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The A-tensor parameterizes the “hyperfine” interaction of an “effective” electronic spin with the magnetic
field due to the nuclear spin as monitored in an electron paramagnetic resonance (EPR) experiment. In this
account, we describe an implementation for the calculation of the A-tensor in systems with translational
invariance based on the Kohn-Sham form of density functional theory (KS DFT). The method is implemented
in the periodic program BAND, where the Bloch states are expanded in the basis of numerical and Slater-
type atomic orbitals (NAOs/STOs). This basis is well-suited for the accurate representation of the electron
density near the nuclei, a prerequisite for the calculation of highly accurate hyperfine parameters. Our
implementation does not rely on the frozen core approximation tacitly assumed in the pseudopotential schemes.
The implementation is validated by performing calculations on the A-tensor for small atoms and molecules
within the supercell approach as well as for paramagnetic defects in solids. In particular, we consider the
A-tensor of “normal” and “anomalous” muonium defects in diamond and of the hydrogen cyanide anion
radical HCN- in a KCl host crystal lattice.

I. Introduction

Since its discovery by Zavoisky in 1944,6 electron paramag-
netic resonance (EPR) spectroscopy (for a comprehensive review
see, for example, ref 8) has become one of the most powerful
experimental techniques that can provide a wealth of information
about paramagnetic species. Due to the importance of the EPR
spectroscopy, the first-principles calculation of EPR parameters
is of great interest.

Paramagnetic interactions in EPR experiments are interpreted
in terms of an “effective” EPR Hamiltonian (eq 1),

ĤEPR )∑
C

IC · AC · S+ S · D · S+ 1
2c

B · g · S (1)

where the AC-, D-, and g-tensors parametrize the hyperfine (for
nucleus C), zero-field, and Zeeman splitting interactions,
respectively. The first-principles calculation of some of these
parameters (g-tensor) in molecules within the framework of
Kohn-Sham DFT1,2 (KS DFT) was developed by Ziegler and
Schreckenbach in the mid-1990s.9 Several other molecular DFT
implementations and extensions for g-4,10,11 and A-tensors5,12

followed. A comprehensive review on the calculation of NMR
and EPR parameters is available.51 However, many of the EPR
experiments are conducted in the crystalline environment and,
therefore, can not be modelled with “molecular” codes. One of
the early calculations of the hyperfine parameters in solids based
on the periodic boundary conditions is described in a paper by
Blügel et al.,52 which also contains references to some previous
work. The accurate first-principles calculation of the hyperfine
A-tensor in solids using periodic boundary conditions is the main
subject of the present account.

The effects of the crystal environment on the EPR spectra of
paramagnetic species are known to be important. In a detailed
study of muonium (a pseudoisotope of hydrogen) defects in a

wide range of semiconductors, Cox and Johnson note41 that the
variation in the hyperfine parameters is huge, spanning almost
5 orders of magnitude. A standard way to model hyperfine
interactions in solids is to perform calculations using periodic
boundary conditions. For example, if we are dealing with a
paramagnetic defect, the defect and its crystalline environment
is periodically repeated using “supercells” that should be large
enough to avoid interactions between the defects. The calculation
of hypefine parameters within the pseudopotential approach has
been pioneered by Van de Walle and Blöchl and applied to
hydrogen and muonium defects in semiconductors.13 Their
computational approach is based on the all electron frozen core
method, the PAW method.14 The direct calculation of the magnetic
hyperfine parameters using the PAW method followed later.53 The
PAW method assumes the frozen core approximation, which can
significantly influence the isotropic component of the A-tensor.54–56

Only recently, some hybrid schemes22–24,47 have been proposed
to overcome this difficulty. For example, Declerck el al.22 use
the “mixed” Gaussian augmented-plane-wave (APW) approach
for the calculation of hyperfine parameters. The method of
Declerck el al. employs plane-waves and all electron basis made
up of Gaussian-type orbitals (GTOs) to describe the “host”
system and paramagnetic defect, respectively. This method is
implemented in the QUICKSTEP program.20

In this work, we develop a robust computational framework
that allows one to predict EPR hyperfine parameters based on
the KS DFT formalism with periodic boundary conditions using
a Bloch basis set made up of numerical and Slater type atomic
orbitals (AOs) (NAO/STO basis), a basis that is excellent for
the accurate representation of the electron density near the
nuclei. The advantages of the STOs used by us over GTOs for
the calculation of hyperfine interactions are discussed, for
example, in ref 42. The hyperfine parameters are implemented
within the periodic BAND program25–27 for the total energy
calculations on systems with translational invariance. Because* Corresponding author e-mail: ekadants@ucalgary.ca.
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“localizability” is the intrinsic property of the AOs that make
up our Bloch basis, it can be computationally advantageous to
use a high quality basis set to describe the paramagnetic defect
and to treat the rest of the system with a basis of lower quality.
Our implementation does not hinge upon the frozen core
approximation; however, the frozen core approximation can
be used, in principle, to describe the “host” core states without
compromising the accuracy of the hyperfine calculation on
the “guest”. Our implementation includes scalar relativistic
effects using the zeroth order regular approximation (ZORA)
formalism.3 The inclusion of spin-orbital coupling is
straightforward within our approach and will be addressed
in the future.

The paper is organized as follows. The next section sum-
marizes the derivation of the A-tensor within the ZORA
formalism. Our BAND implementation is described, including
the use of symmetry. The next section presents results from
numerical calculations of hyperfine parameters for localized
systems, namely, atoms of group IB and the TiF3 molecule.
This is followed by calculations of EPR parameters of para-
magnetic defects in solids and the concluding summary. Atomic
units are used throughout unless otherwise specified.

II. ZORA and Hyperfine Hamiltonian

To derive the expression for the A-tensor, one needs to
establish a one-to-one correspondence between a “microscopic”
Hamiltonian (for example, the KS Hamiltonian) and the
“effective” hyperfine Hamiltonian;

Ĥ hyp )∑
C

IC · AC · S (2)

where S is the “effective” spin of the paramagnetic substance
and IC is the nuclear spin of the Cth atom. Van Lenthe and
coworkers derived such a correspondence4,5 using a “micro-
scopic” relativistic ZORA KS DFT Hamiltonian.3 The nonrela-
tivistic case can be obtained from the ZORA derivation by
taking the appropriate limit. This section briefly summarizes
the theory behind the ZORA approximation and the treatment
of magnetic hyperfine interactions within the ZORA approach.

In the ZORA approach to relativistic effects,3 the expansion
in E/(2c2 - V) is used instead of the Pauli expansion in (E -
V)/2c2. As a result, the ZORA Hamiltonian, in contrast49 to the
Pauli Hamiltonian, is regular at the origin even for a Coulombic
potential. In the ZORA approach, the kinetic energy operator
-1/2p2 is replaced by the ZORA expression T̂ ZORA

-1
2

p2 ⇒ T̂ ZORA ) σb · p
K
2

σb · p, K) 1

1-Vs(r) ⁄ 2c2
(3)

where p is the “momentum operator” (p ) -i∇ ) in the absence
of a magnetic field), c is the speed of light (137.03921) in a.u.),
σb ) {σx, σy, σz} is a vector made up of the Pauli matrices, and
Vs(r) is the self-consistent KS potential. In practice, the
requirement of self-consistency for the kinetic energy operator
can be dropped, and the potential in the denominator of T̂ ZORA

is taken as a sum of atomic potentials which we denote by V.
The nonrelativistic limit can be obtained by setting K f 1.

Using a well known identity for Pauli matrices (eq 4),

(σb · ab)(σb · bb)) ab · bb+ iσb · (ab × bb) (4)

T̂ ZORA can be split into the so-called scalar relativistic and
spin-orbital terms (eq 5).

T̂ ZORA ) T̂SR
ZORA + T̂SO

ZORA ) p
K
2

p+ 1
2

σb × (∇ K × p) (5)

Equation 5 constitutes the ZORA kinetic energy expression in
the absence of a magnetic field. The ZORA formalism including
the effects of spin-orbital coupling was implemented in BAND
as described in ref 43.

The magnetic field is introduced into the Hamiltonian
employing the so-called “minimum coupling” ansantz in which
the momentum operator is modified as pf ∏ ) p + Ab /c (the
sign of Ab /c is reversed for positively charged particles), where
Ab is a vector potential corresponding to some current density.
Then, again, use of eq 4 yields eq 6,

T̂ ZORA ) σb · ΠK
2

σb · Π

)ΠK
2

Π+ iσb
2

· ((p+ Ab
c )K ×(p+ Ab

c )) (6)

After some vector algebra, the total expression for the ZORA
kinetic energy operator in the presence of the magnetic field is
obtained (eq 7).

T̂ ZORA ) p
K
2

p+ 1
2

σb · (∇ K × p)+ K
2c

Abp+ pAb K
2c

+ K

2c2
Ab2 +

K
2c

σb · Bb+ 1
2c

σb · (∇ K × Ab), Bb) ∇ × Ab (7)

The first and the second terms in eq 7 are readily identified
as the scalar relativistic and spin-orbital ZORA terms in the
absence of the magnetic field (eq 5). The third term in eq 7
couples the momentum operator p ) -i∇ and vector potential
Ab . We will omit this term from consideration because the
electronic angular momentum of the unpaired electron is often
quenched. The fourth term is quadratic in the magnetic vector
potential and is also omitted from consideration because the
hyperfine interaction is linear in the magnetic field. Finally, the
last two terms couple electron spin operators with the magnetic
field and, therefore, form the microscopic hyperfine Hamiltonian
(eq 8).

Ĥmicr
hyp )

ge

2
1
2c

(Kσb · Bb+ σb · (∇ K × Ab)) (8)

Note that due to the quantum electrodynamic effects, the σb · Bb
term acquires a factor ge/2, which is close to unity. Following
ref 5, this factor is included in the other terms in eq 8 as well.
The “microscopic” hyperfine Hamiltonian (eq 8) acts on both
the spatial and the spin part of the multiplet wavefunctions and
was derived in ref 5. Integrating over the spatial coordinates
followed by a comparison of the remainder to the effective
hyperfine Hamiltonian (eq 2) allows us to determine the
A-tensor.

The magnetic field in eq 8 is due to the magnetic dipole
moment of the nuclear spin IC. The nucleus is modelled by a
point dipole with magnetic moment (eq 9),

µC )
gC

2Mc
IC (9)

where gC is the nuclear g-value, and M is the proton mass in
units of the electron mass. A more realistic model should take
into account the finite size of the nucleus, and some steps in
this direction were taken in ref 44. The vector potential
corresponding to the magnetic dipole µC is
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Ab) µC ×
∆rC

∆rC
3
)-µC × ∇ ( 1

∆rC
) (10)

where ∆rc ) r - RC is a displacement vector from C and ∆rC

) |∆rC| is a distance to the Cth nuclei. The magnetic field is
given by eq 11.

Bb) ∇ × Ab)- ∇ × [µC × ∇ ( 1
∆rc

)] (11)

Substituting eq 10 and 11 in eq 8, we obtain the microscopic
hyperfine Hamiltonian (eq 12).

Ĥmicr
hyp )∑

C

gegC

8Mc2
σb · {-IC(∇ · K ∇ ( 1

∆rC
))+

(IC · ∇ )K ∇ ( 1
∆rC

)} (12)

Suppose now that |ψ1〉 and |ψ2〉 are two degenerate states
(Kramer’s doublet). Note that in the crystalline environment,
the degeneracies of paramagnetic defects are often lifted. The
energy splitting can be determined from the degenerate first-
order perturbation theory. The A-tensor elements can be obtained
using eq 13

(〈Ψ1|Ĥmicr
hyp|Ψ1〉 〈 Ψ1|Ĥmicr

hyp|Ψ2〉
〈Ψ2|Ĥmicr

hyp|Ψ1〉 〈 Ψ2|Ĥmicr
hyp|Ψ2〉 ))

∑
C

∑
ij

(IC)i(AC)ij(〈R|σj|R〉 〈 R|σj|�〉
〈�|σj|R〉 〈 �|σj|�〉 ) (13)

by comparing the right hand side of eq 13, which involves the
microscopic Hamiltonian (eq 12) acting on spatially- and spin-
dependent degenerate states with the left hand side that involves
the effective hyperfine Hamiltonian acting on the spin states.

In the case of spin-polarized scalar-relativistic calculations,
the A-tensor for nucleus C is5 given by eq 14,

(AC)kl )
gegC

4Mc2 ∫m(r)(δkl ∇ · (K
∆rC

∆rC
3 )- ∇ k(K

(∆rC)l

∆rC
3 )) dr

)
gegC

4Mc2 ∫ K

∆rC
3

((∆rC)l∇ km(r)- δkl∆rC · ∇ m(r)) dr

(14)

where m(r) ) FR(r) - F�(r) is the spin density. To obtain the
second equation in eq 14, use was made of partial integration
in order to avoid differentiation of quantities of the type K∆rl/
(∆r)3. In using partial integration, it was assumed that spin
density vanishes at the surface which encloses the integration
region. The latter is the case for the paramagnetic defects
embedded in the host and modelled within the supercell
approach. The Wigner-Seitz (WS) cell should be “sufficiently
large” to avoid cell-to-cell interaction, and the spin density m(r)
should vanish on the WS surface. In the nonrelativistic case, K
) 1 and the A-tensor can also be obtained by eq 15.

(AC)kl )
gegC

4Mc2 ∫m(r)(8π
3

δ(∆rC)δkl +

3
(∆rC)k(∆rC)l

∆rC
5

-
δkl

∆rC
3 ) dr (15)

We have implemeted both formulas for the calculation of
the hyperfine tensor in BAND:27 the second equation in eq 14

as well as in eq15. The first term in eq 15 (the “Fermi” contact
term or isotropic term) is deduced from the value of spin density
at the grid points of the Boerrigter-te Velde-Baerends grid33

near the nucleus (eq 16).

(AC)iso )
2πgegC

3Mc2
m(RC), m(RC))FR(RC)-F�(RC) (16)

The rest of the terms in eqs 14 and 15 are obtained using
numerical integration. It is expected that the results obtained
using eq 14 are more accurate as we integrate over the smoother
functions of the type ∆rl/∆r3 as opposed to terms of the type
∆rl∆rk/∆r5 (eq 15). In eq 14, Aiso is determined as an integral
quantity that should be more accurate than the “local” expression
(eq 16). The disadvantage of eq 14 is that one has to construct
(and, in BAND, store) gradients of Bloch basis set functions.
The construction of the density gradient from Bloch functions
in BAND is described in ref 34.

In practice, the A-tensor for atom C is computed using
equation 17,

AôC )
gegôC

4Mc2
∑

ô
oÃC o† (17)

where the sum is over symmetry operations ô r ) {o; to}r )
or + to, and ôC denotes an atom which is symmetry related to
atom C. The symmetry operations always map one sublattice
of atoms into another apart from, perhaps, a primitive lattice
vector.40 ÃC is evaluated from the symmetry unique wedge of
the WS cell – irreducible Wigner-Seitz (IWS) cell using either
eq 18 or 19.

ÃC ) ∫
IWS

K

∆rC
3

(∆rC(∇ m(r))† - l̂(∆rC)† · ∇ m(r)) dr (18)

ÃC ) ∫
IWS

m(r)

∆rC
3 (3

(∆rC)(∆rC)†

∆rC
2

- l̂) dr (19)

In eqs 18 and 19 we used the “matrix” notation, for example,
rC is a three-component column vector (a displacement from
atom C) and (∇ m)† is a three-component row vector; l̂ is a
3×3 unity matrix. We use eq 18 or 19 to evaluate Ã for all the
atoms and, then, perform symmetization (eq 17).

III. Results

We verified our BAND implementation of EPR hyperfine
parameters by comparing our results with experiment, with
calculations reported in the literature, and, for “localized
systems”, with calculations using the “molecular” ADF code.28–30

Unless otherwise stated, we perform spin unrestricted SCF
calculations using the local spin density approximation (LS-
DA)35 for the exchange-correlation (xc) energy. The param-
etrization of the correlation energy follows that of Vosko, Wilk,
and Nusair (formula V).36 We employ mixed NAO/STO basis
sets of triple-� quality with two sets of polarization functions
(TZ2P in BAND’s notation) from BAND’s database. These
basis sets are often modified in the actual calculations to avoid
basis set dependence problems and to strike a balance between
accuracy and computational effort. The numerical accuracy
parameter in BAND’s calculations is set to five for atoms and
molecules and to four for the calculation on solids. The
reciprocal space is sampled using the Γ-point only, for the
periodic systems under consideration this sampling is deemed
sufficient.
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Table 1 shows results from our BAND calculation of the
isotropic hyperfine parameters of a single Cu, Ag, and Au atom.
In our calculations, the atom is placed in a cubic supercell with
a ) 20 Å. Our results are compared to the LSDA calculations
of van Lenthe et al.5 carried out using the molecular ADF
program for a single atom28–30 and gas phase experiments.31,32

The agreement between our results and that of van Lenthe
et al. is excellent; the largest discrepancy is 15 MHz, and very
often the discrepancy is just several MHz. We attribute the small
differences between our BAND calculations and that of van
Lenthe et al. to a number of small technical differences between
the BAND and ADF programs, most notably BAND’s usage
of NAOs. Examining Table 1, one also notices that the inclusion
of scalar relativistic effects in calculation of hyperfine parameters
is already important for Ag atom and is absolutely necessary
for Au.

The procedure for the calculation of hyperfine parameters was
further tested on small molecules, in particular, on TiF3. We
used a ZORA GGA optimized geometry from ref 4, a D3h

structure with Ti-F bond length of 1.78 Å. Results of our
calculations and experimental data37 are summarized in Table
2. In the case of TiF3, the agreement between BAND calcula-
tions, molecular ADF calculations, and the experiment37 is also
good.

Calculations reported in Tables 1 and 2 can be reproduced
using any molecular quantum chemistry program that contains
capabilities for calculation of EPR parameters. The real
applications of our approach is the calculation of hyperfine
parameters in solids. We explore two applications of our method:
calculation of hyperfine parameters of muonium defects in
diamond and calculation of hyperfine parameters of anion
radicals in halide crystal lattices.

Hyperfine Parameters of Muonium in Diamond. The
properties of hydrogen as a semiconductor impurity is of great

importance to the industry producing electrical semiconductor
devices. Recently, a growing interest has emerged in hydrogen
defects in diamond due to the development of novel materials
using improved plasma-assisted chemical vapour deposition
techniques.48 An extensive review on the theory of hydrogen
in diamond is available.46

Because of the very high mobility and reactivity of hydrogen,
it turned out to be difficult to obtain EPR parameters for an
isolated hydrogen in semiconductors. However, unambiguous
information about the structure of a hydrogen impurity can be
obtained from muon spin rotation (µ SR) experiments. Muonium
consists of an electron bound to a positive muon, which is lighter
than a proton by a factor of nine. For the static calculations
in the Born-Oppenheimer approximation, the treatment of
hydrogen and muonium is identical as both particles have the
same charge. In this work, we calculate hyperfine parameters
of hydrogen and, then, scale our results to compare to µ SR
experiments. The values of the isotropic hyperfine paramaters
in vacuum are 4463 MHz and 1420 MHz for muonium and
hydrogen atoms, respectively, corresponding to the spin density
of 1/π at the nucleus.

As in the case of Si,13 muonium in diamond is observed in,
at least, two sites: the tetrahedral interstitial site (TD site,
“normal” Mu) and bond centered site (BC site, “anomalous”
Mu). These sites are shown on Figure 1of ref 46.

The hyperfine spectra of muonium is isotropic (the A-tensor
is proportional to the unit matrix) and “axially” symmetric (the
A-tensor is diagonal with two distinct elements, A+ and A||, the
third element is equal to A+) at the TD and BC sites,
respectively. The BC site is known to be more energetically
favorable with energies in the range of 1–2 eV (23–46 kcal/
mol) according to ab initio calculations (ref 46, p R561). LDA
DFT caculation using a 64 atom supecell50 puts the BC site
0.95 eV more energetically favorable than the TD site. It was
also found that stabilization of the BC site is accompanied by
substantial streching of the the C-C bond, with values ranging
from 39 to 52% (ref 46, p R562).

With the objective of determining hypefine parameters of a
muonium defect in diamond, we first performed constrained
LSDA geometry optimizations of hydrogen in TD and BC sites
using a 65 atom cubic supercell containing 64 C atoms and
one hydrogen atom using the VASP code.16–19,57 The PAW
formalism14 was employed in these calculations as implemented
in VASP.15 The LDA lattice constant for diamond is a ) 3.54
Å and agrees well with experimental lattice constant a ) 3.57
Å. In the case of the TD site, a hydrogen atom and its six nearest
carbon atom neighbors were allowed to relax. All other C atoms
were kept fixed according to their equilibrium positions. The
relaxation of neighboring carbon atoms was found to be
negligible in the TD site, giving an early indication that the
“atomic” character of muonium (hydrogen) might be well
preserved at this site. In the case of the BC site, hydrogen as
well as two bonded C atoms and their three nearest C neighbors
were allowed to relax. The rest of the C atoms were fixed
according to their equilibrium position. In agreement with earlier
calculations (ref 46, p R562 and the references therein), our
LSDA relaxiation resulted in a streching of the C-C bond by
45% (1.53 Å f 2.22 Å). The BC site was found to be more
energetically favourable by 0.89 - 0.79 eVs, for the calculation
with dispersion and the Γ-point calculation, respectively.

The optimized geometries were used in the BAND LSDA
Γ-point calculations of hyperfine parameters. The TZ2P all
electron basis set for the C was modified by excluding the 4F
STO polarization function in order to speed up the calculations,

TABLE 1: Absolute Isotropic Values of A-tensor Aiso in
MHz for IB Group of (Coinage) Metalsa

NR SR

atom BAND ADF BAND ADF EXP

63Cu (I ) 3/2) 5978 5971 6746 6750 5867
107Ag (I ) 1/2) 1359 1360 1925 1909 1713
197Au (I ) 3/2) 1016 1018 3149 3134 3053

a BAND: results of BAND, all electron LSDA calculations with
triple-zeta basis (LSDA/TZ2P); ADF: LSDA calculations of van
Lenthe et al.;5 NR: nonrelativistic calculations; SR: scalar relativistic
ZORA calculations; EXP: experiment (gas phase).31,32

TABLE 2: A-tensor (MHz) for 47Ti and 19F in a TiF3

Moleculea

A-tensor 47Ti (I ) 5/2) A-tensor 19F (I ) 1/2)

∆Axx ∆Ayy ∆Azz Aiso ∆Axx ∆Ayy ∆Azz Aiso

BAND LDA 9.7 9.7 -19.3 -237.4 33.8 6.0 -39.9 10.6
ADF LDA 9.2 9.2 -18.4 -234.2 33.5 5.6 -39.2 10.5
BAND GGA 8.4 8.4 -16.8 -223.0 29.0 7.2 -36.1 14.4
ADF GGA 7.9 7.9 -15.9 -220.5 28.6 6.2 -34.7 12.9
EXP 8.1 8.1 -16.2 -185

a BAND: results of all electron nonrelativistic calculations with
BAND using TZ2P NAO/STO basis; ADF: results of all-electron
nonrelativistic calculations with molecular ADF code using TZ2P
STO basis. LSDA: results of spin unrestricted LSDA calculations
using parameterization of correlation energy due to Vosko et al.;36

GGA: results of spin unrestricted calculations using Becke’s GGA
correction for exchange38 and Perdew’s GGA correction for cor-
relation;39 EXP: experiment;37 Aiso ) 1/3 Tr A; ∆Axx ) Axx - Aiso;
∆Ayy ) Ayy - Aiso; ∆Azz ) Azz - Aiso.
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and the H basis set was modified to exclude one of the 1S STOs
to avoid basis set dependency problems. The modified TZ2P
basis set was used in the calculation of the hyperfine parameters
for the TD and BC sites. Note that the “modified” TZ2P basis
reproduces structural and electronic parameters of diamond quite
well, with a 3.54 Å equilibrium lattice constant and a band gap
of 4.65 eV in good agreement with other LDA calculations.21

The hyperfine parameters of the muonium defect in TD and
BC sites of diamond are summarized in Table 3.

We find a good agreement between our calculation and
experimental hyperfine parameters for normal muonium as well
as for the anisotropic hyperfine parameter in anomalous Mu.
The results for the isotropic hyperfine parameter are worse but
agree well with the previously reported LDA-Green’s function
calculations.45 The discrepancy between theory and experiment
is explained by a higher sensitivity of the isotropic hyperfine
parameter to the computational details. The extent to which the
isotropic hyperfine parameter varies in different calculations can
be fully appreciated from Table 3 of ref 46, some of the isotropic
hyperfine parameters reported there are in the -700 to -1000
MHz range. The other sources of discrepancy between theory
and experiment is the zero-point motion of the muon itself and
the LSDA approximation for the xc energy. Overall, we consider
our calculation of hyperfine parameters of muonium defect in
diamond to be quite successful.

B. Hyperfine Parameters of HCN- Anion Radical in a
KCl Lattice. We have used a similar procedure to determine,
for the first time to our knowledge, the hyperfine parameters of
the hydrogen cyanide anion radical HCN- in a KCl crystal host
lattice.

We followed a procedure similar to the one used in for the
calculation of the hyperfine parameters of muonium defects in
diamond. First, the structure of a HCN- defect in a KCl crystal
lattice was optimized using PAW LSDA calculations with the
VASP code. The calculations were performed on a 66 atom
cubic supercell in which one of the halogen atoms was replaced
by HCN, which results in the formation of a HCN- anion
radical. The LSDA-optimized lattice constant for KCl is 6.09
Å. It was found that the anion radical lies in the crystal’s {11̄0}
plane, with the C-N bond almost parallel to the (110) crystal
axis.

The optimized geometry was used in the BAND LSDA
Γ-point calculation of hyperfine parameters of HCN- in KCl.
K and Cl atoms were described with a TZ2P frozen core basis
set in which the 1s, 2s, and 2p core states are frozen and
represented by NAOs. C, N, and H atoms are described with
an all electron TZ2P basis sets in which the 4F polarization
functions have been removed. We also remove one of the 1S
and 4S STOs from the H and K basis sets, respectively, to avoid
linear dependence problems.

Our results for the carbon and hydrogen atoms compare well
with the experimental data. In particular, for the C atom, the
presence of the crystalline environment decreases the isotropic
hyperfine constant, which leads to an excellent agreement with
experiment. For the hydrogen atom, the presence of the
environment does not seem to influence the hyperfine parameters
by much, the isotropic hyperfine parameter is underestimated,
but that also seems to be the case in the vacuum. For the N
atom, we find that the presence of the environment leads to an
increase in the isotropic hyperfine parameter; however, this
increase is rather small. We find, within our LSDA calculation,
that the inclusion of the environment effects makes the
agreement between theory and the experiment slightly worse
for the anisotropic components of the hyperfine tensor. The small
discrepancy between theory and experiment in the case of N is
probably due to the well-known shortcomings of the LDA:
underestimation of lattice constant and of the band gap, which
might cause a “spurious” interaction between N and neighboring
K atoms of the host crystal lattice. Therefore, to better the
agreement between experimental and calculated hyperfine
parameters, futher improvements in the approximate xc energy
functionals are deemed important.

IV. Concluding Remarks. We described the theory and
implementation of the hyperfine A-tensor in the BAND program
for the calculation of systems with translational invariance based
on the KS DFT. In BAND, the Bloch states are expanded in
the basis of numerical and Slater-type atomic orbitals (NAOs/
STOs) which are excellent for the accurate representation of
(spin) electron density near the nuclei. It is expected that the
present approach minimizes errors due to the choice of basis
set functions. Our implementation does not rely on the frozen
core approximation tacitly assumed in the pseudopotential
schemes.

The implementation is validated by performing calculations
of the A-tensor for small atoms and molecules within the
supercell approach. We find a good agreement between the
results of our calculations, experiment, and other calculations.

TABLE 3: Hyperfine Constants for Normal (Mu) and
Anomalous Muonium (Mu*) in Diamond Computed with
BANDa

Mu Mu*

Aiso f Aiso Ap

BAND 3345 0.77 -117.7 217.9
EXP 3711 0.83 -205.7 186.6
LDA-GF -137.0 200.0

a f ) Aiso/Avac (Avac ) 1389 MHz is the LSDA isotropic hyperfine
parameter of hydrogen in vacuum); Aiso ) 1/3Tr A; In Mu*, the
tensor is axially symmetric: Axx ) Ayy ) A+ and Azz ) A||. Aiso )
1/3Tr A. In this case, anisitropy is defined as Ap ) (A|| - A+)/3.
BAND: results of all electron LSDA BAND calculations; LDA-GF:
results of self-consistent Green’s function-LSDA method;45 EXP:
experiment (from ref 46, Table 3).

TABLE 4: A-tensor (MHz) of HCN- Anion Radical in KCl
Crystal Latticea

∆Axx ∆Ayy ∆Azz Aiso

Carbon
BAND 45.1 -23.5 -21.6 213.7
ADF 42.4 -21.6 -20.7 301.7
EXP 42.8 -25.6 -17.2 209.4

Nitrogen
BAND 82.1 -41.5 -40.6 16.2
ADF 42.3 -21.1 -21.1 5.5
EXP 39.1 -19.5 -19.5 19.5

Hydrogen
BAND -4.7 -8.3 13.1 316.9
ADF -5.7 -8.3 13.9 332.7
EXP 0.3 -14.2 13.8 382.2

a Aiso ) 1/3Tr A, ∆Axx ) Axx - Aiso, ∆Ayy ) Ayy - Aiso, and ∆Azz

) Azz - Aiso are anisotropies; BAND: results of Γ-point LSDA
calculation in 66 atom supercell; K and Cl 1s, 2s, and 2p core states
are frozen; HCN- anion radical is described with all-electron basis;
ADF: results of LSDA calculation on HCN- using “molecular”
ADF program; EXP: experimental results of Adrian et al.7

A-tensor: Application to Paramagnetic Defects J. Phys. Chem. A, Vol. 112, No. 19, 2008 4525



The real application of our method lies in the computation
of the EPR hypefine parameters in solids, especially for
paramagnetic defects in “host” crystal lattices.

Within the present approach, we have calculated the A-tensor
of normal and anomalous muonium defects in diamond. We
find a good agreement between our calculations and experi-
mental hyperfine parameters for normal muonium as well as
for the anisotropic hyperfine parameter in anomalous muonium.
The results for the isotropic hyperfine parameter of the
anomalous Mu are worse but agree with some of the previously
reported calculations. The discrepancy between theory and
experiment is explained by a higher sensitivity of the isotropic
hyperfine parameter to the computational details and by the
effects of the zero-point motion of the muon.

Calculations of the hyperfine parameters are also presented
on the cyanide anion radical HCN- in the KCl crystal host
lattice. Our results for the carbon and hydrogen atoms compare
well with the experimental data. We find, within our LDA
calculation, that the results for the nitrogen atom are slightly
worse. We speculate that the small discrepancies between the
theory and experiment in the case of N are due to the well
known shortcomings of LDA: underestimation of the lattice
constant and the band gap that, in turn, causes a “spurious”
interaction between the nitrogen atom and the neighboring atoms
of the host crystal lattice.
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