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The state-specific equation of motion coupled cluster method is applied to three systems of diradical character:
automerization of cyclobutadiene, singlet-triplet gaps of trimethylmethylene, and Bergman reaction. The
aim of the paper is to assess the performance of the method and test numerically the importance of orbital
optimization, three-body terms in transformed Hamiltonian, and the choice of cluster equations.

I. Introduction

The equation of motion coupled cluster method (EOMCC)1-5

and its cousins, coupled cluster linear response theory (CCLRT)6-8

and symmetry adapted cluster configuration interaction (SAC
CI),9,10 were primarily designed for treatment of excited states
and calculation of response properties. The cluster amplitudes
and the transformed Hamiltonian are obtained for the ground
state. Subsequently, the transformed Hamiltonian is diagonalized
over the space of primary excitations dominant for the excited
states (e.g., singles) plus the next higher excitation level (e.g.,
doubles). The assumptions underlying the scheme are the
transferability of ground-state cluster amplitudes and single
reference character of the ground state. In addition, excitations
should be qualitatively well described by the primary space
components.

The EOMCC method is also used to describe the ground and
excited states of radicals for which the closed shell parent state
has a different number of electrons than the target states of
interest. This leads to the ionization11 and electron attachment12

version of EOMCC method, or their SAC CI and CCLRT
counterparts.13-18 Another strategy is the spin-flip approach,19,20

where the parent state is a high spin determinant. In this way
one can access systems that have a multiconfigurational ground
state. The equation of motion method has also been used in the
DIP-EOMCC version, in which the parent state has two more
electrons than the target states of interest.21,22 Also these methods
are able to treat certain multireference systems, but they have
the drawback that the final states are rather far removed from
the parent state, and hence these methods loose their accuracy
if orbital relaxation effects are important or the assumption of
transferability of dynamical correlation breaks down. The closely
related Fock space coupled cluster23-29 and STEOM-CC30-33

methods have also been used to describe multiconfigurational
systems, and they are based on similar assumptions as EOMCC.
The DIP-STEOM-CCSD approach has been applied, for ex-
ample, to describe geometrical structure and vibrational frequen-
cies of ozone,34 while the DEA-STEOM approach has been

applied to the notoriously difficult problem of the geometry,
vibrational frequencies and excitation spectrum of the N2O2

molecule.35

The transferability of cluster amplitudes is based on the
concept of valence universality,23-26 which explains the success
of the aforementioned approaches. However, the applicability
of valence universality concept to general open shell problems
has limitations, as similarity between parent and target state is
vital.

In this paper, we discuss a generalization of EOMCC for
systems that do not have a convenient close-lying parent
state.36-38 Unlike the traditional EOMCC approaches that focus
on excited states, the generalization targets one particular state
of interest, without the use of a parent state. The parametrization
of the wave function is the same as in EOMCC, but all
parameters are explicitly optimized for the state of interest. The
method employs a spin-adapted cluster operator, T̂, that excites
from occupied and active orbitals into the virtual space. The
transformed Hamiltonian e-T̂ĤeT̂ is subsequently diagonalized
over an active space plus single excitations out of the active
space, and this results in spin-eigenstates. This modification of
EOMCC is denoted state-selective equation of motion coupled
cluster (SS-EOMCC). The SS-EOMCC approach has been
applied previously to the diatomics O2 and F2,36 the avoided
crossing in the LiF molecule,37 and to the challenging Cu2O2

molecule including NH3 ligands.38 The latter application clearly
showed the potential of the approach, as SS-EOMCC with a
simple active space suitable for biradicals provided a satisfactory
treatment of this system, which has provided a severe challenge
to CASPT2 with a very large reference space.39,40 The SS-
EOMCC approach can be regarded as a member of the family
of SS-MRCC methods considering its realm of application,
although it is not quite size-extensive. The scaling properties
of the SS-EOMCC method are analogous to those of the
traditional EOMCC approach for excitation energies, in par-
ticular the energies are core-extensive implying that energies
scale properly if a closed shell system is added at infinity. For
recent discussion of this contentious topic we refer to ref 41.

In the SS-EOMCC approach, the wave function is thus
expected to be qualitatively correct, as a diagonalization is
performed including the most important configurations, while
the cluster operator is assumed to include primarily dynamical
correlation effects. The use of CC theory is expected to be more
effective for the treatment of dynamical correlation than using
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CI techniques, in analogy to single reference situations. For this
reason one can expect that the active space in SS-EOMCC and
MRCC approaches might be more compact than in MRCI or
CASPT2. Compared to Hilbert space multireference ap-
proaches,42-44 on the one hand the parametrization of the cluster
operator in SS-EOMCC is more compact, which would be
especially pronounced for calculations with a large model space.
On the other hand, SS-EOMCC requires a diagonalization over
a CAS plus singles space, which quickly becomes expensive
with increase of the size of the active space. For this reason the
SS-EOMCC is expected to be most effective for small to
moderately sized model spaces, in which the CAS + singles
diagonalization step is not rate limiting. Let us note that SS-
EOMCC can also be viewed as a precursor to more fully
contracted approaches currently under development in the
Waterloo group, in which the final step only requires diago-
nalization over a CAS space. Such fully contracted multirefer-
ence approaches would be applicable to very large active spaces
containing perhaps thousands of reference configurations, which
can then target complicated transition metal compounds.

The SS-EOMCC type of approach can also be compared to
single reference type of approaches that efficiently include
effects from higher excitations, e.g. CCSDt and CCSDtq,45 or
equivalently the earlier single reference based multireference
coupled cluster method,46,47 and the renormalized family of CC
approaches,48,49 which can also be quite effective to describe a
variety of multireference situations. These single reference
approaches have the clear advantage that they apply well in
both single reference and (at least certain) multireference
situations. This is unlikely to hold for the SS-EOMCC approach,
which can be expected to be less accurate for single reference
situations. On the upside the number of cluster operators in SS-
EOMCC is significantly smaller than in the above single
reference approaches and the cost-effectiveness of SS-EOMCC
then depends on the cost of the single CAS + singles
diagonalization step. For the DIP type SS-EOMCC approach
considered here this step has negligible cost and the prime issue
therefore is the accuracy of the approach, which we are aiming
to establish.

Prior to applications to systems with larger active spaces, it
is desirable to further test the performance of this method on
simpler systems. In this paper we concentrate on a special class
of systems, where the states of interest can be accessed using
the double ionization scheme. This requires that only one virtual
orbital is important for qualitative description of static correla-
tion. Biradicals are suitable systems to be described by the SS-
EOM-CCSD[+2] approach, as would be the breaking of single
bonds. In this paper this scheme is referred to by the more
general designation SS-EOM-CCSD[+2] acronyms, following
ref 38, which indicates that the vacuum state has two more
electrons than the state of interest. In general the SS-EOM-
CCSD[+n] scheme would indicate n more electrons in the
vacuum state than in the final state of interest.

The paper presents a study of three systems: the automer-
ization barrier of cyclobutadiene, the singlet-triplet gap of
trimethylmethylene, and the energetics of the Bergman reaction.

Cyclobutadiene is an example of an antiaromatic system, with
two carbon-carbon single bonds and two double bonds.
Between the two rectangular structures lies the transition state
with a square geometry, see Figure 1. The rate of interconversion
of the two rectangular ground states, which can be classified as
second order in terms of the Jahn-Teller distortion, is thus
determined by the height of the automerization barrier. Due to
the two-determinantal character of the transition state, the

description of static correlation is crucial. This system has been
studied extensively both theoretically50-66 and experimentally.67-70

Trimethylmethylene is a typical non-Kekule system, with four
electrons being delocalized over three π molecular orbitals. The
3A2 ground-state has D3h symmetry, whereas the two low-lying
singlet states 1B1 and 1A1 have the point group C2V, cf. Figure
2. The two highest orbitals of 3A2 are degenerate and both are
singly occupied. For the singlet states, these orbitals are only
quasi-degenerate, and multireference treatment is highly ben-
eficial. Previous studies of the system include refs 71-79.

The Bergman reaction, i.e., the formation of 1,4-dihydrogen-
benzene from hex-3-ene-1,5-diyene, cf. Figure 3, is a useful
synthetic reaction, with the diradical product known to be an
antitumor agent. Due to instability of the species involved,
experimental studies of reaction energetics are relatively
scarce.80,81 Theoretical studies are thus a valuable source of
information about this reaction.82-93 In order to provide a
balanced treatment along the reaction coordinate, a multirefer-
ence treatment is preferable.

II. Theory

Let us divide the orbitals into core, active and virtual. The
vacuum state used has core and active orbitals fully occupied,
and thus is a single closed-shell Slater determinant. The indices
a, b, c, ... correspond to virtual orbitals, and i, j, k, ... are used
to denote core and active orbitals.

The wave function in the SS-EOMCC approach is param-
etrized as

|Ψ 〉 ) eTC|0〉 (1)

where |0〉 is the vacuum state, C is a CI-like operator, and T is
a cluster operator. The cluster operator is truncated to singles
and doubles

T)∑
i,a

Ωi
a +∑

ij,ab

tab
ij Ωij

ab (2)

where Ωi
a and Ωij

ab are a short-hand for the spin-orbital based
excitation operators

Figure 1. Automerization of cyclobutadiene.

Figure 2. Ground state and low-lying excited states of trimethylm-
ethylene.

Figure 3. Bergman reaction.
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Ωi
a ) aa

†ai (3)

Ωij
ab ) aa

†ab
†ajai (4)

The C vector is an eigenvector of transformed Hamiltonian
e-THeT, which can be seen by premultiplying the Schrödinger
equation by e-T. In principle, if the full CI expansion for the
operator C is used the exponential transformation eT is com-
pletely arbirary, reflecting the fact that the spectrum of an
operator is unaffected by a similarity transform. However, the
aim of the approach is to use only a truncated CI expansion
such that C is used primarily for description of static correlation
and relaxation effects, while the operator T accounts for (short-
range) dynamical correlation, and therefore the precise definition
of T amplitudes, to be discussed shortly, is important in practical
calculations.

The vacuum state has doubly occupied core and active
orbitals, and should be regarded as an artificial construct without
physical significance in general. The scope of this paper is
restricted to double ionization (DIP) or equivalently the
EOMCC[+2] scheme, where the vacuum state has two more
electrons than the state of interest.

For the DIP case, the C operator is taken as

C)∑
ij

cijaiaj +∑
ijkb

cijkbaiajab
†ak (5)

and the cluster operator is defined with respect to the aformen-
tioned vacuum state. It should be noted that the final diagonal-
ization manifold is quite compact. The size of the vector C only
scales as O3V, which is significantly more compact than the
final diagonalization space in EE-EOMCC or spin-flip EOMCC.
The transformed Hamiltonian that is diagonalized in SS-EOM-
CCSD[+2] is nonhermitian and includes higher body contribu-
tions. However, since the diagonalization space is restricted to
single excitations, only up to three body terms are needed. In
the DIP case such three-body contributions are inexpensive, but
they do become rather expensive for general active spaces, and
in this paper we will therefore consider the importance of
including them.

The cluster equations are taken in the form of

〈R|Ωa
i e-THeT|R〉 ) 0 (6)

and

〈R|Ωab
ij e-THeT|R〉 ) 0 (7)

where the reference state R, defined as

|R〉 )∑
ij

Rijaiaj|0〉 (8)

Equations 6 and 7 resemble standard coupled cluster equa-
tions. However, let us emphasize that these equations are not
obtained by projection of the Schrödinger equation using the
parametrization |Ψ〉 ) eTC|0〉 against single and double excita-
tions from |R〉 , since that would lead to exactly redundant T1

equations. The state R is assumed to contain the qualitatively
important components of the wave function, and the equations
for T amount to a projected Schrödinger equation for eTR|0〉 ,
but it is important to realize that this parametrization by itself
would not provide an exact wave function, irrespective of the
excitation level of T. Rather, the exactness of the approach is
reached in the FCI limit of the operator C, upon diagonalization
of the transformed Hamiltonian. The equations for T are to fair
extent a matter of choice, and it is considered a numerical
experiment to determine which equations for T work most

satisfactorily. The above equations are relatively simple, in the
sense that the detailed form of the equations can be expressed
in terms of Hamiltonian integrals, t amplitudes, and the reduced
density matrices of the state |R〉, which involve occupied orbitals
only. In the DIP case, only the one- and two-particle reduced
density matrices are needed, whereas for general active spaces
in principle one would need up to 4-particle reduced density
matrices. Because the equations for T depend on the state of
interest, |R〉, the equations for the T amplitudes are state-specific.
Moreover, the equations for T are easily spin-adapted (using
spatial orbital reduced density matrices), very much like the
closed-shell single reference CCSD equations. The actual
implementation we use is spin-adapted, although in this paper
we will write all expressions in terms of spin-orbitals for
convenience.

The reference state |R〉 can be obtained from a prior CASSCF
calculation, or in the case of diradicals, the triplet state can be
used to generate orbitals, or even the dianion, provided that the
basis set is not too large. If diffuse orbital basis sets would be
used the dianion results are expected to rapidly deteriorate, and
dianion orbitals should therefore not be considered a viable
systematic alternative. Here they are included to investigate the
sensitivity of the results to the choice of orbitals. Alternatively
to using a fixed reference state (from a CI calculation over the
primary space components), the reference state can be deter-
mined in a relaxed or self-consistent fashion as the singles
coefficients of the full EOM-state, i.e., Rij ) Cij, normalized to
unity. This latter scheme can be used to define orbitals in a
Brueckner fashion, which implies that the orbitals are defined
in the presence of dynamical correlation. In practice this means
that the t1 amplitudes are used to define an orbital rotation, and
at convergence the singles equations, eq 6, are satisfied, while
T1 ) 0. In a recent SS-EOMCC[+2] study of the Cu2O2 system
including NH 3 ligands,38 it was found that the use of Brueckner
orbitals can make a significant improvement. The use of
Brueckner orbitals is likely to be especially relevant for transition
metal systems as the orbitals from Hartree-Fock calculations
or even CASSCF calculations might be relatively poor, but it
is of interest to investigate the issue of orbital depence also for
organic diradicals, which are the subject of this paper.

In this paper we will also investigate an approximation of
cluster equations analogous to coupled electron pair approxima-
tion (CEPA),94-97 in particular an orbital invariant version
introduced by Nooijen and LeRoy.98 As indicated in that paper
various possibilities exist and the SS-EOM-CEPA version we
introduce here is based on an analogy of the single reference
case in which the T2 cluster equation has the form

〈0|Ωab
ij (HT1

+ [HT1
, T])|0〉 -∑

kl

〈0|Ωab
kl T|0〉wij

kl ) 0 (9)

where |0> is the Slater determinant for ground state, HT1 is a
T1-transformed Hamiltonian, and wij

kl intermediate is given by

wij
kl ) 1

2∑c,d

Vcd
kl tij

cd (10)

Here Vcd
mn is a two electron integral. Since the summations in

eqs 8 and 9 are unrestricted, the cluster equations are invariant
under rotations between occupied, or between virtual orbitals.
Also, these equations are connected, which yields size-exten-
sivity, and exact for a two electron system. In essence, in the
orbital invariant CEPA approach the quadratic part of the T2

equation is modified, while maintaining the most important
features of the CCSD approach. Therefore, this version of CEPA
does not have the drawbacks of the traditional CEPA ap-
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proaches, while maintaining the linear T2 terms in the cluster
equations and a correct description of exclusion violation (EPV)
terms. The reason to be interested in the orbital invariant CEPA
approaches is partly because they can be considered generaliza-
tions of Coupled Cluster theory, while in addition it has been
found that they can significantly improve the accuracy of the
single reference CCSD approach, in particular when breaking
two-electron bonds, as in HF, F2 and O2.98

In close analogy to the single reference case, the orbital-
invariant CEPA equations for the doubles sector of the SS-EOM-
CEPA variant are given by

〈R|Ωab
ij (HT1

+ [HT1
, T2])|R〉 -∑

kl

〈R||Ωab
kl T|R〉wij

kl ) 0 (11)

wij
kl ) 1

8 ∑
c,d,m,n

Vcd
mntij

cdDmn
kl (12)

and the single reference vacuum state has been replaced by |R〉 ,
while Dmn

kl denotes the two-particle reduced density matrix
corresponding to the reference state |R〉. The equations for single
excitation coefficients are the same as in SS-EOM-CCSD[+2].
Once the cluster equations are solved, the C coefficients are
subsequently obtained by the diagonalization of transformed
Hamiltonian

Hj ) e-THeT (13)

as before. The SS-EOM-CEPA[+2] and SS-EOM-CCSD[+2]
share similar properties: exact for two-electron systems if
Brueckner orbitals are used, core-extensivity, and invariant under
rotations of occupied and virtual orbitals. In this context the
CEPA equations might simply be viewed as an alternative way
to obtain the T-amplitudes, while exactness in the limit is
guaranteed because of diagonalization of the transformed
Hamiltonian.

In light of the above variations on the theme of SS-EOM[+2]
approaches we want to address the following issues in the
benchmark applications.

1. How important is the choice of orbitals in the SS-EOM-
CCSD[+2] scheme? To answer this question we will use triplet,
dianion, MCSCF, and self-consistent Brueckner orbitals and
compare the results. The self-consistent Brueckner approach is
theoretically most satisfying, but this approach is somewhat
more expensive than the other variants, and this triggers the
question.

2. How important are the three-body contributions in the final
diagonalization step? While for the SS-EOM-CCSD[+2] scheme
the inclusion of three-body contributions is not computationally
expensive, this cost rapidly increases for SS-EOM-CCSD with
a general active space, which is currently under development
in our laboratory. Hence the question if this contribution might
safely be neglected.

3. How do the coupled cluster and orbital invariant CEPA
version of SS-EOM[+2] compare? It is of interest to compare
the relative accuracy of the CCSD and the orbital invariant
CEPA version of the theory. On the one hand one would expect
relatively small changes as only the contribution from the
quadratic T2

2 contribution is modified. On the other hand we
have preliminary evidence that the orbital invariant CEPA
approaches98 or the related parametrized single reference CC
approaches (unpublished) might lead to significant improve-
ments. The Brueckner version of the orbital invariant CEPA
approach might be particularly effective when combined with
local correlation approaches to target very large systems.98

4. The primary goal of the benchmark study is of course to
gain insight in the general performance of the methodology,
independent of the fine details.

III. Computational Details

All calculations were performed using our local version of
the ACES II package.99 Single point calculations were per-
formed, using previously reported geometries obtained at the
following levels of theory: for trimethylmethylene CASS-
CF(4,4),79 for cyclobutadiene MR BWCCSD,100 and for Berg-
man reaction CCSD, CCD, and MR BWCCSD geometries
obtained in cc-pVDZ for reactant, transition state, and product,
respectively.88

Standard Dunning correlation consistent basis sets cc-pVDZ
and cc-pVTZ101 were used throughout the calculations. 1s
orbitals on nonhydrogen atoms were excluded from correlation
treatment.

Two sets of starting orbitals were used: the orbitals of the
corresponding dianion, and triplet state with the same number
of electrons. Calculations were performed both with and without
the Brueckner-type orbital optimization.

IV. Application Calculations

In this section, we will describe three systems which have
been extensively studied in the literature and which are used to
benchmark the SS-EOM-CCSD[+2] and SS-EOM-CEPA[+2]
approaches.

A. Automerization of Cyclobutadiene. The results for the
height of automerization barrier are listed in Table 1. Let us
first concentrate on results obtained with optimized Brueckner
orbitals. The SS-EOM-CCSD[+2] method gives a value of 8.3
kcal/mol in cc-pVDZ basis set and 9.5 kcal/mol in cc-pVTZ.
The effect of three-body terms is very small, approximately 1
mH in absolute energies of the respective states, and only 0.1
mH in terms of energy differences. The values obtained by the
CEPA version of the method are higher by 0.2 kcal/mol. Due
to the Brueckner type orbital optimization these results are
independent of the starting orbitals.

For the energy gaps, the results for unoptimized triplet or
dianion orbital choices lie approximatly 0.3-0.4 kcal/mol above

TABLE 1: Automerization Barrier of Cyclobutadiene

method orbitals
cc-pVDZ
(kcal/mol)

cc-pVTZ
(kcal/mol)

SS-EOM-CCSD[+2] dianion 8.6 9.9
SS-EOM-CCSD[+2]a dianion 8.6 9.9
SS-EOM-CCSD[+2] triplet 8.6 9.8
SS-EOM-CCSD[+2]a triplet 8.7 10.0
SS-EOM-CCSD[+2] MCSCF 8.3 9.5
SS-EOM-CCSD[+2]a MCSCF 8.3 9.6
SS-EOM-CCSD[+2] Brueckner 8.3 9.5
SS-EOM-CCSD[+2]a Brueckner 8.4 9.6
SS-EOM-CEPA[+2] dianion 8.9 10.1
SS-EOM-CEPA[+2]a dianion 8.8 10.1
SS-EOM-CEPA[+2] triplet 8.9 10.1
SS-EOM-CEPA[+2]a triplet 9.0 10.3
SS-EOM-CEPA[+2] MCSCF 8.5 9.6
SS-EOM-CEPA[+2]a MCSCF 8.6 9.8
SS-EOM-CEPA[+2] Brueckner 8.6 9.8
SS-EOM-CEPA[+2]a Brueckner 8.6 9.9
CCSD(T)100 16.4 17.3
MR BWCCSD100 6.5 7.6
MR MkCCSD102 7.6 9.1
MR AQCC66 7.3 8.4

a Three body terms in transformed Hamiltonian neglected.
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the values obtained with Brueckner orbitals. The effect of three-
body terms is 0.1-0.2 kcal/mol. All of these variations on the
theme hence lead to essentially negligible differences. The
situation is similar for the calculations with MCSCF orbitals.
Again the results are nearly identical to the values with
optimized Brueckner orbitals at the SS-EOM-CCSD[+2] level,
while for SS-EOM-CEPA[+2] the gaps are lower by 0.1-
0.2 kcal/mol.

Compared to other multireference methods, the results of SS-
EOM-CCSD[+2] method are approximately 2 kcal/mol higher
than MR BWCCSD, and 0.5 kcal/mol higher than MR MkCCSD.
The single reference CCSD(T) method is in error by 9 kcal/
mol indicating the clear benefit of using a multiconfigurational
approach.

B. Singlet-Triplet Gap of Trimethylmethylene. The re-
sults of excitation energies for the 3A2 f 1B1 and 3A2 f 1A1

transitions of trimethylmethylene are listed in Table 2. Calcula-
tions by SS-EOM-CCSD[+2] method with optimized orbitals
yield values of 0.713 and 0.725 eV in cc-pVDZ and cc-pVTZ
basis sets respectively for the 3A2 f 1B1 transition, and 0.853
and 0.850 for the 3A2 f 1A1 transition. For the CEPA variant
of the method, the results are lower by approximately 0.02 eV.
The effect of three-body terms of transformed Hamiltonian is
in all cases below 0.005 eV. Also, the effect of basis set is very
weak.

The effect of orbital optimization is slightly more pronounced
than for cyclobutadiene. In the cc-pVDZ basis set, the total
energies obtained with triplet orbitals lie within 1 mH from
results with optimized orbitals, while the deviation for dianion
orbitals are approximately 3 mH and 1 mH for MCSCF orbitals.
For energy differences, the dianion results are higher by 0.01
eV for 3A2 f 1B1 and 0.02 eV for 3A2 f 1A1 than their
counterparts with optimized orbitals. Using triplet orbitals, the
differences become 0.003 and 0.01, respectively, and using
MCSCF orbitals 0.002 and 0.006 eV, respectively. The effect

of three-body terms when using triplet or dianion orbitals is
slightly more important than when using Brueckner orbitals.
This can be understood from the general observation that the
single-excitations out of the primary space in the final diago-
nalization are less important when Brueckner orbitals are used
and relaxation effects are minimized. This effect reduces the
size-extensivity error in the SS-EOM-CCSD[+2] approach, but
it also reduces the effect of the three-body terms which only
couple to the singly excited sector, not within the primary (or
active) space.

In the cc-pVTZ basis set, the difference between total energies
obtained with triplet and optimized orbitals increases by 1-2
mH, while the deviation is unchanged for dianion orbitals. For
3A2 f 1B1 gap, the use of triplet orbitals leads to values lower
by approximately by 0.03 eV, compared to overestimation by
0.01 eV with dianion orbitals. For 3A2 f 1A1 transition, the
differences between the two choices of starting orbitals are even
smaller. The best agreement with the optimized orbital calcula-
tions is again obtained for the MCSCF orbitals, where the
difference is almost zero for for 3A2 f 1B1 and smaller than
0.01 eV for the 3A2 f 1A1 transition.

Also for this system we conclude there is little significance
to the variability of the computational schemes within the SS-
EOMCC[+2] framework. It is interesting to note the significant
improvement of the SS-EOM-CCSD[+2] approach over the
spin-flip EOM-SF-CCSD results, compared to the most accurate
EOM-SF-CC(2,3) benchmark. The prime differences between
these approaches is the fact that for SS-EOM-CCSD[+2] the
cluster amplitudes are optimized for the state of interest, while
for SF-EOM they are obtained for the close-lying triplet state.
The diagonalization manifold in the SS-EOM-CCSD[+2]
scheme is significantly more compact as it involves only one
virtual orbital, rather than two, as in the case of the SF-EOM-
CC approach. The improvements of SS-EOM-CCSD[+2] over
SF-EOM-CCSD testifies therefore to the effectiveness of the
approach, and the relevance of the state-specific parametrization.

C. Bergman Reaction. Results of the activation and reaction
energies for the Bergman reaction are listed in Table 3. SS-
EOM-CCSD[+2] with Brueckner orbitals yields values of
reaction energies of 6.9 kcal/mol in cc-pVDZ and 11.9 kcal/
mol in cc-pVTZ basis set. The activation energies obtained are
28.9 and 31.2 kcal/mol respectively. These values are in a
reasonable agreement with results from MR BWCCSD. The
results at the SS-EOM-CEPA[+2] level are lower by ap-
proximately 3.5 kcal/mol for activation energy, and 4 kcal/mol
for reaction energy, with cc-pVTZ results being in excellent
agreement with experiment. The CEPA results also agree
reasonably well with CCSD(T) calculations. The basis set
dependence of these energy values is very high, and in larger
basis sets the expected trent would be for the energies to increase
further. This would indicate that the SS-EOM-CCSD[+2] values
are clearly to high compared to experiment, while the SS-EOM-
CEPA[+2] values may be more reasonable. In the comparison
with experiment the geometries will also play a role, and we
note that they have been obtained at somewhat different levels
of accuracy, perhaps confounding a proper comparison. Regard-
less the comparison with experiment, however, there is a striking
difference between the SS-EOM-CEPA[+2] and SS-EOM-
CCSD[+2] results and this requires further discussion, which
we will take up below.

Let us first consider the importance of choice of orbitals,
which for the cc-PVDZ basis set is significant, especially for
the reaction energy. In all cases, the results with nonoptimized
orbitals yield larger differences than with optimized ones. The

TABLE 2: Singlet Triplet Gaps in Trimethylmethylene
3A2 f 1B1

3A2 f 1A1

method orbitals

cc-
pVDZ
(eV)

cc-
pVTZ
(eV)

cc-
pVDZ
(eV)

cc-
pVTZ
(eV)

SS-EOM-CCSD[+2] dianion 0.718 0.730 0.853 0.845
SS-EOM-CCSD[+2]a dianion 0.721 0.732 0.866 0.858
SS-EOM-CCSD[+2] triplet 0.715 0.681 0.870 0.851
SS-EOM-CCSD[+2]a triplet 0.716 0.682 0.869 0.866
SS-EOM-CCSD[+2] MCSCF 0.711 0.724 0.859 0.857
SS-EOM-CCSD[+2]a MCSCF 0.714 0.727 0.863 0.860
SS-EOM-CCSD[+2] Brueckner 0.713 0.725 0.853 0.850
SS-EOM-CCSD[+2]a Brueckner 0.714 0.726 0.858 0.854
SS-EOM-CEPA[+2] dianion 0.704 0.717 0.841 0.836
SS-EOM-CEPA[+2]a dianion 0.704 0.718 0.860 0.850
SS-EOM-CEPA[+2] triplet 0.698 0.674 0.841 0.836
SS-EOM-CEPA[+2]a triplet 0.699 0.675 0.858 0.852
SS-EOM-CEPA[+2] MCSCF 0.695 0.705 0.844 0.834
SS-EOM-CEPA[+2]a MCSCF 0.697 0.707 0.858 0.838
SS-EOM-CEPA[+2] Brueckner 0.695 0.705 0.832 0.826
SS-EOM-CEPA[+2]a Brueckner 0.697 0.706 0.837 0.831
SF-CIS77 1.017b 0.883b

SF CIS(D)77 1.025b 0.893b

EOM-SF-CCSD78 0.554 0.933
EOM-SF-CC(2,3)78 0.697 0.787
MR BWCCSD79 0.633 0.634 0.800 0.779
Experiment-ZPE 0.787

a Three body terms in transformed Hamiltonian neglected.
b cc-pVTZ basis set used for carbon, cc-pVDZ basis set for
hydrogen.
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best agreement with results of Brueckner type of calculations
was obtained at the MCSCF level, where the deviatons are only
about 0.3 kcal/mol in cc-pVDZ basis set and 0.6 kcal/mol in
cc-pVTZ basis set, with slightly larger differences (up to 0.9
kcal/mol) being obtained at the SS-EOM-CEPA level. For
dianion and triplet orbitals, the deviations become quite large,
ranging from 2 to 4 kcal/mol depending on the details of the
computational method.

For activation energies, the effect of orbital optimization is
relatively smaller. This is especially true for the cc-pVTZ basis
set. Again, best agreement with calculation with optimized
orbitals are obtained with MCSCF orbitals, with the deviations
being approximately 0.3 kcal/mol.

The effect of three-body terms also varies with the level of
calculation. For calculations with optimized and MCSCF
orbitals, the effect is very small for the reaction energy, whereas
for the activation energy, neglecting three-body terms leads to
an increase by approximately 1 kcal/mol. Again, the effect is
slightly more important at the SS-EOM-CEPA level. For dianion
and triplet orbitals, the trends are less systematic, with the effect
of three-body terms ranging from 0.1 to 2 kcal/mol.

Most of the above observations can be partially explained
by the magnitudes of cluster amplitudes, which are shown in
Table 4 for the case of cc-PVTZ calculations. The use of dianion
orbitals leads to large singles amplitudes (0.13-0.23) for all
cases, whereas the singles amplitudes for MCSCF orbitals are
all below 0.03. The results from triplet orbitals show a large
variability, with amplitudes ranging between 0.023 and 0.15
This explains that the results of calculations with MCSCF
orbitals are closer to Brueckner results than the other two orbital
choices. It is a bit surprising perhaps that the triplet orbitals
show such a large variation.

As far as connected doubles are concerned, two large T2

amplitudes are encountered for the transition state and product.

These two amplitudes have a π f π* character, and suggest,
that the use of an larger active space might be desirable. Large
T2 amplitudes lead to a poorer description of the two respective
structures, resulting in overestimation of both reaction and
activation energy, and also a bigger than usual effect of three-
body terms. The amplitudes obtained at SS-EOM-CEPA[+2]
level are considerably larger than their SS-EOM-CCSD[+2]
counterparts, which also explains a larger dependence on
inclusion of three-body contributions to the transformed Hamil-
tonian in the CEPA variant. This effect of large T2 amplitudes
for the CEPA approach has been observed in the single reference
case for bond-breaking situations, and in that case the larger T2

amplitudes in CEPA agree well with CCSDT results. We suspect
that also here the larger T2 amplitudes might be the correct result,
which would be obtained if triple excitations were included
explicitly. Of course this is speculation, but it is consistent with
the fact that the SS-EOM-CEPA[+2] result considerably
improves over SS-EOM-CCSD[+2] compared to experiment,
also when allowing for projected basis set effects. It would be
of interest to obtain more computational results for the Bergman
reaction as this appears to be a quite challenging system.

V. Conclusions

The state-specific equation of motion coupled cluster method
was applied to study three organic systems of diradical character:
automerization of cyclobutadiene (CBD), singlet-triplet gaps
of trimethylmethylene (TMM), and the Bergman reaction. These
benchmark studies allow us to give tentative answers to the
questions raised in the theory section.

The importance of the choice of orbitals varies somewhat
with the system studied. The calculations using MCSCF orbitals
were found to be consistently in good agreement with results
of Brueckner calculations, while the performance of dianion
and triplet orbitals was fine for CBD and TMM but showed
rather large variations for the Bergman case. The magnitude of
the T1 amplitudes can be used as an indication of the importance
of the choice of orbitals, and overall it appears the methodology
is not very sensitive to the choice of orbitals, reflecting the usual
insensitivity of CC theory to orbital choice.

The effect of three-body terms in Hamiltonian is relatively
minor in particular if Brueckner or MCSCF orbitals are used.
The approximation is questionable when T2 amplitudes are large,
and it appears this is essentially a useful diagnostic (which can

TABLE 3: Study of Bergman Reaction

∆Ereaction ∆Eactivation

Method orbitals

cc-pVDZ
(kcal/
mol)

cc-
pVTZ
(kcal/
mol)

cc-
pVDZ
(kcal/
mol)

cc-
pVTZ
(kcal/
mol)

SS-EOM-CCSD[+2] dianion 9.4 17.4 30.7 33.3
SS-EOM-CCSD[+2]a dianion 8.6 16.4 30.6 33.2
SS-EOM-CCSD[+2] triplet 9.1 15.7 33.0 33.1
SS-EOM-CCSD[+2]a triplet 8.9 14.8 33.4 34.0
SS-EOM-CCSD[+2] MCSCF 7.4 12.5 29.2 31.6
SS-EOM-CCSD[+2] MCSCF 7.5 12.6 30.0 32.4
SS-EOM-CCSD[+2] Brueckner 6.9 11.9 28.8 31.2
SS-EOM-CCSD[+2]a Brueckner 7.1 12.1 29.7 32.1
SS-EOM-CEPA[+2] dianion 8.1 12.6 26.7 29.1
SS-EOM-CEPA[+2]a dianion 7.2 11.7 26.6 29.0
SS-EOM-CEPA[+2] triplet 6.1 12.4 23.7 28.6
SS-EOM-CEPA[+2]a triplet 5.3 10.6 24.1 28.5
SS-EOM-CEPA[+2] MCSCF 4.1 9.1 25.6 28.0
SS-EOM-CEPA[+2]a MCSCF 4.1 9.2 26.7 28.9
SS-EOM-CEPA[+2] Brueckner 3.3 8.2 25.1 27.5
SS-EOM-CEPA[+2]a Brueckner 3.5 8.5 26.1 28.4
CCSD88 25.7 27.5 35.4 38.2
MR BWCCSD88 8.1 12.9 30.2 32.7
CCSD(T)88 4.4 10.1 26.4 27.6
MR CI88 6.3 10.3 30.1 29.4
RB3LYP93 8.5b 29.9b

Experiment82 8.5 28.7

a Three body terms in transformed Hamiltonian neglected. b Cal-
culated in 6-311+G(3df,3pd) basis. c Activation enthalpy calculated
at 470 K, the value should be compared with experimental value
28.2 kcal/mol.

TABLE 4: Study of Bergman Reaction: Largest Cluster
Amplitudesa

method orbitals largest T2 amplitudes
largest T1

amplitudes

Reactant
SS-EOM-CCSD[+2] MCSCF -0.044 -0.037 -0.029
SS-EOM-CEPA[+2] MCSCF -0.051 -0.042 -0.031
SS-EOM-CCSD[+2] dianion -0.043 -0.040 -0.232
SS-EOM-CCSD[+2] triplet -0.036 -0.035 -0.148

Transition State
SS-EOM-CCSD[+2] MCSCF -0.090 -0.047 -0.024
SS-EOM-CEPA[+2] MCSCF -0.140 -0.063 0.027
SS-EOM-CCSD[+2] dianion -0.091 -0.047 0.130
SS-EOM-CCSD[+2] triplet -0.079 -0.040 -0.065

Product
SS-EOM-CCSD[+2] MCSCF -0.084 -0.068 0.023
SS-EOM-CEPA[+2] MCSCF -0.119 -0.091 0.025
SS-EOM-CCSD[+2] dianion -0.085 -0.069 -0.132
SS-EOM-CCSD[+2] triplet -0.078 -0.056 0.023

a Calculations in ccpVTZ basis set, three-body terms included.
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be made more robust and orbital invariant). It would appear
that three-body contributions can safely be neglected if the
largest T2 amplitudes are less than 0.05 or so. This conclusion
may attain relevance for SS-EOM-CCSD[+2] calculations that
employ a more general active space, where multiplication of
CI vector by three-body part of Hamiltonian can become
computationally expensive.

For all systems considered, the SS-EOM-CEPA[+2] approach
is not worse than SS-EOM-CCSD[+2] and in the case of the
Bergman reaction results improve considerably. This conclusion
is in agreement with other evidence (to be reported), and it
appears interesting to understand this better, and to collect more
evidence to support this statement. We only expect to find large
deviations between the two approaches when T2 amplitudes are
large (e.g., larger than about 0.1), and if they are relatively large,
the CEPA results appears to be be more reliable.

We think that this potential benefit of the CEPA variant may
be quite relevant in future applications. A prime potential
advantage of MRCC approaches over MRCI approaches ought
to be the faster convergence of results in MRCC with the choice
of active space. It would defeat the purpose of MRCC
approaches if for a system like the Bergman reaction we would
have to worry about the inclusion of the π f π* excitations in
the active space, while they do not play a qualitative role in the
chemistry. Our results are somewhat suggestive that MRCC may
not have the required insensitivity, while the orbital invariant
CEPA might be more promising.

Let us finally comment on the computational cost of the SS-
EOMCC[+2] approach for diradicals. The major cost of the
approach is the solution of the cluster equations, which is
comparable to solving CCSD equations for a closed shell
system. There are significantly more contributions to the
equations, but the leading order contribution scales as O2V4, as
in closed shell CCSD. The computational cost of the final
diagonalization of the transformed Hamiltonian over 2-hole and
3-hole-1-particle configurations is neglible.

The accuracy of the approach appears considerably improved
over spin-flip CCSD (which is slightly more expensive), but
the approach is probably not competitive regarding accuracy
with renormalized triples approaches (which are considerably
more expensive, however). A considerable advantage of the SS-
EOMCC[+2] approach is that one obtains a qualitatively correct
picture of the wave function, and it is possible to calculate
multiple states at once if they require a similar active space,
e.g., in a state averaged approach.

Let us conclude by reiterating that the SS-EOMCC[+2]
scheme is currently being extended to be able to treat general
active spaces, such that it becomes a full-fledged multireference
approach. The goal is to design multireference approaches for
which finding suitable active spaces is about as difficult as it is
for CASSCF approaches. This is a very different (and easier)
problem than finding satisfactory active spaces for MRCI or
even CASPT2 type of approaches. We anticipate that the more
successful multireference approaches may be eventually turn
out to be of CEPA rather than of CC type, but we acknowledge
it is hard to overcome the prejudice that CEPA should be
considered a lower level approximation to coupled cluster
theory.
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