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We present a theoretical study of the eigenstates of the endohedral fullerene Li@C60 for the case that the C60

cage is assumed to be stationary. These eigenstates represent the three-dimensional nuclear dynamics of a Li
atom confined to the interior of the carbon cage. The potential function employed, based on density functional
theory calculations that we performed, has a variety of minima corresponding to complex hindered rotations
of the Li atom in a shell about 1.5 Å from the cage center. The energies and wave functions of the lowest
1200 states have been calculated, and the characteristic features of selected states and the far-IR spectrum are
discussed. An interesting result of the calculations is the finding that the ground-state eigenfunction can become
strongly localized when the cage atoms are just slightly perturbed from icosahedral symmetry.

1. Introduction

Endohedral fullerenes consist of atoms, molecules, or clusters
encapsulated by a fullerene.1–3 A fascinating array of such
complexes have been prepared and studied, many of which
exhibit potentially useful properties. For example, the metallo-
fullerene La2@C80 has been shown to act as a field-effect
transistor,4 and the long spin lifetimes in N@C60 suggest that it
may be useful as a qubit in a quantum computer.5 Actual
practical applications based on these systems have yet to be
developed, in part because of the low yields of the physical
methods used for their synthesis (e.g., vaporization). However,
an organic synthesis of H2@C60 has been reported,6 which
suggests that when chemical synthesis methods are further
developed, there is hope that other endohedral fullerenes will
eventually be prepared in greater quantities.

Although it is therefore unclear whether endohedral fullerenes
will find practical use, the unique structures of these systems
make them ideal for studying how nanoscale confinement can
alter the spectroscopy and dynamics from that expected in bulk
matter. Indeed, very complex nanostructures can now be created
by using a variety of procedures. Understanding how atoms and
molecules behave in or on these nanostructures is of both
fundamental and practical relevance. For example, it has been
suggested that molecules trapped inside carbon nanotubes may,
through quantum confinement effects, be selectively sieved.7,8

Confinement effects in carbon nanotubes may also lead to an
enhanced chemical reactivity of the trapped species.9,10

The focus of this paper is a detailed study of the quantum
mechanical bound states of a three-dimensional model for a Li
atom moving inside a C60 cage, Li@C60. Our work is similar
in spirit to a recent quantum mechanical study of H2@C60
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that pointed to a variety of interesting spectroscopic conse-
quences arising from the confinement. There have been some
experimental12–14 and theoretical15–17 studies of Li@C60. The
theoretical calculations15,16 suggest that the ground electronic
state is ionic in nature and is essentially composed of a Li+ ion
in a C60

- cage. The equilibrium position of Li is not at the center

of the cage; the Li is displaced from the center of symmetry of
the C-atom cage by more than 1 Å. This structure is typical of
endohedral metallofullerenes and is in contrast with the struc-
tures of endohedral fullerenes with less polarizable, neutral
dopants, including H2@C60, where the dopant atom or molecule
lies at the cage center. Li may be thought of as vibrating radially
about its equilibrium position while undergoing hindered
rotational motion in a spherical shell. Some interesting properties
of the patterns of the hindered rotational levels for several related
endohedral fullerenes, based on a simple parametrization of a
two-dimensional model, were discussed in ref 17.

In this work, we develop a potential-energy function for
Li@C60 based on density functional theory (DFT) calculations
and determine numerous ro-vibrational energies and eigenfunc-
tions of a three-dimensional model that allows the Li to move
but keeps the C atoms fixed. We discuss the nature of selected
eigenfunctions and the far-IR spectrum estimated from all the
wave functions. We also discuss an unusual result that emerges
from the calculations, namely, how small perturbations of the
C-atom positions can dramatically localize the wave function.

2. Theoretical Model and Computational Methods

The Hamiltonian operator for Li@C60 is taken to be
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∂z2)+V(x, y, z) (1)

where m ) 7.016 amu is the mass of 7Li and (x, y, z) denotes
the position of Li relative to the center of the C60 cage. In what
follows, we outline how we determine the potential V(x, y, z)
(Section 2.1) and eigenstates (Section 2.2).

2.1. Electronic-Structure Calculations and Potential-
Energy Function. The potential-energy surface for the motion
of the Li atom within a rigid symmetrical C60 cage was
calculated by using B3LYP/6-311G(d) DFT. These calculations
represent a significant improvement over the previous LDA DFT
calculations on this system15,16 but are still not expected to be
of spectroscopic accuracy. The Cartesian coordinates for each
C atom in the cage were obtained analytically with the procedure
of ref 18, and the electronic-structure calculations were carried
out with the GAUSSIAN98 program.19 The potential was
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calculated along five, one-dimensional, radial cuts emanating
from the C60 origin. The one-dimensional radial rays are each
defined by the point at which they intersect the C60 cage. The
five intersection points were as follows:

(1) the center of a C6 ring,
(2) the center of a C5 ring,
(3) the midpoint of a C-C bond forming the edge of one C6

ring and one C5 ring,
(4) the midpoint of a C-C bond forming the edge of two C6

rings,
(5) and a C atom.
For rays (1) and (2), it was necessary to shift the intersection

point slightly (0.1 au) off the center of the rings in order to
reduce the symmetry to avoid problems caused by the occasional
convergence to an excited electronic state. Because of the high
(Ih) symmetry of the C cage, there are many rays within the
system equivalent to the specific rays used. For example, there
are 20 equivalent rays corresponding to ray (1), 12 equivalent
rays corresponding to ray (2), and 60 equivalent rays corre-
sponding to ray (5). Thus, these rays cover a large part of the
actual potential surface when symmetry is considered. Rays (1),
(2), and (4) also correspond to 3-, 5-, and 2-fold symmetry axes,
respectively.

It turns out that when Li is at the center of the C60 cage, the
potential is a local maximum, and we take this point to be the
zero of energy. The potential energy range of interest for
obtaining the lowest several hundred eigenstates is from -5400
to -4000 cm-1. We find that the simple sum of Morse Li-C
interactions,

V(x, y, z))De∑
j)1

60

{(1- exp[-Re(sj - se])
2 - 1} (2)

with sj ) [(x - xj)2 + (y - yj)2 + (z - zj)2]1/2 being the distance
between Li at position (x, y, z) and C atom j at (xj, yj, zj), with
just three parameters, De, Re, se, fits our ab initio data with a
root-mean-square (rms) error of 41 cm-1. Of course, eq 2 should
not be regarded as arising from any physical model of the
bonding but as a simple few-parameter function that fits the
data reasonably well. The Morse parameters are listed in Table
1. Use of a sum of Lennard-Jones interactions gives just a
slightly worse rms error of 45 cm-1. In view of the approxima-
tions in the underlying B3LYP calculations, further attempts to
improve the accuracy of the fit are unwarranted.

Figure 1 displays the DFT data (symbols) and potential-
energy function fit (curves) for the five rays defined above. All
the rays exhibit minima at ∼1.5 Å from the center of the C60

cage, and the maximum difference between minima (inferred
from the fit) is just ∼330 cm-1. The ray corresponding to Li
approaching the center of a C6 ring is lower in energy than any
of the other rays, having a minimum ∼217 cm-1 below that of
the next lowest ray, which corresponds to Li approaching the
center of a C5 ring. These are the two most important rays for
understanding the lowest energy quantum states, and we will
refer to the potential wells associated with them as the hexagonal
and pentagonal wells. The other rays are fairly similar in energy.
Although the fit is not perfect, these key features of the DFT
data are reproduced by the simple potential form in eq 2, in
particular the relative stabilities of the hexagonal and pentagonal
wells. Other features of the potential will be discussed in Section
3 below. The energy scale of Figure 1 is relative to the energy
of Li placed at the center of C60. Relative to separated Li and
C60, the Li@C60 minimum is found to be ∼11 260 cm-1 lower
in energy; that is, Li@C60 is stable relative to Li + C60.

Two earlier DFT-based determinations of features of the
Li@C60 potential15,16 employed local density functional (LDF)
theories, which are generally not as accurate as non-LDF
theories,20 such as the B3LYP DFT used here. Nonetheless, they
lead to results that are consistent with our results in that they
predict only weak deviations from spherical symmetry, and the
magnitudes of their potential minima are comparable to ours.
In ref 15, the relative difference between pentagonal and
hexagonal minima was less (0.01 eV or 80 cm-1) than ours
(217 cm-1), and furthermore, the pentagonal wells were the
more stable ones. However, the magnitude of the potential
minima relative to the center of the cage calculated with local
DFT, ∼-4600 cm-1, is only ∼700 cm-1 more shallow than
our mean result (see Figure 1), ∼-5300 cm-1. Regarding the
other DFT study, it is difficult to infer relative stabilities from
the figures and discussion of ref 16, but one can estimate that
the various minima differ by no more than ∼0.1 eV or ∼800
cm-1. The order of magnitude of the potential minima of ref
16 relative to the cage center is ∼-6400 cm-1, that is, ∼1100
cm-1 deeper than our result. The differences between the relative
energies from the two LDF-based DFT calculations and our
B3LYP-based ones, on the order of 1100 cm-1 (0.1 eV) or less,

TABLE 1: Potential-Energy Function Parameters and
Normal-Mode Frequency Analysis around the Hexagonal
and Pentagonal Potential Wells

potential-function parameters

De Re se

506.965 cm-1 2.79592 Å-1 2.24859 Å

potential minima, Vmin (cm-1), and normal-mode frequencies, pω
(cm-1)

well Vmin Vmin - Vmin(C6) pω zero-point energy

C6 -5379 0 406, 173a 376
C5 -5162 215 418, 113a 322

saddle-point energies, Vq(cm-1), and normal-mode frequencies, pω
(cm-1)

saddle Vq Vq - Vmin(C6) pω

C6:C5 -5078 301 430, 83, 23i
C6:C6 -5071 308 429, 70, 141i

a Doubly degenerate.

Figure 1. Potential-energy function (curves) evaluated along five one-
dimensional rays in r, the distance of Li from the C60 center. Symbols
are the DFT data, and the energy is relative to r ) 0. The ray
corresponding to Li approaching the center of a C6 ring has the lowest
minimum (yellow curve), followed by the ray corresponding to Li
apporaching the center of a C5 ring (green curve).
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are probably not significant on the scale of the expected accuracy
of LDF-based DFT.

2.2. Eigenvalue and Eigenvector Determinations. The
Lanczos method21,22 was used to determine both the lowest
eigenvalues and the eigenvectors for the system. The details of
our implementation of the Lanczos method, including how
eigenvectors are obtained once the eigenvalues are known, are
very similar to those of ref 22 and need not be repeated here.
Rather than using a standard basis set representation that
explicitly reflects the symmetry of the potential, we represent
the wave function on a three-dimensional, evenly spaced,
Cartesian grid. The wave function is then imagined to be
expanded in terms of direct product states |xi>|yj>|zk> associ-
ated with the various (i, j, k) grid points.

In the Lanczos method, a three-term recursion involving
repeated actions of a matrix representation of the Hamiltonian
(H) on a vector (q), Hq, is required. With the three-dimensional
Cartesian grid, the potential part of H is diagonal, and standard
Fourier transform techniques23 are used to evaluate the kinetic
part. At various stages in the iterations, a tridiagonal matrix is
constructed, and its energy levels converge to the true levels of
H, that is, those satisfying

HΨn )EnΨn, n ) 0, 1, ... (3)

with the lowest and highest levels converging the earliest in
the process.

A few additional remarks on the Hamiltonian matrix, H, and
the evaluation of Hq are in order. If one has m evenly spaced
grid points per degree of freedom, formally, H is an N × N
matrix with N ) m3. The direct-product nature of the Cartesian
representation is such that the number of nonzero matrix
elements is far less than N2 ) m6: each row of H has just 3m
- 2 nonzero matrix elements out of a possible m3; therefore,
the fraction of nonzero matrix elements is ∼3/m2. Moreover,
with the Fourier method,23 Hq is evaluated on the fly in a
manner that does not require saving most of the matrix elements,
and the numerical effort scales quasi-linearly with the number
of grid points: if Nop is the number of operations for each
evaluation of Hq, Nop ∝ N log2 m.

The standard Lanczos method cannot resolve degeneracies
because, by the nature of the process, it turns out that repeated
copies of each correct eigenvalue arise no matter what the actual
degeneracy of the eigenstate;21 that is, there are numerous false
degeneracies. Thus, one can infer what each energy level is but
not its degeneracy from a standard Lanczos procedure. Reor-
thogonalized Lanczos methods could be used to remedy this
defect.24 We chose a less elegant but simple route, namely, to
introduce a very small random perturbation into the problem
that breaks the Ih symmetry and leads to nondegenerate
(although closely spaced) eigenstates. The numbers of eigen-
states in each cluster correspond to the degeneracy of the level
and are consistent with the dimensions of the various repre-
sentations of the icosahedral (Ih) group.

The random perturbation noted above corresponds to displac-
ing each C atom in the cage as follows. For each C atom, j )
1, 2, ..., 60, the original, perfect icosahedral coordinates (xj, yj,
zj), as computed by the formula of ref 18 are replaced by

xjr xj + (-1+ 2�j
x)η

yjr yj + (-1+ 2�j
y)η

zjr zj + (-1+ 2�j
z)η (4)

where η is the strength of the perturbation and �j
x, �j

y, �j
z are

pseudorandom numbers between 0 and 1.

We find that for η e 10-7 Å, one obtains small clusters of
energy states with the number of states in each cluster
corresponding to one of the dimensions of the various repre-
sentations of Ih. An interesting effect regarding the totally
symmetric (nondegenerate) representation will be discussed later
in Section 3.4. Had we adopted a symmetry-adapted basis set
instead of the grid representationsfor example a product basis
involving the subset of spherical harmonics that belong to Ih

and appropriate radial functionsswe would not have found the
effect discussed in Section 3.4.

We employ evenly spaced grids with 128 points in the range
from -6.5 to 6.5 au for each of the three degrees of freedom.
(Calculations with just 64 points per degree of freedom yield
energy levels within 0.05 cm-1.) The Lanczos calculations are
readily carried out on an ordinary Intel-based PC or laptop
computer, and the first few hundred levels converge within 1 h,
whereas a full spectrum up to 950 cm-1 excitation energy,
corresponding to the first 1200 states, can be calculated within
a day. (In terms of the number of Lanczos iterations, which
corresponds to the size of the Krylov space, and the tridiagonal
matrix that leads to the energy levels, about 5000 iterations yield
the first few hundred levels and about 50 000 iterations yield
the first 1200 levels.) As noted above, subsequent Lanczos
calculations are carried out to determine the eigenfunctions.

3. Results and Discussion

3.1. Potential Function. With origin at the center of the C60

cage, the Cartesian coordinate system used is oriented as that
in ref 18. Then, the z axis passes through the centers of two
opposite end pentagonal (C5) rings, and the x-z plane contains
the centers of two connected hexagonal (C6) rings in its lower
right quadrant, as well as in the upper left quadrant. Spherical
coordinates based on these Cartesian coordinates are defined
with the convention that θ is the polar angle from the z axis,
and φ is the azimuthal angle. The C60 cage has 20 hexagonal
(C6) and 12 pentagonal (C5) rings. The top panel of Figure 2 is
a polar plot of the potential at r ) 1.54 Å, vividly illustrating
the corresponding C6 and C5 potential wells, with the former
being slightly deeper than the latter, as discussed in Section
2.2. The nature of such a polar plot distorts the wells so that
equivalent wells have different shapes, and two of the pentagonal
wells occur at the north and south poles of the sphere so that
they are spread out over all φ at these points. Projections on
the actual sphere do not have these distortions but are less
informative because the back portion of the sphere is then
hidden.

The lower panel of Figure 2 is a plot of the potential in the
x-z plane with y ) 0. The specific orientation of our Cartesian
coordinate system is such that this plane contains the rays
associated with four of the C6 ring centers and four of the C5

ring centers. The potential wells corresponding to the C6 ring
centers are evident in the lower right and upper left quadrants,
whereas the potential wells associated with the C5 ring centers
are in the upper right and lower left quadrants. These latter wells
are shallower than the C6 wells (Figure 1) and are less clearly
seen in such an image map.

Further analysis of the potential function shows that only two
of the minima with respect to r along the five rays in Figure 1
correspond to actual minima with respect to all coordinates. Two
of the other rays correspond to saddle points, and one ray, ray
(5), although still a stationary point, is neither a minimum nor
a saddle point. Table 1 gives the properties of the minima and
saddle points. There is a global minimum for the hexagonal
wells with energy -5379 cm-1 at r ) 1.54 Å and a slightly
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higher energy local minimum for the pentagonal wells with
energy -5162 cm-1 at r ) 1.49 Å. The minima with respect to
r along the rays associated with Li approaching the centers of
5-6 and 6-6 bonds are actually saddle points or barriers
between the wells and have energies of -5078 and -5071 cm-1,
respectively. This corresponds to barriers of 301 cm-1 for a Li
to go from a hexagonal to a pentagonal well and 309 cm-1 to
go between hexagonal wells. Relative to a pentagonal well,
which is energetically higher than a hexagonal well, the barrier
connecting it to a hexagonal well is only 84 cm-1.

We have carried out a normal-mode analysis for the minima
and saddle points. In all cases, the highest frequency mode, in
the 400-430 cm-1 range, is the Li radial mode. In the case of
the minima, there is a lower-frequency doubly-degenerate
librational mode. As seen from the table, the hexagonal wells
are slightly softer than their pentagonal counterparts in the radial
direction but are significantly stiffer for the librational modes.
Both wells are stiffer outwardly than inwardly, leading to
anharmonicity in the radial vibrations. The normal-mode
analysis and energies suggest that the lowest energy states should
be hexagonal in character, but that pentagonal and mixed
hexagonal/pentagonal states will exist at higher energies. The
first radial vibration excitations should occur ∼376 cm-1 above
the ground state.

3.2. Energy Levels. With the procedures discussed in Section
2.1, we determined the lowest 1200 eigenstates corresponding
to excitation energies up to 950 cm-1. Figure 3 shows an energy
level stick diagram for Li@C60 inferred from the Lanczos
calculations and contrasts it with that for a system of spherical
symmetry where the radial potential has been taken to be that
of the ray to the center of a hexagon. We see that the full Li@C60

system exhibits band structures that are distinct from the
spherical case, essentially because of the icosahedral symmetry
and multiple-well features of the potential which we will
elaborate upon.

Although not clearly evident in Figure 3 owing to the energy
scale, there is actually a band of 20 states, with a width of ∼1
cm-1, corresponding to the ground state at zero excitation
energy. This band contains six distinct energy levels with
degeneracies of 1, 3, 5, 4, 4, and 3 in energetic order, which is
consistent with the dimensions (1, 3, 4, 5) of the various
irreducible representations of the Ih point group.17 Because there
are 20 equivalent hexagonal wells, one can imagine this band
as resulting from tunneling interactions between degenerate zero-
order states centered on each well. We develop this tunneling
picture more explicitly in the Appendix. This band structure,
as well as a band gap associated with it, can also be modeled
by exploiting the unique Ih symmetry of the potential, as shown
in ref 17 where a two-dimensional model was considered. The
ground state has zero-point energy E0 - Vmin ) -5023.0 cm-1

- (- 5379.4) ) 356.4 cm-1, which compares favorably with
the approximate normal-mode result, 376 cm-1, from Table 1.
Inspection of selected wave functions in Section 3.3 below will
also verify and elaborate upon some of the assignments of this
section.

After the very narrow first band, there is a gap of 121.7 cm-1

followed by a wider band of 40 states with energies ranging
from 122.7 to 136.3 cm-1. This band can be associated with
the 40 states that would result from the first excitation of the
doubly-degenerate librational mode in each of the 20 hexagonal
wells. As with the ground-state band, all levels in this band
have degeneracies corresponding to the dimension of an Ih

irreducible representation, although in this case, there are no
singly-degenerate levels. We note that anharmonic effects seem
to be already quite important because the corresponding normal-
mode frequency (Table 1) is considerably higher at 173 cm-1.

Around an excitation energy of 150 cm-1, we find a third
band, with a width of ∼10 cm-1, consisting of four distinct
energy levels with degeneracies of 1, 3, 5, and 3 in increasing
energetic order. Because there are 12 equivalent pentagonal
wells, this band corresponds (mostly) to the ground state of the
higher-energy, pentagonal wells. On the basis of Table 1, the
zero-order excitation of this state would be 153 cm-1, in
agreement with the aforementioned results.

3.3. Eigenfunctions. We now examine several of the non-
degenerate (Ag) eigenfunctions. Polar plots at the radius where
the wave function reaches its maximum value are discussed, as
well as cuts of the wave function in the x-z plane with y ) 0
defined in Section 2.2.

The top panel of Figure 4 shows a polar plot of the ground-
state wave function, which is localized over each of the 20

Figure 2. Image map of the potential-energy surface for Li in an
angular shell with r ) 1.54 Å from the cage center (top) and image
map of the potential in the x-z plane (bottom; white space means that
the potential is higher than -4200 cm-1). The unit of the color keys is
cm-1.

Figure 3. Stick spectrum of the Li@C60 energy levels determined with
the full potential (upper, green) is contrasted with the results for a
spherically symmetric potential (lower, red). The energies shown are
relative to that of individual ground states.
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hexagonal wells. By assuming that the radial and librational
motions are weakly coupled, we can subtract the approximate
radial zero-point energy (∼406/2 ) 203 cm-1) from the total
zero-point energy of this state (356 cm-1) to yield an effective
energy of 153 cm-1 in the librational mode. This latter energy
is insufficient to surmount the hexagon-hexagon and hexagon-
pentagon barriers of 309 and 301 cm-1, respectively. Thus, one
would expect the ground state to consist of localized amplitude
over each hexagonal well. Of course, tunneling between wells
does occur and is responsible for the ground-state band of 20
states. The x-z plane cut through the wave function in the lower
panel of Figure 4 shows four lobes of large amplitudestwo in
the lower right quadrant and two in the upper left quadrant.
The nature of this cut is such that there are hexagonal wells in
these regions of large amplitude (Figure 2); therefore, this result
is consistent with the assignment.

Figure 5 shows polar and x-z plane plots of the first excited
nondegenerate state, at an excitation energy of 150.4 cm-1. This
wave function exhibits significant localization in the pentagonal
wells, consistent with the energy-level analysis in Section 3.2,
where it was suggested it should be the lowest member of the
band of ground-state pentagonal states. However, localization
around the hexagonal wells is also clearly visible, although a
little weaker. This is not surprising because the approximate
effective energy in the librational mode (relative to the
hexagonal well as zero) is ∼356 + 150 - 203 ) 303 cm-1 by
using data from Tables 1 and 2. This energy is almost the same
as the barrier height connecting pentagonal and hexagonal wells
(301 cm-1).

Figure 6 is a polar plot of the next nondegenerate state with
an excitation energy of 197.7 cm-1. Although still relatively
low in energy, this state cannot easily be classified as involving
just the hexagonal or just the pentagonal wells as the previous
two states discussed could be. Rather, both the polar and x-z
plots show approximately equal (and in phase) amplitudes in
both hexagonal and pentagonal wells. There is also significant
amplitude, out of phase with respect to the amplitude over the
wells, lying in the barrier regions between wells.

As is to be expected, most higher-energy states exhibit
significantly more complex (but visually appealing) patterns than

those discussed so far. It is possible, however, to assign some
of the features in these patterns. Figure 7, for example, shows
a state with an excitation energy og 413.4 cm-1. Although the
upper polar plot is rather complex, the lower x-z cut exhibits
a radial node in the upper left and lower right quadrants. This
corresponds to one quantum of radial excitation coupled into
the hexagonal angular excitations. Such states and the numerous
others with radial-excitation character are relevant to interpreting
the IR spectrum.

3.4. Spectrum. A simple estimate of the IR absorption
spectrum can be obtained from

I(E))∑
i

exp(-Ei ⁄ kT) ×

∑
j

(µx,ji
2 + µy,ji

2 + µz,ji
2 )δ(E- (Ej -Ei)) (5)

where µx,ji ) |〈ψj|x|ψi〉 | and so forth. In principle, the nuclear
position-dependent electronic expectation value of the dipole
operator should be used instead of x, y, and z. Examination of
Mulliken populations showed that the ground-state wave func-
tion is essentially ionic in character (Li+C60

-), consistent with
earlier calculations.15,16 This justifies the use of the position
vector as a surrogate for the dipole moment. (This approximation
was validated by comparison with calculated dipole moments
at selected points.) Equation 5 was evaluated by using all the
calculated eigenfunctions for excitation energies <950 cm-1,
which is adequate for temperatures up to 300 K.

Figure 8 displays spectra for T ) 300 (upper) and 10 K
(lower), which are qualitatively similar with the higher-

Figure 4. Polar and x-z plane plots of the ground-state wave function.
The wave-function amplitude scales are in atomic units. Figure 5. Polar and x-z plane plots of the first excited nondegenerate

state at an excitation energy of 150.4 cm-1. The wave-function
amplitude scales are in atomic units.

TABLE 2: Localization of the Ground-State Wave Function
Due to Perturbation of the Cage Atoms

perturbation, η (Å) potential spread, ∆Vmin (cm-1) localization, ∆

10-7 0.0017 0.0006
10-6 0.0012 0.0007
10-5 0.0182 0.0061
10-4 0.1674 0.0621
10-3 1.6553 0.7996
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temperature spectrum being a little broader. There are prominent
spectral structures around 125 and 400 cm-1, which naturally
must correspond to the first librational and radial excitations
discussed in the previous sections. The experimental Li@C60

IR data12–14 that we are aware of, unfortunately, correspond to
excitation energies greater than 400 cm-1 and are complicated
by a number of overlapping/coupled C60 cage vibrational
excitations, as well as impurities. Also, C60 has a few IR modes
in the spectral region of Figure 8.25 The present result, which
completely decouples the motion of Li from the cage-atom
motions, represents a prediction of the Li motion contribution
to the low-temperature/far-IR spectrum of Li@C60. (It may be

of interest to also consider the Raman spectrum. See an earlier
theoretical analysis of the Raman spectrum of Li+@C60.26)

3.5. Symmetry Breaking Perturbations. The introduction
of a small (η e 10-7 Å) perturbation proved to be a very useful
device for deducing degeneracies from the results of our Lanczos
calculations. However, it is interesting to note that the ground-
state wave function deviates drastically from Ih symmetry as
somewhat larger but still small perturbations are applied to the
positions of the C atoms. In the calculations that we now discuss,
a random perturbation is imposed in the same way as that
specified in eq 4. In Figure 9, we display polar plots of the
wave function (r ) 1.54 Å) for perturbation levels η ) 10-4 Å
(upper panel) and η ) 10-3 Å (lower panel). These results
should be compared with those for the unperturbed cage, Figure
4. Some deviation from symmetry is evident at the η ) 10-4 Å

Figure 6. Polar and x-z plane plots of the 197.7 cm-1 excitation-
energy state. The wave-function amplitude scales are in atomic units.

Figure 7. Polar and x-z plots of the 413.4 cm-1 excitation-energy
state, which exhibits nodes (lower panel) consistent with one quantum
of radial excitation. The wave-function amplitude scales are in atomic
units.

Figure 8. Far-IR absorption spectra for Li@C60 inferred from our
calculations.

Figure 9. Localization of the ground state. (a) With η ) 10-4 Å, some
unevenness becomes visible (the density of the most-dense well is more
than three times that of the least-dense well). (b) With η ) 10-3 Å, the
ground state is essentially localized in one well, completing the
transition from an evenly distributed symmetry-preserving state to a
strongly localized state completely lacking Ih symmetry. The wave-
function amplitude scales are in atomic units.
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level, but quite remarkably, the η ) 10-3 Å level is completely
localized. Of course, different random-number sequences will
give different results, for example, localization in different wells.
However, the qualitative features of the localization remain the
same.

Because the ground state is mostly confined to the 20
hexagonal wells, evenly in the unperturbed case, we consider
the probability associated with each of these wells by integrating
the square of the wave function over a cone that just encom-
passes the well. The maximum of these 20 probabilities, minus
the minimum, which we call ∆, is one measure of localization.
In the unperturbed case, the probability of occupation of each
well is 1/20, and ∆ ) 0. In the case of complete localization in
a single hexagonal well, ∆ ) 1. For each random perturbation,
η, the well depths of the 20 hexagonal wells are somewhat
changed. Let ∆Vmin be the corresponding largest well depth
minus the smallest well depth. Table 2 presents values for η,
∆Vmin, and ∆. For η ) 10-4 Å, we find ∆Vmin ) 0.17 cm-1,
and for η ) 10-3 Å, we find ∆Vmin ) 1.65 cm-1. In Figure 10,
we plot the degree of localization, ∆, versus the spread in
potential minima, ∆Vmin. As might be expected on the basis of
first-order perturbation theory, there is an approximate linear
relation between ∆ and ∆Vmin.

From Figure 9, it is clear that the localization of the wave
function becomes noticeable near ∆Vmin ) 0.17 cm-1 (η ) 10-4

Å) and becomes extreme by ∆Vmin ) 1.67 cm-1 (η ) 10-3 Å).
The potential energy spread of ∆Vmin ) 0.17 cm-1 is comparable
to the half tunneling splitting (1/2)∆Etun of 0.18 cm-1, calculated
in the Appendix. Thus, a rough criterion for the localization
effect to become important is simply ∆Vmin > (1/2)∆Etun. The
localization effect noted here, although in relation to the quantum
states of a relatively small molecule, bears similarities to
Anderson localization27–30 in the solid state. In particular, they
share a similar localization criterion if we associate ∆Vmin with
the spread of site energy levels due to an impurity, W, in the
Anderson model and associate (1/2)∆Etun with the hopping
energy, V, noting that the strong localization happens when W/V
becomes larger than a system-specific number, which is on the
order of 1-10 in two dimensions.

The extreme sensitivity to small perturbations only exists for
the ground state in our system. As discussed previously, different
rotation bands mix heavily beyond the first band of 20 states
that corresponds to localization in the 20 hexagonal wells.
Therefore, the threshold for symmetry breaking, approximately
proportionate to the bandwidth, is much larger beyond the first
band. It should also be noted that such a localization effect is
hardly observable at room temperature because the energy
splitting between different localization scenarios is so small that

any such effect is smeared out by thermal fluctuations. For
sufficiently low temperatures, however, the effect may be
observable. In this limit, temporary deformations of C60 could
lead to a localization of Li atom, which in turn, by essentially
ionic interaction with the cage, could lock in the deformation
and induce a simultaneous symmetry breaking. Another possible
scenario can be envisaged for a hypothetical crystal of Li@C60

molecules, where various breathing modes of the cage can be
propagated in waves. It is plausible that a polaron-like quasi-
particle can emerge because of the ability of the Li ion to
localize and deform the surrounding cage. However, an actual
calculation of this effect would demand a detailed study of the
coupling of the motion of the Li ion/atom and the cage, which
is beyond the scope of this study.

4. Summary

We have reported the results of a study of a simple three-
dimensional model for Li moving inside a rigid C60 cage. The
system exhibits an interesting potential topography with 20
equivalent wells associated with Li being under a hexagon in
the cage and 12 equivalent wells associated with Li being under
a pentagon in the cage. Our potential model was based on DFT
calculations more accurate than those previously carried out for
this system. Although still not of spectroscopic accuracy, our
model is likely more reflective of the true nature of the system’s
dynamics. We used this potential to determine hundreds of ro-
vibrational Li@C60 quantum states, which represent the first
fully three-dimensional ro-vibrational states obtained for this
system. We also made a prediction of the far-IR spectrum and
examined the nature of selected eigenfunctions. Finally, we
showed that small perturbations of the cage-atom positions can
have a dramatic effect on the nature of the ground-state wave
function.

Our quantum calculations of the system eigenstates also
revealed that even at very low excitation energies, the wave
function is a complex superposition of hexagonal, pentagonal,
and possibly barrier states. We believe, apart from any con-
nections with actual Li@C60 molecules, that this model is an
excellent one for studying multiple-well dynamics in general.
In the future, we plan to study the corresponding classical
dynamics of the system and, within that limit, to introduce cage-
atom motions.

Appendix: Tunneling Splitting and Bandwidth

To solidify the assertion that the lowest band of 20 Li@C60

quantum states arises from tunneling between the hexagonal
wells, we present a simple tunneling model to approximate the
bandwidth. This model corresponds to a 20 × 20 Hamiltonian
matrix imagined to be formed from a basis of single-well states.
The diagonal elements are all the same and equal to the zero-
point energy associated with a single well, ε0. Each of the 20
hexagons in C60 has three hexagonal neighbors, and we assume
that only matrix elements between such nearest neighbors are
nonzero. That is, given a specific choice of numbering the 20
hexagonal wells, each row of the Hamiltonian matrix has three
off-diagonal elements corresponding to its three nearest-neighbor
wells. We take these off-diagonal matrix elements to be -γ,
where γ will be associated with a tunneling splitting. Diago-
nalization of this model Hamiltonian yields the same degenera-
cies (1, 3, 5, 4, 4, 3) and similar energy scalings as those
calculated by the Lanczos method for the full problem. The
bandwidth resulting from this model is 5.24γ.

For a symmetric double-well potential V(x), the WKB
approximation for the energy splitting between the lowest two

Figure 10. Degree of localization, ∆, for different levels of perturbation
of the potential (measured by ∆Vmin).
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states due to tunneling is31 ∆Etun ) (pω/π)e-θ, where ω is the
classical angular frequency of an individual well and θ is the
tunneling integral, θ ) (1/p)∫a

b dx [2m(V - ε0)]1/2, where
the integration is over the barrier region with V > ε0 and a and
b are the turning points such that V(a) ) V(b) ) ε0. We take x
to be the distance traveled along the most energetically favorable
path linking two C6 minima. In the present case, we have pω
) 173 cm-1, ε0 ) pω/2 ) 86.5 cm-1, and a barrier height of
308 cm-1 (Table 2). A straightforward numerical calculation
yields ∆Etun ) 0.26 cm-1.

In the case of just two degenerate states coupled by the matrix
element -γ, the splitting of the levels is 2γ. We therefore take
the nearest-neighbor interaction in our 20 × 20 model Hamil-
tonian to be γ ) ∆Etun/2 ) 0.13 cm-1. This is within a factor
of 2 of the value γ ) 0.18 cm-1 which would exactly reproduce
the bandwidth from our full Lanczos calculations. The resulting
model bandwidth is 0.68 cm-1, compared to the full Lanczos
result of 0.95 cm-1.
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