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In the present study the applicability of the bond multiplicities from the Nalewajski and Mrozek valence
indices was demonstrated for a variety of transition metal-based systems. The Nalewajski-Mrozek valence
indices and bond multiplicity indices have been implemented in the Amsterdam Density Functional program.
Selected examples comprise the carbonyl complexes (selected tetra- and hexacarbonyls, binary monocarbonyls
of the first-row transition metals), phosphines, the ligands’ trans-influence, as well as multiple metal-ligand
and metal-metal bonds. The results show that the calculated bond multiplicity indices correspond well to
experimental predictions based on bond lengths and vibrational frequencies for all discussed classes of
complexes. Almost perfect linear correlation between the bond indices and vibrational frequencies was observed
for carbonyls and the oxo complexes; the calculated bond multiplicity reproduces the accepted order for the
trans-influence of different ligands, rationalizes unusually low vibrational freqencies in the [OsO3N]-complex
compared to other nitrido complexes, explains the geometrical asymmetry in the MoO3 solid, and confirms
the multiple character of the metal-metal bond in the [Re2Cl8]2- complex. Thus, the Nalewajski and Mrozek
method can be successfully used as a supplementary analysis tool for electronic structure for studies involving
transition metal complexes.

Introduction

“Chemical bonding” has always been “a traditional territory
and heartland of chemistry”, as emphasized by Sason Shaik.1

Both principal approaches of quantum chemistry, the valence
bond theory and the molecular orbital theory, have contributed
to understanding of the fundamental nature of the chemical bond
in various molecular systems.2 In particular, concepts such as
atoms-in-molecules, chemical valence, and bond multiplicities
have been considered since the very beginning of quantum
chemistry. Although these quantities are not observables in the
quantum-mechanical sense,3 they provide a link between a
rigorous description of electronic structure by quantum mechan-
ics and the everyday language of chemistry (“classical” Lewis
concepts,4 structural formulas of the molecules, etc.). Therefore,
they are often successfully used as supplementary tools in a
discussion rationalizing the results of theoretical calculations.

A few alternative definitions of the valence and bond-indices
have been proposed in the literature, starting from the pioneering
attempts of Pauling,5,6 Coulson,7 and Wiberg,8 through Jug,9

Gopinathan,10 Mayer,11,12 Ciosłowski and Mixon,13 Glendening
and Weinhold,14 up to the recently developed two- and three-
electron indices of Nalewajski, Köster, Jug, and Mrozek.15–21

Most recently, new approaches for a description of chemical
bonds were proposed in the framework of information theory
of molecular systems.22,23

A known problem for the most commonly used population
analyses and popular bond indices is their basis set dependence

and their inadequacy in combination with extended basis sets.
This introduces a limitation in their applicability to the problems
involving transition metals, for which large basis sets (multiple-
zeta, polarization functions) have to be used to provide a
reasonable approximation for the wave function or electron
density distribution within the ab initio methods. Here, the
Nalewajski and Mrozek (N-M)16–21 approach seems to be
superior as it explicitly includes both, molecule and promolecule:
described in the same basis sets. Thus, the approach that we
will apply here allows one to use extended basis sets practically
without an influence on the results.

N-M valence and bond indices have recently been imple-
mented in the Amsterdam Density Functional (ADF) program.24

A main purpose of the present study was to demonstrate the
usefulness of the N-M16–21 bond-multiplicity indices in a
description of electronic structure of selected transition metal
(TM) complexes. In inorganic and organometallic chemistry it
is common to discuss the bond-strengthening/weakening in
terms of the bond shortening/elongation or the positive/negative
shifts in the vibrational frequencies for the bond-stretching
modes. In the present work we will present the calculated N-M
bond multiplicities for a variety of TM-based systems and
confront the results with experimental data. The example set
of TM complexes discussed here comprises the carbonyl
complexes (selected tetra- and hexacarbonyls, binary monocar-
bonyls of the first row TMs), phosphines, the trans-influence
of various ligands, as well as multiple metal-ligand and
metal-metal bonds.

A few alternative definitions16–21 of the two-electron valence
indices have evolved from the pioneering work by Nalewajski,
Köster, and Jug,15 as well as Nalewajski and Mrozek.16

Therefore, to avoid confusion we briefly summarize the alterna-
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tive sets of N-M valence and bond multiplicity indices and
comment on their physical meaning prior to the presentation of
the results for the TM-systems.

Theory and Computational Details. Nalewajski-Mrozek
Valence Indices. Two-electron valence indices have been
originally defined by Nalewajski and Mrozek16 by considering
changes in the pair-diagonal part of the two-electron density
matrix (i.e., two-electron probabilities) due to formation of the
molecule from isolated atoms. For a single-determinantal wave
functions they can be expressed in terms of the changes in the
molecular and promolecular charge-and-bond-order (CBO)
matrix (first-order density matrix), ∆P ) P-P0. A concept of
promolecule has been introduced here as a species corresponding
to the separated atom limit, constructed from noninteracting
atoms placed in their molecular positions. Thus, a promolecular
CBO matrix P0 is built from atomic CBO matrices and contains
vanishing interatomic (off-diagonal) blocks.

The original set of Nalewajski-Mrozek valence indices16 is
presented in the first column of Table 1 (1-4); we shall refer to
these indices as Set 1. It comprises the one- and two-center
contributions, both including the covalent (V(1),cov, V(2),cov), as
well as ionic (V(1),ion, V(2),ion) indices.

The sum of all the contributions over all atoms/atom pairs
leads to the overall valence value (eq 11),

V)∑
A

(VA
(1),ion +VA

(1),cov)+∑
A<

∑
B

(VAB
(2),ion +VAB

(2),cov)

(11)

apparently corresponding to the total number of all chemical
bonds in the molecule.19,20

It was later shown by Nalewajski et al.19–21 that the two-
center ionic valence indices cancel with part of the one-center
ionic valence indices, when the number of electrons in the
molecule and promolecule is the same. Thus, another set of the
valence indices corresponding to the same value of the overall
valence can be considered; this set is listed in the second column
of Table 1 (eqs 5–7); we shall refer to these indices as Set 2.
This set of indices was used in the previous applications of the
N-M theory.19–21

What follows from eqs 5-7 is that the overall valence can be
expressed as a trace of the 1/4 ∆P2 matrix. Further, it has been
shown20 for the spin-restricted case that

V) 1
4

Tr(∆P2)) 1
2

Tr(P∆P) (12a)

For the spin-unrestricted case the analogous expression reads:

V) 1
2

Tr[(∆PR)2+(∆P�)2])Tr[PR∆PR+P�∆P�]

(12b)

Thus, yet another alternative set of valence indices, correspond-
ing to the same value of the overall valence V, arises from the
right-hand side of 12a or 12b. This set is listed in the last column
of Table 1 (eqs 8–10); we shall refer to these indices as Set 3.
A decomposition of the total valence into the components of
eqs 8–10 is shown in Appendix 1. In Appendix 2 we apply the
valence indices of eqs 8–10 for the two-orbital bond model. It
is shown in this appendix that the N-M scheme reproduces the
expected, intuitive values of the bond multiplicities.

Bond Multiplicity from the Valence Indices. The valence
indices of Table 1 include one- and two-center contributions.
To construct bond multiplicity indices17,19–21 from the valence
indices one has to express the overall valence solely in terms
of diatomic contributions, V ) ΣAΣBbAB. This can be done by
splitting the one-center index of an atom among the bonds that
this atom forms. Thus, the bond multiplicity index can be
calculated as a sum of the relevant two-center part and weighted
contributions from one-center indices of the two atoms,19–21

bAB )VAB
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with the weighting factors
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Equation 13 can be applied for any of the alternative sets of
the valence indices. In all the cases V(1) ) V(1), ion + V(1), cov

and V(2) ) V(2), cov, except for Set 1 for which V(2) ) V(2), ion +
V(2)cov.

TABLE 1: Alternative Definitions of the Nalewajski-Mrozek Valence Indices12–17 Expressed in Terms of the Difference in
Molecular and Promolecular CBO Matrices, ∆P ) P-P0
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It should be pointed out that the way of dividing one-center
terms is arbitrary; one can define weighting factors wX

XY other
than those of eq 14. In the present study we will apply the
proportional weighting factors of eq 14, because they have been
shown19–21 to give bond multiplicities in agreement with
commonly accepted values for typical molecules.

A comment on terminology seems to be desired at this point. It
is common in chemistry to use the term “bond order”, when
referring to bond multiplicity. The term bond order was first
introduced by Coulson,7 also, in fact, referring to bond multiplicity
(“For a pure single bond such as ethane, the total order is 1; for a
pure double bond such as ethylene, the total order is 2; for a pure
triple bond such as acetylene, the total order is 3”). Original Coulson
bond orders evaluated within molecular orbital approach are linear
in density matrix elements. The N-M valence indices, and thus
bond multiplicities, are quadratic. Therefore, to avoid any confusion,
we will not use the term bond order in the present manuscript,
using “bond multiplicity” or “bond index” instead. However, it
should be emphasized that the calculated bond multiplicities
correspond to values that are very often called bond orders in
chemistry, see Appendix 2.

Valence Operator and Relation to the Deformation Density,
∆G. The right-hand side of eq 12a or 12b allows one to formally
identify20 the overall valence (V) as the expectation value of
the valence operator Vˆ in the basis �. Thus,

V) { Vi,j) 〈�i|V̂|�j〉 )
1
2

∆Pi,j} (15)

since in the one-electron approximation
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2
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2
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(16)

Thus, the valence operator can be formally written as the
difference between the projection operators in the molecule and
promolecule (eq 17).
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Such a definition of the chemical valence provides a link with
another basic quantity, commonly used to diagnose and visualize
the presence of a chemical bond: the deformation density
(differential density), ∆F.

∆F(r))∑
a

∑
b

∆Pab�a
/(r)�b(r) (18)

A Few Comments on the Arbitrariness and Basis-set
Dependence. One of the characteristics of the N-M theory is
that chemical valence is formulated as the changes in electron
pairing relative to a promolecular reference state. Thus, chemical
valence is a differential property. The presence of the promo-
lecular reference state obviously introduces arbitrariness in the
approach as there is no unique way to define an atom in a
molecule.3 It should be emphasized, however, that this arbitrari-
ness is in fact present in any approach; if one wants to define
bonds between atoms, then this implies that one has to define
atoms in a molecule. Although this problem is explicitly
considered in the N-M approach, it is also present in the most
popular Wiberg-related bond-index definitions (e.g., Gopinathan
and Jug,10 Mayer11). In these approaches an atom is identified

by the set of basis functions centered on its nucleus; this
introduces a strong basis-set dependence of these definitions.

In the present work an atom is identified by its atomic
Kohn-Sham orbitals and the corresponding P0 matrix obtained
from atomic calculations. Thus, it may be expected that the basis
set dependence (through the basis set dependence of the atomic
Kohn-Sham orbitals) should be less pronounced here.21

A further issue in defining bond multiplicty arises for ionic
species. Namely, the bond indices will contain a contribution
from the change in the number of electrons, ∆N if a neutral
(atomic) promolecule is assumed. This is a general problem with
a choice of promolecule that exists in any differential approach,
for example, in the case of the local density difference maps or
contours, commonly used to visualize chemical bonds. However,
it is worth emphasizing that the aforementioned contribution
from the change in the number of electrons for ionic species is
as well absorbed in other definitions of bond-multiplicity
measures, for example, in the Gopinathan-Jug or Mayer
approach, when the bond-indices are calculated based exclu-
sively on the P (or PS) matrix of the charged species.

Finally, the way in which one divides the one-center terms
between bonds (eqs 13 and 14) is arbitrary. As a result, bond
multiplicities calculated from the alternative sets of valence
indices may be slightly different, because the one- and two-
center contributions are different within each set, although they
all give the same value of the overall valence V. This problem
is more pronounced when the indices of Sets 1 and 2 are used
then in the case of Set 3, as the divided one-center contributions
are smaller in the latter definition. Thus, Set 3 originating from
Tr(P∆P) is least influenced by the arbitrariness in dividing one-
center contributions.

ADF Implementation. In the present account we present the
results obtained from our implementation of the N-M formal-
ism into the ADF program.24–28 The ADF program adopts a
fragment-based approach in the DFT calculations. Namely, the
Kohn-Sham orbitals of a molecular system are expressed in
the basis of the symmetrized fragment orbitals (SFO), that is,
the orthogonalized Kohn-Sham orbitals of smaller fragments.
In standard calculations these fragments correspond to the atoms,
that is, the basis consists of converged atomic Kohn-Sham
orbitals calculated with the same computational details as for
molecular calculations. Thus, unlike in other quantum chemical
programs, calculating N-M valence indices does not require
extra atomic calculations in ADF.

As in previous applications of the N-M theory,19–21 we
assume that the promolecule is built from noninteracting,
isolated fragments. Thus, in the basis of the fragment
Kohn-Sham orbitals, the promolecule CBO matrix is diagonal,
Pij

0 ) 0 and ∆Pij )Pij for * j.
For molecules built from the open-shell atoms, the one-center

valence index is calculated as an average value from all
equivalent electronic configurations of an atom. This is done
by changing occupations of the open-shell orbitals, determined
for average configuration with fractional occupations. Such an
approach introduces a negligible error.21

Computational Details. In all DFT calculations the Becke-
Perdew exchange-correlation functional29–31 was used. A stan-
dard double-� STO basis with one set of polarization functions
was applied for main-group elements (H, C, N, O, S), and a
standard triple-� basis set was employed for the transition metals.
The 1s electrons of C, N, O, 1s-2p electrons of P, S, as well
as the 1s-2p (1s-3d) electrons of the first row (second row)
transition metals were treated as frozen core. Auxiliary s, p, d,
f, and g STO functions, centered on all nuclei, were used to fit
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the electron density and to obtain accurate Coulomb potential
in each SCF cycle. The bond multiplicities calculated from the
Set 2 N-M valence indices will be presented in the article. In
general, Sets 2 and 3 lead to similar bond-multiplicity values,
close to the chemist’s intuition, whereas Set 1 often visibly
differs from the other two, especially for charged species.

Results and Discussion

In the following we will present the bond multiplicities
calculated by the N-M method for selected transition-metal
complexes. First the results for “classical” carbonyl complexes
will be presented, then the trans influence of the ligands will
be discussed, and, finally, examples of the complexes with the
multiple metal-ligand and metal-metal bonds will be explored.

Carbon Monoxide and the Binary Transition Metal-
Carbonyls. Carbonyl complexes are among the best-known
transition metal-based systems; they are common starting
material in the synthesis of other complexes and are also used
as probes for determining the electronic structure of organo-
metallicspecies.32 Chemicalbondingintransitionmetal-carbonyls
has been extensively studied by numerous theoretical methods.33

The calculated bond-multiplicity values for the neutral
ground-state of the carbon monoxide, its cation and the excited
state (triplet) are collected in Table 2, together with the
experimental values of the CO vibrational frequencies.32 The
CO molecule according to the N-M method has practically a
“pure” triple bond (bond-index of 3.04). The method predicts
an increase in the CO bond multiplicity in the cation (3.21)
and a decrease in the excited state (2.66). Thus, calculated bond
indices correctly reflect the trend observed in the experimental
vibrational frequencies: 2143, 2184, 1715 cm-1, for the neutral
CO, CO+, and triplet CO*, respectively.

Figure 1 collects the calculated bond indices for the first row,
neutral (MCO), cationic (MCO+), and anionic (MCO-) binary
carbonyls of the first row transition metals. Experimental and
theoretical data for these species have been discussed in detail
in the review by Zhou, Andrews and Bauschlicher.34 The CO
bond in the binary carbonyls varies between “double” and
“triple” bond (bond multiplicity changes from 2.1 in ScCO- to
2.8 in CuCO+). In the neutral binary carbonyls the CO bond
multiplicity changes between 2.2 (ScCO) and 2.7 (CuCO); it

first increases from Sc to Cr (2.6) and then decreases from Cr
to Ni (2.4) to reach a maximal value for CuCO (2.7). A similar
trend is observed for cationic carbonyls. Here, however, the bond
indices are, in general, higher than for neutral molecules,
changing from 2.1 in ScCo+ to 2.8 in CuCO+, with a local
maximum for CrCO+ (2.75). For anions, the minimal value is
observed for ScCO- (2.1), with the maximal for CuCO- (2.5);
the local maxima are obtained for CrCO- (2.3) and CoCO-

(2.45). Figure 1 reproduces general features of the experimental
CO vibrational frequencies collected in ref 27, the lowest
frequency has been observed for ScCO- (1732 cm-1), and the
highest for CuCO+ (2230 cm-1); the experimental frequencies
for neutral and charged species also exhibit an initial increase
from Sc to Cr/V, followed by a decrease and local minimum.34

Selected Tetra- and Hexacarbonyls of Transition Metals.
The calculated bond multiplicities for a series of tetrahedral d6

tetracarbonyl complexes, Ni(CO)4, Co(CO)4
-, Fe(CO)4

2-, and
selected octahedral d10 hexacarbonyls, Mn(CO)6

+, Cr(CO)6,
Mo(CO)6, Mn(CO)6

-, are collected in Table 3, together with
experimental CO vibrational frequencies.32 In a series of
tetracarbonyls the CO bond index decreases from 2.4 for Ni to
2.0 for Fe; this reflects a decrease in the CO stretching
frequencies (from 2060 to 1790 cm-1) observed experimentally.
Similarly, for hexacarbonyls, the CO bond multiplicity is highest
for Mn (2.6) and is lowest for V (2.2), as reflected by changes

TABLE 2: Calculated Bond Multiplicities and Experimental
Vibrational Frequencies28 for Carbon Monoxide

species configuration frequency [cm-1] bond multiplicity

CO (5σ)2 2143 3.04
CO+ (5σ)1 2184 3.21
CO* (triplet) (5σ)1(2π)1 1715 2.66

Figure 1. Calculated C-O bond multiplicities for neutral, cationic,
and anionic binary carbonyl complexes of the first-row transition-
metals.

TABLE 3: Calculated Bond Multiplicities, Bond Lenghts
and Experimental Vibrational Frequencies28 for CO Bonds in
Selected Tetra- and Hexacarbonyl Complexes

species
frequency

[cm-1]
bond

length [A]
bond

multiplicity

d10 Ni(CO)4 2060 1.150 2.52
[Co(CO)4]- 1890 1.176 2.26
[Fe(CO)4]-2 1790 1.207 2.06

d6 [Mn(CO)6]+ 2090 1.139 2.56
Mo(CO)6 2010 1.154 2.46
Cr(CO)6 2000 1.156 2.45
[V(CO)6]- 1860 1.178 2.24

Figure 2. Calculated C-O bond multiplicities as a function of the
experimental C-O stretching vibrational frequencies for selected tetra-
and hexacarbonyl complexes. Experimental frequencies taken from
ref.28

TABLE 4: Calculated Bond Multiplicities for CO Bond in
Selected Ni(CO)3R Phosphines

R bond multiplicity

P(CH3)3 2.43
P(C6H5)3 2.44
P(OCH3)3 2.45
P(OC6H5)3 2.47
PCl3 2.51
PF3 2.51
CO 2.52
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in experimental frequencies (from 2090 to 1860 cm-1). The
investigated complexes are collected in Figure 2, in the
calculated bond multiplicity versus experimental CO frequency
plot. The figure shows almost perfect linear correlation (R2 )
0.99) between CO bond indices and their stretching frequencies.

As should be expected, the changes in bond multiplicity are
reflecting the changes in the bond-length. For the carbonyl
complexes studied here we have included C-O distances in Table
3. The shortest CO bond in [Mn(CO)6]+ (1.139 A) corresponds to
the largest bond multiplicity (2.6), and the longest bond in
[Fe(CO)4]-2 (1.206 A) is characterized by the smallest value (2.1).
Thus, the N-M scheme can be seen as a useful method for relating
changes in bond-distances to changes in bond multiplicity. It is
clear that the accuracy of geometry optimization will directly
influence calculated values of bond indices.

Another “textbook” example of a well-known set of carbonyl
complexes are the Tolman phosphines, Ni(CO)3(PR3).35–37 The
bond multiplicity calculated for this set are listed in Table 4. It
is known from experimental trend in the CO stretching
frequencies that the phosphine ligand decreases the CO bond
multiplicity, the effect is highest for R ) P(CH3)3 > P(C6H5)3

> P(OCH3)3 > P(OC6H5)3 > PCl3 > PF3.35–37 Despite small
variations in the CO bond indices in this series (2.43-2.50),
the trend is still very well reproduced by calculated values for
all the complexes.

Finally, we would like to address the issue of the basis set
influence on the N-M bond multiplicities calculated for the
transition metal complexes. Table 5 presents the values of the
N-M bond indices for the example carbonyl complexes
discussed above, Ni(CO)4, Cr(CO)6, and the carbon monoxide
molecule calculated with different basis set quality and the
frozen core level; the Mayer bond-orders were, in addition,
calculated for comparison. To exclude the effect of the geometry
change, all the values in Table 5 were determined for the same
geometry of a given molecule, optimized at the level applied
in the preset study as default (TZP/1s-2p for the metal and
DZP/1s for C, O). The results clearly show that there is a very
small basis set effect. This is true for the values describing C-O
bond as well as the metal-carbon bond. The calculated values
of the N-M bond multiplicities are very stable with respect to
basis set and the frozen core approximation; the variations in
the N-M values are much smaller than for the Mayer bond

orders; the latter approach appears to be quite sensitive for the
changes in the frozen core level.

The Trans Influence of the Ligands. It is know that some
ligands cause a more pronounced weakening of the bond in the
trans position than other ligands; this effect is usually called
the trans influence. The well-established order of the trans
influence for different ligands is: H- > CN- > Cl- > OH- >
CO; here “>” indicates stronger trans influence, that is, larger
weakening of the bond in the trans position.38,39

To demonstrate the usefulness of the N-M bond multiplicities
in a description of the trans influence, we have performed DFT
calculations for the two isomers the of square-planar
[Ni(NH3)2Cl2]2+ complex and the series of [Ni(NH3)2L2]2+

complexes with L ) H-, CN-, Cl-, OH-, CO. The results are
presented in Figure 3.

Figure 3 shows the Ni-Cl and Ni-N bond multiplicities in
the cis and trans isomers of [Ni(NH3)2Cl2]2+. The Ni-Cl bond
index in the trans position to the NH3 ligand is 0.94, and in the
trans position to another Cl- ligand it is 0.84. Similarly, the
Ni-N bond multiplicity in the trans position to the NH3 ligand
is 0.56, and in the trans position to the Cl- ligand it is 0.47.
Thus, the Cl- ligand causes a more pronounced weakening of
the trans metal-ligand bond than the NH3 ligand.

The table in Figure 3 lists the Ni-N bond in the trans
[Ni(NH3)2L2]2+ complexes with L ) H-, CN-, Cl-, OH-, and

TABLE 5: Basis Set Dependence of the N-M Bond Multiplicities for Ni(CO)4, Cr(CO)6 and CO; Mayer Bond Multiplicities
Are Shown for Comparison

basis set/frozen core level C-O bond multiplicity metal-C bond multiplicity

moleculea C, O metal N-M Mayer N-M Mayer

Ni(CO)4 TZP/all el. TZP/all el. 2.54 2.24 0.56 1.01
DZP/all el. TZP/all el. 2.52 2.14 0.56 0.96
DZ/all el. TZP/all el. 2.50 2.12 0.57 0.95
SZ/all el. TZP/all el. 2.52 2.40 0.66 1.00
DZP/1s TZP/1s-2p 2.52 1.83 0.55 0.75
DZP/1s TZP/1s-3p 2.54 1.91 0.53 0.80

Cr(CO)6 TZP/all el. TZP/all el. 2.47 2.15 0.80 0.98
DZP/all el. TZP/all el. 2.46 2.11 0.81 0.87
DZ/all el. TZP/all el. 2.43 2.10 0.80 0.86
SZ/all el. TZP/all el. 2.44 2.33 0.83 1.02
DZP/1s TZP/1s-2p 2.45 1.88 0.81 0.49
DZP/1s TZP/1s-3p 2.47 1.91 0.81 0.54

CO TZP/all el. 3.05 2.34
DZP/all el. 3.04 2.28
DZ/all el. 3.02 2.18
SZ/all el. 2.97 2.58
DZP/1s 3.04 2.15
DZ/1s 3.01 2.08

a For each case the same geometry was used, optimized with TZP/1s-2p basis for the metal and DZP/1s for CO basis set/frozen core level.

Figure 3. Calculated Ni-N and Ni-Cl bond multiplicities in the
tetracarbonyl complexes illustrating the trans influence of the ligands.
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CO. The Ni-N bond-index is smallest for the [Ni(NH3)2H2]
complex (0.31) and strongest for [Ni(NH3)2(CO)2]2+ (0.51). The
trend of the calculated Ni-N bond multiplicity corresponds to
the known trans influence ligands’ order: H- > CN- > Cl- >
OH- > CO.

Multiple Metal-Ligand Bonds: Oxo and Nitrido Complexes.
Asexamplesofthemultiplemetal-ligandbonds, themetal-oxygen
and metal-nitrogen bond multiplicties in the selected oxo and
nitrido complexes will be discussed here. The first set are the
chromium complexes [CrOnCl4-n]2-, n ) 1, 4. Figure 4
summarizes calculated Cr-O bond indices and the experimen-
tal40 Cr-O vibrational frequencies. The Cr-O bond multiplicty
changes between 1.65 for tetra-oxo species and 2.14 for the
mono-oxo complex. The increasing number of oxygen ligands
results in weakening of the metal-oxygen bond, in agreement
with experimental results. Again, the bond multiplicity versus
frequency plot exhibit almost perfect linear correlation (R2 )
0.995).

As another example of the metal-oxygen multiple bonds,
we present the osmium oxo-nitrido complex [OsO3N]-, Figure
5. For this system, unusually low Os-N vibrational frequencies
were experimentally observed.39 The calculated Os-N and
Os-O bond-indices are 2.18 and 1.49, respectively. Thus, the
Os-N bond is rather a double bond, than a triple bond. Thus,
the calculated bond multiplicities explains the relatively low
experimental frequency of the metal-nitrogen bond. For
comparison, we present the results for other osmium nitrido
complexes, [OsBr4N]-, [OsCl4N]-, and [OsCl5N]-. In these
complexes the metal-nitrogen bond multiplicity is ca. 2.9 (triple
bond), and the frequencies vary between 1073 cm-1 and 1123
cm-1. Here, small changes in the calculated bond indices (2.85,
2.87, and 2.89, for [OsBr4N]- [OsCl4N]-, and [OsCl5N]-, re-
spectively) do not reflect the variation in the frequencies (1119,
1123, and 1073 cm-1, in the same order). However, the
qualitative difference between [OsO3N]- and the remaining
systems demonstrate the usefulness of the N-M bond multi-
plictes in a description of the metal-ligand multiple bonds.

Metal-Oxygen Bonds in the Molybdenum Trioxide Solid.
An interesting example of the variation in the metal-oxygen
bonds is the crystal structure of MoO3 (Figure 6a) in which the

octahedral coordination around the metal is strongly distorted,
leading to three types of metal-oxygen bonds, characterized
by short (1.68, 1.73 A), intermediate (1.94 A), or long (2.25,
2.33 A) Mo-O distances.41 The N-M Mo-O bond indices
calculated for the cluster model of MoO3, Mo7O30H18, used in
previous studies,42 are shown in Figure 6b. The bond multiplicity
changes from 1.7 and 2.1 for the shortest bonds (double),
through 0.8 (single), down to 0.2 (weak ionic interactions). This
picture is fully consistent with the deformation-density maps
(differential density) previously published42 that clearly dif-
ferentiate the three types of Mo-O interactions.

Multiple Metal-Metal Bonds. Multiple metal-metal bonds
have attracted special attention in the literature and lead to many
controversies.43–49 As the simplest molecule exhibiting the
metal-metal multiple bond we studied Cr2, for which the N-M
method gives the bond-index of 6.01. This comes as a result of
the d5s1 electronic configuration of Cr, leading to the two σ,
two π, and two δ components of the bond in Cr2.

Among the most controversial system is the [Re2Cl8]2-complex
(Figure 7), discovered by Cotton in the 1960s, for which the
quadruple Re-Re bond was postulated.43–45 The metal-metal bond
multiplicity in this system has been the subject of many recent
theoretical studies.46–49 Here we have applied the N-M bond-index
to describe the metal-metal bond in the [Re2Cl8]2- complex and
related systems: [Mo2Cl8]4-, [Cr2Cl8]4-, and [Re2H8]2 complexes.

The metal-metal bond-multiplicity values calculated for the
aforementioned complexes are listed in Figure 7. The Re-Re
bond index in [Re2Cl8]2- is 2.9 (triple bond). In the related
molybdenum and chromium complexes the corresponding value

Figure 4. Calculated Cr-O bond multiplicities in the oxo-complexes
[CrOnCl4-n], n ) 1,4. Experimental frequencies are taken from ref 36.

Figure 5. Calculated Os-N bond multiplicities in the selected nitrido
complexes. Experimental frequencies are taken from ref 36.

Figure 6. Structure of MoO3 and the cluster modeling the (010)-MoO3

surface (panel a). Mo-O bond-lengths and the corresponding N-M
bond multiplicities (panel b)
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is much larger (3.6, 3.7), approaching that of a quadruple bond.
In the [Re2H8]2- complex in the eclipsed conformation the bond
multiplicity is increased to 3.4. This indicates that a weakening
of the Re-Re bond in [Re2Cl8]2- results from a competition
between Cl ligands and the other metal for the metal π-orbitals.

Concluding Remarks. In this study we have applied the
N-M bond-multiplicity indices, as implemented into the ADF
program, to a description of chemical bonding in various
transition metal complexes. The differential nature of the N-M
bond indices makes them less sensitive to extended basis sets
as both molecule and promolecule are described in the same
basis. Further, this approach includes both covalent and ionic
contributions. The results demonstrate that this methodology
indeed leads to bond multiplicities that correspond to chemical
intuition. Further, computed bond multiplicities exhibit the trends
reflecting changes in experimental vibrational frequencies. The
N-M method is, in addition, useful in translating the changes
in bond distances into variations in bond multiplicities. Thus,
it may be concluded that the N-M bond-indices can be very
useful as a supplementary tool for the analysis of the electronic
structure of transition metal-based systems.

Acknowledgment. This work was supported by a research
grant from the Ministry of Education and Science in Poland
(1130-T09-2005-28). T. Z. thanks the Canadian Government
for a Canada Research Chair. R. D. K. thanks the Donors of
the American Chemical Society Petroleum Research Fund for
partial support of this research.

Appendix 1

Deriviation of the P∆P-based Valence Indices. Let us first
assume the spin-restricted case. The overall valence, V, given
by 1/2Tr(P∆P) may be decomposed as:
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In the spin-unrestricted case the contributions from both spin-
components have to be included. An analogous decomposition
leads to the indices defined by 8–10 (Table 1). It should be
pointed out that in the spin-unrestricted equations the factor of
2 appears, compared to the spin-restricted indices of eq A1,
since, for the spin-restricted case P ) PR+ P� ) 2PR ) 2P�

and ∆P ) ∆PR + ∆P�, and thus

Tr(PR∆PR+P�∆P�))Tr([1
2

P]∆PR+[1
2

P]∆P�)
)Tr([1

2
P][∆PR+∆P�))Tr

(1
2

P∆P)) 1
2

Tr(P∆P) (A2)

Appendix 2

Two-orbital Bond Model. In a “classical” molecular orbital
picture for the two-orbital system (Scheme A1), two molec-
ular orbitals φ+, φ- (four spin-orbitals, φ+, R, φ+, �, φ-, R,
φ

-, �) are expressed as a combination of two atomic (fragment)
orbitals, �x, �s;

�+,σ ) sin θ�r
σ + cos θ�s

σ, �-,σ )-sinθ�r+cosθ�s, σ)

R, � (A3)

The intuitive way of defining the bond multiplicity is as the
difference in the bonding and antibonding electron-pairs: b )
(n-n*)/2. In the following we consider the typical two-orbital
cases, shown in Scheme A1, calculating the N-M bond indices
as follows.

Tr(PR∆PR+P�∆P�))Pr,r
R ∆Pr,r

R +Pr,r
� ∆Pr,r

� +Ps,s
R ∆Ps,s

R +

Ps,s
� ∆Ps,s

� +Pr,s
R ∆Pr,s

R +Pr,s
� ∆Pr,s

� +Ps,r
R ∆Ps,r

R +Ps,r
� ∆Ps,r

� (A4)

Two Noninteracting (Nonbonding) Orbitals (Scheme A1a).
In this case cos(θ) ) 1, sin(θ) ) 0, and Pr,r

R ) Pr,r
R,0 )1, Pr,r

� )
Pr,r

�,0 ) 1; Ps,x
σ ) Ps,x

σ,0 ) 0 for x ) r,s and σ ) R,�. Thus, each
element of the ∆P matrix is 0, and the bond multiplicity of eq
A4 is b ) 0.

Figure 7. Calculated metal-metal bond multiplicities in the selected
complexes (atomic resolution, atom-atom bond indices, see text).

SCHEME A1: Two-orbital Bond Model
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Two-orbital Two-lectron Bond (Scheme A1b). In this case
0 < cos θ < 1, and 0 < sin θ < 1. Thus, Pr,r

R ) Pr,r
� ) cos2 θ,

Ps,s
R ) Ps,s

� ) sin2 θ and Pr,s
R ) Ps,rR ) Pr,s

� ) Ps,r
� ) sin θ cos

θ.
In the diagram of Scheme A1b, both atomic orbitals were

initially occupied by one electron with opposite spin, Pr,r
R,0 )

Ps,s
�,0 ) 1, and the remaining elements of the promolecular P0,σ

vanish. This leads to the following values of ∆P matrix: ∆Pr,r
R

) cos2 θ - 1, ∆Pr,r
� ) cos2 θ, ∆Ps,s

R ) sin2 θ, ∆Ps,s
� ) sin2 θ -

1, and ∆Pr,s
R ) ∆Ps,r

R ) ∆Pr,s
� ) ∆Ps,r

� ) sin θ cos θ. Using this
values, expression A4 leads to the bond multiplicity b ) 1, in
agreement with the intuitive description.

Two-electron Dative Bond (Scheme A1c). The elements of
the molecular PR and P� matrices are the same as in the previous
case. However, in this case we assume that in the promolecule
both electrons are located in one atomic orbital. For example,
in the case of the diagram of Scheme A1c: Pr,r

R,0 ) Pr,r
�,0 ) 1 and

Ps,s
R,0 ) Ps,s

�,0 ) 0. Thus, the ∆P matrix has the following elements:
∆Pr,r

R ) cos2 θ -1, ∆Pr,r
� ) cos2 θ - 1, ∆Ps,s

R ) sin2 θ, ∆Ps,s
�

) sin2 θ, and ∆Pr,s
R ) ∆Ps,r

R ) ∆Pr,s
� ) ∆Ps,r

� ) sin θ cos θ.
With such a definition of the promolecule, eq A4 leads to bond
index b ) 2(1 - cos2 θ).

It can be easily shown that assuming both electrons initially
located on the other orbital (Scheme A1d), that is, Ps,s

R,0 ) Ps,s
�,0

) 1 and Pr,r
R,0 ) Pr,r

�,0 ) 0, leads to bond index b ) 2(1 - sin2

θ).
Thus, although in Schemes A1b-d the same bonding

molecular orbital is doubly occupied, we obtained different bond
multiplicity values for three sets of initial occupations of atomic
orbitals, b ) 1, b ) 2(1 - cos2 θ), or b ) 2(1 - sin2 θ), for
(1,1), (0,2), and (2,0) occupations on the two atomic orbitals,
respectively. It may seem to be a bit problematic that the bond
index depends on the initial occupations. However, this example
nicely emphasizes the intrinsic dependence of the N-M bond
multiplicities on the reference state. The meaning of “bond” is
different in the three cases: it is either the bond between atoms
or the bond between ions. Any quantitative description of the
bond depends on what is bound by this bond. This is analogous
to the bond dissociation energy, for instance, that obviously
depends on the assumed dissociation limit (radical, ionic, etc.).

Two-orbital Four-electron Case (Scheme A1d). In this case
0 < cos θ < 1 and 0 < sin θ < 1, both bonding and antibonding
orbital are doubly occupied. Thus, Pr,r

R ) Pr,r
� ) cos2 θ + sin2

θ ) 1, Ps,s
R ) Ps,s

� ) 1 and Pr,s
R ) Ps,r

R ) Pr,s
� ) Ps,r

� ) 0. In the
promolecule, both atomic orbitals are doubly occupied, Pr,r

R,0 )
Pr,r

�,0 ) Ps,s
R,0 ) Ps,s

�,0 ) 1, so all the elements of the ∆P matrix
vanish, and the total bond multiplicity is 0, in agreement with
the intuitive value.
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