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Currently available density functionals cannot describe the dispersion component of the interaction energy
present in weakly bound complexes. Moreover, the exchange energy as obtained from the density-functional
theory is often incorrect. Examples of problematic cases include clusters of van der Waals-bound rare-gas
atoms and most hydrogen-bonded molecular systems. Thus, accurate ab initio methods to treat intermolecular
forces should be used in such systems. These methods are, however, too slow to be applicable to the large
systems needed to model adsorption. This is why DFT continues to be used, where, in addition, a quite
common compensation of errors sometimes produces some sort of agreement with the corresponding
experimental data. In this paper, we analyze in detail the inadequacy of standard DFT for describing the
weak binding present in a few rare gas-rare gas, metal atom-rare gas, and metal atom-metal atom dimers.
Inspired by the success of the Hartree-Fock plus (damped) dispersion (HFD) method, we test the use of an
improved hybrid model in which to a density-functional interaction energy (with corrected exchange and
avoidance of double-counting of dispersion), a (damped) dispersion expansion is added in the usual way.
Comparisons with accurate theoretical or experimental benchmarks show that our DFdD method using the
revPBEx or revPBEx+VWNc functionals and accurate dispersion coefficients is found to recover the interaction
energy curves very well for many of the tested systems. The second paper in this series will describe the use
of the DFdD method for physisorption for the previously well-studied (but not solved) case of Xe/Cu(111).

1. Introduction

Due to the technological importance of adsorbate-surface
interactions,1 in recent years much work has been carried out
toward the goal of obtaining a first-principles understanding of
such systems and their bonding mechanisms. Because of its
computational agility, density-functional theory2,3 (DFT) is
widely used for modeling such extended systems. Recent
successes include studies of dissociative adsorption and het-
erogeneous catalysis on transition-metal surfaces4,5 and the
modeling6 of self-assembled monolayers of short thiols on a
gold surface.

The above examples involve, however, chemisorption, a
situation where the bonds between the adsorbate and substrate
are localized and strong (1 to a few eV), with separation
distances of about 2 Å or less. Moreover, if DFT in the
generalized-gradient approximation is used, the substrate and
underlying bulk metal are reasonably well-described (the errors
in cohesion energies of transition metals are generally about
10% or less when PW91 and similar exchange-correlation

functionals, such as PBE, are used.)7 A correct theory of
physisorption (for a recent monograph and reviews, see, e.g.,
refs 8, 9 and 10), on the other hand, is more challenging because
it involves also adsorbate-surface interactions with larger
adsorbate-surface separations and thus often the much weaker
physical rather than chemical bonds (usually less than 0.5 eV
per nonpolymeric molecular adsorbate). In contrast with chemi-
sorption, for physisorbed systems no significant amount of
charge is transferred or shared and the geometries and electronic
structures of the isolated adsorbate and the substrate are not
greatly changed but merely perturbed.

A simple and straightforward ab initio modeling approach is
still lacking for physisorption because, in the case of weak or
van der Waals bonding, accurate calculations with a careful
treatment of the electron correlation are required in order to
recover the dispersion component of the interaction energy.
While DFT is in principle exact, the approximate DFT
exchange-correlation (xc) functionals currently in use are of
either local character or of semilocal character (generalized-
gradient approximation or GGA, with an additional dependence
or density gradients). These functionals, requiring charge overlap
to result in an interaction, cannot recover the long-range
correlation needed to represent the dispersion component that
is present also at distances where charge overlap may be
negligible.11 Even the newer meta-GGA functionals (with
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additional dependence on the kinetic-energy density and/or the
Laplacian of the density, e.g., TPSS12) are still only semilocal.
Thus, standard DFT fails badly in the case of weak bonding,13,14

and one must conclude that any good agreement with experiment
or more accurate calculations for weakly bound systems is likely
to be accidental. We note in passing that DFT-GGA, by its good
description of the molecular electronic density and multipole
moments, may perform reasonably well for weakly bonded
systems such as water13,14 in which the electrostatic interactions
are dominant. Thus systems in which hydrogen-bonded struc-
tures dominate may be relatively well-represented by DFT xc
functionals, such as PBE for example.13–15

It is by now well accepted that, in order to recover long-
range correlations, a truly nonlocal DFT is necessary.11 Indeed,
some progress toward the goal of achieving a nonlocal DFT
has been made by means of the adiabatic fluctuation-dissipation
theorem (ACFDT; a route toward the random phase approxima-
tion or RPA). It is noteworthy that the recently described “EXX-
RPA+” approach of Marini et al.16 claims to address both the
nonlocality and self-interaction error (SIE) problems simulta-
neously and claims good results for interlayer interactions in
hexagonal boron nitride. This approach has not yet seen,
however, broader application, and, as implemented thus far, this
“exact” approach is still too expensive to be used routinely on

Figure 1. DFT exchange energy enhancement factor as a function of the reduced density gradient, for PBEx and its revised variants. Also shown
are the large s limits Fx

PBEx(s) ) Fx
RPBEx(s) f 1.804 and Fx

revPBEx(s) f 2.245.

TABLE 1: Basis Sets Used in the Calculations of Interaction Energies of the Cn Dispersion Coefficientsa

center basis set name (abbreviation) ECP (valence, relativity) refs used to calculate

He aug-cc-pVQZ (aQZ) none 65 Mg-He: interactions (ae)
aug-cc-pV5Z (a5Z) none 65 Mg-He: Cn

Na cc-pVTZ (TZ) none 66 Na2 and Na-Ar: DFT interactions
aug-cc-pCVTZ (aCTZ) none 66 Na2 and Na-Ar: HF, MP2 (ae), and CCSD(T) (ae) interactions

Mg aug-cc-pCVQZ (aCQZ) none 66 Mg2 and Mg-He: interactions (ae) and Cn

Ar aug-cc-pVTZ (aTZ) none 67 Ar2 (fc), Na-Ar (DFT only), and Cu-Ar (fc) interactions
aug-cc-pCVTZ (aCTZ) none 67,68 Na-Ar: HF, MP2 (ae), and CCSD(T) (ae) interactions

Ca aug′-cc-pCVTZ (aCTZ)b,c,d none 38,69 Ca-Xe: interactions (ae)
aug′-cc-pV5Z (a5Z)b,c,e none 38,69 Ca-Xe: Cn

Cu aug-cc-pVTZ-PP (aTZ-PP) ECP10MDF (19, scalar) 57,60 Cu2, Cu-Ar, and Cu-Xe: interactions (fc)
Kr SDB-aug′-cc-pVTZ (SDB-aTZ)b,f ECP28MWB (8, scalar) 56,58 Kr2: interactions (fc)
Xe SDB-aug′-cc-pVTZ (SDB-aTZ)b,g ECP46MWB (8, scalar) 56,58 Xe2 (fc), Ca-Xe (ae), and Cu-Xe (fc): interactions

aug-cc-pV5Z-PP (a5Z-PP) ECP28MDF (26, scalar) 59 Ca-Xe: Cn

midbond 33221h none 20,54 H2, He2, Mg2 (ae), Mg-He (ae), and Ca-Xe (fc): interactions
3322i none 20,54 all other interactions

a Most basis sets/ECPs were downloaded from the web.64 When the basis sets were used in MP2 or CCSD(T) calculations, the range of
electrons included in the correlation treatment is indicated by the acronyms ae (all-electron; generally used for complexes with atoms requiring
such treatment with the appropriate “CV”-type basis sets: Na, Mg, and Ca) or fc (frozen-core; used for complexes containing other atoms).
Note that all Cn calculations were of ae type using the indicated basis sets. b The designation “aug′” indicates that the original basis set was
supplemented by Gaussians with more diffuse exponents obtained using the even-tempered progression70 of the original two most diffuse
exponents in that symmetry. Since only a single function existed in the last symmetry of the original basis set, it was extended by assuming the
same ratio as for the preceding symmetry. c This augmentation was done in ref 38 and was taken from this source. d The aug′ exponents are s:
0.0102 42; p: 0.0095 89; d:0.0122 53; f: 0.0444 03. e The aug′ exponents are s: 0.0088 90; p: 0.0089 68; d: 0.0100 94; f: 0.0286 67; g: 0.0338
78; h: 0.0848 30. f The aug′ exponents are s: 0.0511 202; p: 0.0333 619; d: 0.1266 01; f: 0.3011 15. g The aug′ exponents are s: 0.0491 626; p:
0.0287 357; d: 0.1186 57; f: 0.2675 91. h s and p: 0.9, 0.3, 0.1; d and f: 0.6, 0.2; g: 0.35. i s and p: 0.9, 0.3, 0.1; d and f: 0.6, 0.2.
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extended systems. Finally, it is not clear if some of the simpler
approximate implementations such as the vdW-DF approach17–19

retain the necessary accuracy. For example, ref 20 showed that
the interaction energy of Ar2 and Kr2 as given17 by the vdW-
DF approach is in substantial error compared to accurate
calculations: for Ar2 and Kr2, the potential wells are too deep
by 60% and 40%, respectively (and both are shifted outward
by 5%). The substantial error in the well depths is comparable
to those of DFT-GGA such as PBE (except that PBE generally
makes the well depths too shallow by about the same amount).

As mentioned briefly above, an additional problem with the
available xc functionals is the presence of a quite large self-
interaction error (SIE) in the exchange functional, which can
mimic the otherwise absent long-range correlation.21 To some
extent, this error may be canceled by the shortcomings of the
correlation functional, but the results are unsatisfactory and
highly system- and functional-dependent.

For these reasons, we adopt here the spirit of the successful
Hartree-Fock plus (damped) dispersion (HFD) method (see refs
22 and 13 and additional references therein) and the similar
density-functional plus (damped) dispersion (DFdD) method
rigorously tested by Wu et al.13 and would like to explore the
possibility to develop a similar model (to be used later for
extended systems) using DFT with long-range correlation added
in the form of long-range damped dispersion energy (since
dispersion coefficients are relatively easy and cheap to calculate
precisely). We go further than ref 13 in that we aim and succeed
at obtaining a good description between two rare gas atoms
where the bonding is a factor of 10 weaker than in the systems
successfully modeled in ref 13. Furthermore, we test additional
GGA functionals like PBE (and various versions thereof), the
hybrid PBE0, and the meta-GGA functional TPSS. To test the
limits of our approach, we attempt to use accurate DFT and
HF energies (and therefore larger basis sets than in ref 13) and
accurate dispersion coefficients and damping. Like in ref 13,
as much as possible, we attempt to avoid double-counting the
long-range correlation, and thus we endeavor to employ only
short-range, local correlation in the region where overlap is
appreciable. Our final goal, after verifying the DFdD method
on dimers, is to attempt to apply the recipe to an extended
system, that of Xe/Cu(111) physisorption. This work is in
progress and will be described in a second paper.

2. Calculational Details

2.1. General Remarks. As is well-known, van der Waals
interactions are notorious for being the result of a very delicate
balance between the different contributions of electrostatic,
exchange, induction, and dispersion energies (to second order
in intermolecular perturbation theory).23,24 Since the interaction
energies of such “molecules” are minuscule fractions of the total

TABLE 2: Best Evaluated Values of the Ground-State
Atomic First Ionization Potentials I (in eV) of the Studied
Atoms

I a

H 13.598
He 24.587
Na 5.139
Mg 7.646
Ar 15.759
Ca 6.113
Cu 7.726
Kr 14.000
Xe 12.130

a Reference 71.

TABLE 3: Dispersion Coefficients Cn (in Atomic Units, Hartree ·bohrn) and Damping Parameters G (in bohr-1) of the Dimers
Studieda

C6 C8 C10 C12 C14 Fq

Rg2 singlets
Ar2

b 64.691c 1 644d 50 240d 1 898 195e 86 445 426e 1.103
Kr2 129.48c 3 981d 147 400d 6 757 284e 373 923 452e 1.0194
Xe2 282.72c 11 390d 562 117f 34 939 760e 2 666 668 208e 0.9273
M-Rg singlets
Mg-He 21.77g 916g 47 214f 3 065 006e 244 315 090e 0.9351
Ca-Xe 604.23h 45 635h 4 222 114f 491 984 479e 70 392 931 290e 0.6635r

M-Rg doublets
Na-Ar 188.7i 10 580i 726 667f 62 860 091e 6 676 835 151e 0.7123
Cu-Ar 128m 5 376n 276 595f 17 923 369e 1 426 102 741e 0.8476
Cu-Xe 267k 13 884l 884 411f 70 955 015e 6 989 857 458e 0.7903
M2 singlet
Mg2 634.86j 43 578j 3 664 314f 388 067 935e 50 463 685 766e 0.6360s

M2 triplets
Na2 1 556o 116 000p 11 300 000p 1 478 851 259e 253 491 076 845e 0.4945t

a Note that for Cn, n g 10, not all of the digits are significant. b Reference 28. c Reference 72. d Reference 73. e Extrapolated from C6-C10 as
prescribed by Thakkar.74 f Extrapolated as C10 ) (49/40)C8

2/C6.74 g CKS value calculated with POLCOR30,31 as described in ref 38; C6 also given
in ref 38. h CKS value calculated with POLCOR30,31 as described in ref 38. i Reference 75. j CKS value calculated with POLCOR30,31 as
described in ref 38; C6 also given in ref 38. k Obtained from the simple combination rule C6

Cu-Xe ) (C6
Cu2C6

Xe2)1/2 with C6
Cu2 ) 253 (value marked

“Corrected” in Table XII of ref 76) and C6
Xe2 from above. l C8 ) fC6, where f ) 52 was obtained from rough optimization so as to bring the

HFD values (including the effect of all damped dispersion coefficients) into reasonable agreement with the CCSD(T) values near the minimum
of the potential curve. Note that a similar procedure was occasionally used in ref 13. m Obtained from the simple combination rule C6

Cu-Ar )
(C6

Cu2C6
Ar2)1/2 with C6

Cu2 ) 253 (value marked “Corrected” in Table XII of ref 76) and C6
Ar2 from above. n C8 ) fC6, where f ) 42 was obtained

from rough optimization so as to bring the HFD values (including the effect of all damped dispersion coefficients) into reasonable agreement
with the CCSD(T) values near the minimum of the potential curve. Note that a similar procedure was occasionally used in ref 13. o Reference
77. p Reference 78. q Calculated using eq 3 (or eq 4 for mixed complexes) from ionization potentials in Table 2. r Equation 4 yielded 0.7212;
however, this was not sufficient damping and thus this value was scaled by a factor of 0.92 (obtained from rough optimization). s Equation 4
yielded 0.6839; however, this was not sufficient damping and thus this value was scaled by a factor of 0.93 (obtained from rough
optimization). t Equation 4 yielded 0.5261; however, this was not sufficient damping and thus this value was scaled by a factor of 0.94
(obtained from rough optimization).
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energies of the complex and its component parts, if the
interaction energy is to be obtained by subtraction (as is done
in all so-called supermolecular approaches), the errors in each
of the total energies of the complex and its components have
to be smaller or fortuitously cancel. Such a cancelation
apparently does take place for the HF method (which, however,
lacks the important dispersion interactions) and the properly used
post-HF methods, see below. It must be noted that, when
studying weak interactions with a supermolecular approach and
using localized and finite basis sets, it is crucial to apply the
counterpoise (CP) correction25 to avoid the basis set superposi-
tion error (BSSE).

The study of weak interactions requires a post-HF treatment
in order to recover the correlation energy and therefore the often
critical dispersion interaction. Thus, with a supermolecular
approach,26 the correct description of weakly bound systems
requires use of at least MP2 (Möller-Plesset method of second
order), or, much better, CCSD(T) (coupled-cluster expansion
including single, double, and (noniterated) triple excitations,27)
the most accurate of readily available and affordable supermo-
lecular methods, at least for small- and medium-size systems
comprising less than 20 atoms in the dimer. For recent examples,
see, e.g., refs 28 and 29.

It should be mentioned that another extremely robust approach
for studying weakly bound systems containing van der Waals
or hydrogen bonds is the symmetry-adapted perturbation
theory23,24 (SAPT) of intermolecular interactions. First, unlike
the supermolecular methods, it does not require subtraction and
thus is inherently free of BSSE and therefore allows a more
flexible use of basis sets. More importantly, it yields detailed
information on the interaction in the form of its decomposition
into its physically interpretable components: in first order of
SAPT, the electrostatic and exchange energies, and, in second
order, the induction and dispersion energies and their exchange
counterparts, the exchange-induction and exchange-dispersion
energies. Since the exchange components (and the overlap
portions of all components) decay exponentially with intermo-
lecular separation, at long-range the remaining components
obtained from SAPT, the electrostatic energy (present if both
monomers have permanent multiple moments), the induction
energy (present if at least one monomer has such moments),
and the dispersion energy (always present), can be compared
to their asymptotic values, which are easily interpretable in terms
of asymptotic coefficients formed from proper combinations of
the monomers’ properties (multipole moments and static and
dynamic polarizabilities). Since packages such as POLCOR30,31

can calculate monomer properties and asymptotic coefficients
of closed-shell complexes, there exists a direct check on the
SAPT interaction energy components at long-range. Recently,
SAPT(DFT),32–36 a version of SAPT that uses a DFT description
of monomers (since DFT can be quite accurate for the strong,
short-range chemical intramonomer interactions and has the
advantage over HF in that the short-range correlation is already
included) has been successfully developed. By eliminating the
need for calculating intramonomer correlation corrections, the
new method is many times faster than SAPT. For recent
examples of the use of SAPT and SAPT(DFT), see, e.g., refs
20, 37, and 38.

With continuing advances in software39 and hardware, the
size of systems treatable with high accuracy will slowly grow.
However, it is still difficult or impossible to perform today
CCSD(T) or SAPT(DFT) calculations, with sufficiently large
basis sets for true accuracy, for systems with a few tens to one
hundred atoms. This is because using the accurate approachesT
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mentioned above for extended systems is hindered by their
prohibitive scaling with system size, N (where N can be taken
to be number of atoms, or valence/explicitly treated electrons).
While DFT (with LDA or GGA nonhybrid xc functionals) and
HF scale as N4 (in practice DFT scales as N3 in many plane-
wave pseudopotential packages and HF and DFT scale similarly
if density fitting is used in atomic codes with localized basis
sets), the post-HF methods scale as N5 (MP2), N6 [MP4, CCSD,
or SAPT(DFT)], and N7 [SAPT or CCSD(T)]. Note that, with
density fitting, the scaling has recently been reduced40 to N5

for SAPT(DFT), allowing single-processor calculations on an
RDX dimer, with 42 atoms in the dimer. However, for truly
metallic systems, there is an additional problem, which is the
difficulty, or impossibility, of localizing the electronic wave
functions, a necessity of the treatments mentioned above.

2.2. Levels of Theory. In this work, to prepare for calcula-
tions on extended systems and test our DFdD method, we have
performed density-functional2,3 calculations of the interaction
energy produced by charge overlap. The exchange-correlation
(xc) functionals used were the local xc functional LDA (Slater41

exchange with VWN,42 correlation) and the GGA xc functionals
PBE,43 revPBE,44 and RPBE.45 The hybrid functional PBE046

and the meta-GGA xc functional TPSS12 were also tested. We
also considered the effect of the exchange functional alone, or
sometimes in combination with local correlation. Thus, for

example, themeaningof the labels revPBExandrevPBEx+VWNc
should be clear.

The only difference between the functionals PBE, revPBE,
and RPBE is in the exchange portion, where they differ in the
enhancement factor Fx(s). Here s ) |∇ n|/(2(3π2)1/3n4/3) is
the reduced density gradient, and n(r) is the electron density.
The exchange energy itself is a functional of the density and is
given by

Ex[n])∫ dr nεx
unifFx(s) (1)

where

εx
unif(r))- 3

4( 3
π)1⁄3

n(r)1⁄3 (2)

is the local density per particle for a uniform electron gas and
thus Fx

LDAx(s) ) 1 by definition. Figure 1 shows Fx(s) for these
exchange functionals. It is seen that the major differences are
at larger values of s, where in fact, DFT is poorly defined/
constrained. Indeed, this freedom has already been exploited
in improving the performance of GGA xc functionals on weakly
interacting systems, and for example, refs 44 and 45 presented
revised versions of the exchange part of the PBE functional
with improved performance. It is tempting to conclude that a
good performance of one of these exchange functionals over

Figure 2. Interaction energies of the Rg2 complexes Ar2 and Xe2. (The references for the benchmarks are given in Table 5.)
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the others is due to its behavior at larger s values, and, in fact
Zhang et al.47 and Lacks et al.48 have performed work that
supports this view, and this work was already noted in ref 13.
However, based on our results, it seems that there is still room
for improvement in the larger s region of GGA exchange
functionals, and if done systematically, this would be a useful
contribution. It should be noted that such an improvement in
the large s behavior should have no adverse effects on the good
performance of GGA for more strongly interacting systems,
since they depend only on the small s (and correspondingly large
n) behavior, which would remain unchanged.

We also examined the HF (purely repulsive for the dimers
considered here) and also the MP2 and CCSD(T) interaction
energies. HF served as our benchmark for the exchange part of
the interaction energy while the CCSD(T) value was the
benchmark for the total interaction energy. (Note that Mg2

requires a higher level of correlation, and thus the benchmark38

for this system was the full configuration interaction-or
FCIscorrection to CCSD(T).) We also compared to literature
benchmarks where they were available. Such a comparison
confirmed that the basis sets used and the CCSD(T) method
gave quite good results.

Most of the calculations on dimers were performed using the
MOLPRO package.49 However, for all dimers considered, the
RPBE calculations were performed using the NWCHEM
package,50 while the TPSS calculations were performed with

the NWCHEM package50 for Ar2, and the GAUSSIAN pack-
age51 for Xe2 and Cu-Xe. In all atomic packages a few test
calculations were performed to ensure that convergence was
achieved and convergence settings were comparable and that
essentially the same interaction energy was recovered with the
various packages.

For open-shell species, we used the restricted open-shell HF
or DFT approach (RHF or RKS). Post-HF correlation treatment
was also of the restricted variety (e.g., RMP2 and RCCSD(T),
as described in refs 52 and 53 and implemented in the MOLPRO
program package.)49 However, for simplicity we will use the
labels HF, MP2, CCSD(T), etc. and the “R” prefix will be taken
to be understood as appropriate.

2.3. Basis Sets. Since adequate basis sets are very important
for van der Waals complexes, we used basis sets of at least
triple-� (TZ) quality, with diffuse functions, such as the Dunning
group aug-cc-pVTZ (aTZ) sets (which can be considered to be
of only medium quality for post-HF, correlated calculations such
as MP2 or CCSD(T) but should be sufficient for HF and DFT
calculations, the main topic of our study). For dimers with small
atoms (or for calculations of dispersion coefficients), larger basis
sets were affordable. The counterpoise25 (CP) correction was
used in all supermolecular calculations to avoid the basis set
superposition error (BSSE). The details of the basis sets used
are given in Table 1.

Figure 3. Interaction energies of the M-Rg complexes Ca-Xe and Cu-Xe (doublet). (The references for the benchmarks are given in Table 5.)
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Having a balanced atomic basis set including diffuse functions
is of primary importance. Thus, for Kr, Xe, and Ca, we
augmented the exponents of the Gaussian atomic basis sets by
an even-tempered extension of the two most diffuse functions
in each symmetry (it is well-known that basis sets with such
“aug” diffuse exponents are better able to describe polarizabili-
ties, electron affinities, and thus dispersion interaction and the
weak van der Waals bonding).

A set of bond functions was placed at the midpoint of the
dimer. Such midbond functions are known to be effective in
accelerating the convergence of the dispersion component of
the interaction energy and in general, to efficiently approximate
results obtained with purely atomic basis sets of much larger
sizes (with more diffuse functions) and are thus particularly
useful in the study of weak interactions.20,54,55 For certain
complexes (e.g., Ar2, Xe2, and Cu-Xe), to confirm that our
basis sets were sufficiently large, we also performed some test
calculations using smaller and larger basis sets, both with and
without the bond functions. In all cases, we found that the bond
functions improved the convergence of the interaction energies.

For the heavier atoms (Kr, Xe, and Cu), in order to include
the scalar relativistic effects and to reduce the cost of calcula-
tions (and also to allow a better comparison with our calculations
on surfaces to be described in the subsequent paper), we used
quasi-relativistic Wood-Boring type effective core potentials
(ECPs) of the Stuttgart-Dresden-Bonn group.56,57 For the most

part, we attempted to use small-core ECPs. However, in the
case of Xe, we found that using a large-core ECP56 and the
accompanying basis set58 (augmented by us, see Table 1 for
details) had an insignificant effect on the interaction energies
as compared to using the newer, somewhat more accurate (but
more expensive) small-core ECP and accompanying valence
basis set.59 The CCSD(T) (frozen core, see below) test calcula-
tions were done on Xe2, always together with the 3322 midbond
functions. The ECP/basis set used for Kr was analogous to that
used for Xe. For Cu, the Peterson et al.60 basis set was used
with the Figgen et al.57 relativistic small-core ECP. Our choices
are in agreement with the recommendations given in ref 61 for
performing accurate ab initio calculations on weakly bound
complexes with ECPs.

Most correlated calculations were performed in frozen core
(fc) mode (i.e., only valence electrons participated in the
correlation treatment) rather than in all-electron (ae) mode. The
exceptions to this were the calculations for Mg2, Mg-He, Na2,
Na-Ar, and Ca-Xe, all dimers containing atoms where core-
valence effects are obviously important. Basis sets containing
tighter exponents to model such effects were used in these cases.

For some of the dimers, we compared our CCSD(T) potentials
to accurate literature ab initio potentials and also to accurate
empirical potentials, if available. In all cases, we found that
the agreement of our CCSD(T) results with the literature results
was very good, while not being overly demanding of computer

Figure 4. Interaction energies of the M2 complexes Mg2 and Na2 (triplet). (The references for the benchmarks are given in Table 5.)
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time. This served as a check that aTZ-quality basis sets (plus
midbond functions) are sufficient and that the various ap-
proximations we made (fc calculations for the correlation energy
for many of the complexes) did not adversely affect the results.
Since DFT and HF calculations converge much faster with basis
set size (and are virtually unaffected by the presence or absence
of augmentation functions or midbond functions, for basis sets
of TZ-quality and higher that we used), our HF and DFT
interaction energies can be considered to be well-converged with
regard to basis set size.

2.4. HFD and DFdD Methods. In the HFD method one
relies on the HF interaction energy to supply the repulsive (or
exchange) part of the interaction of van der Waals complexes.
Then the missing attraction (long-range correlation or dispersion)
part is modeled by a dispersion energy expansion with dispersion
coefficients Cn. The DFdD method simply replaces the HF by
a DFT interaction energy, computed with an exchange-only or
an exchange-local correlation only functional, to avoid double-
counting of the long-range correlation to be correctly supplied
by the dispersion expansion.

The HFD or DFdD methods require damping of the dispersion
energy expansion. We used the universal damping formula
introduced by Douketis et al.22 with damping parameter, for a
homonuclear dimer AA

FAA ) (IA ⁄ IH)0.66 (3)

where the ionization potentials IA and IH are those of species A
and hydrogen, respectively. For mixed dimers AB, the following
combination rule22 was used

FAB ) 2
FAFB

FA +FB
(4)

The ionization potentials of the atoms are given in Table 2,
and the derived damping parameters of the dimers are given in
Table 3. From these, the damped dispersion interaction energy
at an intermonomer separation R was obtained as

dD)-f(FR) ∑
n)6,8,10,...

gn(FR)
Cn

Rn
(5)

f(x)) 1- x1.68 exp(-0.78x) (x)FR)

gn(x)) [1- exp(-2.1x/n- 0.109x2/n1/2)]n

We note that the Tang-Toennies62 damping functions gave
similar results but require a fit to the repulsive part of the
potential in order to extract the damping parameter.

2.5. Dispersion Coefficients. The long-range van der Waals
dispersion coefficients Cn used are given in Table 3. We have
tried to use the most accurate coefficients available in the
literature. If they were not available, we have calculated them
using a high level of theory and large basis sets with the
POLCOR package,30,31 extended35,38 to use a DFT/Coupled
Kohn-Sham (CKS) description of the monomer properties (thus
allowing a good treatment of the intramonomer correlation). In
a few cases, particularly for the open-shell compounds, the
coefficients have been estimated using established rules. The
details are given in the footnotes to Table 3.

3. Results and Discussion

We have tested the HFD and DFdD methods with different
xc functionals for some simple dimers: three rare gas-rare gas
complexes, Rg2 (singlets: Ar2, Kr2, and Xe2); five metal-rare
gas complexes, M-Rg (singlets: Mg-He and Ca-Xe; doublets:

Na-Ar, Cu-Ar, and Cu-Xe); and two metal-metal com-
plexes, M2 (singlet: Mg2; triplet: Na2). Some preliminary
calculations were also performed for He2 and H2 triplet. The
goals were to test the performance of the HFD method for these
three classes of van der Waals complexes and determine if a
DFdD method could be found that would perform equally well
for all the classes. Thus, calculations were performed with
various xc functionals.

3.1. DFT versus HF Interaction and Total Energies of
Sample Complexes. From the work of Wu et al.13 and our
preliminary calculations, it was seen that the HFD method
generally performs well. Thus, our goal became to find an xc
functional that would reproduce the HF interaction energy. Since
the HF and DFT interaction energies both rely on subtraction,
we examined both the interaction energies and the total energies
of dimers and monomers for a representative subset of the
complexes and compared these to their HF counterparts. Table
4 shows this for two complexes from each of the three classes
[Rg2: Ar2 and Xe2; M-Rg: Ca-Xe and Cu-Xe (doublet); and
M2 complexes: Mg2 and Na2 (triplet)]. The calculations in the
table were performed at near the correct minimum geometries
of the complexes. The results shown correspond to the following
functionals: LDAx and LDA; PBEx, PBEx+VWNc, and PBE;
revPBEx,revPBEx+VWNc,andrevPBE;RPBEx,RPBEx+VWNc,
and RPBE; PBE0; and TPSSx, TPSSx+VWNc, and TPSS. The
comparison is made with respect to the HF interaction and total
energies.

The observations to be drawn from Table 4 are as follows.
First let us examine only the total energies. Let DFTx be defined
as the use of an exchange-only or an exchange plus local
correlation-only functional, whereas standard DFT will refer to
LDA, PBE, revPBE, RPBE, PBE0, and TPSS. We see that using
a DFTx method without any correlation brings the total energies
of all dimers and monomers closer to the HF values, as
compared to the corresponding DFTx method which includes
the local correlation (while the corresponding standard DFT has
a performance that is usually about halfway between these two
extremes). This is true for all of the DFTx methods except for
the LDAx (Slater exchange) functional where sometimes LDA
performs better than LDAx. Clearly, GGA exchange improves
the energies over the local exchange functional. Next, we see
that revPBEx often improves the energies over PBEx. This is
not surprising since revPBE44 was developed from PBE by
tuning a parameter in the PBEx enhancement factor (and thereby
relaxing the local Lieb-Oxford bound,63 which in any case is a
sufficient but not necessary component of DFT, the authors of
ref 44 note that the integrated bound was always obeyed), in
order to better reproduce with revPBE the experimental atomi-
zation energies of some molecules and also the experimental
total energies of the molecules and their constituent atoms.
RPBEx performs similarly for the total energies to revPBEx.
Again, this is expected since RPBE45 was designed to reproduce
revPBE at small s (but without relaxing the local Lieb-Oxford
bound).63 However, note that Cu-Xe is an exception in that
the total energies are given better by PBEx than by the two
revised exchange functionals. The meta-GGA TPSSx does about
as well (and sometimes better) than the revised exchange
functionals (except for Na2, where TPSSx+VWNc performs
decently, but worse than the revised exchange functionals).

Now let us consider interaction energies, as compared to the
HF values. Since the majority of the interaction energies
obtained using the standard DFT xc functionals have large
percentage errors (perhaps accidental exceptions are Ar2 and
Xe2 with revPBE), they will not be discussed further and we
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will consider only the DFTx values. For all metal-containing
dimers, the revPBEx functionals perform well, as does the
RPBEx and TPSSx exchange functionals for Cu-Xe. In fact,
good reproduction of total energies correlates with good
reproduction of interaction energies for the metal-containing
complexes (except for the case of Na2, with the TPSSx+VWNc
exchange functional). This direct correspondence is missing in
thecaseof theRg2 complexes.Here, instead, the revPBEx+VWNc
functional performs best for interaction energies while revPBEx
performed well for the total energies. (There appears to be a
direct correspondence between good performance for total and
interaction energies with the RPBEx and TPSSx functionals but
our later work shows that they do not work as well as they
could, particularly for the binding energy of Cu-Xe, see Table
5b.) Thus, due to the discrepancy with the total energies, unlike
for the good performance of revPBEx for the interaction energies
of metal-containing complexes, the apparent good performance
of revPBEx+VWNc for the Rg2 complexes is likely to be
accidental.

3.2. Repulsive and Total Interaction Potentials of Com-
plexes. Figures 2-4 show potential curves for the six sample
complexes discussed above. Since the revPBEx+VWNc and
revPBEx methods performed reasonably for the repulsive
interaction energies of Rg2 and metal-containing complexes,
respectively, to avoid clutter we display potentials obtained with
these two DFTx methods only. In each figure, the upper panels
show the repulsive potentials (in a log-linear plot) compared to
the HF potential, while the lower panels show the full potentials
including the damped dispersion expansion compared to the
HFD potential and benchmarks (CCSD(T), and if available
literature ab initio and empirical benchmarks; note that the true
benchmark for the Mg2 potential is the ab initio literature cal-
culation which includes FCI corrections). Examining the
repulsive potentials, it is clear that all methods perform equally
well at very close range (at least on a logarithmic scale). As
the intermonomer separation R increases, a change in slope
occurs which reflects the shell structures of the atoms comprising
the dimer. At still larger R, the interaction energies given by
the DFTx methods generally become too small and eventually
become negative (even without any correlation; this is due to
the self-interaction error present in DFT, which can mimic the
effect of correlation), as compared to the “exact exchange” given
by the HF curve. Examining these curves, it appears that one
can predict a better repulsive interaction energy in the region
of the attractive well (the usual region of interest) by extrapolat-
ing a DFTx repulsive curve from about the point where the
slope of the curve changes toward the region of the minimum
by fitting the points Eint,rep

DFTx in the region [R1,R2] with the form

ln Eint,rep,ext
DFTx ) ln ADFTx -BDFTxR (6)

The fitting region [R1,R2] was chosen for each system in such
a way as to decently predict the region of the well (in
comparison to HF and the benchmark full potentials, when the
damped dispersion was added). This is the meaning of the
extrapolated potentials marked “ext” in the figures and also in
Table 5. In many cases, this procedure gave an improvement
over the raw DFTx energies in comparison to HF and the DFdD
energies in comparison to the benchmarks. The details, including
the regions [R1,R2] used for each complex, are given in the
footnotes of Table 5. (Note that, if a double exponential form
is chosen as in ref 22, the fitting region can be extended and
perhaps the final result improved. However, a double exponential
fit, although more appropriate for metal-containing complexes,
cannot be linearized and thus the fitting will require more points

and generally be more cumbersome. For this reason of economy
we have chosen to use the single exponential form over a more
limited range.)

Let us examine the full potentials (bottom portions) in these
figures in detail. As observed above, the DFTx method with
revPBEx+VWNc performs well for the Rg2 complexes (how-
ever, based on the behavior of total energies, this good
performance may be accidental) and the corresponding DFdD
potential is reasonable. At the same time, the potential obtained
without any correlation, revPBEx, is much too shallow. For the
metal-containing complexes, the situation is the exact opposite:
the DFdD method with revPBEx performs dramatically better
while adding the correlation yields a curve much too deep. The
effect of extrapolation is generally modest, except in the cases
of the M2 complexes, where there is a significant improvement.

In order to quantify these conclusions and present results with
a larger set of DFT xc functionals (i.e., both standard DFT and
DFdD based on DFTx) for all the complexes considered in this
work, we have performed harmonic fits to both the standard
DFT and the DFdD potentials (for the latter, both raw and
extrapolated) and extracted (a) the minimum separation distance
Re, (b) the binding energy De, and (c) the harmonic frequency
ωe. For completeness, this was also done for the HFD and the
MP2 and the CCSD(T) potentials. The results are presented in
Table 5a-c, respectively.

In Table 5a-c, let us first consider the performance of the
standard DFT xc functionals with respect to position of the
minimum and the binding energy. For all complexes, LDA shifts
the minimum to a shorter separation and vastly overbinds. In
fact, the exchange part of LDA (the Slater exchange) is
responsible for a majority of this attraction. Thus, use of LDA
for weakly bound systems is not justified since the binding is
of an unphysical origin (exchange rather than correlation) and
thus any rough agreement of LDA results with more accurate
calculations must be the result of error cancelations. The PBE
and revised PBE xc functionals generally shift the minimum
outward from the correct position and underbind (for Cu-Xe,
PBE shifts it inward and overbinds). The hybrid PBE0 and the
meta-GGA TPSS perform similarly to the revised PBE xc
functionals. As for the frequencies, overbinding leads to a too-
stiff curve and a too-large frequency while underbinding has
the opposite effect.

Now let us examine the performance of the DFdD methods.
Based on percentage differences and on the root-mean-square
deviation (rmsd) summarizing the data, the only methods that
seem to perform well across the board are the same ones noted
before: DFdD with revPBEx+VWNc for the Rg2 complexes
and DFdD with revPBEx for the metal-containing complexes.
Extrapolation does improve the results, sometimes modestly,
but sometimes dramatically as for the De of Mg2. The final
performance of the best DFdD method for each complex (with
extrapolation) is about as good as with HFD or MP2.

4. Conclusions

In their application to weakly bound complexes, modern DFT
xc functionals exhibit two glaring deficiencies: lack of correct
long-range attraction or correlation (also called dispersion) and
incorrect repulsion (also called exchange). A troubling feature
is that one error may mask the other (for example, exchange
should always be repulsive for the types of complexes studied
here but its incorrect representation in DFT may result in an
unphysical attraction). In standard LDA, GGA, hybrid, or meta-
GGA DFT, there is no inexpensive technique to self-consistently
and correctly include the long-range correlation. It should be
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possible to improve the exchange, however, and by testing
different functionals in comparison to “exact exchange” as given
by HF, we have tried to find one functional that would perform
well for all the tested classes of complexes, the Rg2, M-Rg,
and M2 representative dimers. This was done by adding an
accurate damped dispersion contribution based on precalculated
dispersion coefficients to the exchange contribution (sometimes
also including the local correlation) obtained using various DFTx
functionals. The DFdD potentials thus obtained were then
compared to accurate benchmarks. We have found that no single
DFTx functional performs ideally in all cases. However, the
DFdD method with revPBEx+VWNc appears to work well for
all metal-free dimers. Given the behavior of total energies, this
apparent good performance may be accidental. For dimers
containing metals, a better prescription is to avoid use of the
local correlation altogether in the xc functional and thus instead
use revPBEx. Extrapolation from shorter range of the repulsive
potential alone with a simple exponential form improves the
results in comparison to accurate benchmarks. The final results
are comparable to HFD or MP2 at a fraction of the cost of the
latter. Since even HF is extremely expensive in the plane-wave
based codes generally used in calculations of physisorption on
metal surfaces, developing a workable DFT-based method which
can reasonably and physically model weak interactions should
be a useful advance. The physisorption calculations using the
methods developed and tested in this work will be presented in
a subsequent paper. In addition, we hope that some of our
observations may be useful in improving the performance of
exchange functionals for weakly interacting systems.
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