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Fluorescence correlation spectroscopy (FCS) is valuable in many scientific domains where diffusion plays a
fundamental role. One important experimental realization is based on fluorescence induced by two-photon
excitation (TPE). In comparison with one-photon excitation (OPE), TPE-FCS defines better the interrogation
volume and the background noise is sensibly reduced. Within this context and for overfilled objective lenses,
the three-dimensional Gaussian (3DG) approximation, according to which the spectroscopic interaction is
spatially defined by Gaussian profiles only, guarantees a simple analytical data interpretation. By contrast,
the volume illuminated by the laser beam focused with partially filled objective lenses follows a Gaussian
Lorentzian (GL) distribution that is taken into account by means of numerical methods only. Here we show
that contrary to common belief, the assumption of a GL volume does not hamper analytical treatment of
TPE-FCS. Differences and similarities in comparison with the 3DG approximation are discussed.

1. Introduction well-known correlation function that was calculated more than
30 years ago by Ardgoand Pecora under the so-called 3DG
clapproximatior?.2 This assumption dictates that the interrogation
or observation volume, captured by the microscope objective,
is constrained within Guassian profiles along the main three
spatial axes and, after some algebra, the solution of eq 1 is

In the 35 years since its introductidfilorescence correlation
spectroscopy (FCS) has gained the status of a well-establishe
spectroscopic technique that is used to investigate a wide variety.
of physical and chemical phenomena summarized in textbooks
and reviews: 8

The basics of FCS are rather simple. Very briefly, the

spectroscopic strategy begins first with the acquisition of time Gapg(7) = Gape(0) 1 1 5 - 2)
trajectories of laser-induced fluorescei¢#). Having obtained 1+ 7/tp [1 4 (Wyzepo) /7]

the average signalF(t)[] the fluctuation®F(t) = F(t) — [F(t)O

are then useful to determine the correlation funct®) = The approximated correlation functi@pc(7) is derived from

BF(t + 71)0F()IEF(1)E, whose shape can be decoded to sort 5 Brownian diffusion model (with no compensation for other
out the information about physical and chemical phenomena sources of fluctuation) and is very popular among FCS users.
taking place within the volume confined by the laser beam. The |t contains four parameters: the first two being the laser beam
decay OfG(T) is, indeed, rich in information and its eXpression waist Wo and the axial Widt%DG, which are intrinsic to the
depends on the interrogation volume described by the function gptical setup, whereas the correlation amplit@igc(0) and

@(r), that is the diffusion timerp tie in with the molecule under study. In
particular, the amplitude is inversely proportional to the number
ff¢(r) Y(r —r',m)e(r') dr dr’ Nspg of molecules in the interrogation volunvgpg, i.e., Gape-
G(l’) = 2 (1) (0) = 2_3/2/N3DG with N3pg = [CV3pe. Another inverse
(‘I:Df ¢(r) dr) proportionality relates the diffusion time to the diffusion constant

Py — ' P D, ie.,1mp = WS/(4nD) with n = 1 for one-photon excitation
where y(r — r',;t) = BC(r,t + 7)0C(r' t)0indicates the ' b o
fluctuating contributiordC(r ,t) of particle concentratio@ with (OPE) andh = 2 f_or two-phot_on e>_<C|tat|on (TPE). .
averagelCL] Although eq 2 is formally identical for OPE and TPE, its

One of the major achievements of the approach recalled in r€liability is surely weaker for OPE. This is a consequence of
eq 1 is the understanding of diffusion processésThis the confocal pinhole necessary in OPE to limit the noise from

understanding has a key role in several contexts of primary SPatial regions that are out of focéfsand in this regard, all the
importance. Some examples include chemical reaction kirfetics, mg§§urements based on the 3DG apprqmmfamon could be easily
transport in tumor§ protein dynamic$%tintracellular interac- criticized. On the contrary, the approximation seems to hold
tions1213diagnostics of Alzheimer’s diseatgual fluorophore well for the interpretation Of.TPE'FCS measureméftSyhere
assays? diffusion in nanoscopic structuré,diffusion of the use of the confocal pinhole is not contemplated but the
nanocrystalé’1° dynamics of DNA chain® and single condition of ovgrﬂl[ed microscope objective lenses must be
molecule detectioAl many other examples can be found in qbeyed _to qbtaln diffraction-limited focal spots. F_or partially
literature? 8 Most of these possible applications have in flléd objective lenses, however, the focal volume is no longer
common that the diffusive nature of FCS is brought out by a Ggus&an in the axial Q|rect|on (e, th.e d|rectlon of the opucal
axis, here calledz-axis). More precisely, while Gaussian

t E-mail: michele.marrocco@casaccia.enea.it. Tel: 39 06 3048 3345, distributions still characterize the interrogation volume along

Fax: 39 06 3048 4811. radial directions (here called andy), the axial direction is
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instead characterized by a Lorentzian distribu#idf2526The
appearance of this combination of spatial dependences is not
new in laser spectroscopybecause the three-dimensional
Gaussiar-Lorentzian (GL) distribution is recognized as the
fundamental mode of laser beaA#:?8 However, in marked
contrast to the importance of such spatial shape of laser
excitation, a rigorous analysis of the associated TPE-FCS
correlation function is lacking in literature.

In an attempt to clarify this matter, we will try to conceive
an answer to a problem that has long puzzled scientists using
FCS for various applications, i.e., the problem of an analytical
calculation of the correlation function of molecular diffusion Figure 1. Axial profiles of @aog(r) and geu(r). The GL profile
studied by means of TPE fluorescence emitted from GL _(contlnuous line) nea_lrly coincides with the 3DG profile (dashed_llne)
volumes?°-31 To put this problem in the right perspective, it if the parametewapc is set e?/u—al to 1.658. The broader Gaussian
must be made clear that the method developed here differs fromprOfIIe is plotted forzepe = 2 v/ aze.

the companion analysis applied recently to treat GL volumes are the confocal and Rayleigh lengths, respectively. The first

Axial profiles

z/zR

in the context of OPE-FCE.But, in analogy with that work obvious consideration is thapa(r) andge (r) coincide nearby
and the 3DG approximation leading®pg() of eq 2, we will the focal plane (withz = 0) in virtue of the commorx andy
restrict ourselves to considering normal diffusion only (i.e., dependences. The problematic dependence is, instead, on the
diffusion with time independent diffusion coefficier#). axial variablez that appears with different functional forms.

In general, it is known that TPE-FCS of molecular diffusion gyt it must be observed that, taking,y) = (0,0), the axial
within GL volumes is solved by means of numerical metH8d, dependences in egs 3 and 4 are similar provided Zat =

but these have two main limitations. First of all, they do not 1 658,. This is shown in Figure 1, where the 3DG and GL
provide any physical insight into the expected decay of the |opes are well-superimposed. This similarity suggests that some
correlation function. As a matter of fact, correlation decays are common features should be reflected in the correlation functions
obtained from numerical solutions of an integral whose physical pertaining togspe(r) andge (r). However, the GL profile and
Signiﬁcance is lost in favor of the neutral mathematical necessity the closest 3DG curve differ in the hlgher W|ngs expected for
for manageable results. SeCOI’ld, the flttll’lg I’OUtII_‘les, Useq tothe Lorentzian Component quL(r), and despite being Sma”’
extract the relevant parameters from the correlation function, thjs difference is not without consequences.

are decidedly less convenient if they have to include for each  Another important comparison is between the total volumes

run the calculation of a numerical integral. determined by
In this work, the flaws in diffusive TPE-FCS for GL volumes
are circumvented as a result of analytical treatment of the 32, 2
. . ; o] Vape = r)dr = (7/4)¥w,’z 5
correlation function. The mathematical complexity is such that 3DG I%DG( ) (r7/4)"Wo Zope ®)
the organization of the paper revolves around the next two V. = N dr = 72w2z/4 6
Sections, where the method used in the current theoretical o= Jral) 0% ©)

investigation is reported with scrupulous attention to detail. The gn{ it is soon realized that the conditivgog = Vg is fulfilled

reosvlgﬁ géeagly itrr]:(jaicfetZItha;rttheofTThifltég:ssl(;inceerr%?”ﬁjl?gggris only if zspg = 2 v/7zr corresponding to the broader Gaussian
?otherwise g/alled Voi tpfunction) a earl?n in many other prpfile of Figure 1. Thig relationship -betwe-%be andzg is

. bl rrgsﬂ 340 thi bpp. 9 nany ot h slightly more than two times the relationship found before by
spectroscopic problems."*"On this basis, comparisons With o 1 4ting the widths of the axial profiles as in Figure 1. This is

ghed_SDGdcorrilatlon flunclflon of eq_g are g'r\]’er;_:c? thle_ Secftl?qn easily understood, because the 3DG distribution must broaden
edicated to the results. Last, considering the difficulties of the ., hensate for the volume contained in the Lorentzian tails
mathematical formalism that might be too severe for researchersof weu(r)

that are not familiar with more advanced mathematical concepts The two conditiongspe = 1.65& andzspe = 2 vz ill

and tools, a simplification of the calculation is shown to ease be very useful to orientate the discussion after the calculation
the application of the achievements of this work. y - . .
of the correlation functionGg (r) for GL volumes. This

2. Theoretical Method: Comparison between 3DG and calculation is laid out in the next section.

GL Distributions 3. Theoretical Method: Calculation of the Correlation
Before going through the calculation, it is instructive to Function

visualize the peculiarities of the 3DG approximation valid for

a two-photon excitation. In this special case, it is straightforward

to write the spatial dependence of fluorescence emission as

Pape(r) = exp —4[0¢ + Y)Wy + Zlzipslt (3)

Correspondingly, the GL distribution is

Having introduced the spatial distributiopg (r) of GL
volumes, it is now possible to illustrate how to get at the
analytical form of the correlation function given in eq 1. To
that end, we first notice that the numeratorGyf) contains an
integral with respect to six variables. In view of the arduous
solution of such a multiple integral, we purposely recall that
Fourier decomposition is particularly useful to simplify difficult

RS2 problems set in real space. The simplification is obtained by
o) = expl= 4+ y22)/2vv2(z)] 4) means of the corresponding analysis within the conjugate space
a+ 22/2R ) of momenta [here indicated with the notatiqr= (0x, oy, d2)].

In this respect, FCS does not make an exception, but although
where w?(z) = wg[l + (Zzr)3, wo is the laser beam waist the application of Fourier analysis to FCS is given elsewPere,
(assumed equal for both spatial distributions), a@ andzr we have to face that the problematic dependence on the axial
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variable does not disappear. For this reason, we are forced to

follow a modified version of the theory used to find the
analytical correlation function for OPE set-ufss.

Complying with this warning means that the calculation starts
with the definition of a new functiomd(ay, gy, 2) taken as the
Fourier transform of the radial component @fr)

P(q, 6, ) = % Joexpli@x + gy dxdy  (7)

In this manner, the complete Fourier transformygf) will be

1
(27)

Now, eq 8 can be used in the known regult
[ [o®) w =", Do) dr dr' =
2n)*? [®(q,2)|(a)*dg (9)

that reduces the numerat@(z) to a multiple integral with
respect to three integration variables only. The calculation on

D(q) = —, [ ®(q a, Dexp(ia,2) dz ®)

the right-hand side of eq 9 is feasible when the Fourier transform

W(q, 7) of y(r, 7) is not too complicated. This is true for
diffusion characterized by a constant coefficieDt33 In
this instance, the Fourier transform af(r — r';t) =
[C[4nD7) 32 exp(—|r r'|%4D7) is still Gaussian,
W(q7) = [Cexp(-Dred)/(27)%? with @ = of + of + .
Using this result in eq 9 leads to

[ [o@p(r — ' 0g() dr dr' =

[Cf exp(-Dr f)|P(q)[*dg (10)

and observing tha®e (g 0y, 2) = (W/8)exp[—(af + o) x
w2(2)/16], the resulting calculation of eq 10 for GL volumes
becomes

[ ooy = ' Dge () dr dr' =
[CH/277w,zs”
at

wheret = t/tp, f = zr/Wp, and the functiorig(t) is

L= +1g21 o AR -

ReM(E)N/W2(1+t) + £} dE (12)

Ineq 12,& =4 M(—C +i)and& = p M(—C + i
V2(1+t)+2? ) are complex variables, whereas REE)] indi-

cates the real part of the complex error functigf{&),3*
otherwise known as Voigt function, which characterizes the

Ly(®) (11)
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Figure 2. Correlation functionsGsps(t) and Gg.(r) versus the
normalized delay = t/7p. The 3DG approximation is applied in such
a manner that it reproduces the GL axial profile of Figure 1. Optical
parameters arep = 0.5um, f = 5. Note that the absolute values are
normalized to a common average concentrati@®= 1 x 10%
molecule/L so that one molecule is guaranteed within a volume of 1
fL. In the inset, the relative differenc&gpg(r) — GeL(7)]/Gapa(T) IS
provided.

encountered in several mathematical and physical prob-
lems2:27:3334Aternatively, L(t) can be obtained in close form
as linear combination of four different values of the complex
error functionW

4

Ly(t) = 7y ¢ ()W) (13)
B JZ i Uj

wherecj(t) are time dependent coefficients and the varial|es
depend on botlf andt (see the Supporting Information).

As a final step of the calculation, taking into account the
normalization to the GL volumeyg,, we can conclude that
the TPE correlation function is

29/ 2

Ggu(r) = GGL(O)SJT_W—

B\ (uty)
/Ty

(14)

with GGL(O) = 3/(16\IGL) and NoL = [CVg,.

4. Results: Comparisons between 3DG and GL
Correlations

Next, we focus on the main finding of this work to compare
the new correlation functio®g,(r) with the well-known but
approximated correlation functioBsps(z) given in eq 2. To
achieve this aim, we suppose equal average molecular concen-
tration[CCregardless of the model adopted to discuss the results
of the current investigation. Additionally, in defining the 3DG
approximation, we initially take on the Gaussian profile that
best reproduces the GL profile along the axial direction, so that
Z3pc = 1.65&g as in Figure 1. Because the similarity of the
central portion of the axial profiles, this first comparison will
be useful to understand the effect of the Lorentzian wings on
the correlation amplitude. The decays ®fpg(r) and Gg (1)
are shown in Figure 2 for typical values wh andg (0.5 um

homogeneous (i.e., Lorentzian) and inhomogenous (i.e., Gaussand 5, respectively). The most striking feature is that the

ian) broadening of spectroscopic line intensiéi@slt is then
not surprising that the appearance of the Voigt function in the
context of FCS is again indicative of an interplay between

amplitudesG3ps(0) andGg(0) differ by about 75% (see inset),
although they refer to the same average concentratiairhe
difference in the amplitudes remains even though the optical

Lorentzian and Gaussian components (here, they belong to theparameters are varied. For examgiles 2 implies thatGg, (0)

spatial scales on which diffusion occurs). More importantly, in

is still 75% smaller thanGsps(0). This difference has an

egs 11 and 12, all the dependences are on the dimensionlessnmediate explanation in terms of the discrepancy between the

variablest = t/tp, f = zr/Wo, { = Z/zz, and for this reason,
L(t) can be tabulated once and for all. In such a maringt)
can be taken as an analytical function similarly to many other

volumes (the GL volume being about 2.1 times larger than the
3DG volume).
In principle, one way to equilibrate the amplitudes is to

special functions that have integral representation and arebroaden the apparent axial Gaussian profile. For instance, this
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Figure 3. Correlation functionsGsps(r) and Ggi(r) versus the Figure 4. Normalized correlation functions. The decays@jbo(7)

normalized delay = 7/7p. The 3DG approximation is applied in such  andGg(7) are indicated by the continuous lines for the parameters of
a manner that the 3DG and GL volumes are equal (this corresponds toFigure 2 (vp = 0.5 um, f = 5) and zspc = 6.6%. The symbols
Zaos = 2 VT zc1). Optical parameters armg = 0.5um, 8 = 5. Note represent instead the decay®jpg(7) obtained as best fit tGg (7).

that the absolute values are normalized to a common average The fit with the 3DG approximation is identical to the decayGef(r)
concentrationl= 1 x 10" molecule/L so that one molecule is  provided that the diffusion time is about 25% larger than the
guaranteed within a volume of 1 fL. In the inset, the relative difference corresponding value for the GL approach.

[G3DG(‘L') - GGL(‘[)]/G3DG(‘E) is provided.

) . ) ) incorrect optical parameters, molecular concentrations, diffusion

results from the equality/spe = VoL discussed in Section 2. ¢gnstants, and so on.
Under this condition, the broader axial Gaussian profile (found  Finally, it must be said that the whole situation depicted in
for zspe = 2 vmzg = 3.54z) is shown in Figure 1, whereas Figure 4 corresponds to what is declared by some auffors.
the correlation curves are reported in Figure 3. Here, for the They noticed that TPE-FCS measurements are well replicated
sake of comparison, the same vertical and horizontal axes ofpy either the 3DG or GL correlation function, but only the latter
Figure 2 have been used again. It is rather straightforward to ensured a correct understanding of their data. Last, as a final
observe that, despite this 3DG volume being larger than the comment, it should be mentioned that the numerical model of
3DG volume used to generate Figure 2, the new correlation ref 29 was also compared to the analytical result of eq 14 and
function Gapg() still does not agree with the theoretical GL  the simulations confirmed complete equivalence.
correlation function. The relative deviation is around 45% at
< 1p and decreases to about 25% at time delays where the5. Results: Simplified Formulation of the GL Correlation
correlation vanishes (see inset). In this latter time range,
however, the indicated deviation is not meaningful because
potential differences between the correlation functions would
be lost in the experimental noise. The same conclusion is
reached for comparisons where different values fofare
employed.

Further increase in the Gaussian volume is of course necessar
to matchGszpg(0) andGg (0). Indeed, the correlation amplitudes
become identical forspg = 6.6%, which is considerably larger

After the discussion about the numerical differences between
the general results valid for the 3DG and GL correlation
functions of TPE fluorescence of a molecule following three-
dimensional Brownian diffusion, it is useful to consider another
significant difference that characterizes the two theoretical
approaches. This is manifest in the comparison between the easy
%pplication of eq 2 and the difficult use of the analytical result
for GgL(). Although mathematical tools are nowadays available

. to support researchers in the handling of complicated functions
than zspc = 1.658&x or zsps = 2 v/7z. Following a parallel (as this work demonstrates), an attempt to simplify the analytical

reasoning, the exact match between the amplitudes could aISOstructure of eq 14 was made. The result is described in this
be obtained by equating the 3DG and GL volumes calculated ggctign.

by means of the alternative definition found, for example, in
eq 23 of ref 23. But, regardless of how the condit®shs(0)

= GgL(0) is reached, there is a residual dissimilarity as to the
time decay. This can be better analyzed if we normalize
Gspa(t) andGg(7) to their own values at vanishing times. The ) 1

result is shown in Figure 4, where the decays of eqs 2 and 14 W(ié) = Tz (15)
are plotted for normalized amplitudes, i.&3ps(0) = Gg(0) 7§

= 1. As easily noted, the two time behaviors are distinct from
each other and it is obvious to conclude that a TPE-FCS
measurement dealt with the 3DG approximation provides an
outcome meaningfully different from the elaboration based on
the GL approach here discussed. This conclusion is even mor
remarkable if amplitude dissimilarities (Figures 2 and 3) add
to the time deviations reported in Figure 4. But this is not the 32 - 1
end of the story. For instance, the symbols in Figure 4 mark Lﬁ(T/TD) gﬂ— 1+ 2—D . ——
the decay of53pg(r) obtained as best fit tGg () for a diffusion 25/2,84/r/rD T \J1+ 7y

time that is about 25% larger than the corresponding value

obtained under the GL approach (the increase reaches 30% folt is at once evident that the approximated resultlfg/zp) is

S = 2). In other words, reversing the above-mentioned conclu- much simpler than eq 12 or 13. In particular, the dependences
sion, TPE-FCS measurements can be equally understood inon the time delayr are made of a combination of very basic
terms ofGspg(7) or GgL(7) at the expense of noteworthy flaws  functions, namely rational and algebraic functions similar to
arising from an unsuitable model and including extractions of what is seen in eq 2. With this new result in hand, we obtain a

The starting point is the fundamental approximation of the
complex error function with purely imaginary argument (see
the Supporting Information)

The approximation holds for large values of the real varidble
and corresponds to the realistic conditions under which egs 12
and 13 are calculated. The translation of eq 15 into the formalism
of Ls(z/7p) (it does not matter which representation is chosen
®hetween the two in egs 12 and 13) leads to the following result

(16)
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Figure 5. Normalized correlation function&g.(z) and Gg, (z). The
approximated result of eq 17 is plotted with squares to distinguish its
decay from the result of eq 14 (continuous line). The parankter
GeL(7) is chosen equal to 2.5.
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Figure 6. Normalized correlation function&g.(z) and Gg, (z). The
approximated result of eq 17 is plotted with squares to distinguish its
decay from the result of eq 14 (continuous line). The paranktr
GgL(7) is chosen equal to 5.

simplified expression of the correlation function
. 4t T 1
oL(7) = GGL(O)E [1 +2—

D p—
it e

The star in the superscript @&, () indicates that eq 17 is
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Figure 7. Normalized correlation functionGe.(z) and Gy, (z). The
approximated result of eq 17 is plotted with squares to distinguish its
decay from the result of eq 14 (continuous line). The param@ter
GeL(7) is chosen equal to 1.5.

relation curves. This constitutes a well-documented proof that
the approximation leading to eq 17 is effective at reproducing
the behavior of the more complicated eq 14. To strengthen this
finding, another comparison is shown in Figure 6 for another
typical value off = 5. The agreement betweébg (7) and
Gg.(7) is confirmed, meaning also that the GL correlation
function is practically independent frofh This last feature was
further examined for larger values of the parameter. The results
were identical to Figure 6, and for this reason, they are not
included in this discussion.

A final concern was about the equivalence of eqs 14 and 17
for a different range of the parameter & f < 2.5). The
consequent analysis showed that a very small difference
becomes appreciable f8r< 2. As an example, Figure 7 depicts
the comparison for3 = 1.5 corresponding to an extreme
situation where for a laser wavelength of 0.4, the laser
beam waist should be well below Q#n. In this case, even if
the agreement betwedy, (t) andGg (z) is not so good as in
Figures 5 and 6, the relative discrepancy is very small and
mainly confined within the region of delays higher than the
diffusion timep (i.e., aroundr = 10zp).

an approximated result of eq 14, and apart from the obvious 6. Conclusions

simplicity of G§, () containing similar functional dependenc-
es ofGspg(7), the other relevant comparison with eq 2 is about
the role of the axial width. In the classical 3DG model, adopted
by most researchers, the correlation funct®ss(z) is fitted

by adjusting various parameters, namely, the correlation am-

plitude Gsps(0), the diffusion timerp and the optical parameters
Wo, Zspe. Consequently, depending on the value of the axial
width z3pg, the ratiowg/zspg influences the decay described by
the functiorspg(r). Such parametric dependence should parallel
the relationship betweeBg (r) and the parametgt = zz/wp
defined earlier. Surprisingly, the dependencesas absent in
the simplified result of eq 17. Here, the decay is completely
determined by the diffusion timep and there is no need to
acquire additional information on the optical parameters to

To sum up, the analytical calculation of the correlation
function for various chemical and physical applications of
diffusive TPE-FCS has been detailed for GL volumes. In view
of this novelty, recognized numerical meth&s! become less
powerful. Moreover, the general importance of GL laser
beamd2?528 is such that the lack of analytical understanding
of corresponding experimental FCS outcomes had to be filled.
In this regard, the analysis shows that the complex error
function, ultimately related to the physical meanings of the Voigt
function, plays a crucial role. Relatively to the renowned 3DG
approximation, wide discrepancies in correlation amplitudes are
guantified on the order of about 75%, at the very worst. Time
decays also show dissimilarities. These denote diffusion times
that vary in the range of 2530% depending on the optical

fitting routines that become more robust when the number of petween the GL and 3DG models is found when one approach

free parameters is reduced.

To verify eq 17, a comparison with the exact result of eq 14
is shown in Figures 5 and 6. The plots @ () and G§, (z)
are based on values of the paramegterxpected to be higher
than 2.5 for the experimental conditions of ref 19. Considering

is adjusted to the other by means of fitting procedures. This
confirms what was remarked earlier in numerical elaborations
of TPE-FCS®° and emphasizes the necessity of great care to
eliminate a possible source of artifacts in this kind of experi-
ments. Last but not least, an analytical simplification of the main

that = 2.42 for the reported parameters of ref 29, the chosen result of this paper is given to facilitate the practical use of the

range off is realistic. Figure 5 shows the comparison fio=
2.5 and normalized amplitude§¢.(0) = G§ (0) = 1). The
symbols mark the decay oBg, (r) that would be hardly
distinguishable fromGg(7) if lines were used for both cor-

findings about TPE-FCS of diffusion within GL volumes. The
simplification reveals that the parametric dependences of the
time decay are reduced to a single parameter (the diffusion time)
for realistic conditions of common optical set-ups.
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