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An improved Lanczos eigenvalue analysis method has been developed to compute the bound ro-vibrational
states for the DOCI system at a total angular momentud=of0 andJ = 30. In this method, the error norm

is used to identify all the true eigenvalues, using the Lanczos algorithm without re-orthogonalization. For
ro-vibrational spectroscopy calculations, the comparisons among experimental results, the exact quantum
mechanical calculations, and the widely used approximate adiabatic rotation method have been thade for

30. ForJ = 0, the density of states (DOS) in both the bound and unimolecular dissociation regime have been
computed, whereas for the= 30 case, only the DOS in the lower portion of the bound spectrum has been
reported, because of substantial computational tasks.

1. Introduction and yield a complex-symmetric tridiagonal representation of the
. . . Hamiltonian. Significant progress has also been made recently
Quantum calculations based on iterative methods have i, he search for a real Lanczos subspace method that is capable
become increasingly common recently. These methods areqt comnpyting state-to-state reactive scattering probabififis.

useful especially for large molecular systems, because they dorpege new real Lanczos methods require no complex absorbing
not require explicit storage of the Hamiltonian matrix; rather, potential or damping operator

they require only multiplication of the Hamiltonian by a vector. . .
yreq y P y It is well-known that, because of the loss of orthogonality,

When combined with a sparse representation of the Hamiltonianth tandard L thod ters the ahosti . |
such as a discrete variable representation (DMB)th memory € standard L-anczos method encounters the gnosting eigenvalue
problem, which is related to the numerical errors in the three-

and CPU time can be reduced dramatically. Notably, the . ; :
Chebyshev and Lanczos iterative methods have been Widelyterm recursion. There are basically two ways to address this
applied in both bound and continuum problems issue. The first approach is to enforce strict orthogonality by
. . L explicitly orthogonalizing each new vector agaimgdt of the
Lanczos methods exploit the sparcity of the tridiagonal revious vectors. at a verv hiah price of memory and speed
subspace Hamiltonian generated by the iterative LanczosP - ’ y high p y P
algorithm? Although the Lanczos algorithm has commonly been reductl_on. The_ secon(_j approach takes advantage_ of the error
) analysis of Paigé? which demonstrates that the eigenvalues

used for matrix diagonalizatiérand short-time propagatiofis, that are duplicated in the presence of ghosting are, nevertheless
recent work in the Brisbane laboratory has focused on exploring P P 9 gare, ’

more-general applications of the Lanczos representation, includ-aﬁcu:f'ﬂe' Ig Otlh's. latter approafch, tpne S;Thplﬁ t°'efates tlhe
ing spectral densities,’ filter diagonalization for bound states ghosting and designs a means of sorting out the trué eigenvajues

and resonancés]® partial resonance widths in unimolecular from the spurious ones. Hence, some care_and tim(_e is required
decay!“ and state-to-state reactive scattedh& An important on thg part of the user to determine p“?c'se',y Wh'Ch, are the
feature of these newer Lanczos implementations is that all true eigenvalues. We note thatMINRES fllterdlago_nallza?lon,
physically relevant information is extracted from within the as well as the le"‘ss'c Cullum and W'”‘?Ughb_y algorithirave
Lanczos representation. This allows a single Lanczos iteration S"OWn substantial progress for the elimination of the Lanczos

of arbitrary length to be utilized for the propagation, rather than 9Nn0sting effects. In this paper, our application has demanded
a sequence of short iterations. We note that for scattering or (he development of a more efficient and accurate approach to

resonance applications, the absorbing boundary conditions arddentify all the true eigenvalues. The size of the moIecuI?r ro-
imposed within the Lanczos algorithm by incorporation of a Vibational Hamiltonian matrix in this paper is very largel0
complex absorbing potential (CAP) into the Hamiltonian. This * 107, and the new algorithm can sensitively identify all of
has the consequence that the Lanczos iterations are complethe converged true eigenvalues.
Exact nonzero total angular momentudn> 0) calculations
* Author to whom correspondence should be addressed. Fax: 61-7- aré essential for a complete description of quantum reactive
3346-3949. E-mail: s.smith@ug.edu.au. scattering, thermal kinetics, and energy transfer, and also in
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correctly simulating molecular spectroscopy. This latter ap-
plication provides the context of the present paper, in which
we explore the capabilities of exact quantum dynamical calcula-
tion of DOCI rovibrational states for high angular momentum
calculations. Experimentally, the high-resolution rotational
spectra of the DOCI system have been reported for several
vibrational states fod values as high as 58:22 Theoretically,

the exact quantum calculation is still a challenging task,
especially for the complex-forming systems, wherein the deep
potential well and high vibrational excitations demand very large

basis sets. Requisite basis sets for the vibrational and bending

modes notwithstanding, the major reason for the difficulty is
the so-called “angular momentum catastrop¥eFor these
nonzeroJ calculations, it is apparently impractical to apply
conventional direct diagonalization methods, because of the
requirement of a large and often-prohibitive computer core
memory. Several sophisticated basis set contraction schethes
do exist, but, because of their unfavorable scaling, they are
limited to optimized basis sets dff < 10000. Variational

Zhang et al.

error norm
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Figure 1. Plot of the logarithmic error norms for the DOCI clustering
eigenvalues around the two lowest eigenvaluds at —4.053640 eV
and E = —4.052824 eV from the] = 30 and even symmetry
calculations. Here, the ro-vibrational state energy was relative to the
O(D) + HCl dissociation limit, which is called the zero energy point.
The Lanczos subspace sizeMs= 150 000.

vibrational states for nonzero total angular momentum, in

approaches can be used to compute the lower bound state$aricular, the algorithm used to identify all the true eigenvalues
accurately; however, for high-lying bound states, convergence i the Lanczos approach. In section 3, we present the results

becomes difficult as the size of the basis set incre#s€<n

for the J = 0 case and 30 calculations performed on the new

the other hand, quantum iterative methods such as the Lanczosersion of the potential energy surface. Detailed comparisons

method-2 are well-suited to solving this large-scale eigenvalue
problem.

The related HOCI system has been extensively studied from

with previous work for the lower bound-state manifold as well
as the comparisons with AR approximation and with experi-
ments will also be given in section 3. The conclusion is given

both experimental and theoretical perspectives, because of itsin section 4.

importance in atmospheric chemist& 36 It is considered to

be a temporary reservoir of the Cl atoms and has been detected \jethodology

by far-infrared emission techniqué&sFor this reason, much
effort has been devoted to the spectroscopic study of HOCI in
the microwave, far-infrared, and infrared regions of its spectrum.
For example, the high-resolution far-infrared spectrum of HOCI
has been reported for total angular momentum above 50 with
Ka > 6.2230However, even this seemingly simple system, which
involves only three atoms, turns out to be very difficult to model
guantum mechanically for high values. So far, most of the
calculations have focused on the= 0 case, because of obvious
computational difficulties. Exact quantum calculations, including
Coriolis coupling have been reported only fb= 1 andJ =
33435 The potential energy surfaces (PESs) mostly used are
those by Bowman et at7;38and those by Schinke et #These
high-quality ab initio PESs are scaled to achieve agreement with
the extant spectroscopic data b= 0. Recently, a new global
ab initio PES for a HOCI system that is suitable for both
spectroscopy and reaction dynamics investigations has bee
developed by Nanbu et #.The newer ab initio surface by
Nanbu et af'¥is not scaled or adjusted to reproduce the available
spectroscopic data. Using this PES, we recently provided the
first extensive rigorous calculations for large values of the total
angular momentum ranging up to 80-However, in comparison

2.1. Hamiltonian and Representation.Generally, we treat
the three internal Jacobi coordinat&st( y) in discrete variable
representation (DVR), while the three Eulerian angi@sd,

y) are described in a basis $ét*® This procedure is very
efficient, because the potential part of the Hamiltonian matrix
is diagonal, which can reduce the memory requirement sub-
stantially. The triatomic Hamiltonian in Jacobi coordinates in
body fixed frame is given by

~ A2 1 92 A21 92
A=-2 =2 R-_-=% 1+
uRHRP 2ur yr?
’|\2 j‘2
4+ VvRry) (1
R our? Rry) 1)

Qwhere the orbital angular momentum is given as

P2=(-(P=3%4]7-20

Using symmetry-adapted symmetric top eigenfunctions to

with previous calculations and experimental spectroscopic dataexpand the total wave function, one can get the coupled

atJ = 0 for a HOCI system, we found that this ab initio PES

does not generate the vibrational state energies as accurately as

the fitted ab initio PESs. Consequent to this work, substantial

ab initio data points have been additionally computed and addedHQ’Q =
to generate an improved version of the Nanbu PES is produced.
In this paper, we used this augmented PES to calculate the DOCI

ro-vibrational spectroscopy through parallel computing strategy,

and some comparisons between the exact calculations and

approximate quantum methods such as adiabatic rotation{AR)
will be made.

The rest of this article proceeds as follows. In section 2, we

equations
21 & h? 1 9°
——="—-R—>—r+V(Rry+
2uRHRZ 2ur gr? (Rr.7)
2 22
Loy L) I8 gy ),
uRe 2ur®l\ sinydy "9y sinfy
K2 2
JU+1)—297 (2
2MRZ[ ( ) 1 (2)

describe the theoretical methods needed to characterize ro-and
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with m= 0 for Hg o + 1 andm= 1 for Hg o-1. Such coupled

: . ith = Hoo-1%q-1 + H +H . For odd
equations can be represented in DVR: with ge eo-1ye-1 eayo Qor1yerl

spectroscopic symmetry, the Hamiltonian matrix is the same,
exceptQ = 1, 2, ...,J. The spectroscopic symmetry parity is

Hﬁg _ h_zlf)_z R, 0cp0 — define(_j as (—_1)J+P, with p being the parity of the wave function
R 4R under inversion of t_he space fixed nuclear c_oordmates. We adopt
by a natural way to distribute the problem, with respect toGhe
h°1 9 o block, which will make the calculations ¢t} and{8} much
ZF; 10,2000 + V(RIY;)0aq + easier and the modifications of our code as little as possible for
r parallel computing. We assign one processor as the master
i + i Z T-Q[j(j + 1)h2]T-Q,6 o+ processor (ID= 0), which is used to writ§ o} and{s}, and
2,uR2 2ur2 J i e assign all other processors as working processors, which are
) used to perform the matrix-vector multiplications for different

h 2 Q2 components. Our implementation has the flexibility that any
[J+1) = 29270,:000 + number of CPUs (% n < J+ 2) can be used in our Sun cluster
0,3 041 Qi o1 machine. The details of our parallelization method have been
z TitaonTy Ogow T z Titao T Ogg1 (4) given in previous work (see, e.g., ref 41). We note that the
! ] related parallel model of Goldfield et al. has been used in
reactive scattering calculatiof%:5°

with 2.3. Final Analysis. After the tridiagonal matrixTy is
5 generated, we calculate the eigenvaluegpfusing the standard
tg o= —(1+ 0 m)1/2 A % QL algorithm. As mentioned in the Introduction, the complica-

2uR2 tions are the ghosting eigenvalues, which must be removed, and
— we have devised an algorithm to identify all the true converged
‘/‘](‘] +1)-QQ=+1) ‘/J(J +1)-QQ=+1) eigenvalues from single Lanczos iterations, which we believe
has significant advantages of previously established methods
(e.g., refs 3, 8, 9). We summarize the algorithm as follows, and
the technical details will be given in section 3.
(i) Calculate the error norm for each eigenvakjgenerated

from Ty, through

In eq 4, we have use@-dependent DVR for the-coordinate,
which is obtained by diagonalizing the coordinate operator
(x = cosy) matrix,

"y = [, OO o
a(E) = I(Ty, — E)e(EDII @)
Here, 619(7/) is the associated Legendre polynomial. In the
direct diagonalization scheme, the DVR points and the trans-
formation matrix are simply the eigenvalues and the eigenvector
matrix of the coordinate operator matrix. Ferandr coordi-
nates, we have used potential-optimized D¥Rhe details of
the DVRs will be given in section 3.
2.2. Propagation. In the Lanczos iteration, we choose a
normalized, randomly generated initial vector,= 0, and set
p1 =0 andwy = 0. We then use the basic Lanczos algorithm
for complex-symmetric matrice’s,

Clearly, true eigenvalues (or their copies) should have small
error norms and, therefore, can be distinguished from any
unconverged/spurious eigenvalues. Thus, if the error norm of
the eigenvalue is larger than a prescribed value (for exariple,
= 10%), the eigenvalue is regarded as unconverged or spurious
and will be removed. The Lanczos subspace eigenvegms)y
in eq 7 can be regenerated inexpensively for each complex
eigenenergy, through a backward substitution recursion:

For allj =1, 2, ...,M, generatey(E;) by solving the subspace
Schrainger equation:

Braatis = ' = i = Bka (5) (E — TwI$(E)C= 0 (8)

to project the non-Hermitian absorbing potential augmented () Choosepy, the Mth element ofp(E;), to be arbitrary (but
Hamiltonian into a Krylov subspace. T x M tridiagonal nonzero; this is usually set to kg, = 1), and calculate
representation of the Hamiltoniaily, has diagonal elements

ax = (u/H'|z), and subdiagonal elemeniz = (vi_1|H'| ). 1
Note that a complex-symmetric inner product is used (i.e., bra w1 = ﬁ_M (E1¢M ~ Oyu) (©)
vectors are not complex conjugated). The two vectar$,and
{}, are stored in Lanczos iterations for later analysis to extract (b) Fork =M — 1, M — 2, ..., 2, update the scalg_1:
physical information such as bound state or resonance quantities.

Although conceptionally simple, the propagation is the most Bub-1 = Edx — o4 — Brs1Pria (20)
time-consuming part of the calculation. We use modified
perturbation iteration (MPI) to perform parallel computation for (c) There is a constant difference between the subspace wave
the matrix-vector multiplications. For even spectroscopic sym- function generated through this way and the true subspace wave
metry, the four-dimensional (4-D) matrix-vector multiplication function. Normalize the generated subspace wave function to
looks like determine the constant.
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(ii) After step (i), there will still be multiple eigenvalues 0
clustered about the true eigenvalues at the low- or high-energy
component, which are indeed very close to the true eigenvalue.
We call them copies of the true eigenvalues. Remove the copies,
replacing each group of multiplet eigenvalues lying within the
range A (where A is very small, e.g., 1) by the single 6
eigenvaluewith the smallest error nornin the Lanczos method, 5 @
the emergence of multiplets of an eigenvalue is an indication
of the convergence of the eigenvalue. -10 :

The efficiency of this identification algorithm relies on the ~4.05364 -4.05364 -4.05364 -4.05364 -4.05364
very efficient three-term backward recursion procedure to E(eV)
generate the subspace wave function, because the overhead for g ‘ ‘

(b) |

error norm

calculating the error norms is minor, using the three-term
recursion. Also, the new algorithm does not require the
diagonalization of the tridiagonal matrix, twice, as is required

in most applications, to extract all eigenvalues using the Cullum
and Willoughby (CW) methodIn the CW method, a submatrix
T, which is derived by deleting the first row and first column
of the tridiagonal Lanczos matriy, is diagonalized. The
common eigenvalues of the two matrices are identified as -10 : :
spurious and discarded. The present method is competitive with, -4.05262 -4.05262 -4.05282 -4.05262

e.g., a bisection approach to determining eigenvalues of the Elew

tridiagonal but, in contrast, must be performed only once. Here, Figure 2. (a) Plot of the logarithmic error norms for the copies of the
e ot tha i the chose s not age crough 0 comverge 1% Sgemale 3£ © 4assbi o fom b - soand s
.the r.eq“”ed eigenvalues, we can always restart the Lanczoso¥ >1(T4yare removed. From the groug ofgthe copies, the fourth one
iterations, as long as we keep the latest two Lanczos Vectors. it the smallest error norm will be picked up as the true eigenvalue.
Finally, we must mention that this method does not enable (b) plot of the logarithmic error norms for the copies of the second
degenerate eigenvalues to be resolved. For that purpose, pleassigenvalue aE = —4.052824 eV from thd = 30 and even symmetry
refer to Paige’s methot. calculations. All the clustering eigenvalues with error norms @0-#

are removed. From the copies, the second one with the smallest error
norm will be picked up as the true eigenvalue.

error norm

3. Results

3.1. Calculational Details.The triatomic Hamiltonian matrix
was set up in terms of reactant Jacobi coordinates, and theeigenvalues for thd = 30 and even spectroscopic symmetry
improved version of the ab initio PES recently developed by case. The Hamiltonian matrix size in the primary representation
Nanbu et af® was applied. In the new version, 1761 points is 12 080 700x 12 080 700, which is the largest among all our
have been added in the vicinity of the equilibrium to refine the previous calculations. The Lanczos iteration number usédl is
first-generation PES. For the two radial coordinates, a potential- = 150 000. In Figure 1, we show the logarithmic error norms
optimized DVR® (PODVR) was utilized to reduce the size of for the DOCI clustering eigenvalues around the first two lowest
the Hamiltonian matrix. For th®-coordinate, we have used eigenvalues aE = —4.053640 eV an&E = —4.052824 eV.
Nr = 130 PODVR points, which were contracted from 360 Here, the ro-vibrational state energy was relative to th¥d{(
evenly spaced primitive sinc DVR pointsspanning the range  + DCI dissociation limit, which is called the zero energy point.
from 2.0ag to 12.Gap with the one-dimensional reference The eigenvalues are computed through direct diagonalization
potential, V(Rr¢,0¢). Similarly, for ther-coordinate N, = 80 of the tridiagonal matrix, which consist of true eigenvalues and
PODVR points were obtained from 245 primary DVR points, spurious eigenvalues. The latter are produced by the loss of
spanning the range from B@to 6.0 using the reference  orthogonality during the Lanczos iteration. From this figure,
potential, V(Re,r,0e). For the y-variable, Q-dependent DVR we can see that hundreds of spurious eigenvalues surround the
functions, which are defined by correspondingly associated two true eigenvalues, which have the smallest error norms. Most
Gauss-Jacobi quadrature points, were used. The spectroscopicother eigenvalues have error norms that are larger than our
symmetry that originated from the WignBrfunctions has also  prescribed small value)(= 104) and therefore can be regarded
been considered. The resulting direct product basis set wasas spurious and can be removed through our algorithm. Only
further contracted by discarding those points whose potential four multiplet eigenvalues close to the first true eigenvalue (see
energies were higher than the cut-off enerdyyor = 0.48 eV Figure 2a) and four multiplet eigenvalues close to the second
(here, the zero energy point is referred to as the dissociationtrue eigenvalue (see Figure 2b) have error norms smaller than
limit of O(*D) + DCI channel), resulting in the final basis size the prescribed small valukand can be regarded as the copies
of ~389 700x (J + 1) for even spectroscopic symmetry and of the two true eigenvalues and remain. Because the group of
~389 700x J for odd spectroscopic symmetry. In our calcula- eigenvalues are very close and are well-separated from the
tions, the Lanczos propagations and final analysis are completelyremaining eigenvalues, we can easily identify the one with the
separated. Although parallel computations are used only in the smallest error norm as the true eigenvalue. Indeed, in terms of
propagation step, the final analyses are performed usingresonance energy, each of these copies is well-converged, and
conventional nonparallel architectures. Eight CPUs have beenin some algorithms, any copy can be picked up as the true
used for both even and odd spectroscopic symmetries far the eigenvalue, but the most accurate eigenvalue should correspond
= 30 case. to the one with the smallest error norm. This is particularly true

3.2. Test of the Algorithm. Before presenting the results, for resonance width (imaginary part of the eigenvalue), which
we check the algorithm of identifying all the true converged exhibits some noticeable differences among the copies. The
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TABLE 1: Comparison of the HOCI Vibrational Energies of TABLE 2: DOCI Vibrational Energies of the Lowest 10
the First 14 Bound States atJ = 0 for the Old Version and Bound States atJ = 0, Calculated Using the Improved
the Improved Version of the Ab Initio Potential Energy Version of the Ab Initio Potential Energy Surface (PES}

Surfaces (PESSs)

Vibrational Energy (cm?)

Vibrational Energy (cm™2)

n (v1,2,V3) calculated experimental

n  (viv2,v3)* new PES old PES Bowman et#l. experiment 1 (0,0,0) 0.00 0.0

1 0,00 0.00 0.00 0.000 2 (0,0,2) 722.588 723.3

2 0,01 724.97  650.58 724.336 724.36 3 (0,1,0) 916.213 909.6

3 01,0 1245.10 1261.97 1238.617 1238.62 4 (0,0,2) 1436.187

4 0,02 1442.30 1309.21 1444.107 1438.68 5 (0,1,1) 1639.235

5 01,1 1967.40 1926.92 1953.748 6 (0,2,0) 1808.916

6 0,03 2161.35 1963.22 2154.028 7 (0,0,3) 2150.011

7 0,20 2458.67 2522.28 2456.363 2461.21 8 0,1,2) 2358.013

8 0,12 2684.90 2592.00 2663.255 9 (0,2,1) 2532.055

9 004 2869.56 2615.53 2852.172 10 (1,0,0) 2669.201 2665.6
10 0,21 3178.06 3185.19 3163.826 .
11 01,3 3404.64 3245.26 3362.256 a Other symbols are the same as those used in Table 1.
12 0,05 3568.77 3268.65 3537.056 P ; ;
13 100 361522 359972 3609972 3609 48 global ab initio PES gives a better representation about the

14 030 367061 379241 3670.391 366844 Minimum, because it has been developed and tested initially
with a view to reactive scattering calculations.

In Table 2, we have elected to present the 10 lowest bound
state energies from DOQI= 0 calculations on the new PES.
To generate all the bound state spectra and the low-lying
above algorithm is very sharp and sensitive in identifying the resonance spectra, the number of Lanczos iterations udéd is
true eigenvalues, because of the Green function property implied= 150 000. In this table, the second column again contains the
in eq 8. Thus, the new algorithm offers a simple and accurate spectroscopic assignments of the states, with,, andv; being
alternative approach to identification of the true eigenvalues, the number of quanta in the OD stretching, DOCI bending, and
because it picks up the one with the smallest error norms from OCI stretching local modes, respectively. The third column
the copies. This is particularly useful for accurately calculating contains the results calculated with the present Lanczos method,
resonance widths. whereas the fourth column provides the available spectroscopic

3.3. Ro-vibrational State Calculations.We have used the  data?'?? Inspection of the table indicates that the three
Lanczos method previously summarized to compute all the fundamentals are reproduced reasonably well using the new
bound states and low-lying resonances fordie 0 case, and PES, which gives us the confidence to compute the full spectra
the low-lying rovibrational bound state manifold of the DOCI for theJ = 0 case (see below discussion regarding the density
atJ = 30 for both spectroscopic symmetries. To facilitate the of states (DOS)). For thd = 30 case, 150 000 Lanczos
comparisons with previous reported calculations and with the iterations also are used to generate the lower portion of the ro-
experimental results, in the following tables, the calculated vibrational bound states for both spectroscopic symmetries. The
energies are shifted by 4.106248 eV, such that the zero energyspectrum for thel = 30 case is much denser than the= 0
point is called thel = 0 vibrational ground-state energy, and case and converges more slowly, and, as such, the exact quantum
the energy units are changed to ©mFirst, we test the calculations (including Coriolis coupling terms) are still very
performance of the new version of the ab initio PES for the challenging, due, in part, to the ever-increasing size of the basis
HOCIJ = 0 case. Two thousand Lanczos iterations are sufficient set; therefore, we focus on the lower portion of the spectrum in
to converge the lowest bound states, and in Table 1, we havethis paper. For instance, three months of wall time are required
listed the 14 lowest bound state energies from dhe= 0 to converge the reported bound state energies fod the30
calculations for comparison. In this table, the second column and even symmetry case, using eight CPUs (four nodes) of an
contains the spectroscopic assignments of the states,yyith  Opteron dual-processor 2.2 GHz grid. Without the combination
v,, andvz being the number of quanta in the OH stretching, of parallel computing with the more-advanced methodology, it
HOCI bending, and OCI stretching local modes, respectively. would be exceedingly difficult, of not prohibitive, to perform
The third column contains the results calculated with the presentthese benchmark test calculations. In Table 3, we select the 19
quantum Lanczos method on the new PES, whereas the fourthro-vibrational bound states within the (1,0,0) manifold to contrast
column contains the results from previous Lanczos subspacewith the available experimental dat&? and with the ap-

a Quantum numbersv(,v,,v3) are used to label the energy levels.
bBowman et al.’s results and the available experimental data are also
included. See text for more details.

filter diagonalization method on the old ab initio PESThe proximate results from adiabatic rotati#hin this table, the
fifth column provides the reported results from Bowman etal., calculated bound states can be assigned in terms of the three
and the last column gives the available spectroscopici8étzp® fundamentals, v,, andvz and in terms of], K, andK.. Here,

Inspection of the table indicates that the new version of the quantum numberk, andK. are used to label the energy levels,
pure ab initio PES generates the vibrational energies, which areusing the rigid rotor approximation, because DOCI is almost a
in much better agreement with the available experimental datasymmetric top K, is indeed the same &2). Comparison of
and with the early results of Bowman et al. It is important to the observed high-resolution ro-vibrational energy levels and
stress again at this point that the PES of Nanbu &t thlat we the computed ones indicates that the differences for all the levels
use in this paper is a genuine ab initio surface, without being are <5 cnm 1. Such differences are mainly due to the level of
scaled and/or inverted to reproduce the 22 available experimentalaccuracy in the PES calculations, not the ro-vibrational dynamics
vibrational bound state energies, as was previously done forcalculations, because the origin of the vibrational band (1,0,0)
the other two high-quality ab initio PES%3° Another technical has already had a difference of 3.6 ¢nbetween the experiment
point is that spline interpolation of potential energies at grid and the calculation (see Table 2). The results indicate that,
points has been applied in this PES, whereas in the other twoalthough the purely ab initio PESs/exact quantum dynamics
PESs, fitted analytical expansions have been used. The newcalculations have not yet reached spectroscopic levels of
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TABLE 3: Comparison of Experimental and Calculated 0.30 ¢
Results for Selected DOCI Ro-vibrational State Energies for il
the J = 30 Case il
Ro-vibrational State Energy (ctH) 020 1
n exact AR experimental J(Ka,Ke) (v1,v2,v3) Ssymmetry % 0.15 4
1 3100.14 3102.29 3096.8861 (30,0,30) (1,0,0) even 0.10
2 3104.89 311257 3103.1051 (30,1,30) (1,0,0) even
3 3139.87 314341 3138.8417 (30,2,29) (1,0,0) even 0.05 1
4 3187.37 3194.80 3190.3545 (30,3,28) (1,0,0) even 0.00 Lo . .
5 3263.19 3266.75 3261.8675 (30,4,27) (1,0,0) even | -30000 -25000 -20000 -15000
6 3358.46 3359.25 3353.6688 (30,5,26) (1,0,0) even 1
7 3466.33 347231 3465.6222 (30,6,25) (1,0,0) even E(cm™)
8 3599.97 3605.93 3597.5640 (30,7,24) (1,0,0) even  Figure 3. Quantum density of stateg(E)) for the DOCIJ = 0 case,
9 3755.51 3760.11 (30,8,23)  (1,0,0) even which are calculated through direct counting of both the bound and
10 3929.19 3934.84 (30,9,22)  (1,0,0) even resonance states in the bin. Bin lengthl kcal/mol. The units for
11 311229 311257 3112.88 (30,1,29)  (1,0,0) odd o(E) are states/crt, and the units for energy are cfnHere, the zero
g gigg% gigigé giggg;gg gggg% 8883 ggg energy point is considered to be the!DY + HCI dissociation limit,
: : : 2 '~ and the first dissociation limit for CIP) + OH is observed at15 486
14 3264.78 3266.75 (30,4,26) (1,0,0)  odd om-L R)
15 3357.59 3359.25 (30,5,25) (1,0,0) odd :
16 3467.18 3472.31 (30,6,24) (1,0,0) odd 06
17 3599.20 3605.93 (30,7,23) (1,0,0) odd
18 3756.52 3760.11 (30,8,22) (1,0,0) odd 0.5
19 3927.92 3934.84 (30,9,21) (1,0,0) odd i)
2 See text for more details. i
203
accuracy for the calculation of small molecules, we are getting i
closer to our goals. Of course, the experimental measurements i
are not always easy, because of the weak nature of some 01
transitions and the lack of some infrared transitions of sufficient o
strength. In this respect, theoretical predictions are complemen- 33000 -32000 -31000 -30000 -29000 -28000
tary to the experimental measurements. Eem-1)

Totest the adiabatic rotation gpprQXImatlons fpr h]gta!ues, Figure 4. Quantum density of stateg(E)) for the DOCIJ = 30 case;
we have performed the approximation calculations using Bow- 4 yiprational states from both even and odd spectroscopy symmetry
man et al.’s adiabatic rotation mett¥dor the low bound state  have been included. Other symbols are the same as those given in Figure
energies. The rotation constaitsB, andC used in this work 3.

are taken from experimental resute? e.g., (10.74401,

0.47632516, 0.45505155) for the (1,0,0) band (given in units bound and low-lying dissociation resonance regimes forJthe
of cm™Y). Comparison of the quantum and AR results in the = 0 case. Here, the zero energy point is referred to tH®)O(
table shows that, for DOCI systems, the AR approximation still + HCI dissociation limit, and the first GIP) + OH dissociation
predicts good results, even for te= 30 case. These results limit is observed at-15486 cn1l. The bin length used for direct
indicate that the mixing of differerf2 components of the wave  counting is 1 kcal/mol, and the units for the quantum density
function forJ > 0 is not apparent, and AR results are indeed of statesp(E) are states/crit. From Figure 3, we can see that
very close to the exact quantum results, at least for the low- p(E) fluctuates, in particular at the higher-energy part. At the

energy part. In other words, the quantum numgeis still CI(3P) + OH dissociation limit, the calculated DOS 4s0.24
generally a good quantum number. This can be seen through astates/cm?, which is slightly higher than the value of 0.2 states/
comparison of the energy levels with the sakigbut from cm~! that has been previously reported for HOCI at its first

different spectroscopic symmetries. If the calculated energiesthreshold?* In Figure 4, we reporp(E) for the DOCI system at

from even and odd symmetries are almost the same for the same) = 30. In this plot, the ro-vibrational states from both even

@ component, therf2 is a good quantum number. This is and odd spectroscopy symmetry have been included. Compari-

because there exists near degeneracy for the Saomenponents son with the results in Figure 3 shows that the DOS at 30

from both symmetries. By such comparison of the corresponding is much higher than that at= 0.

energy levels, we can see that, for the DOCI system, there does

exist near degeneracy for the saecomponents from both 4 conclusions

symmetries, indicating th&? is indeed a good quantum number.

Therefore, for the DOCI system, the much-simpler adiabatic In this paper, an improved Lanczos method has been

rotation approximations should be accurate, which will save combined with a parallel computing strategy to calculate the

quite a lot of computational time. We also note whenever the ro-vibrational states and corresponding density of states (DOS)

energy levels become close (e.g., the first two energy levels in for the DOCI system at a total angular momentumJaf O

the band), the mixing of differeff2 components is more serious, andJ= 30, using an augmented version of the ab initio potential

and the differences in the corresponding energy levels becomeenergy surface (PES) of Nanbu et*alAn algorithm that is

relatively large. based on error norm analysis to identify all the true eigenvalues
Having calculated the ro-vibrational states, it is straightfor- has been proposed and tested on the DOCI system. Fdrthe

ward to compute thel-resolved DOS. The DOS is a very 0 case, all the vibrational states and the low-lying resonances

important quantity in various statistical theories of unimolecular have been extracted from a single Lanczos iteration, and for

reaction dynamics. To calculate the DOS, we apply the method theJ = 30 case, the dense spectra of the low bound states have

of direct counting of both bound and resonance states in thebeen computed. The algorithm proves to be accurate and more

bin. In Figure 3, we report the DOCI quantum DOS in both the efficient, even for the very large primary matrix size of more
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than 10 for the J = 30 case. For ro-vibrational spectroscopy  (19) Reignier, D.; Smith, S. GChem. Phys. Let2002 366, 390.
calculations, the comparison between experimental results and (20) Paige, C. CJ. Inst. Math. Appl1972 10, 373.

he exact quantum mechanical calculations indicates that the (21) Deeley, C. MJ. Mol. Spectrosc1987 122 481 i

the exact q ical : (22) zheng, J.-J.; Ulenikov, O. N.; Bekhtereva, E. S.; Ding, Y.; He,
new version of the pure ab initio PES is much better than the s.-G.; Hu, S.-M.; Wang, X.-H.; Zhu, Q.-S. Mol. Spectrosc2001, 209,

previous counterpart in regard to predicting vibrational band 105.

origins and the ro-vibrational energy levels. The widely used
approximate adiabatic rotation method has been tested for the
selected states at = 30, and the results indicate that the
adiabatic rotation approximation performs well for the DOCI

(23) Truhlar, D. G.Comput. Phys. Commut994 84, 78.
(24) Bacic, Z.; Light, J. CAnnu. Re. Phys. Chem1989 40, 469.
(25) Bowman, J. M.; Gazdy, Bl. Chem. Phys1991 94, 454.

(26) Jensen, P.; Buenker, R. J.; Gu, J. P.; Osmann, G.; Bunker, P. R.

Can. J. Phys2001, 79, 641.

(27) Osmann, G.; Bunker, P. R.; Jensen, P.; Buenker, R. J.; Gu, J. P;

system. Through analysis of the energy levels with the same ;< 63 Mol Spectrosc1999 197, 262.

Ka but from different spectroscopic symmetries, we can see that

(28) Chance, K. V.; Johnson, D. G.; Traub, W. A. Geophys. Res.

Q is generally a good quantum number for the low-energy part 1989 94, 11059. _ _ _
of the bound state manifold, which implies that Coriolis coupling | (29) Carlottl M+ Lonardo, G. D.; Fusina, L. Trombett, A; Carli, B.

does not seem to be as important as it is in other deep well
systems, such as in HOClearly, the methods of this work

would facilitate extension for the investigation of resonances
in HOCI/DOCI systems for nonzero total angular momentum,

Mol. Spectrosc199Q 141, 29.

(30) Flaud, J.-M.; Birk, M.; Wagner, G.; Orphal, J.; Lafferty, S. KJJ.
Mol. Spectrosc1998 191, 362.

(31) Chu, T. S.; Zhang, Y.; Han, K. lint. Rev. Phys. Chem2006 25,

(éZ) Lin, S. Y.; Han, K. L.; Zhang, J. Z. HPhys. Chem. Chem. Phys.

which is still a very challenging proposition, even for modest 200q 2, 2529.

values ofJ.
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