
Adiabatic States Derived from a Spin-Coupled Diabatic Transformation: Semiclassical
Trajectory Study of Photodissociation of HBr and the Construction of Potential Curves
for LiBr+

Rosendo Valero and Donald G. Truhlar*
Department of Chemistry and Supercomputing Institute, UniVersity of Minnesota,
Minneapolis, Minnesota 55455-0431

Ahren W. Jasper*
Combustion Research Facility, Sandia National Laboratories, P. O. Box 969,
LiVermore, California 94551-0969

ReceiVed: January 24, 2008; ReVised Manuscript ReceiVed: March 27, 2008

The development of spin-coupled diabatic representations for theoretical semiclassical treatments of
photodissociation dynamics is an important practical goal, and some of the assumptions required to
carry this out may be validated by applications to simple systems. With this objective, we report here a
study of the photodissociation dynamics of the prototypical HBr system using semiclassical trajectory
methods. The valence (spin-free) potential energy curves and the permanent and transition dipole moments
were computed using high-level ab initio methods and were transformed to a spin-coupled diabatic
representation. The spin-orbit coupling used in the transformation was taken as that of atomic bromine
at all internuclear distances. Adiabatic potential energy curves, nonadiabatic couplings and transition
dipole moments were then obtained from the diabatic ones and were used in all the dynamics calculations.
Nonadiabatic photodissociation probabilities were computed using three semiclassical trajectory methods,
namely, coherent switching with decay of mixing (CSDM), fewest switches with time uncertainty (FSTU),
and its recently developed variant with stochastic decoherence (FTSU/SD), each combined with
semiclassical sampling of the initial vibrational state. The calculated branching fraction to the higher
fine-structure level of the bromine atom is in good agreement with experiment and with more complete
theoretical treatments. The present study, by comparing our new calculations to wave packet calculations
with distance-dependent ab initio spin-orbit coupling, validates the semiclassical trajectory methods,
the semiclassical initial state sample scheme, and the use of a distance-independent spin-orbit coupling
for future applications to polyatomic photodissociation. Finally, using LiBr+ as a model system, it is
shown that accurate spin-coupled potential curves can also be constructed for odd-electron systems using
the same strategy as for HBr.

1. Introduction

Hydrogen halides (HX, with X ) F, Cl, Br, I) absorb radiation
in the ultraviolet region of the spectrum. Excitation to their first
absorption continuum (A-band) causes prompt dissociation into
two different channels:

HX(X 1Σ+)98
hν

H(2S)+X(2P3/2)

HX(X 1Σ+)98
hν

H(2S)+X(2P1/2)(1)

with the halogen atom in its ground (J ) 3/2) or excited (J )
1/2) fine-structure level. In the absence of spin-orbit coupling
(SOC), four electronic states (X1Σ+, 1Π, 3Σ+, and 3Π), of which
only the ground state (1Σ+) is bound, correlate with ground-
state atomic fragments. The excited electronic states in the
A-band differ from the ground-state by either a π f σ* (1Π
and 3Π) or a σf σ* (3Σ+) electronic excitation, which explains

their repulsive character and the broad and featureless absorption
band observed experimentally. The spin-orbit interaction mixes
and splits the singlet and triplet electronic states and modulates
the branching to the product states by changing both the partial
absorption cross sections in the Franck-Condon (FC) region
and the subsequent multistate dissociation dynamics. The
systematic increase in the magnitude of SOC in the series X )
F, Cl, Br, I offers a unique opportunity to study the factors
controlling the reaction dynamics in these systems, in particular,
the branching ratio between the two fine-structure levels of the
halogen atom. This feature, along with the simplicity of the
hydrogen halides, explains their role as prototypical systems in
this area.

In recent years, many experimental and theoretical studies
have been devoted to the photodissociation of the different
hydrogen halides (HF,1–4 HCl,5–15 HBr,16–28 and HI29–40) and
have provided, among other properties, absorption cross sections
and branching fractions to the excited fine-structure level of
the halogen. These studies were preceded by many classical
experimental studies.41–45 The branching fraction is defined, in
the specific case of HBr, as
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Γ) σ[Br*]
σ[Br]+ σ[Br*]

(2)

where σ[Br] and σ[Br*] denote, respectively, the partial pho-
todissociation cross sections at a particular photon wavelength
to the ground and the excited fine-structure levels of bromine.
An accurate prediction of the branching fraction is a stringent
test of the quality of the underlying potential and transition
dipole moment curves46 as well as of the dynamic methods
employed to study the photofragmentation dynamics.

The experimental absorption spectrum of hydrogen bromide
has been measured between 230 and 170 nm (corresponding to
photon energies between about 43 500 and 59 000 cm-1).43 The
spectrum has a bell shape with a maximum at 176 nm (56 800
cm-1). Experimental determinations of the branching fraction
were limited until recently to only a few different wavelengths.
Thus, an early value of 0.15 was reported following photolysis
of HBr at 193 nm16 and a comparable value (0.14) was obtained
more recently using the technique of velocity-aligned Doppler
spectroscopy of the H atom at the same wavelength.17,18 In
another study using a combination of ion imaging and Doppler
spectroscopy, a value of 0.14 was reported at 243 nm.20 A time-
of-flight mass spectrometric study was conducted at three
wavelengths (193, 205, and 243 nm), obtaining branching
fractions of 0.18, 0.18, and 0.20, respectively.23 The most
extensive study to date involved the determination of the
branching fractions at 15 different wavelengths in the range
201-253 nm, using the technique of H Rydberg atom photof-
ragment translational spectroscopy.23 The fraction of the total
flux going to the excited bromine channel varies from about
0.15 at the shortest and longest wavelengths to about 0.22-0.23
at the maximum (235 nm, 42 500 cm-1). Interestingly, the
maximum branching fraction is the smallest among the hydrogen
halides. This observation has been discussed in terms of the
interplay of the two factors mentioned above, namely, absorption
intensity in the FC region and nonadiabatic redistribution of
the dissociation flux.24 It has been suggested that both effects
are important for HBr, whereas one or the other mechanism
dominates for the other HX molecules.

Previous theoretical studies of the photodissociation dynamics
of HBr are relatively scarce.21,22,27 In one study,21 three different
methods (time-independent and time-dependent quantum dy-
namic methods, and a semiclassical method) were used to obtain
product branching ratios at two different wavelengths (193 and
243 nm). The results obtained with the three methods agree
reasonably well with each other and with the experimental
branching ratios at those wavelengths. In an extension22 of this
work, the dependence of the photodissociation dynamics on the
initial vibrational level on the ground electronic state was
considered. The branching ratios for vibrationally excited HBr
showed oscillations when plotted versus the photon energy,
reflecting the nodes in the vibrational wave functions. The same
behavior has been observed for HF,3 HCl,5,8,13 and HI.30,31,34,36,37

Recently, an extensive investigation of the photodissociation
dynamics of HBr using time-dependent wave packet dynamics
on a set of high-level ab initio potential energy and transition
dipole moment curves has been reported.27 The authors obtained
good agreement with experiment for the partial and total cross
sections, branching fractions, and anisotropy parameters describ-
ingtheangularmomentumvectorcorrelationsofthephotofragments.

In this work we report a study of the total and partial pho-
todissociation cross sections of HBr and of the branching
fraction to the excited-state bromine channel. The main goal of
the present study is to test the performance of a combined
electronic structure and dynamic scheme that can readily be

applied to larger molecules. In particular, we test the assumption
of using a constant SOC and a spin-coupled diabatic representa-
tion in the construction of the potential and transition dipole
moment curves combined with semiclassical trajectory methods
for the dynamics and semiclassical sampling of vibrational
motion for the initial conditions. When we specify a representa-
tion as diabatic we mean that the coupling due to the nuclear
momentum and kinetic energy are assumed negligible in that
representation (this is sometimes called quasidiabatic).

In section 2.1 the ab initio methods used to calculate the spin-
free potential energies and permanent and transition dipole
moments are detailed. The methods are essentially those
employed in ref 27, with the important difference that here the
(experimental) SOC constant of atomic bromine is used at all
internuclear distances. Section 2.2 contains a description of the
analytical functions used to fit the diabatic potential matrix and
the adiabatic potential energy, nonadiabatic coupling, and
transition dipole moment curves. The nonadiabatic coupling in
the adiabatic representation derives entirely from the diabatic-
to-adiabatic transformation. The classical FC sampling employed
to simulate the photon absorption is explained in section 2.3.
The non-Born-Oppenheimer (non-BO) semiclassical trajectory
methods used to compute the photodissociation dynamics are
the subject of section 2.4. In section 3, the calculated adiabatic
and nonadiabatic partial and total cross sections and the
branching fractions to the excited fine-structure level of bromine
are compared with experiment and with previous theoretical
work. The extension of the constant-SOC approximation to
an odd-electron system is presented in section 4 with an
application to the LiBr+ diatomic molecule. Section 5
contains the conclusions.

2. Methods

2.1. Electronic Structure. Four spin-free electronic states
(X1Σ+, 1Π, 3Σ+, and 3Π) correlate with the open-shell ground-
state spin-free atoms, H(2S) + Br(2P). These electronic states
represent a total of 12 substates (one for X1Σ+, two for 1Π,
three for 3Σ+, and six for 3Π), characterized by well-defined
values of Λ and Σ, the projections of the electronic and spin
angular momenta, respectively, on the internuclear axis. Eigen-
states of the sum of the electronic Hamiltonian and the
spin-orbit Hamiltonian may be constructed as linear combina-
tions of the spin-free substates. In this way, eight electronic
potential energy curves are generated, characterized by the
absolute value of the projection of the total electronic angular
momentum Ω on the internuclear axis. The states with Ω ) 0
are nondegenerate, and the states with Ω ) 1 and 2 are doubly
degenerate. In a mixed Hund’s case (a)/(c) notation, the ground
state is denoted as X1Σ0+, and the excited states are denoted as
3Π2, 3Π1, 3Π0+, 3Π0-, 1Π1, 3Σ0-, and 3Σ1. Henceforth the spin-
coupled adiabatic substates will be numbered as follows: 1,
X3Σ0+; 2 and 3, 3Π2; 4 and 5, 3Π1; 6, 3Π0-; 7, 3Π0+; 8 and 9,
1Π1; 10, 3Σ0-; 11 and 12, 3Σ1. In this work we neglect the
rotational Hamiltonian, since rotation has been found to have
an almost negligible effect on the photodissociation dynamics
for all the hydrogen halides.2,5,7,13,22,34,35,39 The excited electronic
states of HBr that can be accessed from the ground state by
absorption of a photon are, in the electric dipole approximation
and in the absence of rotation, those that fulfill the ∆Ω ) 0,
(1 and the 0 ( T 0 ( selection rules, that is, 1Π1, 3Π1, 3Π0+,
and 3Σ1. Adiabatically, the first two states correlate with the
ground fine-structure level of bromine, and the last two correlate
with the excited fine-structure level. The electronic states that
contribute significantly to the absorption spectrum of HBr in
the A-band are the same as those predicted by Mulliken for

Photodissociation of HBr J. Phys. Chem. A, Vol. 112, No. 25, 2008 5757



HI,47,48 namely, 1Π1, 3Π1, and 3Π0+, whereas the 3Σ1 state of
HBr is too high in energy to contribute significantly to the total
absorption intensity in this spectral region.27 Without rotational
coupling, only states with the same value of Ω can interact.
Along with the selection rule for absorption, this determines
that, to a good approximation, the electronic states relevant to
the photodissociation of HBr fall into the two noninteracting
subsets of states {X1Σ0+,3Π0+} and {1Π1,3Π1,3Σ1}.

The calculation of the valence (spin-free) adiabatic potential
energy and permanent and transition dipole moment curves for
the X1Σ+, 1Π, 3Σ+, and 3Π electronic states was carried out
using the MOLPRO electronic structure program.49 The aug-
cc-pV5Z50basissetwasusedforhydrogen,andtheaug-cc-pV5Z-PP51,52

basis set, which includes a small-core relativistic pseudopotential
for the core electrons, was used for bromine. The state-averaged
complete-active-space self-consistent field (SA-CASSCF)
method53,54 was employed to generate a set of configuration-
interaction (CI) coefficients and molecular orbitals (MOs) for
the spin-free electronic states. The four electronic states (X1Σ+,
1Π, 3Σ+, and 3Π) were included in the state averaging with equal
weights. The active space contains six electrons in four
molecular orbitals (σ, σ*, and two nonbonding Π MOs).
Subsequently, the internally contracted multireference CI (IC-
MRCI) method55–57 was used to include all the single and double
excitations from the SA-CASSCF(6,4) reference space. The
multireference version58,59 of Davidson’s correction for qua-
druple excitations60 was computed and added to the IC-MRCI
energies; as usual the resulting energies are called IC-MRCI+Q.

In general, to study electronically nonadiabatic chemical
reactions, it is convenient to work in a diabatic representation
because the diabatic energies and couplings are smooth func-
tions of the nuclear coordinates and the couplings are scalar
quantities.60–75 For systems in which nonadiabatic interactions
are partially or totally caused by SOC, we have recently
developed a procedure for constructing a diabatic representation
for single-bond and multibond dissociation reactions (i.e., for
dissociation of bonds between one or several atoms carrying
SOC and the rest of the molecule).76 The procedure used for
single-bond reactions is briefly summarized next.

The procedure for including SOC allows one to construct
adiabatic and diabatic representations of both the valence (spin-
free) electronic Hamiltonian and the total (valence + spin-orbit)
electronic Hamiltonian (see Table 1 of ref 76). The valence
adiabatic representation is the representation that diagonalizes
the electronic Hamiltonian, and the valence diabatic (strictly,
quasidiabatic77) representation is the one that minimizes the
nonadiabatic couplings between the spin-free electronic states.
Likewise, in the fully adiabatic representation the matrix of the
total (spin-inclusive) electronic Hamiltonian is diagonal, and
the fully diabatic representation minimizes the nonadiabatic
couplings between the spin-coupled states. We call these
representations V-adiabatic, V-diabatic, F-adiabatic, and F-
diabatic, respectively. The full classification is especially useful
for low-symmetry polyatomics.

For HBr, the spin-free electronic states studied in this work differ
from one another by their spin and/or spatial symmetry and are
uncoupled in the absence of SOC. The V-adiabatic and the
V-diabatic representation are therefore equivalent. The valence
adiabatic or diabatic matrix for HBr is a 12 × 12 diagonal matrix
with the IC-MRCI+Q energies as its diagonal elements

HRR′
Val(r))ER(r)δRR′ , 1eRe 12 (3)

where “R” labels the V-diabatic substates and r is the H-Br
internuclear distance. The zero of energy is chosen as the energy

of the 12-fold degenerate V-diabatic substates in the dissociation
limit, H(2S) + Br(2P).

Diagonalization of the asymptotic spin-orbit matrix in the
V-diabatic representation provides the transformation matrix to the
F-diabatic representation. This matrix is here denoted as C(12):

HSO,F-d(∞))C(12)†HSO,Val(∞)C(12) (4)

where HSO,F-d(∞) is a diagonal matrix with eight elements equal
to the energy of the H(2S) + Br(2P3/2) fine-structure level,
-∆ESO,Br/3, and four elements equal to the energy of the H(2S)
+ Br(2P1/2) level, 2∆ESO,Br/3, with ∆ESO,Br being the experi-
mental fine-structure splitting of the bromine atom (3685 cm-1

or 0.46 eV).78 The F-diabatic potential energy matrix is finally
obtained as

HF-d(r))C(12)†HVal(r)C(12) +HSO,F-d(∞) (5)

Diagonalization of the F-diabatic potential matrix yields the
F-adiabatic matrix, HF-a(r). A set of F-adiabatic potential energies
Ej

F-a(r) could be obtained, in principle, as the eigenvalues of the
fitted analytical F-diabatic potential energy matrix “on-the-fly” at
each molecular configuration along a semiclassical trajectory
simulation. However, for the high-symmetry case of a diatomic
molecule such as HBr, the energies of some of the roots obtained
by diagonalization of the F-diabatic matrix cross along the
dissociation coordinate. This causes some difficulties because, in
trajectory simulations, the F-adiabatic energies and the expansion
coefficients of each F-adiabatic state in the F-diabatic basis set must
vary continuously along the dissociation coordinate. Otherwise,
discontinuities in the energy gradients and in the nonadiabatic
couplings would arise. To avoid this difficulty, the eigenstates of
the F-diabatic potential matrix have been reordered by taking the
overlap of a vector of their expansion coefficients at consecutive
points as the ordering criterion. The eigenvalues were reordered
simultaneously with the eigenstates. The matrix containing the
reordered F-adiabatic potential curves on the diagonal will be
denoted as EF-a(r). A plot of the diagonal elements of EF-a(r) is
shown in Figure 1. Then, nonadiabatic couplings are calculated
by the multistate generalization of the two-state expression of a
previous study79

dij(r)) 1

Ejj
F-a(r)-Eii

F-a(r)
∑

k,l)1

12

cki(r) clj(r)∇ Hk,l
F-d(r), 1e

i, je 12, i* j (6)

where {cki(r), 1 e k e 12} and {clj(r), 1 e l e 12} are the

Figure 1. F-adiabatic potential energy curves (diagonal elements of
the EF-a(r) matrix) for the HBr molecule obtained in fit A using the
experimental SOC constant of bromine.
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expansion coefficients of the i and j F-adiabatic states, after the
reordering explained above, in the F-diabatic basis set.

In this work all the calculations of absorption spectra and
photodissociation cross sections are carried out in the F-adiabatic
representation.

2.2. Analytic Potential, Nonadiabatic Coupling, and Tran-
sition Dipole Moment Functions. In this section we explain
in detail the procedure used to obtain the F-adiabatic potential
energies, nonadiabatic couplings, and transition dipole moments
and their fitting to analytical functions to be used in subsequent
semiclassical dynamics simulations.

First, the V-diabatic IC-MRCI+Q potential energies and IC-
MRCI permanent and transition dipole moments were computed
at 50 different H-Br distances in the range 0.85-9.0 Å. The
IC-MRCI+Q potential energies, the experimental bromine SOC
constant, and the C(12) transformation matrix were used as in
eqs 3–5 to construct the F-diabatic potential matrix. The 12
F-diabatic potential energy curves (of which only eight are
unique) were fitted to expressions of the form80

Hi,i
F-d(r))Fi

short(r)+ (Fi
long(r)-Fi

short(r))Ti(r)+

f∆ESO,Br, 1e ie 12(7)

where the short-range function is a 10-term sum of Gaussians

Fi
short(r)) ∑

K)1

10

ci,K exp(-Ri,K(r- ri,K
0 )2), 1e ie 12 (8)

the long-range function is a sum of inverse powers of the
internuclear distance

Fi
long(r))

ci,11

r6
+

ci,12

r8
+

ci,13

r10
, 1e ie 12 (9)

and Ti(r) is a switching function that connects smoothly the
short- and long-range terms

Ti(r)) 0.5[1+ tanh(ai(r- bi))], 1e ie 12 (10)

In eq 7, f is equal to -1/3 for the F-diabatic states that
correlate with H(2S) + Br(2P3/2) (two states with Ω ) 2, two
states with Ω ) 1, one state with Ω ) 0+ symmetry, and
one state with Ω ) 0- symmetry) and 2/3 for the states that
correlate with H(2S) + Br(2P1/2) (one state with Ω ) 1, one
state with Ω ) 0+ symmetry, and one state with Ω ) 0-

symmetry). The F-diabatic states can be ordered as the
columns of the transformation matrix C(12) (see Table 3 in
ref 76). Following this ordering, the F-diabatic energies are
labeled as follows: H1,1

F-d(r) (Ω ) 0+, J ) 3/2), H2,2
F-d(r) (Ω )

2, J ) 3/2), H3,3
F-d(r) (Ω ) 0+, J ) 1/2), H4,4

F-d(r) (Ω ) 1, J )
3/2), H5,5

F-d(r) (Ω ) 1, J ) 1/2), H6,6
F-d(r) (Ω ) 1, J ) 3/2),

H10,10
F-d (r) (Ω ) 0-, J ) 1/2), and H12,12

F-d (r) (Ω ) 0-, J ) 3/2).
The remaining states are degenerate with one of the
mentioned states; thus, the following equalities are fulfilled:

H7,7
F-d(r))H4,4

F-d(r)

H8,8
F-d(r)

)H5,5
F-d(r)

H9,9
F-d(r)

)H6,6
F-d(r)

H11,11
F-d (r)

)H2,2
F-d(r) (11)

The root-mean-square (rms) errors of the fits to the F-diabatic

states are generally less than 1 meV, with a maximum of about
5 meV. The parameters of the fits are given in Table S1 of
Supporting Information.

The five unique nonzero F-diabatic couplings were fitted to the
same type of expression as the F-diabatic energies, but the form
of the short-range term was chosen as a 10-term even-tempered
sum of Gaussians

Fij
short(r)) ∑

K)0

9

cij,K exp(-Rij�ij
K(r- r0,ij)

2) (12)

where the ij indexes refer to the following elements of the
F-diabatic matrix: H1,3

F-d(r) H4,5
F-d(r), H4,6

F-d(r), H5,6
F-d(r), and H10,12

F-d (r).
The following equalities

H7,8
F-d(r))-H4,5

F-d(r)

H7,9
F-d(r))-H4,6

F-d(r)

H8,9
F-d(r))-H5,6

F-d(r)(13)

and the fact that the F-diabatic matrix is real symmetric permit
obtaining all the nonzero diabatic couplings. In this case, none
of the rms errors of the fits exceeds 1 meV. The parameters of
the fits are given in Table S2 of Supporting Information.

The F-adiabatic potential energy curves have been also fitted
to the expression in eq 7, obtaining rms errors of 1-2 meV.
The parameters of the fits are given in Table S3 of Supporting
Information. The accuracy of the fitted ground-state (X1Σ0+)
F-adiabatic potential energy curve can be assessed by comparing
its spectroscopic parameters with experiment. The theoretical
equilibrium distance (re) and the vibrational harmonic frequency
(ωe) are equal to 1.4190 Å and 2648.3 cm-1, respectively,
compared with the experimental values 1.4144 Å and 2649.0
cm-1.81 The equilibrium dissociation energy De obtained from
the fits is equal to 3.88 eV, and the zero-point dissociation
energy D0 calculated assuming a harmonic vibration is equal
to 3.72 eV, in good agreement with the experimental values,
3.92 eV81 and 3.746 ( 0.005 eV,24 respectively.

The nonadiabatic couplings between the F-adiabatic states
can be obtained numerically once the F-diabatic matrix and the
EF-a matrix with the reordered F-adiabatic energies are known.
In eq 6 note that

∇ Hk,l
F-d(r)) ∇ Hl,k

F-d(r) (14)

The four unique scalar nonadiabatic coupling curves have been
fitted as follows. First, the factor in front of the sum in eq 6,
containing the F-adiabatic energy differences in the denominator,
was left out, and the remainder was fitted to five-term sums of
even-tempered Gaussian functions

dij(r)) ∑
K)1

5

cij,K exp(-Rij�ij
K(r- rij,K)2) (15)

where ij denotes the following four pairs of states: X1Σ0+-3Π0+,
1Π1-3Π1, 3Π1-3Σ1, and 1Π1-3Σ1. The fitted functions were
then divided by the F-adiabatic energy differences, and the
resulting nonadiabatic couplings were fitted to the same
functional forms of eq 15. This two-step procedure was
necessary in order to avoid spurious nonzero couplings at long
internuclear distances. The rms errors obtained in the fits are
of at most 10-2 Å-1. The fitted nonadiabatic coupling curves
are shown in Figure 2. The parameters of the fits are given in
Table S4 of Supporting Information.

Finally, to determine the absorption cross sections, it is
necessary to obtain the transition dipole moment functions. The
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matrix containing the V-diabatic permanent dipole moments for
the X1Σ+, 1Π, 3Σ+, and 3Π electronic states and the V-diabatic
1Σ+ T 1Π and 3Σ+ T 3Π transition dipole moments was
computed at the IC-MRCI level and was transformed to the
F-adiabatic representation. The distance-dependent transforma-
tion matrix D(12)(r)was obtained by diagonalizing the sum of
the electronic Hamiltonian matrix at the given H-Br distance
and the spin-orbit Hamiltonian at the dissociation limit:

HF-a(r)) (D(12)(r))†(HVal(r)+HSO,Val(∞))D(12)(r) (16)

The columns of the transformation matrix are the eigenvectors
of the F-diabatic potential matrix. For a diatomic molecule, the
dipole moment vectors for a particular electronic state have
nonzero Cartesian components either only parallel (µz) or only
perpendicular (µx and µy) to the molecular axis, and the two
perpendicular components are equal. The matrix containing the
xy Cartesian components and that containing the z Cartesian
components of µVal(r) were transformed separately:

µxy
F-a(r))D(12)(r)† µxy

Val(r) D(12)(r) (17)

µz
F-a(r))D(12)(r)† µz

Val(r) D(12)(r) (18)

Thus, the F-adiabatic transition dipole moment vector for the
only nonzero parallel transition from the ground state, namely,
the one to the 3Π0+ state (which fulfills the ∆Ω ) 0 and the 0+

T 0+ selection rules, see above), is defined as

µ3Π0+

F-a (r)) (0, 0, µij,z
F-a(r)), i) 1, j) 7 (19)

The magnitude of the F-adiabatic transition dipole moment
vectors for the 3Π1 perpendicular (|∆Ω| ) 1) transition is defined
as

µ3Π1

F-a (r))�(µ14,xy
F-a (r))2 + (µ15,xy

F-a (r))2

2
(20)

with analogous definitions for 1Π1 (i ) 1, j ) 8, 9) and 3Σ1 (i
) 1, j ) 11, 12). The magnitudes of the four unique F-adiabatic
transition dipole moments from the ground state to the 3Π0+,
3Π1, 1Π1, and 3Σ1 excited states, which can be symbolized as I
) 1, 2, 3, and 4, were fitted to five-term sums of even-tempered
Gaussian functions

µI
F-a(r)) ∑

K)1

5

cI,K exp(-RI�I
K(�- �I,K)2), 1e Ie 4 (21)

where the variable � is defined as

�) r- 0.85 Å
8.15 Å

(22)

so that � ∈ {0, 1} because ab initio transition dipole moments were
computed at H-Br distances in the range 0.85-9.0 Å. The rms
errors of these fits are all below 2 × 10-3 au, where 1 atomic unit
(au) of dipole moment equals ea0, where a0 is a Bohr radius. The
fitted F-adiabatic transition dipole moments are plotted in Figure
3. The parameters of the fits are given in Table S5 of Supporting
Information. The curves compare very well to those reported in
ref 27, except for the transition dipole moment to the 3Π0+

electronic state, which presents a substantially larger value in the
FC region in the present work. This feature has an effect on the
branching fraction to the excited fine-structure level of bromine
which is large enough to improve the agreement with experiment
significantly, as will be shown below.

The set of these fitted adiabatic energies, diabatic energies
and couplings, nonadiabatic couplings, and transition dipole
moments will be called fit A. All nonlinear-least-squares fits
were carried out with a nonlinear Marquardt-Levenberg82 least-
squares algorithm. All linear and nonlinear fits were performed
with the GNUPLOT program.83

2.3. Determination of Adiabatic Absorption Cross Sec-
tions. The broad absorption spectrum of HBr implies that the
lifetime of the photoexcited HBr molecules is very short. Hence,
it is reasonable to assume that all the excited molecules
dissociate before they can return to the ground state by radiation,
and that the total photoabsorption and photodissociation cross
sections are identical. In the present study HBr is assumed to
be initially in its nonrotating ν′′ ) 0 vibrational level of the
ground electronic state. In the absence of rotation, the expression
for the quantum-mechanical partial absorption cross section from
ν′′ ) 0 on the ground electronic state (here denoted state number
1) to the continuum level ε of the nth F-adiabatic electronic
state, where n represents any of the seven excited states 3Π2,
3Π1, 3Π0+, 3Π0-, 1Π1, 3Σ0-, and 3Σ1, is84

σnε,10(pω)) 4π2

3pc
∆Enε,10|〈nε|µn1|10〉 |2δ(pω-∆Enε,10)

(23)

where p is Dirac’s constant, c is the speed of light, ω is the
photon frequency

∆Enε,10 )Enε - (E1,1
F-a +Evib(ν′′)0)) (24)

is the excitation energy, with E vib(ν′′)0) the vibrational zero-

Figure 2. Nonadiabatic coupling curves for the HBr molecule obtained
in fit A.

Figure 3. Transition dipole moment curves in atomic units (1 au of
dipole moment ) 1 ea0) for the HBr molecule obtained in fit A.
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point energy, Enε is the total energy in the upper electronic state

Enε )E1,1
F-a +Evib(ν′′)0)+ pω (25)

and µn1 is the electronic transition dipole vector. The semiclas-
sical analogue of this expression can be evaluated using the
classical FC principle and a semiclassical Wigner representation
of the ν′′ ) 0 vibrational wave function of the ground electronic
state85

σnε,10(pω) ≈

4π2

3pc
pω∫ dQ dPQ P(1)(Q, PQ)[µn1]

2 δ(Hnε(Q, PQ)-Enε) (26)

where pω is the photon energy, and Hnε(Q,PQ) is the classical
Hamiltonian for the continuum level ε of the nth electronic state,
which can be written as86

Hnε(Q, PQ))
PQ

2

2µHBr
+En,n

F-a(r(Q)) (27)

where µHBr is the reduced mass of HBr, and r(Q) is the H-Br
internuclear distance. The distribution of the normal mode
coordinate Q and its conjugate momentum PQ in the ν′′ ) 0
vibrational level of the ground electronic state is chosen as the
semiclassical Wigner distribution:

P(1)(Q, PQ)) (πp)-1 exp[- Q2

2s2
-

2s2PQ
2

p ] (28)

where s is the standard deviation of the normal mode coordinate
distribution. This distribution is sampled by the Monte Carlo
method with the Box-Muller algorithm.87

To evaluate the excited-state potential functions in eq 27, the
function r(Q) must be constructed. For this purpose, each value
of the displacement δQ of the Q coordinate obtained in the
sampling is projected onto the vibrational normal mode vector,
the mass scaling is removed, the resulting set of Cartesian
coordinates of the H and Br atoms is added to the ground-state
equilibrium Cartesian coordinates, and the result is transformed
to the internuclear distance r:

qκi ) Lκi δQ, κ) x, y, z, i)H, Br (29)

xκi ) xκi,e + qκi�µHBr

mi
, κ) x, y, z, i)H, Br (30)

r(Q))�∑
κ

(xκBr - xκH)2, κ) x, y, z (31)

In eqs 29–31, L is the unitless, normalized vibrational normal
mode vector obtained from diagonalization and subsequent
orthogonalization of the eigenvectors of the Hessian matrix in
mass-weighted Cartesian coordinates, x is a vector of Cartesian
coordinates, and mi are the atomic masses. The delta function
in eq 26 is represented as

δ(Hnε(Q, PQ)-Enε)) lim
∆Ef0

(1/∆E) Θ(∆E+Hnε(Q, PQ)-

Enε) Θ(∆E-Hnε(Q, PQ)+Enε) (32)

where Θ is Heaviside’s step function. Accurate cross sections
have been obtained here using a prelimit value of 0.01 eV for
∆E.

2.4. Non-Born-Oppenheimer Semiclassical Trajectory
Methods. The reaction dynamics of chemical processes where
nonadiabatic or non-BO effects are important can be studied
using semiclassical trajectory methods, also called non-BO

molecular dynamics methods. Recent reviews of the non-BO
methods used here have been reported elsewhere.88,89 In these
methods, an ensemble (swarm) of trajectories that mimics the
finite width of a quantum-mechanical wave packet is used to
simulate the nuclear motion. The nuclear trajectories are
propagated independently by solving Hamilton’s equations of
motion, and the electronic quantum-mechanical density matrix
G is propagated along with the trajectory by solving the time-
dependent Schrödinger equation. The different independent-
trajectory non-BO methods differ in the way they treat the
coupling between the electronic and the nuclear motions. The
methods used in the present work are of the so-called trajectory
surface hopping and decay-of-mixing types, which are detailed
next.

In trajectory surface hopping (TSH) methods, the forces acting
on the nuclei are determined by a single electronic potential
surface except at instantaneous surface switches (also called
hops) at which the electronic state changes. At small time
intervals along the trajectory a hopping probability is calculated
and compared with a random number to decide whether a hop
will take place. One of the prescriptions that has been used to
compute the hopping probability is the molecular dynamics with
quantum transitions method of Tully, which we call Tully’s
fewest-switches (TFS) method.90 The TFS method is intended
to achieve self-consistency, in an ensemble-average sense,
between the number of trajectories that are propagated in each
electronic state and the electronic state populations. However,
it has been shown that the existence of frustrated hops, that is,
hops that are called for by the algorithm but that cannot take
place due to insufficient kinetic energy along the hopping vector,
spoil the self-consistency of the TFS method. Frustrated hops
can be caused by various physical effects, such as when the
system attempts to tunnel into a classically forbidden region,
and they can also reflect an incorrect treatment of electronic
decoherence. The fewest-switches with time-uncertainty (FSTU)
method91 treats the frustrated hops related to nonclassical
tunneling by allowing the system to hop at a different time than
called for by the hopping algorithm, but within the bounds
imposed by the time-energy Heisenberg uncertainty relation. If
a suitable time cannot be found, the “∇ V prescription”92 is used
to treat the frustrated surface hopping attempt. This prescription
does not completely solve the problem of frustrated hops since
it does not treat frustrated hops related to electronic decoherence.
In a recent improvement, this issue has been addressed by adding
stochastic decoherence (SD) to the FTSU method, giving rise
to a method that we call the FSTU/SD method.93 Recently,
decoherence was identified as an important effect in the
photodissociation of the Na · · ·FH van der Waals complex, and
the FSTU/SD method predicted product branching probabilities
and excited-state half-lives in excellent agreement with quantum-
mechanical results and was shown to be more accurate than
the FSTU method.93

In the CSDM semiclassical trajectory method,94 multistate
trajectories are propagated according to a mean-field potential
energy surface, and the electronic motion is modified to include
decoherence and phenomenological demixing. The CSDM
method is designed such that the dynamics is relatively
representation independent in regions of strong coupling, and
CSDM trajectories tend toward pure electronic states in regions
where the coupling is negligible. The CSDM method is more
accurate than the previously proposed, less coherent self-
consistent decay of mixing (SCDM) method95 and also has the
advantage that it depends least on the representation (adiabatic
or diabatic) used to describe the electronic part of the system.88
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The FSTU and CSDM methods have recently been tested
against accurate quantum-mechanical results for a set of two-
state atom-diatom reactive scattering systems, which includes
systems with varied surface coupling types, from weak interac-
tions to avoided crossings and to conical intersections.88,89 It
was found that the most accurate of the non-BO trajectory
methods is CSDM, with an average error of only about 25% in
both the adiabatic and the diabatic representations, whereas
FSTU led to an average error of about 40% in the adiabatic
representation. These errors are on the same order as those for
typical single-surface trajectory simulations, suggesting that the
treatment of the electronic transitions by the CSDM and FSTU
methods does not introduce significant additional error beyond
what is already implicit in the classical trajectory approximation.

3. HBr Photodissociation: Nonadiabatic Cross Sections
and Branching Fraction

The photodissociation dynamics of HBr has been studied
using the CSDM, FSTU, and FSTU/SD semiclassical trajectory
methods. The F-adiabatic representation has been employed for
all dynamics calculations. All total and partial cross sections
are calculated for excitation from the nonrotating ν′′ ) 0
vibrational level of the ground electronic state. Two kinds of
calculations may be carried out in the fully adiabatic representa-
tion: (i) fully coupled dynamics and (ii) calculations that neglect
the nonadiabatic state coupling. Calculations of type (i) will be
called coupled adiabatic, and those of type (ii) will be called
uncoupled adiabatic.

The partial absorption cross sections are equal to the
uncoupled adiabatic partial photodissociation cross sections for
the excited electronic states. They were calculated by sampling
the ground-state Wigner distribution of the ν′′ ) 0 level
according to eqs 26–32 using a total of 107 samples at 50 photon
energies in the range 35 000-75 000 cm-1. The resulting partial
and total cross sections are presented in Figure 4. The shape of
the total absorption cross section and the position of the
maximum (∼56 800 cm-1) are in good agreement with those
determined experimentally,43 but the absolute value at the
maximum (0.013 Å2) is about a factor of 2 lower than
experiment (0.027 Å2). Note that the total cross section found
here agrees very well with the theoretical one reported in ref
27, which also differs from experiment by a comparable factor,
as pointed out recently.38 This discrepancy could be due to
unconverged transition dipole moments, which are very sensitive
to the level of electronic structure theory and to the number of

electronic states included,34 and/or to experimental inaccuracies.
As shown in Figure 4, the only F-adiabatic states with sizable
absorption cross sections are 3Π0+ (parallel transition) and 1Π1

and 3Π1 (perpendicular transitions).
According to the discussion of section 2.1, the states that

participate in the photodissociation fall into two uncoupled sets
of interacting states: {X1Σ0+,3Π0+} and {1Π1,3Π1,3Σ1}. The
nonadiabatic partial photodissociation cross sections are obtained
as the sum of the products of the uncoupled adiabatic partial
cross sections and the fraction of semiclassical trajectories in
the coupled adiabatic calculations that dissociate to the different
electronic states:

σ3Π0+

non-Ad(pω)) σ3Π0+

Ad (pω) Γ3Π0+

3Π0+(pω) (33)

σX1Σ0+

non-Ad(pω)) σ3Π0+

Ad (pω) ΓX1Σ0+

3Π0+ (pω) (34)

σ1Π1

non-Ad(pω)) σ1Π1

Ad (pω) Γ1Π1

1Π1(pω)+ σ3Π1

Ad (pω) Γ1Π1

3Π1(pω)

(35)

σ3Π1

non-Ad(pω)) σ3Π1

Ad (pω) Γ3Π1

3Π1(pω)+ σ1Π1

Ad (pω) Γ3Π1

1Π1(pω)

(36)

σ3Σ1

non-Ad(pω)) σ1Π1

Ad (pω) Γ3Σ1

1Π1(pω)+ σ3Π1

Ad (pω) Γ3Σ1

3Π1(pω)

(37)

In these equations, Γj
i(pω) is the fraction of semiclassical

trajectories that start out in electronic state i after absorption of
a photon and dissociate in electronic state j, at a given photon
energy. Note that when i and j are the same state it can be either
because the trajectories dissociate adiabatically or because the
system ends up dissociating in the initial state i after two or
more nonadiabatic state switches.

The semiclassical trajectory calculations were carried out at
the same 50 photon energies included in the importance
sampling used to determine the absorption cross sections. The
number of trajectories run at a particular energy is equal to the
number of accepted Monte Carlo samples at that energy. The
initial integration time step chosen was 1 fs, and the trajectories
were considered finished after they had been propagated for 50
fs. The integration was carried out using the Bulirsch-Stoer
integrator87 with polynomial extrapolation, with a tolerance
parameter εBS equal to 10-9. A specialized integration scheme79

that ensures an accurate determination of hopping probabilities
in the FSTU and FSTU/SD calculations, and of switching
probabilities to the decoherent state when using CSDM, was
employed in the present study. The constants C and E 0 in the
decay time expression used in CSDM94 were set to 1 and to
0.1 hartree, respectively.

The nonadiabatic cross sections were found to be similar for
the three methods employed, as shown in Table 1 for 10 photon
energies in the range where the absorption cross section is
sizable. This was to be expected given the good accuracy that
has been found for FSTU and CSDM in the adiabatic repre-
sentation for a number of model atom-diatom systems.88,89 The
number of trajectories run at some representatives photon
energies, starting in the 3Π1 state and in the 1Π1 state,
respectively, are as follows: at 43 500 cm-1 (close to the
maximum branching fraction, see below), 56 000 and 2000; at
58 000 cm-1 (about the location of the maximum in total cross
section), 30 000 and 80 000; and at 70 000 cm-1, 700 and 2000.
Recall that the total number of Monte Carlo samples used to
generate the initial conditions is 107, and the total number of

Figure 4. Uncoupled adiabatic total and partial cross sections obtained
from fit A. The partial cross section for the 3Σ1 state is very small and
is not visible in the scale of the figure.
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nonadiabatic trajectories run is about 4 × 106. The statistical
error in the nonadiabatic cross sections was computed as the
Monte Carlo error (one standard deviation)96 in the fraction of
trajectories that dissociate in each of the F-adiabatic electronic
states:

∆σ1Π1

non-Ad(pω)

σ1Π1

non-Ad(pω)
) (NT

1Π1(pω)-N1Π1

1Π1(pω)

N1Π1

1Π1(pω) NT

1Π1(pω)
+

NT

3Π1(pω)-N1Π1

3Π1(pω)

N1Π1

3Π1(pω) NT

3Π1(pω) )1⁄2

(38)

∆σ3Π1

non-Ad(pω)

σ3Π1

non-Ad(pω)
) (NT

1Π1(pω)-N3Π1

1Π1(pω)

N3Π1

1Π1(pω) NT

1Π1(pω)
+

NT

3Π1(pω)-N3Π1

3Π1(pω)

N3Π1

3Π1(pω) NT

3Π1(pω) )1⁄2

(39)

∆σ3Σ1

non-Ad(pω)

σ3Σ1

non-Ad(pω)
) (NT

1Π1(pω)-N3Σ1

1Π1(pω)

N3Σ1

1Π1(pω) NT

1Π1(pω)
+

NT

3Π1(pω)-N3Σ1

3Π1(pω)

N3Σ1

3Π1(pω) NT

3Π1(pω) )1⁄2

(40)

where NT
i (pω) is the total number of trajectories starting in state

i ) 3Π1 or 1Π1, run at a particular photon energy, and Nj
i(pω)

is the number of trajectories that start out in state i and dissociate
in state j (compare with eqs 33–37). The results presented in
Table 1 show that the three methods agree within statistical
uncertainty for trajectories that dissociate in the 3Π1 and 1Π1

states. Interestingly, the FSTU/SD method improves the FSTU
nonadiabatic cross sections for the 3Σ1 state in a statistically
significant way, in the sense that the FSTU/SD results are closer
to the presumably more accurate89 CSDM results. The agree-
ment improves especially at low photon energies. This can be
understood noting that the FSTU/SD method may affect the
dynamics of the trajectories that experience more than one
surface hop.93 The fraction of such trajectories (relative to the
total number of hopping trajectories) is significant, oscillating
between 30% and 15% at the lowest and the highest photon
energies, respectively, for trajectories started in the 3Π1 state,
and between 50% and 15% for trajectories started in the 1Π1

state. The FSTU/SD method has also been found to perform
better than FSTU for photodissociation of the Na · · ·FH van der
Waals complex.93

The results of the CSDM calculations are presented in Figure
5. Trajectories were started in the 1Π1 and 3Π1 adiabatic states,
whereas it was assumed that dissociation on the 3Π0+ state
proceeds adiabatically despite the nonzero nonadiabatic coupling
between this state and the ground electronic state. Exploratory
calculations showed that the transition probability from 3Π0+

to X1Σ0+ does not exceed a few percent. This can be understood
from the large vertical separation between these states in the
region of their maximum nonadiabatic coupling near 2.7 Å (see
Figure 2). One observes that the 3Σ1 state has a sizable
nonadiabatic cross section, whereas it has a negligible adiabatic
cross section as seen in Figure 4. According to eq 37, the 3Σ1

state can be accessed by nonadiabatic transitions after photon
absorption from the 1Π1 state or from the 3Π1 state. ExaminationT
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of the theoretical results shows that essentially all of the
dissociation flux in the 3Σ1 state comes from the 1Π1 state, as
could be expected, since 1Π1 is energetically closer to 3Σ1 than
3Π1 is (see Figure 1), 1Π1 has a larger adiabatic absorption cross
section, and its nonadiabatic coupling with 3Σ1 is larger than
that between 3Π1 and 3Σ1. A surprising result is that the
nonadiabatic cross sections for 1Π1 and 3Π1 are quite similar
to the uncoupled adiabatic cross sections. This disagrees both
with the results of ref 27 and with the experiment;25 the latter
yields a transition probability from 1Π1 to 3Π1 at a photon energy
of 51 600 cm-1 of about 80% and therefore predicts significantly
more formation of 3Π1 and less formation of 1Π1.

To shed light on the factors that cause this discrepancy, we
have refitted the ab initio adiabatic and diabatic energies and
the diabatic couplings. For the energies, five-term even-tempered
sums of exponentials have been employed

f(r))∑
i)0

5

ci exp(-R�i(r- r0))+ f∆ESO,Br (41)

and an analogous expression with nine terms has been used for
the diabatic couplings:

g(r))∑
i)0

8

ci exp(-R�i(r- r0)) (42)

For the adiabatic and diabatic energies, the even-tempered
coefficients R and � have been kept fixed at 1.3 Å-1 and 1.5,
respectively, and r0 has been set to 1.4 Å. Therefore, the fits in
eqs 41 and 42 are linear fits. These simple functional forms
with fixed parameters were chosen to obtain a good match with
the ab initio energies at not too long distances (up to about 3.0
Å), and to explore the sensitivity of the nonadiabatic couplings
to small energetic differences between the different electronic
states in the long-range region. The parameters of the energy
fits are given in Tables S6 (diabatic) and S8 (adiabatic) of
Supporting Information. For the diabatic couplings, the same
values of R and � as for the energies have been chosen, and r0

has been chosen equal to 1.0 Å. The parameters of the diabatic
coupling fits are given in Table S7 of Supporting Information.
As stated above, these fits differ significantly from fit A only
for distances longer than about 3.0 Å, where they deviate by a
few millielectronvolts from the ab initio data. These differences
give rise to a much increased nonadiabatic coupling between
the 1Π1 and 3Π1 states. The remaining features of the potentials,

as well as the nonadiabatic couplings between the other
electronic states, are similar to those of fit A. Nevertheless, since
the nonadiabatic couplings are very important for the dynamics,
all of them were refitted using the same expression as for fit A.
In this case, the full expression in eq 6 was fitted in a single
step to

dij(r)) ∑
K)1

N

cij,K exp(-Rij�ij
K(r- rij,K)2) (43)

where now N ) 5 for the X1Σ0+-3Π0+, 1Π1-3Σ1, and 3Π1-3Σ1

nonadiabatic couplings, and N ) 9 for the 1Π1-3Π1 one. The
parameters of these fits are given in Table S9 of Supporting
Information. The new set of fitted adiabatic energies, diabatic
energies and couplings, and nonadiabatic couplings, will be
called fit B. The nonadiabatic coupling curves are shown in
Figure 6. Comparing with Figure 2, it is clear that the only
significant difference is a much larger nonadiabatic coupling
between the 1Π1 and 3Π1 states, with a maximum of close to
2.0 Å-1 for an internuclear distance of about 3.7 Å.

A comparison of the F-diabatic energies obtained in fits A
and B in the long-range region with the ab initio data is
presented in Figure 7. In Figure 7A one observes the high
accuracy of fit A in reproducing the ab initio data, in particular,
the shallow minima with depths between 4 and 6 meV located
in the region of r from 3.7 to 4.3 Å. Comparable accuracy is
achieved for the diabatic couplings and for the adiabatic
energies, and the results are not shown here. In contrast, the fit
B curves in Figure 7B deviate considerably from the F-diabatic
energies in this region, to the extent that the minima either
disappear or are extremely shallow, and some of the curves
cross. These features of fit B lead to a large nonadiabatic
coupling between the 1Π1 and 3Π1 states, as mentioned above.
As seen in eq 6, nonadiabatic couplings are large when some
of the nuclear derivatives of the diabatic energies and/or
couplings are large, when both adiabatic states involved have
relatively large coefficients for the given diabatic state or states,
or when the difference between the adiabatic energies is small.
Analysis of the contributions to the nonadiabatic coupling
between the 1Π1 and 3Π1 states shows that, at long range, for
fit A the coefficients of the eigenvectors of these F-adiabatic
states in eq 6 are all close to 1 or 0. However, for fit B the
coefficients relative to H4,4

F-d(r) are both quite different from 1
or 0. This is probably related to the crossing between the diabatic
states observed in Figure 7B. As a result, and since the derivative
of H4,4

F-d(r) is also sizable in this region (although it is comparable

Figure 5. Nonadiabatic total and partial cross sections obtained in
coupled adiabatic calculations with the CSDM semiclassical trajectory
method using fit A.

Figure 6. Nonadiabatic coupling curves for the HBr molecule obtained
in fit B.
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for fits A and B), for fit A the nonadiabatic coupling is close to
0, whereas it has a large magnitude for fit B.

A new set of CSDM calculations was carried out with fit B
with the transition dipole moments from fit A, and the total
and partial cross sections obtained are presented in Figure 8. In
this case, the partial cross sections for 1Π1 and 3Π1 are in better
agreement with those reported in the literature, although the
nonadiabatic redistribution of flux from 1Π1 to 3Π1 is still
somewhat underestimated. The remaining cross sections are
essentially the same as those in Figure 5. Thus, despite the fact
that fit B is less accurate than fit A, it seems to describe better
the nonadiabatic transition between the 1Π1 and 3Π1 F-adiabatic
states, which are predicted to take place predominantly at long
range in a region where these states are energetically very close.
The accurate prediction of interaction energies in this region,
where weak van der Waals interactions must be considered, is
particularly difficult and would require additional high-level
corrections, such as saturating the one-electron basis set, treating
electronic correlation using coupled-cluster-type methods, sys-
tematically including connected triple excitations, and taking
into account basis set superposition error (BSSE) effects.97 That
level of treatment is beyond the scope of the present study, and
we just note that the redistribution of the dissociation flux to

the 1Π1 and 3Π1 states correlating with the lower fine-structure
level of bromine is very sensitive to the long-range region of
the potentials.

A very important dynamic property for systems in which
spin-orbit effects are sizable is the branching fraction to the
higher fine-structure level of separated fragments. For HBr, the
nonadiabatic photodissociation cross sections for the 1Π1, 3Π1,
and 3Σ1 states, and the uncoupled adiabatic cross sections for
the 3Π0+ state, allow one to determine the branching fraction
to H(2S) + Br(2P1/2) as

Γ(pω))

σ3Π0+

Ad (pω)+ σ3Σ1

non-Ad(pω)

σ1Π1

non-Ad(pω)+ σ3Π1

non-Ad(pω)+ σ3Π0+

Ad (pω)+ σ3Σ1

non-Ad(pω)
(44)

The resulting branching fraction as a function of photon
energy computed with CSDM using fit A is compared with
experiment in Figure 9. The agreement is quite good in the
range where experimental results have been reported; in
particular, the peak at about 43 000 cm-1 is well reproduced,

Figure 7. Comparison between the long-range energies obtained in
fit A (A) and fit B (B) and the ab initio F-diabatic energies for the
states that correlate with the lower fine-structure level of bromine. The
symbols represent ab initio data and the lines represent the fitted
energies. The states plotted in part A are H1,1

F-d(r) (squares), H2,2
F-d(r)

(circles), H4,4
F-d(r) (triangles), H6,6

F-d(r) (inverted triangles), and H12,12
F-d (r)

(rhombi). The state correspondence in part B is H1,1
F-d(r) (squares and

solid line), H2,2
F-d(r) (circles and dash-dot line), H4,4

F-d(r) (triangles and
dot line), H6,6

F-d(r) (inverted triangles and dash line), and H12,12
F-d (r) (rhombi

and dash-dot-dot line).

Figure 8. Nonadiabatic total and partial cross sections obtained in
coupled adiabatic calculations with the CSDM semiclassical trajectory
method using fit B.

Figure 9. Branching fraction to the higher fine-structure level of
bromine obtained in coupled adiabatic calculations with the CSDM
semiclassical trajectory method using fit A. The experimental measure-
ments24 (symbols with error bars), and the theoretical branching fraction
with the contributions from the 3Σ1 and 3Π0+ F-adiabatic states, are
shown in the figure.
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although the predicted branching fraction is slightly larger
than the experimental one. Note that in the wave packet
calculations of ref 27 the theoretical maximum in the
branching fraction is at somewhat lower energies and the
shape of the curve is flatter than in the experiment and the
present calculations. At this photon energy, the absorption
cross sections are very small, as seen in Figures 4 and 5,
and any inaccuracies in the potentials or transition dipole
moments could cause a difference of this order. We attribute
the better agreement obtained in the present study to the larger
X1Σ0+ f 3Π0+ transition dipole moment obtained, which is
responsible for the maximum in the branching fraction as
observed in Figure 9. This behavior is probably due to the
inclusion of the triplet spin-free permanent and transition
dipole moments in the transformation of eq 16. It is likely
that the authors of ref 27 only included the largest contribu-
tion to the spin-coupled transition dipole moments, which is
that from the singlet spin-free permanent and transition dipole
moments.

It is interesting that a dynamic property such as the branching
fraction of HBr is controlled to a large extent by the partial
absorption cross sections to the relevant excited states. The level
of control is even larger in photodissociation of HI, for which
the uncoupled adiabatic partial absorption cross sections almost
completely determine the branching fraction because nonadia-
batic effects have been found to be negligible.34,46 For both HI34

and CH3I,98 it has been predicted that the branching fraction
can be increased significantly by vibrational excitation in the
ground electronic state, if the photon wavelength is selected so
that the excited-state potentials that correlate adiabatically with
the higher fine-structure level of products strongly dominate the
total absorption cross sections.

4. Spin-Coupled Potential Curves for LiBr+

The method used here to obtain spin-coupled potential and
dipole moment curves for HBr has previously been formulated
explicitly only for even-electron systems.76 However, many of
the benchmark systems for the study of spin-orbit effects on
reaction dynamics are odd-electron systems containing an open-
shell atom in a degenerate electronic state (e.g., X(2P) where X
is a halogen) that reacts with a closed-shell molecule (e.g., H2(X̃
1Σg

+), HX(X̃1Σ+)). To show that the method can be applied to
both even- and odd-electron systems, we have studied a model
odd-electron system with a single unpaired electron, namely,
the LiBr+ diatomic. To our knowledge there is no experimental
data for LiBr+ to which one can compare. However, calculations
of the potential energies that include an ab initio distance-
dependent SOC can be compared to calculations at the same
level of electronic structure but assuming a constant SOC. At
internuclear distances where the interaction between the atoms
is not negligible, the 2P state of bromine splits under the
influence of the spin-free electronic Hamiltonian into a 2Σ and
a 2Π curve. Introducing the spin-orbit operator in the Hamil-
tonian gives rise to three doubly degenerate spin-coupled states
(Kramers doublets) in the molecular region, two with |Ω| )
1/2 and one with |Ω| ) 3/2. The spin-coupled electronic states
are labeled according to the value of the total electronic angular
momentum in the dissociation limit (equal to that of the bromine
atom) and of |Ω|. The correlations of these molecular states with
the atomic asymptotic states are

LiBr+(J) 3
2

, |Ω|) 3
2)fLi+(1S)+Br(2P3⁄2)

LiBr+(J) 3
2

, |Ω|) 1
2)fLi+(1S)+Br(2P3⁄2)

LiBr+(J) 1
2

, |Ω|) 1
2)fLi+(1S)+Br(2P1⁄2)(45)

The present treatment is designed for energies where the
asymptotic states of eq 45 are the only energetically accessible
ones.

The spin-free potential energy curves of the 2Σ and 2Π
electronic states are obtained as follows. First, SA-CASSCF
calculations are performed with an active space of five electrons
in three orbitals, choosing an equal weight for each of the three
substates included in the average (one substate for 2Σ and two
substates for 2Π). The MOs obtained are subsequently used in
CISD calculations that include all single and double excitations
from the highest three MOs to the space of virtual MOs, keeping
the rest of the MOs frozen. The spin-orbit interaction has been
computed from the CISD eigenstates including the full spin-orbit
part of the Breit-Pauli Hamiltonian.99 The correlation-consistent
aug-cc-pVTZ basis set52,100,101 has been employed in all the
calculations, which were performed with the GAMESS pro-
gram.102

The procedure used to construct spin-coupled potential curves
from the spin-free electronic states and assuming constant
spin-orbit interaction is analogous to that used for HBr. Briefly,
the valence diabatic matrix for LiBr+ is a 6 × 6 diagonal matrix
with the CISD energies as its diagonal elements

HRR′
Val(r))ER(r)δRR′ , 1eRe 6 (46)

where R labels the V-diabatic substates and r is the Li-Br
internuclear distance. The zero of energy is chosen as the energy
of the six degenerate V-diabatic substates without SOC in the
dissociation limit. The transformation matrix to the F-diabatic
representation is denoted C(6)

HSO,F-d(∞))C(6)†HSO,Val(∞)C(6) (47)

where HSO,F-d(∞) is a diagonal matrix with four elements equal
to the energy of the Br(2P3/2) fine-structure level, -∆ESO,Br/3,
and two elements equal to the energy of the Br(2P1/2) level,
2∆ESO,Br/3, with ∆ESO,Br the CISD fine-structure splitting of
the bromine atom (3243 cm-1). The F-diabatic potential energy
matrix is obtained from

HF-d(r))C(6)†HVal(r)C(6) +HSO,F-d(∞) (48)

Diagonalization of the F-diabatic potential matrix yields the
F-adiabatic potential energies.

The spin-orbit matrix and the corresponding transformation
to spin-coupled diabatic states for the case of a 2P atom
interacting with a closed-shell atom or molecule has been
considered by several authors (see, for instance, refs 104 and
105 and references therein). However, for the sake of complete-
ness, the spin-orbit matrix in the V-diabatic representation for
LiBr+ is presented in Table 2, and the C(6) transformation matrix
is presented in Table 3 (the analogous matrices for HBr were
given in ref 76).

The spin-coupled F-adiabatic potential energy curves obtained
from the ab initio calculations including the r-dependent SOC
are shown in Figure 10. The three curves all have minima at
short internuclear distances, relatively deep for the two lowest
curves correlating with Br(2P3/2) and rather shallow for the
highest curve correlating with Br(2P1/2). This behavior contrasts
with other cases such as X(2P) + H2 and X(2P) + HX, for which
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attractive interactions are present only at long range, giving rise
to van der Waals wells.103 This difference can be attributed to
the ionic character of Li+. The strong interaction of the ionic
collision partner with the Br atom makes this a good test case
for electronic structure theory. At the resolution discernible in
Figure 10, the potential energies obtained using the atomic SOC
approximation are not presented graphically. In the range of
Li-Br distances from 1.4 to 5.0 Å, the mean unsigned deviation
of the curves in Figure 11 from those in Figure 10 is 2.6 meV.
This is of the same order as that obtained for the HBr diatomic.76

Note that the energies of the LiBr+ F-adiabatic states span a
wide range, from about -0.7 eV at the lowest minimum to
almost 9 eV at 1.4 Å. Thus the mean unsigned deviation is only
0.03% of the range covered. The two unique spin-orbit matrix
elements in the V-diabatic representation can be written
〈Πx|ĤSO|Πy〉 and 〈Πj x|ĤSO|Σ〉 ,104 where the symmetry symbols
without a bar over them are associated with an R spin function
and the symbol with a bar is associated with a � spin function.
The asymptotic value of these matrix elements, 1081 cm-1 or

0.134 eV, is equal to one-third of the ab initio fine-structure
splitting of bromine. These matrix elements show a maximum
variation relative to these asymptotes of about 3 and 14 meV,
respectively, which is on the same order as but somewhat larger
than the deviations of the potential energies from the ab initio
computed ones.

5. Conclusions

The photodissociation of HBr is a computationally tractable
process that allows one to test the accuracy of two key
simplifications, namely, (i) using distance-independent (atomic)
spin-orbit couplings at all internuclear distances to obtain spin-
coupled potentials and transition dipole moments and (ii) using
semiclassical trajectories to compute the photofragmentation
dynamics. Although one can readily use more accurate methods
for studying the photodissociation of a diatomic molecule, our
goal here is to test methods that are practical for polyatomic
photodissociation by applying them to a case where one also
has more complete theoretical treatments available.

First, the adiabatic total and partial absorption cross sections
were computed by sampling of the ν′′ ) 0 vibrational state of
the ground electronic state. The resulting total cross sections
underestimate the experiment by about a factor of 2 but are in
good agreement with wave packet calculations, indicating most
probably that there is room for improvement in the transition
dipole moments.

The nonadiabatic photodissociation dynamics was studied
using one semiclassical trajectory method of the decay-of-mixing
type (in particular, CSDM) and two of the surface-hopping type
(in particular, FSTU and FSTU/SD). The results are very similar
for the three methods, and the predicted branching fractions are
in good agreement with experiment. The redistribution of
reactive flux between two of the electronic states correlating
with the lower fine-structure level of bromine atom was found
to depend strongly on the shape of the potential curves at long
internuclear distances. The most accurate fits fail to reproduce
qualitatively the experimental behavior, suggesting that the long-
range potentials should be improved.

The same strategy used to generate potential and transition
dipole moment curves for HBr was applied to the LiBr+ odd-
electron system, and it was found that using the atomic
spin-orbit coupling reproduces the spin-coupled ab initio
energies almost quantitatively in the whole range of internuclear
distances studied.

The general conclusion of the present study is that for a
system such as HBr the same level of accuracy can be attained
for the total cross section and the spin-orbit branching fraction
by using semiclassical trajectory methods, a semiclassical initial
state sample scheme, and a distance-independent spin-orbit
coupling as can be attained by using more complicated and
expensive quantum-mechanical wave packet methods and a
distance-dependent ab initio spin-orbit coupling. This validates
the simpler methods for applications involving larger systems.
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TABLE 2: Elements of the Matrix of HSO for LiBr+ in the
V-Diabatic Representationa

2Σ 2Σj 2Πx
2Πj x

2Πy
2Πj y

2Σ 0.0 0.0 0.0 λ 0.0 -λi
2Σj 0.0 0.0 -λ 0.0 -λi 0.0
2Πx 0.0 -λ 0.0 0.0 λi 0.0
2Πj x λ 0.0 0.0 0.0 0.0 -λi
2Πy 0.0 λi -λi 0.0 0.0 0.0
2Πj y λi 0.0 0.0 λi 0.0 0.0

a The symbols in the first row and the first column indicate the
V-diabatic states. For the nonzero elements of the matrix, λ is
defined as ∆E SO/3, where ∆E SO is the spin-orbit fine-structure
splitting of bromine, and i denotes �(-1).

TABLE 3: Elements of the C(6) Transformation Matrix of
LiBr+ a

J ) 3/2,
Ω ) 3/2

J ) 3/2,
Ω ) -3/2

J ) 3/2,
Ω ) 1/2

J ) 3/2,
Ω ) -1/2

J ) 1/2,
Ω ) 1/2

J ) 1/2,
Ω ) -1/2

2Σ 0.0 0.0 �(2/3) 0.0 �(1/3) 0.0
2Σj 0.0 0.0 0.0 �(2/3) 0.0 �(1/3)
2Πx �(1/2) 0.0 0.0 �(1/6) 0.0 -�(1/3)
2Πj x 0.0 -�(1/2) -�(1/6) 0.0 �(1/3) 0.0
2Πy �(1/2)i 0.0 0.0 -�(1/6)i 0.0 �(1/3)i
2Πj y 0.0 �(1/2)i -�(1/6)i 0.0 �(1/3)i 0.0

a The symbols in the first column indicate the V-diabatic states,
and the symbols above columns 2-7 indicate, for each of the
F-diabatic states, the value of the total electronic angular
momentum of the bromine atom, J, in the dissociation limit, and the
value of its projection on the internuclear axis, Ω. i denotes �(-1).

Figure 10. F-adiabatic potential energy curves for the LiBr+ molecule
obtained using the ab initio, r-dependent SOC.
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