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The natural linear-scaled coupled-cluster (NLSCC) method (Flocke, N.; Bartlett, R. J. J. Chem. Phys. 2004,
121, 10935) is extended to include approximate triple excitations via a coupled-cluster with single, double,
and triple excitation method (CCSDT-3). The triples contribution can potentially be embedded in a larger
singles and doubles region. NLSCC exploits the extensivity of the CC wave function to represent it in terms
of transferable natural localized molecular orbitals (NLMOs) or functional groups thereof that are obtained
from small quantum mechanical (QM) regions. Both occupied and virtual NLMOs are local because they
derive from the single-particle density matrix. Noncanonical triples amplitudes are avoided by applying the
unitary localization matrix to the canonical CC wave function for a QM region. A generalized NLMO code
interfaced to the ACES II quantum chemistry software package provides NLMOs for the relevant number of
atoms in a given functional group. Applications include linear polyglycine and the pentapeptide met-enkephalin,
which was chosen as a more realistic three-dimensional system with nontrivial side chains. The results show
that the triples contributions are quite large for aromatic bonds suggesting an interesting active space method
for triples in which different bonds require different excitation levels. The NLSCC approach recovers a very
large percentage (>99%) of the CCSD or CCSDT-3 correlation energy.

1. Introduction

Highly accurate electronic structure methods, such as coupled-
cluster (CC) and configuration interaction (CI), are troubled by
the task of including all possible permutations of one, two, three,
etc. electrons among a large number of single-particle basis
functions. The excitation operator, T, which accomplishes this
is oftentimes truncated after the two-particle piece, T ) T1 +
T2 + T3 + . . . ≈ T1 + T2, where TN is an N-particle excitation
operator, leading to singly (S) and doubly (D) excited deter-
minants. Both the CCSD and CISD methods scale as O(o2V4),
where o and V are respectively the number of occupied and
virtual orbitals, but only the exponential ansatz, unique to CC
theory, additionally includes disconnected parts of triple and
quadruple excitations. These disconnected triple and quadruple
excitations, like T1T2 and T2T2, respectively, make truncated CC
converge to the full CI (FCI) much more quickly than truncated
CI, thus making CC the method of choice for high-level
applications to medium-sized molecules. The remaining pieces
of the triple excitation manifold are said to be connected and
may be required for ≈1 kcal mol-1 accuracy in the energy and
similar accuracy in other properties. The necessity of connected
triples is understood from an order-by-order comparison with
many-body perturbation theory (MBPT) in which it is found
that the triply excited manifold is dominated by connected T3

as opposed to T1T2 or T1
3. This is in contrast to the dominant

term in the quadruply excited manifold which is disconnected
T2

2 as opposed to connected T4. These connected contributions
are not obtained until explicit inclusion of T3 as in CCSD(T),
CCSDT-x (x ) 1a, 1b, 2, 3), or CCSDT. These methods scale
as noniterative O(o3V4), iterative O(o3V4), and iterative O(o3V5),
respectively, making these CC methods, without modification,
prohibitive for large molecules. The exponential ansatz used in

CC theory makes it a size-extensive method, which is a neces-
sary condition for a system with a large number of electrons.
For large molecules, a size-inextensive linear ansatz, for example
as in truncated CI, would give a vanishing correlation energy
per electron.1,2

Local correlation methods aim to circumvent the nonlinear
scaling by exploiting an underlying simplicity in both the
electronic structure and computational procedure as in the natural
linear-scaled CC (NLSCC) method.3 The NLSCC method has
been shown to give very accurate correlation energies for large
molecules in which the rate limiting step is the size of the
quantum mechanical (QM) regions. This region can be deter-
mined self-consistently thereby making these methods system-
atically improvable. For this region other reduced scaling
methods, which are outside of the local approximation, can offer
advantages.4–9 These methods become especially useful for
three-dimensional systems where an accurate local correlation
treatment can require large QM regions to represent weak
interactions. In a localized basis the correlation space for a given
occupied orbital does not grow with system size thereby
reducing the number of free parameters and allowing unimpor-
tant interactions to be eliminated from the amplitude equations.10

Furthermore, the method insists upon transferability of electronic
structure units and as such has the potential to provide
transferable electronic structure, much the way as geometric
structure depends upon transferable geometric units. Therefore,
high-level local correlation methods have the potential to
become a standard, systematically improvable tool for calculat-
ing energies of very large molecules.

Natural localized molecular orbitals (NLMOs)11,12 are used
to introduce a scale that offers certain advantages to local
correlation methods and NLSCC in particular. One benefit of
using NLMOs is that the virtual space is composed of localized
orthogonal orbitals that are obtained with little convergence
difficulties even for large, diffuse basis sets. In the NLMO search
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for n-centered orbitals, where n is typically small n < N, with
N the number of centers in the molecule, only small diagonal-
izations of the single-particle density matrix are required
ensuring that the NLMO determination is quite fast.12 In contrast
to other localization methods which use an initial set of orbitals,
the NLMO procedure is based on a single-particle density
matrix, γ ) C†S†PSC with C, S, and P being the orbitals,
overlap, and single-particle density matrix in atomic orbitals,
which can be correlated or uncorrelated. For example, localized
correlated orbitals may have certain properties that are more
desirable in treating QM regions that would otherwise have been
quite large. Restricted as well as unrestricted NLMOs can be
obtained from the corresponding restricted Hartree-Fock (RHF)
or unrestricted (UHF) density matrices. The NLMOs derive from
non-HF natural bond orbitals (NBOs) resulting in the formation
of bond/antibond pairs. As previously mentioned, in the ACES
II NLMO program the bonds can be n-centered with 1 e n e
N where N is the number of centers in the molecule and are
classified as occupied cores (n ) 1), lone pairs (n ) 1), bonds
(n g 2), virtual antibonds (n g 2) and Rydbergs (n ) 1). The
n > 2-centered bonds are useful for describing delocalized
moieties, for example, aromatic molecules, without resorting
to more artificial Kekulé structures.

A decomposition of the electronic structure into NLMO and/
or functional group (groups of n > 2 NLMOs) contributions is
possible due to the high transferability of the correlated
amplitudes expressed in these localized orbitals. Another useful
quality with regard to defining functional groups is that the
NLMO procedure maintains σ/π separation. By transferability
we mean that the orbitals are roughly independent of their
environment. The remarkable transferability of localized chemi-
cal bonds and/or functional groups, and their associated proper-
ties among the ground states of molecules is one of the most
fundamentally important and useful concepts in chemistry.
Exceptions to this rule include certain pathological cases, for
example, D3d cyclohexane cation, where the unpaired hole
remains delocalized, despite the fact that all the other electrons
in the molecule are localized. For example, the concept of
transferable groups in conjugated systems was recently inves-
tigated for substituted polyenes up to second-order many-body
perturbation theory (MBPT2) where it was found that effects
due to substitution propagate to three or four methylene group
distances.13 Not surprisingly, the majority of applications of local
correlation methods have been on saturated molecules for which
there is a large homolumo gap and therefore a more local
electronic structure.

Correlated methods such as MBPT2 and CC are a minimal
requirement for predicting effects such as dispersion interactions,
which can play important collective roles in large, albeit
conventionally unattainable, systems, such as peptides. There
are local CC methods that have been designed for single and
double excitations;3,10,14–27 however, less work has been done
on extending the local CC methods to higher excitations, for
example, triple excitations.28–33 Disconnected T1T2 or even T1

3

obtained with CCSD accounts for some of the triples contribu-
tion to the correlation energy, but typically the connected T3

contributions make significant contributions. It is expected that
the triples amplitudes are longer-ranged than the doubles
amplitudes because only two of the three occupied-virtual pairs
need to be spatially close to make a significant contribution.
This could result in significant modification of local correlation
methods that were intended for CCSD. Additionally, as the
excitation level increases the nonlinearity of the CC equations
leads to complicated terms in which there are one, two, three,

etc. excitation operators making it difficult to determine if the
overall contribution is even local.

As an example, consider the local CCSD methods that have
been extended to include connected triple excitations for both
noniterative CCSD(T)31,33 and iterative CCSDT-1b.32 The easiest
way to include connected triples contributions is via perturbation
theory giving the well-known CCSD(T) method34 and its non-
HF generalization.35 Perturbative triples corrections like CCS-
D(T) in a localized basis require both an iterative solution and
storage of the triples amplitudes,35 which can destroy perfor-
mance due to large memory requirements. It is important to
have approximations that eliminate the need to store the triples
amplitudes. Note that for local perturbative triples approxima-
tions, like local CCSD(T), an approximate triples energy
contribution is added to an already approximate singles and
doubles energy. This is in contrast with approximate iterative
triples methods in which the triples are coupled to the single
and double equations, and vice versa. Due to the fact that
CCSDT-3 contains many more nonlinear triples contributions
than CCSD(T) or CCSDT-1x (x ) a, b) the triples excitation
regions may need to be larger than the double excitation regions.
Current results indicate that the T3 contribution to the CCSDT-3
wave function is only slightly longer-ranged than the doubles
and can thus be calculated using local correlation algorithms
similar to those used previously for CCSD. This paper considers
the effect of triple excitations at the CCSDT-3 level with the
NLSCC method.

2. Theoretical Method

As previously mentioned, the CCSD(T) method provides the
easiest connected triples contribution; however, as in the context
of second-order with noncanonical HF orbitals, the Fock matrix
is block-diagonal, meaning that perturbative methods like
CCSD(T) must be solved iteratively, thereby requiring storage
of the corresponding triples amplitudes.35 One disadvantage of
localized orbitals is that they are not eigenfunctions of any
common energy operators,

h|p 〉 )∑
q

εpq|q〉 (1)

where h is some single-particle energy operator, p and q are
localized occupied or virtual orbitals, and ε is an energy matrix.
The orbitals might diagonalize some other energy operator,

heff|p 〉 ) εp
eff|p〉 (2)

or they might diagonalize some other operator, for example the
NLMOs block-diagonalize the density matrix. This results in
perturbative methods needing to be solved iteratively. This
iterative solution negates one of the most useful properties of
perturbative methods in that they are noniterative for canonical
orbitals. If the equations have to be iterated, it is worthwhile to
include more terms per iteration amounting to a CC calculation.
Because the overhead is in the storage of triples as opposed to
the inclusion of more terms, we choose to work with CCSDT-
3, which is as close to CCSDT as possible while still being
O(N7). Additionally, for CCSDT-3 we recognize that with
canonical or semicanonical orbitals the triples amplitudes need
not be stored in contrast to CCSDT.

The NLSCCSDT-3 method follows straightforwardly from
the NLSCCSD method.3 The ground state NLSCCSDT-3 wave
function is rewritten from the CCSDT-3 wave function without
loss of generality as
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|Ψ 〉 ) eT1+T2+T3|0 〉 )∏
i

eT1
i+T2

i+T3
i
|0〉 (3)

where |0〉 is the single-determinant reference function. The
operator T3

i for an excitation specific to orbital i is given as

T3 )∑
i

T3
i )∑

i
( 1
36 ∑

jkabc

tijk
abca†b†c†kji) (4)

with i, j, k, . . . ∈{occ} and a, b, c, . . . ∈{Vir}. The assumption
is that the operators Ti in the NLMO basis only need to be
locally correlated due to the at worst R-3 decay of the
“dipole-dipole” cluster amplitudes. We approximate T1

i and T2
i

by only summing over a third QM region, QM3, and likewise
for T3

i with respect to a second QM region, QM2, both composed
of orbitals that are spatially close and closer to i, respectively.
This is shown below for triple excitations,

∑
jkabc

) ∑
jkabc∈ QM2

+ ∑
P(jkabc)∉ QM2

≈ ∑
jkabc∈ QM2

(5)

with P(jkabc) a permutation operator which introduces local
orbitals outside of QM2 . Orbital i is defined to be in the first
QM region, QM1, with QM1 ⊂ QM2 ⊂ QM3 giving T3

i as

T3
i ≈

1
36 ∑

jkabc∈ QM2

tijk
abca†b†c†kji i ∈ QM1, j, k, a, b, c ∈ QM2

(6)

and T2
i as

T2
i ≈ 1

4 ∑
jab∈ QM3

tij
aba†b†ji i ∈ QM1, j, a, b ∈ QM3 (7)

The single excitation operator, T1
i , is given as

T1
i ≈ ∑

a∈ QM3

ti
aa†i i ∈ QM1, a ∈ QM3 (8)

Note that the QM1 regions are disjoint from one another as
opposed to the QM2 and QM3 regions. This reduces the number
of singles and doubles parameters and significantly reduces the
number of triples parameters leading to linear or even sublinear
scaling with respect to the number of basis functions. By
adopting a hybrid approach to NLSCC where NLSCCSDT-3
is performed in a small region, QM2, and NLSCCSD is
performed in a larger region, QM3, it is possible to take
advantage of simplifications that manifest in other hybrid
methods that mix small CCSD regions with large MBPT2
regions. These latter hybrid schemes are based on the assumption
that at large enough distances the localized electron pairs are
only weakly interacting and are therefore well approximated
by MBPT2, which does not allow these pairs to influence one
another to the extent that they do within CC theory. A hybrid
approach to treating triples within the NLSCC framework, as
opposed to a full NLSCCSDT-3 treatment, should benefit from
similar simplifications where the focus is on a small triples
region in which the triples influence one another more strongly
than those which are scattered over a larger region. For those
systems that are well described by single reference, as opposed
to a multireference system, it is expected that the hybrid NLSCC
methods for triples would compare well with a full NLSCCS-
DT-3 method.

Amplitudes in QM2-QM1 have an indirect influence on
those amplitudes Ti. As an example, consider a QM2 region
with three occupied orbitals, i, j, and k and an arbitrary number
of virtuals and let i ∈ QM1 and j, k ∈ QM2-QM1. The T2

equation will depend on tij, tik, and tjk, where we have dropped
virtual orbital labels for convenience. It is tempting to think
about dropping the tjk term and representing the NLSCC wave
function entirely in terms of QM1 f QM1 and QM1 f QM2
excitations; however, the QM2 f QM2 excitations have an
important, albeit indirect, effect on tij and tik. Obviously, those
outside of the largest QM region defined do not make a
contribution and thus are neglected within NLSCC. This choice
of QM regions should be done self-consistently to ensure that
we are including any important longer-range physics and an
automated QM determination is currently underway. We should
also choose the regions to minimize tail contributions. In our
current implementation we choose these regions using Molden36

based on results from calculations performed on substituted
alkanes of varying lengths to be discussed in the Results and
Discussion.

In the limit of perfect localization where |0〉 ) |i〉 |j〉 |k〉 . . .,
the NLSCCSDT-3 wave function becomes a product, by virtue
of its size-extensive exponential ansatz,

|Ψ 〉 ) |Ψi 〉 |Ψj 〉 |Ψk 〉 . . . (9)

Due to the orthogonality tails in the orthonormal NLMO basis
there will be higher order terms shown in the following many-
body expansion,

|Ψ 〉 ) |Ψi 〉 |Ψj 〉 |Ψk 〉 . . .+ |Ψij 〉 |Ψk 〉 . . .+

|Ψik 〉 |Ψj 〉 . . .+ |Ψjk 〉 |Ψi 〉 . . .+ |Ψijk 〉 . . . (10)

To expedite the evaluation of triples within NLSCCSDT-3,
it is useful to first consider the dominant linear term in the T3

i

equation,

〈 ijk
abc|(WNT2)c|0〉 (11)

with

HN )∑
pq

FNpq{p†q}+ 1
4∑pqrs

WNpqrs{p†q†sr} (12)

and

HN )H- 〈0|H|0〉 (13)

which is the cornerstone of CCSD(T) and CCSDT-1x (x ) a,
b) methods. Within the context of NLSCCSDT-3, nonlinear
contributions to T3, for example, 〈 ijk

abc|(WNT2
2)c|0〉 , allow the

localized regions to indirectly influence one another, for
example, by certain strong inter-regional excitations, without
destroying the locality or transferability of the individual regions.
These types of terms are incomplete in linear versions such as
CCSDT-1x (x ) a, b) or CCSD(T). Nonlinear terms involving
T3 are limited to the doubles equation 〈 ij

ab|(WNT1T3)c|0〉 within
the NLSCCSDT-3 approximation, meaning that all other terms
involving T3 are linear. Equations 14, 15, and 16 show the
coupled nonlinear T1, T2, and T3 CCSDT equations, where in
the latter those beneficial terms that were previously mentioned,
namely, those of CCSDT-3, are underbraced. The CCSDT-3
T1 and T2 equations are the same as they are for CCSDT.
Prefactors have been dropped for simplicity.

〈 i
a|(HN(1+ T2 + T1 + T1T2 + T1

2 + T1
3 + T3))c|0 〉

) 0 (14)

〈 ij
ab|(HN(1+ T2 + T2

2 + T1 + T1T2 + T1
2 + T1

2T2 + T1
3 + T1

4 +

T3 + T1T3))c|0 〉 ) 0 (15)

It can be seen that CCSDT-3 is as close to CCSDT as possible,
but still O(N7) and does not require storing the T3 amplitudes
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in a canonical or semicanonical basis because in those bases
the T3-into-T3 contributions vanish. For example, the only T3-
into-T3 contribution in CCSDT-3 is

〈 ijk
abc|(FNT3)c|0〉 (17)

which for canonical HF, or semicanonical orbitals, Fpq ) εpδpq

becomes diagonal, establishing that the set of triples need not
be stored. The CCSDT-3 method is correct through fourth order
in the energy and second-order in the wave function.

In the case of NLMOs there are off-diagonal occupied-
occupied and virtual-virtual terms in FN that require the amplitudes
be stored in the conventional implementation. The semicanonical
transformation that eliminates these terms in the case of a non-
HF reference function,35 thereby preventing storage, cannot be
used here because it would simply return the delocalized
canonical HF orbitals. In NLSCCSDT-3 we avoid storing triples
amplitudes in the localized basis by first solving the CC equa-
tions for our small QM regions in the canonical basis and then
subsequently unitarily transforming amplitudes and integrals into
NLMOs, shown below using the summation convention.

ti′j′. . .
a′b′. . . )Uaa′Ubb′Uii′Ujj′. . .tij. . .

ab. . . (18)

wp′q′r′s′ )Urr′Uss′Upp′Uqq′wpqrs (19)

That is we apply the localization matrix to the canonical CC wave
function from a QM region instead of to the reference function.
This a posteriori transformation does not affect our choice of QM
regions because the transferability of the NLMOs necessitates that
they can be determined from either a global or fragmented reference
function. In eqs 18 and 19 U is the localization transformation
obtained in the NLMO procedure from C′ ) CU where C′ are the
NLMOs and C are the canonical HF orbitals. The distinction here
in comparison to many other local CC methods is that by virtue
of the fact that CC is an infinite-order method, in comparison to
noniterative perturbative methods, we are free to apply the
localization to the final correlated wave function instead of to the
reference function. Therefore, within NLSCCSDT-3 we do not
have to store the triples amplitudes.

The total correlation energy, E ) 〈0|(HNeT)c|0〉 ) 〈0|Hj |0〉 ,

E)∑
ia

fi
ati

a + 1
4∑ijab

wij
ab(tij

ab + ti
atj

b - ti
btj

a) (20)

is then a sum of orbital correlation energies,

E)∑
i

Ei (21)

Using our truncation of excitation operators, we have Ei )
Ei(QM1) + Ei(∉ QM1) and so we choose i to minimize Ei

(∉ QM1) obtaining Ei ≈ Ei(QM1) to a good approximation. This
obviously becomes exact in the limit of QM2 being the entire
molecule. If we designate ET as the total CCSDT-3 correlation
energy, we have from eq 21 that

ET )∑
i

Ei
T (22)

in terms of triply correlated NLMO and/or functional group
energies. We consider the following heirarchy in terms of the

QM regions within the language of NLSCC, QM1 ⊂ QM2 ⊂
QM3, where ideally we would have triples contributions to QM1
from as large a region as possible given by QM3. If we consider
rewriting Ei

T in terms of QM2 and QM3 contributions as

Ei
T )Ei

T(QM3i)+Ei
T(QM2i) (23)

an interesting hybrid approach can be developed by assuming
that Ei

T(QM3i) ≈ Ei
D(QM3i), thereby avoiding longer-range

contributions to the triples equation resulting in

Ei
T ≈ Ei

D(QM3i)+Ei
T(QM2i) (24)

where Ei
D is a doubly correlated bond energy. Hybrid approaches

are labeled as NLS(CCSDT-3/CCSD). This approximation is
justified in the case of NLS(CCSD/MBPT2) by considering that
the effects of coupled excitations that CC offers in comparison
to MBPT2 would be less important at large distances. At large
distances the localized electron pairs are only weakly interacting
and so a theory in which the pairs are not allowed to influence
one another, such as MBPT2 in contrast to CC, is appropriate.

3. Results and Discussion

All calculations were performed using a modified version of
the serial ACES II,37 quantum chemistry software package. With
the exception of those for met-enkephalin, results were obtained
using a 375 MHz power3 processor using a maximum of 4 of
the available 8 GB of shared memory over four processors. The
calculations on met-enkephalin were performed on a 8 dual-
core ia64 processor SGI Altix machine with 256 GB of shared
memory using multithreaded libraries. Such calculations made
use of some recent advances in the ACES II code made to take
advantage of large shared memory machines. These advances
included updating some old memory limitations to allow for
large reference functions (739 basis functions for the case of
cc-pVDZ met-enkephalin) and in-core contractions in the context
of many-body methods.

Geometries for polyglycine were taken from ref 10. The
geometry for met-enkephalin was taken from the Protein Data
Bank (1PLW.pdb, model 1).38 Geometries of test systems are
available upon request. Given that the NLSCC method is
implemented as a pilot code in ACES II, we use a manual
determination of the QM regions using Molden.36

We first consider a quasi-linear translationally periodic system
because for these types of systems the arguments in favor of

(16)

Figure 1. The percentage of canonical (canon) and NLMO (local)
based CCSDT-3 |T2| and |T3| amplitudes, which are above the 5.0 ×
10-8 threshold as a function of C1 water clusters of varying size.
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locality are most simply understood. Polyglycine is meant to
represent the simplest peptide but still containing a variety of

functional groups. For example, it has a three-center peptide-
bond. Met-enkephalin is meant to represent a more realistic
application because it is three-dimensional and has nontrivial
side chains. It is a conformationally flexible neuropeptide with
a high affinity for the opiate receptor38 for which there has been
recent interest from the theoretical chemistry community.39–42

For polyglycine we limit ourselves to two-center bonds, although
we certainly could have used three-center bonds, whereas for
met-enkephalin we use up to six-centered bonds. We use a cc-
pVDZ basis unless specified otherwise; however, for more
practical applications a triple-� or better basis should be used.

Three of the figures in this article establish transferability by
plotting a quantity for a functional group, for example a methyl
group or a σ -bond, belonging to one side of a quasi-linear
molecule as a function of its distance from a perturbation on
the opposite side of the molecule. This distance is taken to be
the number of methylene groups between the two. Perturbations
are taken as simple functional groups, R )-CH3, -OH, -NH2,
-F, -H.

3.1. Motivation for NLMOs. It is demonstrated in Figure
1 for C1 water clusters that the NLMOs can localize the triples
contribution to the CCSDT-3 wave function. These water
clusters were chosen because they are examples of small systems
which have C1 symmetry; however, other C1 molecules such
as distorted alkanes, etc. could be used. It can be shown that
the number of negligible amplitudes resulting from spatial
locality is greater than the number due to symmetry. For a large
symmetric molecule it is necessary that the molecule be
sufficiently large so as to pass the crossover point for which
spatial locality, as opposed to symmetry, dominates the number
of negligible amplitudes. In the canonical basis ≈90% of the
|T2| amplitudes on average are above the 5.0 × 10-8 threshold
whereas for the |T3| amplitudes this number reduces to ≈50%.
These averages ignore the contribution from a single water
molecule which because of the C2V symmetry gives a crossover
in the number of amplitudes above the threshold for canonical
versus local bases. It is not surprising that the size of |T3| is
smaller than |T2| because these clusters have relatively simple,
nondegenerate ground states thereby lacking nondynamical
correlation effects usually associated with higher excitation
operators. In the localized NLMO basis both |T2| and |T3| are
sparse, giving, for example, only ≈35% and ≈10% amplitudes
above threshold, respectively, for the water heptamer. The decay
of localized amplitudes is monotonic for |T3| and nearly
monotonic for |T2|; however, due to the lack of symmetry in

Figure 2. Profile of the absolute value of diagonal two-electron
integrals, 〈ii|aa〉, with respect to different virtual bases from a C1 (H2O)5

calculation. The key is understood as follows with the number giving
the degree of localization: local 0 (canonical occupied and canonical
virtual), local 1 (localized occupied and canonical virtual), and local 2
(localized occupied and localized virtual).

Figure 3. Diagonal |T2| (CCSD) and |C2| (CISD) amplitudes for a σCH-
bond belonging to a methyl group as a function of alkane length. The
plot demonstrates that for the size-extensive CCSD wave function the
amplitudes are transferable. This is in contrast to the CISD wave
function which is size-inextensive.

Figure 4. Transferability of |T2| and |T3| from CCSDT-3 in the NLMO basis for substituted alkanes. The amplitudes are confined to the
methyl cap on the opposite side of the substituent and the x-axis represents increasing distance between the two in terms of the number of
methylene groups.
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the clusters it is not necessarily expected that the behavior be
monotonic. By virtue of the localization scale, we can get a
handle on the dominant amplitudes.

Figure 2 examines the locality of the virtual NLMOs,
specifically the absolute value of diagonal two-electron integrals,
〈ii|aa〉, for a (H2O)5 calculation. The profile of the integrals with
respect to different virtual bases is shown where the key is
understood as follows with the number giving the degree of
localization: local 0 (canonical occupied and canonical virtual),
local 1 (localized occupied and canonical virtual), and local 2
(localized occupied and localized virtual). For the localized
occupied calculations i ) σOH and for the canonical occupied
calculations i is delocalized. The local 0 curve shows that all
the virtual orbitals give significant interactions with the chosen
occupied. The local 1 curve shows that localizing the occupied
orbitals does little to improve on local 0, for example a given
σOH has significant interactions with all of the canonical virtual
space, supporting the well-known conclusion that a localized
virtual space is imperative. The local 2 curve shows significant
improvements on local 0 and local 1 because both the occupied
and virtual spaces are localized by virtue of our NLMO
implementation where the peaks represent intramolecule interac-
tions. The first set of peaks correspond to σOH-σOH

/ pair
interactions, and the second and third correspond to interactions
with the Rydberg spaces of oxygen and hydrogen, respectively.

The transferability of the CC wave function in terms of NLMOs
is shown in Figures 3 and 4 for a series of alkanes and substituted
alkanes, respectively. Figure 3 shows diagonal |T2| (CCSD) and
|C2| (CISD) amplitudes for a σCH-σCH

/ pair confined to a methyl
group as a function of alkane size. It is seen that because the
CC wave function is size-extensive the CC amplitudes are
transferable but the CI amplitudes are not. In Figure 4 we show
the transferability of |T2| and |T3| for the CCSDT-3 level of
theory. The amplitudes are confined to be on the methyl cap
on the opposite side of the substituent, for example, possibly
incorporating another σ-bond different from the first also on
the methyl cap. The first point in Figure 4 represents the
amplitude and substituent as nearest neighbors and thus the
amplitudes are very different among substituents. T2 requires
only one region of screening and therefore rapidly approaches
a constant transferable value, whereas T3 from a CCSDT-3
calculation requires two or more regions of screening before
becoming transferable. Note that these results are similar over
all functional groups studied, including the very electroneg-
ative fluorine atom, because of the robust transferability of
NLMOs.

The CCSD (left) and CCSDT-3 (right) σCH-bond energies
computed from these transferable amplitudes are themselves
transferable, as shown in Figure 5 for the same series of
substituted alkanes. The difference between CCSD and CCS-
DT-3 bond energies is, not surprisingly, small, ≈1 mH, given
the simplicity of the electronic structure. Both CCSD and
CCSDT-3 bond energies require two or more regions of
screening before reaching a constant value and the rate at which
they become transferable are nearly identical.

3.2. Polyglycine. Differences between CCSD and CCSDT-3
bond energies are shown in Figure 6 for two molecules used in
the NLSCC calculation of polyglycine. The two molecules are
designated by the fact that they are either the N-terminus or
C-terminus and are shown in Figure 7 on the lower-left and
lower-right, respectively. There are negligible triples contribu-
tions from the core orbitals and small ≈1.5 mH on average
contributions for the σ-bonds. The lone pairs in these two
molecules have larger triples contributions ≈2 mH, on average,
and they are over a longer range than the other bonds, ≈1-3
mH. This is probably because they are more dependent on local
environment due to their greater diffusivity. The occupied
indicies within each of the core, lone-pair, σ-bond, and π-bond
sections are not in a specific order. The triples contribution from
the π-bonds is largest, ≈4 mH, suggesting an interesting active

Figure 5. Transferability of CCSD and CCSDT-3 absolute value bond energies in the NLMO basis for substituted alkanes. The σCH-bond is on
the opposite side of the substituent, and the x-axis represents increasing distance between the two in terms of the number of methylene groups.

Figure 6. Difference between CCSD and CCSDT-3 bond energies
for all of the occupied orbitals in two molecules used in the NLSCC
calculation of polyglycine. The two molecules are designated by the
fact that they are either the N-terminus or C-terminus and are shown
in Figure 7 on the lower-left and lower-right, respectively.
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space triples method based on NLSCC in which different bonds
are correlated at different levels of theory.

Figure 7 shows the QM regions defining the hybrid NLSCC
calculation of polyglycine. The functional groups of interest

represented by the QM1 region, the “QM” label is to specify
that this region is treated quantum mechanically as opposed
to by more classical interactions, for example, by an electro-
static potential, etc., that could be incorporated into regions
outside of QM3 but will not in the current formulation. There
is one region for the methylene group, one for the peptide group,
one for the N-terminus, and one for the C-terminus. This region
is embedded in the QM2 region, which will be treated at
the CCSDT-3 level of theory, which in turn is embedded in the
QM3 region to be treated at the CCSD level of theory. The
reason for two embedding regions is to capture any strong
correlations for those functional groups that are close to one
another with CCSDT-3 and for weaker correlations between
more distant functional groups CCSD can be used. The peptide
bond in polyglycine is treated as a Kekulé structure composed
of two-center bonds.

The CCSD and CCSDT-3 functional group energies of the
molecules used in the NLSCC calculations on polyglycine are
shown in Table 1. The diagonal elements are simply the energies
taken from the corresponding QM1 regions of Figure 7 whereas
the upper-diagonal elements for peptide and methylene are the
energies of those groups extracted from both the calculations
for which the target was the N-terminus and C-terminus. The
difference between CCSD and CCSDT-3 functional group
energies is largest for the C-terminus, ≈35 mH, followed by
the N-terminus and the average peptide group which are ≈24
and ≈14 mH, respectively. The smallest difference is for the
average methylene group which is ≈6 mH. This ordering
follows from the total number of lone pairs and π-bonds in each
of the groups, which we know from Figure 6 give large triples
corrections to the energy. The transferability of the peptide group
among three different molecules is seen by considering the
upper-diagonal elements which are within ≈1 mH of one
another for both CCSD and CCSDT-3. The same is true for
the methylene group from the CCSD calculation; however, for
the CCSDT-3 calculation the differences are slightly larger.

The total and unit cell NLSCCSD and NLS(CCSDT-3/CCSD)
correlation energies for polyglycine are shown in Table 2 along
with some literature results obtained using LCC methods.14,32

The unit cell is glycine. The triples contribution acts to lower
the correlation energy contribution per unit cell by ≈20 mH
for all polyglycine examples including the infinite limit. The

Figure 7. Definition of the various regions for the hybrid NLSCC calculation of polyglycine. QM1 simply represents the functional groups of
interest, QM2 represents the CCSDT-3 region, and QM3, the whole fragment, represents the CCSD region. Due to the more complicated structure
there are four calculations (methylene group, peptide group, N-terminus group, and C-terminus group) needed.

Figure 8. NLSCCSD and NLS(CCSDT-3/CCSD) absolute value
correlation energy per unit cell of polyglycine. The unit cell is glycine.

TABLE 1: Transferability of CCSD and CCSDT-3
Functional Group Energies among Molecules Used in the
NLSCC Calculations on Polyglycinea

C-terminus N-terminus peptide methylene

CCSD
C-terminus -1.1039 -0.4184 -0.2129
N-terminus -0.7914 -0.4171 -0.2123
peptide -0.4173
methylene -0.2146

CCSDT-3
C-terminus -1.1388 -0.4331 -0.2193
N-terminus -0.8150 -0.4308 -0.2185
peptide -0.4311
methylene -0.2212

a The diagonal elements are simply the energies taken from
corresponding QM1 regions of Figure 7, whereas the upper-diagonal
elements for peptide and methylene are the energies of those groups
extracted from both the N-terminus and C-terminus calculations.
Functional group energies are reported in units of Hartree.
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saturation of the correlation energy per unit cell is clearer in
Figure 8. The energy difference for the infinite versus small
molecule limit for the glycine unit cell is ≈30 mH for both
NLSCCSD and NLS(CCSDT-3/CCSD). For NLSCCSD over
99% of the correlation energy is obtained when compared to
conventional results for the glycine monomer, dimer, and

tetramer, and for NLS(CCSDT-3/CCSD), the comparison with
conventional methods was only possible with the glycine
monomer for which 99.4% was recovered. To validate the
NLSCC triples methods, further comparison with conventional
methods would be necessary. Despite the fact that a direct
comparison between the NLSCC and LCC methods is not
possible, because of the frozen core approximation in addition
to the fact they are hybridized differently, the NLSCC method
provides the literature results for extended systems. As an
example of time savings, consider (gly)1 with 95 basis functions
and (gly)16 with 1160 basis functions. The time required for a
CCSDT-3 calculation on (gly)1 is 0.95 days, which can be
crudely extrapolated to 3.4 × 107 days for (gly)16. The
NLS(CCSDT-3/CCSD) serial calculation on (gly)16 took 11.9
days to be compared to a parallel fragment molecular orbital
(FMO) CCSD(T) on four 3.2 GHz pentium4 processors which
took 9.9 days.30 By virtue of the fact that the NLSCC methods
are built upon local QM regions, the rate determining step of
the calculations becomes that of the largest QM region. For a
simple translationally periodic example once the energies of the
QM1 regions shown in Figure 7 are determined it is trivial to
reuse these regions in symmetrically equivalent cases to
determine the energies of larger and larger molecules. More
timings are discussed in the section on met-enkephalin.

3.3. Met-Enkephalin. The three-dimensional pentapeptide
(met-phe-gly-gly-tyr) met-enkephalin is shown in Figure 9 along
with a crude representation of the QM1 regions chosen for the
NLSCC calculations. Side chains of non-glycine residues methion-
ine (QM11), phenylalanine (QM14), and tyrosine (QM19) are shown
in Figure 10 along with atom indicies for use in Table 3.

Table 3 shows a decomposition of the CCSD correlation
energy into functional group and NLMO contributions for
non-glycine QM1 regions which are shown in Figure 10. The
NLMOs are ordered per column as core, lp, σ, and π orbitals
as well as a six-center phenolic-bond given by 1π6-3π6. All
NLMO core contributions are ≈1-2 mH and the average
correlation energy for an oxygen lp (≈50 mH) is ≈5 mH
greater than a sulfur lp (≈45 mH). The average correlation
energy for a σCH-bond in methionine, ≈49 mH, is much
greater than for phenylalanine and tyrosine which are both
around ≈39 mH because of the similarity in their side chains.

TABLE 2: Total and Unit Cell NLSCCSD and NLS(CCSDT-3/CCSD) Correlation Energies for Polyglycinea

NLSCCSD LCCSD/LMP2 FC NLS(CCSDT-3/CCSD) LCCSDT-1b/LMP2 FC LCCSD(T)/LMP2 FCnglycine

ncell Ecorr (H) Ecorr/ncell Ecorr (H) Ecorr (H) Ecorr/ncell Ecorr (H) Ecorr (H)

1 99.4% -0.8466 99.1% 99.4% -0.8703 98.9% 99.0%
2 99.9% -0.7387 99.0% -1.5212 -0.7606
4 99.3% -0.6854 -2.6783 -2.8262 -0.7066 -2.7552 -2.7570
7 -4.6376 -0.6625 -4.7838 -0.6834
8 -5.2696 -0.6587 -5.1499 -5.4363 -0.6795 -5.3001 -5.3039
9 -5.9017 -0.6557 -6.0888 -0.6765
10 -6.5338 -0.6534 -6.3857 -6.7413 -0.6741
11 -7.1658 -0.6514 -7.3938 -0.6721
14 -9.0620 -0.6473 -8.8574 -9.3513 -0.6680
15 -9.6941 -0.6462 -10.0038 -0.6669
25 -16.0147 -0.6405 -16.5289 -0.6611
41 -26.1277 -0.6372 -26.9691 -0.6577
61 -38.7690 -0.6355 -40.0193 -0.6560
163 -103.2395 -0.6333 -106.5753 -0.6538
265 -167.7100 -0.6328 -173.1313 -0.6533
500 -316.2450 -0.6324 -326.4711 -0.6529
1000 -632.2769 -0.6322 -652.7261 -0.6527
∞ -0.6321 -0.6525

a The unit cell is a glycine. Other values are taken from the LCC literature.14,32 The symbol H means that the energies are reported in units
of Hartree.

TABLE 3: Decomposition of the CCSD correlation Energy
into Functional Group and NLMO Contributions for
Non-glycine QM1 Regions Shown in Figure 10a

methionine phenylalanine tyrosine

S5 -0.0000 C5 -0.0017 O2 -0.0014
S5 -0.0013 C8 -0.0017 C3 -0.0016
S5 -0.0013 C10 -0.0017 C6 -0.0017
S5 -0.0016 C12 -0.0017 C12 -0.0017
S5 -0.0017 C14 -0.0018 C4 -0.0018
C7 -0.0018 C6 -0.0018 C8 -0.0018
C2 -0.0019 C2 -0.0019 C10 -0.0018
C9 -0.0020 C10H11 -0.0385 C13 -0.0019
S5 -0.0409 C12H13 -0.0386 O2 -0.0450
S5 -0.0480 C8H9 -0.0389 O2 -0.0548
C2H1 -0.0473 C14H15 -0.0393 C6H7 -0.0391
C2H4 -0.0474 C6H7 -0.0397 C4H5 -0.0391
C2H3 -0.0479 C2H3 -0.0401 C8H9 -0.0392
C7H6 -0.0492 C2H4 -0.0404 C10H11 -0.0393
C9H10 -0.0493 C10C12 -0.0431 C13H14 -0.0404
C9H11 -0.0495 C8C10 -0.0431 C13H15 -0.0404
C7H8 -0.0502 C12C14 -0.0434 C3C4 -0.0431
C2S5 -0.0539 C6C8 -0.0437 C3C8 -0.0431
S5C7 -0.0548 C5C14 -0.0441 C4C6 -0.0435
C9C12 -0.0553 C5C6 -0.0443 C8C10 -0.0437
C7C9 -0.0567 C2C5 -0.0473 C6C12 -0.0439

C1C2 -0.0477 C10C12 -0.0442
1π6 -0.0536 C12C13 -0.0471
2π6 -0.0699 C13C16 -0.0476
3π6 -0.0699 O2H1 -0.0505

O2C3 -0.0547
1π6 -0.0537
2π6 -0.0675
3π6 -0.0714

Total -0.6619 -0.8380 -1.0049

a NLMOs are ordered per column as core, lp, σ, and π orbitals as
well as a six-center phenolic-bond given by 1π6-3π6. For each type
of NLMO within each column the energy contributions are ordered
by increasing magnitude. Energies are reported in units of Hartree.
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The average correlation energy for a σCC-bond in methionine
is ≈56 mH compared to ≈44 mH for a ring σCC and ≈47
mH for a nonring σCC in phenylalanine and tyrosine. The
average σCS-bond in methionine has ≈54 mH in comparison
to the average σCC-bond which is ≈56 mH. The σOH-bond
in tyrosine has ≈53 mH. The delocalized six-centered
π-bonds contain the most correlation amounting to an average

of ≈64 mH for both phenylalanine and tyrosine. The
similarity in the bond correlation energies for phenylalanine
and tyrosine are attributed to the transferability of their
electronic structure within NLSCC as represented in terms
of NLMOs.

Table 4 summarizes minimal-basis and cc-pVDZ NLSCCSD
calculations for met-enkephalin. On average each QM2 region

Figure 9. Ball and stick model of the three-dimensional penta-peptide (met-phe-gly gly-tyr) met-enkephalin (1PLW.pdb) taken from ref 38. Also
shown is a crude representation of the QM1 regions chosen for the NLSCC calculations.

Figure 10. Ball and stick model of side chains of non-glycine residues in met-enkephalin shown with atom indicies for use in Table 3.

TABLE 4: Summary of STO-3G and cc-pVDZ NLSCCSD Calculations on Met-Enkephalina

QM2 QM1 Ei

i, QM1 natom nocc nvir
STO-3G nvir

cc-pVDZ natom nocc nvir
STO-3G nvir

cc-pVDZ STO-3G cc-pVDZ

1 27 46 29 192 11 21 -0.2486 -0.6619
2 30 55 31 221 6 15 -0.2387 -0.6519
3 29 55 34 225 6 14 -0.2244 -0.5931
4 35 65 42 272 14 25 -0.4927 -0.8380
5 23 46 25 177 4 11 -0.1758 -0.4786
6 29 56 33 224 7 15 -0.2408 -0.6348
7 22 41 25 168 3 4 -0.0644 -0.1561
8 28 52 32 214 9 18 -0.2736 -0.7549
9 35 65 42 272 15 29 -0.5315 -1.0049
NLSCCSD 75 152 -2.4905 -5.7742
CCSD 75 152 87 587 -2.4987
HF 75 152 87 587 -2208.9502 -2236.7860
ENLSCCSD 75 152 -2211.4407 -2242.5602
ECCSD 75 152 87 587 -2211.4489

a The number of atoms, occupied orbitals, virtual orbitals, and group correlation energies for each QM1 and accompanying QM2 regions
according to Figure 9 are shown. The NLSCCSD results are shown to be a sum of the QM1 results and compared to conventional CCSD for
the STO-3G basis. Energies are reported in units of Hartree. In this case conventional HF provides reference energies although other reference
functions could be used. ENLSCCSD is the total energy, HF+NLSCCSD, within the NLS framework and ECCSD is the total energy, HF+CCSD,
using conventional CC.
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contains 29 atoms and 53 occupied orbitals with 32 virtuals for
STO-3G and 218 virtuals for cc-pVDZ. The largest QM
calculations with 65 occupied and 272 virtuals are for QM24

andQM29 forwhichwearecalculating thephenylalanine-tyrosine
interaction. The NLSCCSD result can be constructed out of
effective functional groups as determined from the QM1 regions
giving a correlation energy of -2.4905 and -5.7742 H for STO-
3G and cc-pVDZ bases, respectively. For STO-3G conventional
CCSD gives -2.4987 H, and thus we are able to recover 99.7%
of the correlation energy. Although this is the simple minimal
basis, we are able to get the result for a calculation with 87
virtual orbitals from calculations with no more than 42 virtuals
thus saving a factor of 18 in the evaluation of 〈ab|cd〉 integrals.
A similar comparison using the cc-pVDZ basis, 587 virtuals, is
currently under development using a new parallel version of
ACES, ACES III,4 where we should expect similar savings given
that the largest QM2 has only 272 virtuals. As a simple
illustration of the time saved in the NLSCC method, consider
the STO-3G conventional CCSD calculation which took a total
of 53.56 h in comparison to the NLSCCSD calculation, which
took 0.98 h for the rate limiting step. The other steps are shorter
and can be done simultaneously. The cc-pVDZ NLSCCSD
calculation on met-enkephalin had a rate limiting step of 137.64
h in which the NLMO generation took only 69 s. Conventional
HF provides reference energies although other reference func-
tions for example density functional theory (DFT) or FMO-
HF39 could be used. Collective three-body weak interactions
from methionine, phenylalanine, and tyrosine were not necessary
in the STO-3G basis but may be needed in larger and more
diffuse basis sets. Accurate triples contributions for met-
enkephalin are too intensive to calculate because the QM2
regions should contain at least amino acid dimers and these are
already too expensive for a proper correlated treatment. Active
space triples methods for aromatic bonds built upon conventional
NLSCC would be quite useful in this situation.

4. Conclusion

By virtue of the transferability of NLMOs, we have developed
and validated a linear-scaling method for triples contributions to
the CC wave function in the context of NLSCC methods. Storage
of the noncanonical triples amplitudes are avoided by applying
the unitary localization matrix to the final canonical CC wave
function instead of to the reference function. We reach the
conclusion that the triples amplitudes are longer-ranged than
the doubles amplitudes; however, our results show that choosing
the triples regions in an analogous manner as the doubles is
sufficient for our purposes. Calculations on translationally
periodic polyglycine are among the largest CC triples calcula-
tions performed. For polyglycine we find that two-center Kekulé
structures are sufficient for transferable correlated energies.
However, other n-centered (n > 2) choices might be necessary
in reproducing correlated density matrices or other properties.
We find that the triples contributions are largest for π-bonds,
indicating an interesting active space method in which different
types of bonds are treated at different excitation levels.
Applications to met-enkephalin test the transferability for a more
realistic three-dimensional example, for which there has been
limited linear-scaling results due to the high demands of
accurately representing weak interactions. NLSCC methods are
in agreement with literature values and can recover over 99%
of the conventional CC energy with the rate limiting step being
the size of QM regions chosen.
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(18) Paulus, B.; Rościszewski, K.; Stoll, H.; Birkenheuer, U. Phys. Chem.

Chem. Phys. 2003, 5, 5523.
(19) Flocke, N.; Bartlett, R. J. J. Chem. Phys. 2003, 118, 5326.
(20) Li, S.; Ma, J.; Jiang, Y. J. Comput. Chem. 2002, 23, 237.
(21) Li, W.; Li, S. J. Chem. Phys. 2004, 121, 6649.
(22) Auer, A. A.; Nooijen, M. J. Chem. Phys. 2006, 125, 024104.
(23) Hirata, S.; Grabowski, I.; Tobita, M.; Bartlett, R. J. Chem. Phys.

Lett. 2001, 345, 475.
(24) Hirata, S.; Podeszwa, R.; Tobita, M.; Bartlett, R. J. J. Chem. Phys.

2004, 120, 2581.
(25) Stollhoff, G.; Fulde, P. J. Chem. Phys. 1980, 73, 4548.
(26) Stoll, H. Phys. ReV. B 1992, 46, 6700.
(27) Stoll, H.; Paulus, B.; Fulde, P. J. Chem. Phys. 2005, 123, 144108.
(28) Maslen, P. E.; Dutoi, A. D.; Lee, M. S.; Shao, Y.; Head-Gordon,

M. Mol. Phys. 2005, 103, 425.
(29) Maslen, P. E.; Lee, M. S.; Head-Gordon, M. Chem. Phys. Lett.

2000, 319, 205.
(30) Fedorov, D. G.; Kitaura, K. J. Chem. Phys. 2005, 123, 134103.
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