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The cross-exchange electron-transfer rate constant expression of Marcus is derived from the Flux-force
formalism of non-equilibrium thermodynamics. The relationship governing the Onsager’s phenomenological
coefficients for cross-exchange and self-exchange electron-transfer processes is deduced. Onsager’s
phenomenological coefficient pertaining to the Butler-Volmer equation is derived and estimated from the
experimental exchange current densities. The correlation between the heterogeneous and the homogeneous
electron-transfer rate constants derived by Marcus is analyzed in terms of the corresponding phenomenological
coefficients.

1. Introduction

The estimation of cross-exchange electron-transfer rate
constants using the constituent self-exchange rate constants
occupies a pivotal role in the theory of reaction rates in view
of its extensive validity.1,2 The cross-exchange rate constantk12

for a redox reaction is related to the self-exchange rate constants
k11 andk22 as

where K12 denotes the equilibrium constant of the cross-
exchange electron-transfer process whilef12 andW12 consist of
various work terms involving the reactants and products. If it
is assumed thatf12 ) 1 andW12 ) 1 as is customary, a simplified
equation

arises, thus enabling the estimation of the cross-exchange rate
constants without any adjustable parameters. The validity of
eq 2 has been extensively investigated for diverse types of
reactions3 and is particularly valuable when one of the two self-
exchange rate constants is difficult to measure.4

In general, eq 2 is considered as a linear free energy relation
on account of the linear dependence of the activation free energy
upon the standard Gibbs free energy change. The original
formalism of Marcus1 leading to eq 1 is based upon statistical
mechanical considerations in conjunction with classical elec-
trostatics; however, several subsequent attempts have been made
in order to analyze the functional dependence of the activation
energy on the intrinsic barrier and reaction coordinate vis a vis
progress variable. Notable among them are the investigations
of Rehm and Weller,5 Agmon and Levine,6 Thornton,7 and
Murdoch.8 It is of interest to note that the exponent to which
the equilibrium constant in eq 2 is raised need not always be
equal to9,10 0.5. A noteworthy feature of the Marcus formalism
underlying eq 1 is that its basic premise holds good not only
for electron transfer but also for methyl transfer,11 hydride
transfer,12 proton transfer,13 and so forth. Further, the correlation

of the self-exchange rate constant with the electron-transfer rate
constant at electrode surfaces has also been deduced by Marcus.1

The objectives of this manuscript are (i) to deduce the cross
exchange electron-transfer rate constant of Marcus from On-
sager’s nonequilibrium thermodynamics formalism, (ii) to derive
and estimate the Onsager’s phenomenological coefficient for
electron transfer at electrode surfaces, and (iii) to analyze the
correlation between self-exchange and heterogeneous rate
constants in terms of the phenomenological coefficients.

2. Nonequilibrium Thermodynamics Formalism for
Cross-Exchange Electron-Transfer Reactions

The description of chemical kinetic schemes using nonequi-
librium thermodynamics concepts has profound significance
insofar as it provides a general framework in a unified manner.
For example, the importance of fluctuations from equilibrium
states and the concept of coupled and noncoupled biochemical
reactions are elegantly brought about solely from the magnitude
of Onsager’s phenomenological coefficients.14-16

2.1. Chemical Kinetics Description of Cross-Exchange
Electron-Transfer Reactions. Consider the cross-exchange
electron-transfer reaction represented as

whereA1 andB2 represent the two redox couples while r and p
denote the reactant and product states. Analogously, the
constituent self-exchange reactions are as follows:

The equilibrium constant for the cross-exchange reaction is
given by
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The velocity of reaction 3 is

wherek12 is the cross-exchange electron-transfer rate constant.
In nonequilibrium thermodynamics formalism for chemical
kinetics, it is customary to introduce the departure from
equilibrium concentrations of the species involved in the
reaction. Consequently, eq 5 becomes

SinceV12
eq ) k12CA1

req CB2
req, we may write

For small departures from equilibrium, namely,RA1
r/CA1

req , 1
andRB2

r/CB2
req , 1, the above equation can be approximated as

This equation is analogous to the velocity expression for a first-
order reaction.14

2.2. Onsager’s Flux-Force Formalism for Cross-Ex-
change Electron-Transfer Reactions.In order to obtain new
insights provided by nonequilibrium thermodynamic concepts,
it is customary to consider the same reaction using the flux-
force formalism of Onsager as has been discussed for first-order
reactions.15

2.2.1. Identification of Onsager’s Phenomenological Coef-
ficients.The affinity of reaction 3 is defined as16

whereµA1
r, µB2

r, and so forth denote the chemical potentials of
the indicated species. Since the liquid-phase reactions are
considered herein, we may employ the concentrations of the
species. Consequently, we write the chemical potential forA1

r

as

if we neglect the activity coefficient corrections. Analogous
equations hold good forµB2

r, µA1
p, andµB2

p Thus, the affinity of
the reaction becomes

Introducing the departure from the equilibrium concentrations
RA1

r/CA1
r

eq, and so forth, we obtain

However, at equilibrium,

For near-equilibrium conditions, we may expand the logarithmic
terms and neglect terms other than linear as is customary in the
nonequilibrium thermodynamics description of chemical kinet-
ics.15 Consequently, eq 9 becomes

Since reaction 3 is considered to be an irreversible process (cf.
eq A29 of Marcus1), the above equation becomes

Since the velocity is linearly related to the affinity in the linear
flux-force formalism, we may write

However at equilibrium,A12 ) 0; hence, (V12 - V12
eq) ) L12A12.

Hence,

Comparing eqs 6 and 11, we obtain

This equation is reminiscent of the Onsager’s coefficient for
reversible first-order reaction wherein17 L ) k1Cx

eq/RTwith k1

denoting the forward rate constant. In an analogous manner,
Onsager’s coefficients for the two self-exchange reactions may
be written as

and

2.2.2. Relation among Onsager’s Phenomenological Coef-
ficients for Cross-Exchange Electron-Transfer Reactions.Since
the cross-exchange reaction is composed of the two self-
exchange reactions and if the principle of microscopic revers-
ibility is valid in this context,
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which implies that

Thus

Substituting the appropriate expressions forL’s in terms of
rate constants, we obtain

which is identical with eq 2, arising from the Marcus theory.1

3. Nonequilibrium Thermodynamics Formalism for
Electron Transfer at Electrode Surfaces

The current-potential response of electron-transfer processes
at electrode surfaces is customarily represented by the Butler-
Volmer equation18 containing the standard exchange current
density and transfer coefficient (or symmetry factor). The
conventional formulation of the same relies upon the influence
of the applied potential on the energy states of the reactant and
product. It is of interest to investigate whether the Butler-
Volmer equation has a nonequilibrium thermodynamic basis.
This aspect will then enable the comprehension of the correlation
proposed by Marcus1 between the heterogeneous and the self-
exchange rate constants.

3.1. Butler-Volmer Equation from the Concept of Af-
finity. In order to identify the Onsager’s phenomenological
coefficient for electron transfer at electrode surfaces, it is
imperative to reformulate the Butler-Volmer equation from the
perspective of nonequilibrium thermodynamics incorporating
the concept of the affinity as shown below:

For a typical electron-transfer reaction19 such as

the net currenti is given in terms of the velocityV as

andAel denotes the area of the electrode. (Ael is denoted as the
area of the electrode in order to avoid ambiguity with the symbol
for affinity.) Further, the velocity of the forward (reduction)
and backward (oxidation) reactions are

whereCOx andCRed are assumed to be the bulk concentrations
of the respective species (ignoring mass transfer limitations).

The potential-dependent rate constants for forward and
backward reactions may be represented as

and

where kB and h denote the Boltzmann constant and Planck
constant respectively. It is customary to introduce the symmetry
factorR which incorporates the influence of the applied potential
on the activation energy barrier. Consequently, the Gibbs free
energies of activation are

and

for the reduction and oxidation respectively. The standard
heterogeneous rate constantkf,0 which refers to the rate constant
at the equilibrium potentialEe is given by

Hence, we may write the rate constants as

and

Substituting the values ofkf(E) andkb(E) from eqs 29 and 30,
the velocities become

and

In the above, (E - Ee) > 0. Since the experimental parameter
conventionally measured is the standard exchange current
densityi0/Ael, it follows that

While the foregoing equations are well-known,19 in order to
identify L, we introduce the concept of the affinity for electron
transfer at electrode surfaces. The velocities are related to the
affinity as20

and by substituting the expressions for vf and vb, the above
equation becomes

Interestingly, the above functional form of exp(A/RT) arises
only in the case of electron transfer at electrode surfaces, which
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is a consequence of the exponential dependence of the rate
constant on applied potential.

Furthermore, by using eq 34, the net velocityV may be
rewritten as

Thus,

We recall that the above equation is essentially the Butler-
Volmer equation rephrased in a different manner. Obviously,

Substituting the values ofVf andVb from eqs 31 and 32,

Although the above equation could have been written directly,
the detailed steps indicate the manner in which the velocity is
related to the affinity for electrochemical reactions and the
composition of the affinity in terms of the potential-dependent
rate constants. It is of interest to point out that the affinity can
also be written in terms of the electrochemical potentials of the
oxidized and reduced species, resulting in the Butler-Volmer
equation (cf. Appendix A). A similar strategy has been adopted
elsewhere to derive diffusion migration equations arising in
redox polymer electrodes21,22

3.2. Identification of the Onsager’s Phenomenological
Coefficient for Electron Transfer at Electrode Surfaces.In
order to identify the Onsager’s phenomenological coefficientL
pertaining to electron transfer at electrodes, we employ the linear
dependence23 of the net velocity onL, namely,

Hence,

using eq 20. Substituting the expression for the affinity from
eq 35, we obtain

On comparing the above equation with eq 39, it follows that

wherei0 is given by eq 33. As anticipated,L is independent of
the driving force and is a constant for a given reaction under
chosen experimental conditions (constant temperature and
constantn).

We emphasize that, bypassing the above detailed analysis,
the composition ofL could have been written directly from the

well-known expression forL pertaining to reversible first-order
homogeneous reactions. From eq 3.1 of ref 15 for a reversible

first-order reaction such asX98
k1

k-1
Y, the Onsager’s coefficient

Lhomo is given as

whereCX
eq denotes the equilibrium concentration of X. In the

case of the present formulation for the heterogeneous reactions
at electrode surfaces, we need to incorporate the heterogeneous
rate constantkf as given by

Replacingk1 of eq 44 bykf of eq 45, we obtain

Employing the exchange current densityi0/Ael, the above
equation becomes

which is identical with eq 43 derived earlier from the first
principles.

3.3. Estimation of Onsager’s Coefficient from Electrode
Kinetic Data. It is of interest to verify the validity of eq 43 for
electron-transfer reactions at electrodes. For this purpose, the
experimental data pertaining to the dependence ofi0 on
temperature is required. Such measurements are conventionally
obtained from Tafel polarization studies24 and a few typical
reactions are considered for illustrative purposes in Table 1.
From the constancy ofL as demonstrated in Table 1, it follows
that, whenever the temperature-dependence of electrochemical
reactions is studied,L is a more suitable parameter in view of
its constancy. In cases whereL is not a constant, it may indicate
a change in the mechanism of the reaction.

Figure 1 depicts the constancy of the Onsager’s coefficients
calculated from eq 43 for the electrochemical reactions listed
in Table 1.

4. Correlation between Homogeneous Self-Exchange and
Heterogeneous Electron-Transfer Rate Constants

As deduced by Marcus,1 the self-exchange rate constant is
related to the heterogeneous electron-transfer rate constant at
electrode surfaces by

where Zf and Z11 denote the collision frequency factors for
heterogeneous and self-exchange reactions, respectively. In order
to obtain insight into the above correlation from the perspective
of nonequilibrium thermodynamics, we employ the appropriate
expressions for the Onsager’s coefficients in terms of the
corresponding rate constants. We recall that the Onsager’s
coefficient for self-exchange and heterogeneous rate constants
are given respectively by eqs 14 and 46. From these equations,
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The left-hand sides of eqs 47 and 48 are identical, and for
the right-hand sides to be equivalent, we need to identify the
right-hand side of eq 48 asZf/(Z11)1/2, namely,

Thus, the correlation between heterogeneous and homogeneous
electron-transfer rate constants arising from the Marcus theory1

implies inter alia, eq 49 relating the Onsager coefficients to the
appropriate frequency factors. In contrast to the eq 2 which arises
from an equality among the Onsager’s coefficients as given by
eq 17, a firm theoretical basis underlying eq 49 is not obvious
and requires further investigation. Presumably, rationalizing the
above equation may require formulating the Onsager’s coef-
ficients in terms of parameters arising from the collision theory
of reaction rates from the first principles.

5. Perspectives and Summary

The foregoing analysis has demonstrated that it is possible
to deduce (i) Marcus cross-exchange electron-transfer rate
constants in terms of the self-exchange rate constants and (ii)

the correlation between self-exchange and heterogeneous electron-
transfer rate constants, from Onsager’s flux-force formalism
when certain approximations are introduced. Interestingly,
experimental data do indicate satisfactory validity of eq 2 in
genera,l3 and hence, the assumptions invoked while deriving
eq 2 seem reasonable. Thus, the dichotomy between the
activated complex theory and nonequilibrium thermodynamic
formalism may be exploited for mechanistic analysis of electron-
transfer processes. Further, the availability of the phenomeno-
logical expressions for the affinity and Onsager’s coefficient
enables the estimation of the rate of entropy production for the
process under consideration.

In order to comprehend the validity of eq 47, it becomes
essential to identify the phenomenological coefficient in terms
of the standard heterogeneous rate constant at electrode surfaces.
This has been accomplished by two different methods as shown
in 3.2 and in Appendix A. Further, it is of interest to note that
the Butler-Volmer equation for electron transfer at electrode
surfaces has a nonequilibrium thermodynamic basis and that
the Onsager’s phenomenological coefficient can indeed be
estimated from electrode kinetic parameters. In this context, it
is worth noting that an alternate method of deriving the Butler-
Volmer equation from Onsager’s formalism has been pro-
pounded by Keizer elsewhere.29

It is of interest to enquire whether any new insights have
emerged from the approach suggested here. First, with regard
to eq 2, the departure from equilibrium concentrations of the
reactants were explicitly introduced in the present analysis and
these were assumed small enabling us to neglect higher order
terms in the expansion of the affinity. A possibility that remains
un-clear is whether incorporation of the fluctuations from
equilibrium concentrations will yield the complete Marcus
expression 1 consisting of the work terms too. In cases wherein
eq 2 is not valid while comparing with the experimental data,
it may imply that the assumption of small deviations from
equilibrium may become invalid (cf. eq 6). Second, it is
customary17 to estimate the Onsager’s phenomenological coef-
ficient for reversible first-order reaction wherein the corre-
sponding phenomenological coefficient is given by eq 44. The
fact that an analogous exercise is feasible for cross-exchange
reactions (composed of the constituent self-exchange processes)
may indicate a much more general applicability of Onsager’s
formalism than hitherto envisaged. One of the methods of
verifying Onsager’s Reciprocity Relation (ORR) consists in
analyzing a triangular cyclic reaction scheme of coupled
chemical reactions given by

On the other hand, the phenomenological coefficientsL11,
L22, andL12 are related in the present context via eq 17.

Although the correlation between homogeneous and hetero-
geneous electron-transfer reaction rates as given by eq 47 leads

TABLE 1: Estimation of the Onsager’s Phenomenological Coefficient from Eq 43 for a Few Electron-Transfer Reactions

S no. reaction
temperature

range/K
current-density
range/A cm-2 L/J-1 mol2 s-1 cm-2

1 reduction of Ce4+ to Ce3+ ions at conductive diamond electrode25 3000-4000 (1.44-7.94)× 10-6 (1.63( 0.38)× 10-15

2 oxygen reduction in alkaline medium at Pt/Nafion 117 interface26 303-343 (0.84-11.5)× 10-11 (1.62( 0.50)× 10-19

3 oxygen reduction in alkaline medium at Pt/BAM 407 interface26 303-343 (0.48-1.43)× 10-11 (3.47( 0.44)× 10-20

4 reduction of Zn2+ to Zn in ammoniacal NH4Cl27 285.7-303 (3.84-5.49)× 10-2 (9.86( 0.40)× 10-11

5 reduction of Cu2+ to Cu in NH4Cl-NH3
28 303-322.5 (0.86-1.06)× 10-3 (19.11( 0.38)× 10-13

Figure 1. Points denote the estimates ofL from eq 43 using
experimental exchange current densities reported in Table 1. Lines are
drawn as a guide to the eye. (a) reaction 1 to 4 and (b) reaction 5 as
listed in Table 1. The orders of magnitude ofL in the graph for reactions
1 to 5 are respectively 10-15, 10-19, 10-20, 10-11, and 10-13.
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to an equality among the corresponding phenomenological
coefficients (eq 49), the basis underlying the latter is not obvious
at present. This limitation is however in stark contrast to the
rationale behind eq 2 pertaining to the homogeneous case and
may partially be attributed to the problems arising in the
definition of Z11 and Zf for homogeneous and heterogeneous
processes.30 Nevertheless, the identification of the Onsager’s
coefficients (L) in terms of the exchange current density
indicates thatL may probably be a more convenient parameter
for electrode kinetic analysis. This is not all. By merely
incorporating different prescriptions for electrochemical poten-
tials21 of the reduced and oxidized species in lieu of eq A3,
current-potential equations can be deduced that go beyond the
Butler-Volmer formulation. A related flux-force formalism
of Onsager using the electrochemical potentials of the species
has led to a hierarchy of diffusion migration equations for
electron hopping in redox polymer electrodes.21,22 In view of
the isomorphism between the kinetic Ising model descriptions31

and the Onsager nonequilibrium thermodynamic formalism21

for transport phenomena, one would anticipate that a generalized
microscopic formulation for the Marcus theory of electron
transfer may indeed exist. Furthermore, the extensive validity
of the Marcus approach for different classes of reactions such
as electron transfer, proton transfer, methyl transfer, hydride
transfer, and so forth becomes transparent, when viewed from
the perspective of Onsager’s formalism.

In summary, the flux-force formalism of Onsager is shown
to yield the cross-exchange electron-transfer rate constant
expression of Marcus and to provide an insight into the
correlation between the heterogeneous and the self-exchange
electron-transfer rate constants. Onsager’s phenomenological
coefficients are identified for electron transfer at electrode
surfaces as well as for homogeneous electron-transfer reactions.
The phenomenological coefficients are estimated for a few
typical electrochemical reactions from the experimental data.

Acknowledgment. The helpful comments of the reviewers
are gratefully acknowledged. This work was supported by the
DST, Government of India.

Appendix A

In this appendix, we demonstrate that the Butler-Volmer
equation can be derived by employing the alternate definition
of the affinity in terms of the electrochemical potentials of the
species, namely,15

and the affinity at equilibriumAeq is zero; that is,

Consequently,

Hence, the affinity becomes

n being the number of electrons transferred (zRed - zOx) andE
being the electrode potential. However, the velocity is related
to the affinity via eq 40. Substitution of the expressions forA
andL from eqs A4 and 43 respectively in eq 40 leads to the
Butler-Volmer equation. This methodology of formulating the
Butler-Volmer equation is especially useful since more in-
volved prescriptions of the electrochemical potentials such as
incorporation of the interparticle interactions, partial charge
transfer, and so forth can be invoked.
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-A ) µRed- µOx (A1)

Aeq ) µRed,eq - µOx,eq ) 0 (A2)

Aeq - A )
(RT ln CRed+ zRedFE) - (RT ln COx + zOx FE) (A3)

-A ) RT ln
CRed

COx
+ nFE (A4)
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