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An improved Lanczos eigenvalue analysis method has been developed to compute the bound ro-vibrational
states for the DOCl system at a total angular momentum ofJ ) 0 andJ ) 30. In this method, the error norm
is used to identify all the true eigenvalues, using the Lanczos algorithm without re-orthogonalization. For
ro-vibrational spectroscopy calculations, the comparisons among experimental results, the exact quantum
mechanical calculations, and the widely used approximate adiabatic rotation method have been made forJ )
30. ForJ ) 0, the density of states (DOS) in both the bound and unimolecular dissociation regime have been
computed, whereas for theJ ) 30 case, only the DOS in the lower portion of the bound spectrum has been
reported, because of substantial computational tasks.

1. Introduction

Quantum calculations based on iterative methods have
become increasingly common recently. These methods are
useful especially for large molecular systems, because they do
not require explicit storage of the Hamiltonian matrix; rather,
they require only multiplication of the Hamiltonian by a vector.
When combined with a sparse representation of the Hamiltonian
such as a discrete variable representation (DVR),1 both memory
and CPU time can be reduced dramatically. Notably, the
Chebyshev and Lanczos iterative methods have been widely
applied in both bound and continuum problems.

Lanczos methods exploit the sparcity of the tridiagonal
subspace Hamiltonian generated by the iterative Lanczos
algorithm.2 Although the Lanczos algorithm has commonly been
used for matrix diagonalization3 and short-time propagations,4

recent work in the Brisbane laboratory has focused on exploring
more-general applications of the Lanczos representation, includ-
ing spectral densities,5-7 filter diagonalization for bound states
and resonances,8-13 partial resonance widths in unimolecular
decay,14 and state-to-state reactive scattering.15,16An important
feature of these newer Lanczos implementations is that all
physically relevant information is extracted from within the
Lanczos representation. This allows a single Lanczos iteration
of arbitrary length to be utilized for the propagation, rather than
a sequence of short iterations. We note that for scattering or
resonance applications, the absorbing boundary conditions are
imposed within the Lanczos algorithm by incorporation of a
complex absorbing potential (CAP) into the Hamiltonian. This
has the consequence that the Lanczos iterations are complex

and yield a complex-symmetric tridiagonal representation of the
Hamiltonian. Significant progress has also been made recently
in the search for a real Lanczos subspace method that is capable
of computing state-to-state reactive scattering probabilities.17-19

These new real Lanczos methods require no complex absorbing
potential or damping operator.

It is well-known that, because of the loss of orthogonality,
the standard Lanczos method encounters the ghosting eigenvalue
problem, which is related to the numerical errors in the three-
term recursion. There are basically two ways to address this
issue. The first approach is to enforce strict orthogonality by
explicitly orthogonalizing each new vector againstall of the
previous vectors, at a very high price of memory and speed
reduction. The second approach takes advantage of the error
analysis of Paige,20 which demonstrates that the eigenvalues
that are duplicated in the presence of ghosting are, nevertheless,
accurate. In this latter approach, one simply tolerates the
ghosting and designs a means of sorting out the true eigenvalues
from the spurious ones. Hence, some care and time is required
on the part of the user to determine precisely which are the
true eigenvalues. We note that MINRES filter diagonalization,9

as well as the classic Cullum and Willoughby algorithm,3 have
shown substantial progress for the elimination of the Lanczos
ghosting effects. In this paper, our application has demanded
the development of a more efficient and accurate approach to
identify all the true eigenvalues. The size of the molecular ro-
vibational Hamiltonian matrix in this paper is very large (∼107

× 107), and the new algorithm can sensitively identify all of
the converged true eigenvalues.

Exact nonzero total angular momentum (J > 0) calculations
are essential for a complete description of quantum reactive
scattering, thermal kinetics, and energy transfer, and also in
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correctly simulating molecular spectroscopy. This latter ap-
plication provides the context of the present paper, in which
we explore the capabilities of exact quantum dynamical calcula-
tion of DOCl rovibrational states for high angular momentum
calculations. Experimentally, the high-resolution rotational
spectra of the DOCl system have been reported for several
vibrational states forJ values as high as 50.21,22 Theoretically,
the exact quantum calculation is still a challenging task,
especially for the complex-forming systems, wherein the deep
potential well and high vibrational excitations demand very large
basis sets. Requisite basis sets for the vibrational and bending
modes notwithstanding, the major reason for the difficulty is
the so-called “angular momentum catastrophe”.23 For these
nonzeroJ calculations, it is apparently impractical to apply
conventional direct diagonalization methods, because of the
requirement of a large and often-prohibitive computer core
memory. Several sophisticated basis set contraction schemes24,25

do exist, but, because of their unfavorable scaling, they are
limited to optimized basis sets ofN < 10000. Variational
approaches can be used to compute the lower bound states
accurately; however, for high-lying bound states, convergence
becomes difficult as the size of the basis set increases.26,27 On
the other hand, quantum iterative methods such as the Lanczos
method2,3 are well-suited to solving this large-scale eigenvalue
problem.

The related HOCl system has been extensively studied from
both experimental and theoretical perspectives, because of its
importance in atmospheric chemistry.28-36 It is considered to
be a temporary reservoir of the Cl atoms and has been detected
by far-infrared emission techniques.28 For this reason, much
effort has been devoted to the spectroscopic study of HOCl in
the microwave, far-infrared, and infrared regions of its spectrum.
For example, the high-resolution far-infrared spectrum of HOCl
has been reported for total angular momentum above 50 with
Ka > 6.29,30However, even this seemingly simple system, which
involves only three atoms, turns out to be very difficult to model
quantum mechanically for highJ values. So far, most of the
calculations have focused on theJ ) 0 case, because of obvious
computational difficulties. Exact quantum calculations, including
Coriolis coupling have been reported only forJ ) 1 andJ )
3.34,35 The potential energy surfaces (PESs) mostly used are
those by Bowman et al.,37,38and those by Schinke et al.39 These
high-quality ab initio PESs are scaled to achieve agreement with
the extant spectroscopic data forJ ) 0. Recently, a new global
ab initio PES for a HOCl system that is suitable for both
spectroscopy and reaction dynamics investigations has been
developed by Nanbu et al.40 The newer ab initio surface by
Nanbu et al.40 is not scaled or adjusted to reproduce the available
spectroscopic data. Using this PES, we recently provided the
first extensive rigorous calculations for large values of the total
angular momentum ranging up to 30.41 However, in comparison
with previous calculations and experimental spectroscopic data
at J ) 0 for a HOCl system, we found that this ab initio PES
does not generate the vibrational state energies as accurately as
the fitted ab initio PESs. Consequent to this work, substantial
ab initio data points have been additionally computed and added
to generate an improved version of the Nanbu PES is produced.
In this paper, we used this augmented PES to calculate the DOCl
ro-vibrational spectroscopy through parallel computing strategy,
and some comparisons between the exact calculations and
approximate quantum methods such as adiabatic rotation (AR)42

will be made.
The rest of this article proceeds as follows. In section 2, we

describe the theoretical methods needed to characterize ro-

vibrational states for nonzero total angular momentum, in
particular, the algorithm used to identify all the true eigenvalues
in the Lanczos approach. In section 3, we present the results
for the J ) 0 case and 30 calculations performed on the new
version of the potential energy surface. Detailed comparisons
with previous work for the lower bound-state manifold as well
as the comparisons with AR approximation and with experi-
ments will also be given in section 3. The conclusion is given
in section 4.

2. Methodology

2.1. Hamiltonian and Representation.Generally, we treat
the three internal Jacobi coordinates (R, r, γ) in discrete variable
representation (DVR), while the three Eulerian angles (θ, φ,
ψ) are described in a basis set.43-45 This procedure is very
efficient, because the potential part of the Hamiltonian matrix
is diagonal, which can reduce the memory requirement sub-
stantially. The triatomic Hamiltonian in Jacobi coordinates in
body fixed frame is given by

where the orbital angular momentum is given as

Using symmetry-adapted symmetric top eigenfunctions to
expand the total wave function, one can get the coupled
equations

and

Figure 1. Plot of the logarithmic error norms for the DOCl clustering
eigenvalues around the two lowest eigenvalues atE ) -4.053640 eV
and E ) -4.052824 eV from theJ ) 30 and even symmetry
calculations. Here, the ro-vibrational state energy was relative to the
O(1D) + HCl dissociation limit, which is called the zero energy point.
The Lanczos subspace size isM ) 150 000.
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with m ) 0 for ĤΩ,Ω + 1 andm ) 1 for ĤΩ,Ω-1. Such coupled
equations can be represented in DVR:

with

In eq 4, we have usedΩ-dependent DVR for theγ-coordinate,
which is obtained by diagonalizing the coordinate operator
(x ) cosγ) matrix,

Here, Θj
Ω(γ) is the associated Legendre polynomial. In the

direct diagonalization scheme, the DVR points and the trans-
formation matrix are simply the eigenvalues and the eigenvector
matrix of the coordinate operator matrix. ForR and r coordi-
nates, we have used potential-optimized DVR.46 The details of
the DVRs will be given in section 3.

2.2. Propagation. In the Lanczos iteration, we choose a
normalized, randomly generated initial vector,V1 * 0, and set
â1 ) 0 andV0 ) 0. We then use the basic Lanczos algorithm
for complex-symmetric matrices,47

to project the non-Hermitian absorbing potential augmented
Hamiltonian into a Krylov subspace. TheM × M tridiagonal
representation of the Hamiltonian,TM, has diagonal elements
Rk ) (Vk|Ĥ′|Vk), and subdiagonal elementsâk ) (Vk-1|Ĥ′|Vk).
Note that a complex-symmetric inner product is used (i.e., bra
vectors are not complex conjugated). The two vectors,{R} and
{â}, are stored in Lanczos iterations for later analysis to extract
physical information such as bound state or resonance quantities.

Although conceptionally simple, the propagation is the most
time-consuming part of the calculation. We use modified
perturbation iteration (MPI) to perform parallel computation for
the matrix-vector multiplications. For even spectroscopic sym-
metry, the four-dimensional (4-D) matrix-vector multiplication
looks like

with φΩ ) HΩ,Ω-1ψΩ-1 + HΩ,ΩψΩ + HΩ,Ω+1ψΩ+1. For odd
spectroscopic symmetry, the Hamiltonian matrix is the same,
exceptΩ ) 1, 2, ...,J. The spectroscopic symmetry parity is
defined as (-1)J+p, with p being the parity of the wave function
under inversion of the space fixed nuclear coordinates. We adopt
a natural way to distribute the problem, with respect to theΩ
block, which will make the calculations of{R} and{â} much
easier and the modifications of our code as little as possible for
parallel computing. We assign one processor as the master
processor (ID) 0), which is used to write{R} and{â}, and
assign all other processors as working processors, which are
used to perform the matrix-vector multiplications for different
Ω components. Our implementation has the flexibility that any
number of CPUs (2e n e J + 2) can be used in our Sun cluster
machine. The details of our parallelization method have been
given in previous work (see, e.g., ref 41). We note that the
related parallel model of Goldfield et al. has been used in
reactive scattering calculations.48-50

2.3. Final Analysis. After the tridiagonal matrixTM is
generated, we calculate the eigenvalues ofTM, using the standard
QL algorithm. As mentioned in the Introduction, the complica-
tions are the ghosting eigenvalues, which must be removed, and
we have devised an algorithm to identify all the true converged
eigenvalues from single Lanczos iterations, which we believe
has significant advantages of previously established methods
(e.g., refs 3, 8, 9). We summarize the algorithm as follows, and
the technical details will be given in section 3.

(i) Calculate the error norm for each eigenvalueEj generated
from TM, through

Clearly, true eigenvalues (or their copies) should have small
error norms and, therefore, can be distinguished from any
unconverged/spurious eigenvalues. Thus, if the error norm of
the eigenvalue is larger than a prescribed value (for example,δ
) 10-4), the eigenvalue is regarded as unconverged or spurious
and will be removed. The Lanczos subspace eigenvectorφ(Ej)
in eq 7 can be regenerated inexpensively for each complex
eigenenergy, through a backward substitution recursion:

For all j )1, 2, ...,M, generateφ(Ej) by solving the subspace
Schrödinger equation:

(a) ChooseφM, the Mth element ofφ(Ej), to be arbitrary (but
nonzero; this is usually set to beφM ) 1), and calculate

(b) For k ) M - 1, M - 2, ..., 2, update the scalarφk-1:

(c) There is a constant difference between the subspace wave
function generated through this way and the true subspace wave
function. Normalize the generated subspace wave function to
determine the constant.
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âk+1Vk+1 ) Ĥ′Vk - RkVk - âkVk-1 (5)

(H00 H01 0 0
H10 H11 H12 0
0 H21 H22

•‚.
0 0 •‚. •‚.

)(ψΩ)0

ψΩ)1

ψΩ)2

l
) ) (φΩ)0

φΩ)1

φΩ)2

l
) (6)

σ(Ej) ) |(TM - Ej)φ(Ej)| (7)

(Ej - TM)|φ(Ej)〉 ) 0 (8)

φM-1 ) 1
âM

(EjφM - RMφM) (9)

âkφk-1 ) Ejφk - Rkφk - âk+1φk+1 (10)

Quantum Calculation of Ro-vibrational States J. Phys. Chem. A, Vol. 112, No. 17, 20084143



(ii) After step (i), there will still be multiple eigenvalues
clustered about the true eigenvalues at the low- or high-energy
component, which are indeed very close to the true eigenvalue.
We call them copies of the true eigenvalues. Remove the copies,
replacing each group of multiplet eigenvalues lying within the
range ∆ (where ∆ is very small, e.g., 10-6) by the single
eigenvaluewith the smallest error norm. In the Lanczos method,
the emergence of multiplets of an eigenvalue is an indication
of the convergence of the eigenvalue.

The efficiency of this identification algorithm relies on the
very efficient three-term backward recursion procedure to
generate the subspace wave function, because the overhead for
calculating the error norms is minor, using the three-term
recursion. Also, the new algorithm does not require the
diagonalization of the tridiagonal matrixTM twice, as is required
in most applications, to extract all eigenvalues using the Cullum
and Willoughby (CW) method.3 In the CW method, a submatrix
T′, which is derived by deleting the first row and first column
of the tridiagonal Lanczos matrixTM, is diagonalized. The
common eigenvalues of the two matrices are identified as
spurious and discarded. The present method is competitive with,
e.g., a bisection approach to determining eigenvalues of the
tridiagonal but, in contrast, must be performed only once. Here,
we note that if the chosenM is not large enough to converge
the required eigenvalues, we can always restart the Lanczos
iterations, as long as we keep the latest two Lanczos vectors.
Finally, we must mention that this method does not enable
degenerate eigenvalues to be resolved. For that purpose, please
refer to Paige’s method.20

3. Results

3.1. Calculational Details.The triatomic Hamiltonian matrix
was set up in terms of reactant Jacobi coordinates, and the
improved version of the ab initio PES recently developed by
Nanbu et al.40 was applied. In the new version, 1761 points
have been added in the vicinity of the equilibrium to refine the
first-generation PES. For the two radial coordinates, a potential-
optimized DVR46 (PODVR) was utilized to reduce the size of
the Hamiltonian matrix. For theR-coordinate, we have used
NR ) 130 PODVR points, which were contracted from 360
evenly spaced primitive sinc DVR points,51 spanning the range
from 2.0a0 to 12.0a0 with the one-dimensional reference
potential,V(R,re,θe). Similarly, for the r-coordinate,Nr ) 80
PODVR points were obtained from 245 primary DVR points,
spanning the range from 1.0a0 to 6.0a0 using the reference
potential, V(Re,r,θe). For the γ-variable, Ω-dependent DVR
functions, which are defined by correspondingly associated
Gauss-Jacobi quadrature points, were used. The spectroscopic
symmetry that originated from the WignerD-functions has also
been considered. The resulting direct product basis set was
further contracted by discarding those points whose potential
energies were higher than the cut-off energy,Vcutoff ) 0.48 eV
(here, the zero energy point is referred to as the dissociation
limit of O(1D) + DCl channel), resulting in the final basis size
of ∼389 700× (J + 1) for even spectroscopic symmetry and
∼389 700× J for odd spectroscopic symmetry. In our calcula-
tions, the Lanczos propagations and final analysis are completely
separated. Although parallel computations are used only in the
propagation step, the final analyses are performed using
conventional nonparallel architectures. Eight CPUs have been
used for both even and odd spectroscopic symmetries for theJ
) 30 case.

3.2. Test of the Algorithm. Before presenting the results,
we check the algorithm of identifying all the true converged

eigenvalues for theJ ) 30 and even spectroscopic symmetry
case. The Hamiltonian matrix size in the primary representation
is 12 080 700× 12 080 700, which is the largest among all our
previous calculations. The Lanczos iteration number used isM
) 150 000. In Figure 1, we show the logarithmic error norms
for the DOCl clustering eigenvalues around the first two lowest
eigenvalues atE ) -4.053640 eV andE ) -4.052824 eV.
Here, the ro-vibrational state energy was relative to the O(1D)
+ DCl dissociation limit, which is called the zero energy point.
The eigenvalues are computed through direct diagonalization
of the tridiagonal matrix, which consist of true eigenvalues and
spurious eigenvalues. The latter are produced by the loss of
orthogonality during the Lanczos iteration. From this figure,
we can see that hundreds of spurious eigenvalues surround the
two true eigenvalues, which have the smallest error norms. Most
other eigenvalues have error norms that are larger than our
prescribed small value (δ ) 10-4) and therefore can be regarded
as spurious and can be removed through our algorithm. Only
four multiplet eigenvalues close to the first true eigenvalue (see
Figure 2a) and four multiplet eigenvalues close to the second
true eigenvalue (see Figure 2b) have error norms smaller than
the prescribed small valueδ and can be regarded as the copies
of the two true eigenvalues and remain. Because the group of
eigenvalues are very close and are well-separated from the
remaining eigenvalues, we can easily identify the one with the
smallest error norm as the true eigenvalue. Indeed, in terms of
resonance energy, each of these copies is well-converged, and
in some algorithms, any copy can be picked up as the true
eigenvalue, but the most accurate eigenvalue should correspond
to the one with the smallest error norm. This is particularly true
for resonance width (imaginary part of the eigenvalue), which
exhibits some noticeable differences among the copies. The

Figure 2. (a) Plot of the logarithmic error norms for the copies of the
first eigenvalue atE ) -4.053640 eV from theJ ) 30 and even
symmetry calculations. All the clustering eigenvalues with error norms
of >10-4 are removed. From the group of the copies, the fourth one
with the smallest error norm will be picked up as the true eigenvalue.
(b) Plot of the logarithmic error norms for the copies of the second
eigenvalue atE ) -4.052824 eV from theJ ) 30 and even symmetry
calculations. All the clustering eigenvalues with error norms of>10-4

are removed. From the copies, the second one with the smallest error
norm will be picked up as the true eigenvalue.
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above algorithm is very sharp and sensitive in identifying the
true eigenvalues, because of the Green function property implied
in eq 8. Thus, the new algorithm offers a simple and accurate
alternative approach to identification of the true eigenvalues,
because it picks up the one with the smallest error norms from
the copies. This is particularly useful for accurately calculating
resonance widths.

3.3. Ro-vibrational State Calculations.We have used the
Lanczos method previously summarized to compute all the
bound states and low-lying resonances for theJ ) 0 case, and
the low-lying rovibrational bound state manifold of the DOCl
at J ) 30 for both spectroscopic symmetries. To facilitate the
comparisons with previous reported calculations and with the
experimental results, in the following tables, the calculated
energies are shifted by 4.106248 eV, such that the zero energy
point is called theJ ) 0 vibrational ground-state energy, and
the energy units are changed to cm-1. First, we test the
performance of the new version of the ab initio PES for the
HOCl J ) 0 case. Two thousand Lanczos iterations are sufficient
to converge the lowest bound states, and in Table 1, we have
listed the 14 lowest bound state energies from theJ ) 0
calculations for comparison. In this table, the second column
contains the spectroscopic assignments of the states, withν1,
ν2, and ν3 being the number of quanta in the OH stretching,
HOCl bending, and OCl stretching local modes, respectively.
The third column contains the results calculated with the present
quantum Lanczos method on the new PES, whereas the fourth
column contains the results from previous Lanczos subspace
filter diagonalization method on the old ab initio PES.41 The
fifth column provides the reported results from Bowman et al.,34

and the last column gives the available spectroscopic data.30,52-55

Inspection of the table indicates that the new version of the
pure ab initio PES generates the vibrational energies, which are
in much better agreement with the available experimental data
and with the early results of Bowman et al. It is important to
stress again at this point that the PES of Nanbu et al.40 that we
use in this paper is a genuine ab initio surface, without being
scaled and/or inverted to reproduce the 22 available experimental
vibrational bound state energies, as was previously done for
the other two high-quality ab initio PESs.38,39Another technical
point is that spline interpolation of potential energies at grid
points has been applied in this PES, whereas in the other two
PESs, fitted analytical expansions have been used. The new

global ab initio PES gives a better representation about the
minimum, because it has been developed and tested initially
with a view to reactive scattering calculations.

In Table 2, we have elected to present the 10 lowest bound
state energies from DOClJ ) 0 calculations on the new PES.
To generate all the bound state spectra and the low-lying
resonance spectra, the number of Lanczos iterations used isM
) 150 000. In this table, the second column again contains the
spectroscopic assignments of the states, withν1, ν2, andν3 being
the number of quanta in the OD stretching, DOCl bending, and
OCl stretching local modes, respectively. The third column
contains the results calculated with the present Lanczos method,
whereas the fourth column provides the available spectroscopic
data.21,22 Inspection of the table indicates that the three
fundamentals are reproduced reasonably well using the new
PES, which gives us the confidence to compute the full spectra
for theJ ) 0 case (see below discussion regarding the density
of states (DOS)). For theJ ) 30 case, 150 000 Lanczos
iterations also are used to generate the lower portion of the ro-
vibrational bound states for both spectroscopic symmetries. The
spectrum for theJ ) 30 case is much denser than theJ ) 0
case and converges more slowly, and, as such, the exact quantum
calculations (including Coriolis coupling terms) are still very
challenging, due, in part, to the ever-increasing size of the basis
set; therefore, we focus on the lower portion of the spectrum in
this paper. For instance, three months of wall time are required
to converge the reported bound state energies for theJ ) 30
and even symmetry case, using eight CPUs (four nodes) of an
Opteron dual-processor 2.2 GHz grid. Without the combination
of parallel computing with the more-advanced methodology, it
would be exceedingly difficult, of not prohibitive, to perform
these benchmark test calculations. In Table 3, we select the 19
ro-vibrational bound states within the (1,0,0) manifold to contrast
with the available experimental data21,22 and with the ap-
proximate results from adiabatic rotation.56 In this table, the
calculated bound states can be assigned in terms of the three
fundamentalsν1, ν2, andν3 and in terms ofJ, Ka, andKc. Here,
quantum numbersKa andKc are used to label the energy levels,
using the rigid rotor approximation, because DOCl is almost a
symmetric top (Ka is indeed the same asΩ). Comparison of
the observed high-resolution ro-vibrational energy levels and
the computed ones indicates that the differences for all the levels
are<5 cm-1. Such differences are mainly due to the level of
accuracy in the PES calculations, not the ro-vibrational dynamics
calculations, because the origin of the vibrational band (1,0,0)
has already had a difference of 3.6 cm-1 between the experiment
and the calculation (see Table 2). The results indicate that,
although the purely ab initio PESs/exact quantum dynamics
calculations have not yet reached spectroscopic levels of

TABLE 1: Comparison of the HOCl Vibrational Energies of
the First 14 Bound States atJ ) 0 for the Old Version and
the Improved Version of the Ab Initio Potential Energy
Surfaces (PESs)

Vibrational Energya (cm-1)

n (ν1,ν2,ν3)a new PES old PES Bowman et al.25 experiment

1 0,0,0 0.00 0.00 0.000
2 0,0,1 724.97 650.58 724.336 724.36
3 0,1,0 1245.10 1261.97 1238.617 1238.62
4 0,0,2 1442.30 1309.21 1444.107 1438.68
5 0,1,1 1967.40 1926.92 1953.748
6 0,0,3 2161.35 1963.22 2154.028
7 0,2,0 2458.67 2522.28 2456.363 2461.21
8 0,1,2 2684.90 2592.00 2663.255
9 0,0,4 2869.56 2615.53 2852.172

10 0,2,1 3178.06 3185.19 3163.826
11 0,1,3 3404.64 3245.26 3362.256
12 0,0,5 3568.77 3268.65 3537.056
13 1,0,0 3615.22 3599.72 3609.972 3609.48
14 0,3,0 3670.61 3792.41 3670.391 3668.44

a Quantum numbers (ν1,ν2,ν3) are used to label the energy levels.
b Bowman et al.’s results and the available experimental data are also
included. See text for more details.

TABLE 2: DOCl Vibrational Energies of the Lowest 10
Bound States atJ ) 0, Calculated Using the Improved
Version of the Ab Initio Potential Energy Surface (PES)a

Vibrational Energy (cm-1)

n (ν1,ν2,ν3) calculated experimental

1 (0,0,0) 0.00 0.0
2 (0,0,1) 722.588 723.3
3 (0,1,0) 916.213 909.6
4 (0,0,2) 1436.187
5 (0,1,1) 1639.235
6 (0,2,0) 1808.916
7 (0,0,3) 2150.011
8 (0,1,2) 2358.013
9 (0,2,1) 2532.055

10 (1,0,0) 2669.201 2665.6

a Other symbols are the same as those used in Table 1.
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accuracy for the calculation of small molecules, we are getting
closer to our goals. Of course, the experimental measurements
are not always easy, because of the weak nature of some
transitions and the lack of some infrared transitions of sufficient
strength. In this respect, theoretical predictions are complemen-
tary to the experimental measurements.

To test the adiabatic rotation approximations for highJ values,
we have performed the approximation calculations using Bow-
man et al.’s adiabatic rotation method56 for the low bound state
energies. The rotation constantsA, B, andC used in this work
are taken from experimental results,21,22 e.g., (10.74401,
0.47632516, 0.45505155) for the (1,0,0) band (given in units
of cm-1). Comparison of the quantum and AR results in the
table shows that, for DOCl systems, the AR approximation still
predicts good results, even for theJ ) 30 case. These results
indicate that the mixing of differentΩ components of the wave
function for J > 0 is not apparent, and AR results are indeed
very close to the exact quantum results, at least for the low-
energy part. In other words, the quantum numberΩ is still
generally a good quantum number. This can be seen through a
comparison of the energy levels with the sameKa but from
different spectroscopic symmetries. If the calculated energies
from even and odd symmetries are almost the same for the same
Ω component, thenΩ is a good quantum number. This is
because there exists near degeneracy for the sameΩ components
from both symmetries. By such comparison of the corresponding
energy levels, we can see that, for the DOCl system, there does
exist near degeneracy for the sameΩ components from both
symmetries, indicating thatΩ is indeed a good quantum number.
Therefore, for the DOCl system, the much-simpler adiabatic
rotation approximations should be accurate, which will save
quite a lot of computational time. We also note whenever the
energy levels become close (e.g., the first two energy levels in
the band), the mixing of differentΩ components is more serious,
and the differences in the corresponding energy levels become
relatively large.

Having calculated the ro-vibrational states, it is straightfor-
ward to compute theJ-resolved DOS. The DOS is a very
important quantity in various statistical theories of unimolecular
reaction dynamics. To calculate the DOS, we apply the method
of direct counting of both bound and resonance states in the
bin. In Figure 3, we report the DOCl quantum DOS in both the

bound and low-lying dissociation resonance regimes for theJ
) 0 case. Here, the zero energy point is referred to the O(1D)
+ HCl dissociation limit, and the first Cl(2P)+ OH dissociation
limit is observed at-15486 cm-1. The bin length used for direct
counting is 1 kcal/mol, and the units for the quantum density
of statesF(E) are states/cm-1. From Figure 3, we can see that
F(E) fluctuates, in particular at the higher-energy part. At the
Cl(2P) + OH dissociation limit, the calculated DOS is∼0.24
states/cm-1, which is slightly higher than the value of 0.2 states/
cm-1 that has been previously reported for HOCl at its first
threshold.34 In Figure 4, we reportF(E) for the DOCl system at
J ) 30. In this plot, the ro-vibrational states from both even
and odd spectroscopy symmetry have been included. Compari-
son with the results in Figure 3 shows that the DOS atJ ) 30
is much higher than that atJ ) 0.

4. Conclusions

In this paper, an improved Lanczos method has been
combined with a parallel computing strategy to calculate the
ro-vibrational states and corresponding density of states (DOS)
for the DOCl system at a total angular momentum ofJ ) 0
andJ ) 30, using an augmented version of the ab initio potential
energy surface (PES) of Nanbu et al.40 An algorithm that is
based on error norm analysis to identify all the true eigenvalues
has been proposed and tested on the DOCl system. For theJ )
0 case, all the vibrational states and the low-lying resonances
have been extracted from a single Lanczos iteration, and for
theJ ) 30 case, the dense spectra of the low bound states have
been computed. The algorithm proves to be accurate and more
efficient, even for the very large primary matrix size of more

TABLE 3: Comparison of Experimental and Calculated
Results for Selected DOCl Ro-vibrational State Energies for
the J ) 30 Case

Ro-vibrational State Energy (cm-1)

n exact AR experimental (J,Ka,Kc) (ν1,ν2,ν3) symmetry

1 3100.14 3102.29 3096.8861 (30,0,30) (1,0,0) even
2 3104.89 3112.57 3103.1051 (30,1,30) (1,0,0) even
3 3139.87 3143.41 3138.8417 (30,2,29) (1,0,0) even
4 3187.37 3194.80 3190.3545 (30,3,28) (1,0,0) even
5 3263.19 3266.75 3261.8675 (30,4,27) (1,0,0) even
6 3358.46 3359.25 3353.6688 (30,5,26) (1,0,0) even
7 3466.33 3472.31 3465.6222 (30,6,25) (1,0,0) even
8 3599.97 3605.93 3597.5640 (30,7,24) (1,0,0) even
9 3755.51 3760.11 (30,8,23) (1,0,0) even

10 3929.19 3934.84 (30,9,22) (1,0,0) even
11 3112.29 3112.57 3112.88 (30,1,29) (1,0,0) odd
12 3142.07 3143.41 3139.9768 (30,2,28) (1,0,0) odd
13 3187.40 3194.80 3190.3886 (30,3,27) (1,0,0) odd
14 3264.78 3266.75 (30,4,26) (1,0,0) odd
15 3357.59 3359.25 (30,5,25) (1,0,0) odd
16 3467.18 3472.31 (30,6,24) (1,0,0) odd
17 3599.20 3605.93 (30,7,23) (1,0,0) odd
18 3756.52 3760.11 (30,8,22) (1,0,0) odd
19 3927.92 3934.84 (30,9,21) (1,0,0) odd

a See text for more details.

Figure 3. Quantum density of states (F(E)) for the DOClJ ) 0 case,
which are calculated through direct counting of both the bound and
resonance states in the bin. Bin length) 1 kcal/mol. The units for
F(E) are states/cm-1, and the units for energy are cm-1. Here, the zero
energy point is considered to be the O(1D) + HCl dissociation limit,
and the first dissociation limit for Cl(2P) + OH is observed at-15 486
cm-1.

Figure 4. Quantum density of states (F(E)) for the DOClJ ) 30 case;
ro-vibrational states from both even and odd spectroscopy symmetry
have been included. Other symbols are the same as those given in Figure
3.
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than 106 for the J ) 30 case. For ro-vibrational spectroscopy
calculations, the comparison between experimental results and
the exact quantum mechanical calculations indicates that the
new version of the pure ab initio PES is much better than the
previous counterpart in regard to predicting vibrational band
origins and the ro-vibrational energy levels. The widely used
approximate adiabatic rotation method has been tested for the
selected states atJ ) 30, and the results indicate that the
adiabatic rotation approximation performs well for the DOCl
system. Through analysis of the energy levels with the same
Ka but from different spectroscopic symmetries, we can see that
Ω is generally a good quantum number for the low-energy part
of the bound state manifold, which implies that Coriolis coupling
does not seem to be as important as it is in other deep well
systems, such as in HO2. Clearly, the methods of this work
would facilitate extension for the investigation of resonances
in HOCl/DOCl systems for nonzero total angular momentum,
which is still a very challenging proposition, even for modest
values ofJ.
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