlation functionG3DG(τ) is fitted
by adjusting various parameters, namely, the correlation am-
plitudeG3DG(0), the diffusion timeτD and the optical parameters
w0, z3DG. Consequently, depending on the value of the axial
width z3DG, the ratiow0/z3DG influences the decay described by
the functionG3DG(τ). Such parametric dependence should parallel
the relationship betweenGGL(τ) and the parameterâ ) zR/w0

defined earlier. Surprisingly, the dependence onâ is absent in
the simplified result of eq 17. Here, the decay is completely
determined by the diffusion timeτD and there is no need to
acquire additional information on the optical parameters to
generate the correlation function. This could be beneficial to
fitting routines that become more robust when the number of
free parameters is reduced.

To verify eq 17, a comparison with the exact result of eq 14
is shown in Figures 5 and 6. The plots ofGGL(τ) andGGL

/ (τ)
are based on values of the parameterâ expected to be higher
than 2.5 for the experimental conditions of ref 19. Considering
thatâ ) 2.42 for the reported parameters of ref 29, the chosen
range ofâ is realistic. Figure 5 shows the comparison forâ )
2.5 and normalized amplitudes (GGL(0) ) GGL

/ (0) ) 1). The
symbols mark the decay ofGGL

/ (τ) that would be hardly
distinguishable fromGGL(τ) if lines were used for both cor-

relation curves. This constitutes a well-documented proof that
the approximation leading to eq 17 is effective at reproducing
the behavior of the more complicated eq 14. To strengthen this
finding, another comparison is shown in Figure 6 for another
typical value ofâ ) 5. The agreement betweenGGL(τ) and
GGL

/ (τ) is confirmed, meaning also that the GL correlation
function is practically independent fromâ. This last feature was
further examined for larger values of the parameter. The results
were identical to Figure 6, and for this reason, they are not
included in this discussion.

A final concern was about the equivalence of eqs 14 and 17
for a different range of the parameter (1< â < 2.5). The
consequent analysis showed that a very small difference
becomes appreciable forâ < 2. As an example, Figure 7 depicts
the comparison forâ ) 1.5 corresponding to an extreme
situation where for a laser wavelength of 0.78µm, the laser
beam waist should be well below 0.4µm. In this case, even if
the agreement betweenGGL(τ) andGGL

/ (τ) is not so good as in
Figures 5 and 6, the relative discrepancy is very small and
mainly confined within the region of delays higher than the
diffusion timeτD (i.e., aroundτ ) 10τD).

6. Conclusions

To sum up, the analytical calculation of the correlation
function for various chemical and physical applications of
diffusive TPE-FCS has been detailed for GL volumes. In view
of this novelty, recognized numerical methods29-31 become less
powerful. Moreover, the general importance of GL laser
beams2,25-28 is such that the lack of analytical understanding
of corresponding experimental FCS outcomes had to be filled.
In this regard, the analysis shows that the complex error
function, ultimately related to the physical meanings of the Voigt
function, plays a crucial role. Relatively to the renowned 3DG
approximation, wide discrepancies in correlation amplitudes are
quantified on the order of about 75%, at the very worst. Time
decays also show dissimilarities. These denote diffusion times
that vary in the range of 25-30% depending on the optical
parameters chosen. On the other hand, complete equivalence
between the GL and 3DG models is found when one approach
is adjusted to the other by means of fitting procedures. This
confirms what was remarked earlier in numerical elaborations
of TPE-FCS29 and emphasizes the necessity of great care to
eliminate a possible source of artifacts in this kind of experi-
ments. Last but not least, an analytical simplification of the main
result of this paper is given to facilitate the practical use of the
findings about TPE-FCS of diffusion within GL volumes. The
simplification reveals that the parametric dependences of the
time decay are reduced to a single parameter (the diffusion time)
for realistic conditions of common optical set-ups.

Figure 5. Normalized correlation functionsGGL(τ) andGGL
/ (τ). The

approximated result of eq 17 is plotted with squares to distinguish its
decay from the result of eq 14 (continuous line). The parameterâ of
GGL(τ) is chosen equal to 2.5.

Figure 6. Normalized correlation functionsGGL(τ) andGGL
/ (τ). The

approximated result of eq 17 is plotted with squares to distinguish its
decay from the result of eq 14 (continuous line). The parameterâ of
GGL(τ) is chosen equal to 5.

GGL
/ (τ) ) GGL(0)

4τD

3τ [1 + 2
τD

τ ( 1

x1 + τ/τD

- 1)] (17)

Figure 7. Normalized correlation functionsGGL(τ) andGGL
/ (τ). The

approximated result of eq 17 is plotted with squares to distinguish its
decay from the result of eq 14 (continuous line). The parameterâ of
GGL(τ) is chosen equal to 1.5.
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