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The study of the spatial dynamics of steady one-dimensional H2/O2 flames is continued. Algorithms for
generating low-dimensional manifolds for these systems are presented and used to find low-dimensional
manifolds for the flames and the corresponding adiabatic, isobaric chemical-kinetic systems. It is
demonstrated that these algorithms generate manifolds that are more accurate than the ILDM algorithm
for two-dimensional manifolds of the flames. The manifolds are then employed to study the relationship
between the manifolds of the flame and the manifolds of the chemical-kinetic system. It is shown that
the one-dimensional manifolds of the flame match well with the composite manifolds of the chemical
kinetics, but that for two-dimensional manifolds there are discrepancies between the flame manifolds
and the chemical-kinetic manifolds.

I. Introduction

In our previous Article, the spatial dynamics of steady H2/
O2 flames were studied in detail1 using the dynamical-system
formulation of Hirschfelder and Curtiss2 and Dixon-Lewis.3 It
was shown in ref 1 that steady flames were trajectories on a
stable manifold of a saddle fixed point. This saddlepoint
corresponds to a chemical equilibrium, but is unstable due to
transport processes. The goal of that study was to understand
the phase space structure of flame systems, and this led to the
conclusion that there were attractive low-dimensional submani-
folds on the stable manifold of the saddlepoint. An important
result from ref 1 was that the dimension of the stable manifold
matches the dimension of the adiabatic, isobaric chemical-kinetic
system under most conditions. This makes the comparison
between the chemical-kinetic systems and the flame systems
more straightforward.

Because the accurate modeling of reactive flows is com-
putationally intensive,4 there has been a good deal of interest
in finding means to reduce the effort, reviewed in several
places.5 The need for reduction is particularly acute, because
these systems are multiscale in nature, with a large range of
spatio-temporal scales. One means for accomplishing this
reduction is through the use of low-dimensional manifolds.
Important work by Maas and Pope,6 Fraser, Roussel, and
co-workers,7–10 and Lam and Goussis11 examined the phe-
nomenology that leads to low-dimensional manifolds and
presented important methods for reducing the dimension of
systems based on this realization. Many other workers have
examined and extended these methods.5,12–25 The mathemati-
cal foundations of the methodologies have also been
elucidated.26–28

The effect of transport processes on reduction has been
studied for several years,12–14,18–23,29 and this Article is a
contribution to that field. Its main goal is to examine and

understand the relationship between low-dimensional mani-
folds of chemical-kinetic systems without transport and
manifolds of one-dimensional flames with the same chemical
kinetics but also transport processes. This study is done within
a dynamical-systems perspective, something that was under-
taken previously for chemical-kinetic systems in ref 15, and
one important aspect of the Article is to devise means to
compare the spatial dynamics of flames with the temporal
dynamics of corresponding chemical-kinetic systems through
the low-dimensional manifolds.

Part 1 (our previous Article) showed numerical evidence that
there were low-dimensional submanifolds of the stable manifold
of the saddlepoint of the flame. The purpose of this Article is
to continue that study by explicitly generating one- and two-
dimensional manifolds. This Article will have a detailed
comparison of the flame manifolds with the chemical-kinetic
manifolds and will demonstrate that for one-dimensional
manifolds there is little difference between the flame manifolds
and composites of the chemical-kinetic manifolds, but that there
are differences between the two types of two-dimensional
manifolds. Comparisons will also be made between the more
accurate manifolds generated here and ILDMs.6 It will be shown
that the ILDMs are accurate for one-dimensional manifolds, but
not for two-dimensional manifolds.

The outline of this Article is as follows. Section II
describes the generation of low-dimensional manifolds.
Section III presents several numerical examples of one- and
two-dimensional manifolds for a chemical-kinetic system and
a flame system. It also presents comparisons of the manifolds
generated in this Article and the more approximate ILDMs.
Section IV presents the main results of the Article, comparing
the low-dimensional manifolds of the flame systems and
composite low-dimensional manifolds generated from adia-
batic, isobaric chemical kinetics. Section V presents further
results, showing how these comparisons vary with stoichi-
ometry and enthalpy. Section VI has further discussions and
conclusions.
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II. Low-Dimensional Manifolds

A. Background. Reference 1 studied the detailed dynamics
of steady flames from a dynamical-systems perspective using
the formulation of refs 2 and 3. It was shown that a steady flame
was a trajectory on the stable manifold of a saddle fixed point.
This fixed point corresponds to an equilibrium point of an
adiabatic, isobaric system. The instability arises due to the
transport equations, as the stable manifold is generally the same
dimension as the chemical-kinetic space. Figure 1 summarizes
the phase space structure of a system governed by adiabatic,
isobaric conditions as compared to the flame system studied in
ref 1 and here.

The top panel indicates that an adiabatic, isobaric system is
stable. In this case, the stable manifold for the H2/O2 system30

is at least as large as the space of all physically realizable
chemical species and temperature.12 The long-time behavior of
any trajectory started on the stable manifold is to approach the
equilibrium point, as indicated by the arrows on the stable
manifold in the top panel.

The flame system is unstable, as shown in the bottom panel
of Figure 1. For almost all cases we have studied, the
16-dimensional phase space of the flame system has a 6-di-
mensional stable manifold and a 10-dimensional unstable
manifold. In addition, the sum of the eigenvalues of the Jacobian
of the system at the saddlepoint is greater than zero, making
the system a repellor.31 An arbitrary trajectory will have
components on both the stable and the unstable manifolds. This
means that an arbitrary trajectory of the system will not
eventually be attracted to the saddlepoint, but will generally
move to infinity at long time, or perhaps to a sink outside the
physical region. In ref 1, a simple example of such unstable
behavior was presented and summarized in Figure 7 there. The
instability of the flame dynamics is well-known32 and led to
the development of numerical procedures involving the solution
of the steady flame problem based on second-order differential

equations and boundary-value techniques that are more stable
than methods that rely on the integration of trajectories of the
unstable dynamical system shown in the bottom panel of Figure
1. An example of such a code is “Premix” in the Chemkin
package.32,33

Reference 1 also studied the dynamics of the H2/O2 system
of ref 30 away from the saddlepoint. Numerical evidence
was presented in ref 1 that suggested the stable manifold
pictured in the bottom panel of Figure 1 extended away from
the saddlepoint and that the separation of spatial scales on
the stable manifold evident near the saddlepoint extended
well away from the saddlepoint. The present study extends
the observations of ref 1 by explicitly generating one- and
two-dimensional manifolds that are submanifolds of the six-
dimensional stable manifold. Of particular interest in this
Article is how the submanifolds of the stable manifold of
the flames compare to the low-dimensional manifolds of the
adiabatic, isobaric chemical-kinetic system, whose dynamics
is presented near its equilibrium in the top panel of Figure
1.

B. Generating Low-Dimensional Manifolds. Using a modi-
fication of the ILDM algorithm of Maas and Pope,6 Bongers et
al.19 demonstrated that it was possible to estimate submanifolds
of a stable manifold using techniques originally developed for
stable systems. The goal of ref 19 was to explore the possibility
of improving ILDMs for reactive flow problems by calculating
them with diffusion included. They found that the manifolds
calculated this way for steady flames outperformed manifolds
estimated only from chemical kinetics. The nature of the present
study is exploratory, and it takes a somewhat different approach
than does ref 19. The low-dimensional submanifolds are
calculated for the flame systems with full transport, and direct
comparisons are made to chemical-kinetic manifolds. Although
the ILDM algorithm is generally not used in this Article,
comparisons are made to manifolds generated from that
algorithm in section III.C.

Low-dimensional manifolds are calculated here using Fraser’s
algorithm.7–18 References 15 and 17 provide numerical proce-
dures for the implementation of this method. A system of first-
order equations defines a dynamical system:

dym

dx
)Fm, m) 1f n (2.1a)

where it is assumed that the independent coordinate is the
spatial coordinate x, which it is for the flame. For the
chemical-kinetic cases studied here, the independent coor-
dinate is time. There are n equations describing n dependent
coordinates that are indexed by the integer m. The dynamical
system defined by eq 2.1a is described as “n-dimensional”.
For the flame system studied here and in ref 1, n ) 16, with
the 16 ym’s referring to 9 mol fractions (Xk), 6 mass flux
fractions (Gk), and the temperature (T). The dimension is 16
rather than 21 (10 X’s, 10 G’s, and T) because the X’s and
G’s sum to 1.0 and there are three additional constants
associated with the mass flux fractions. In all calculations,
the y’s refer to the following:

ym, m) 1f 9, XO2
,XH,XO,XOH,XHO2

,XH2O2
,XAr,XHe,XH2O

ym, m) 10f 15, GH,GO,GOH,GHO2
,GH2O2

,GH2O

y16 ) T (2.1b)

The other five coordinates, XH2, GH2, GO2, GAr, GHe, are
calculated from the constants noted above and described in
ref 1.

Figure 1. The phase space structure of a chemical-kinetic system
is shown in the top panel, and the phase space structure of a flame
system is shown in the bottom panel. YH2O refers to the mass fraction
of H2O.
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The algorithm for calculating manifolds starts by writing the
equation for an M-dimensional manifold based on eq 2.1a:

Fm({y}, {z}))∑
j)1

M ∂ym

∂zj
Fj({y}, {z}), {z} ∩ {y})Ø

(2.2a)

where it is assumed that a subset of the original coordinates,
labeled as {z}, can be used as a good coordinate system along
the manifold. It may be necessary to take a more general
coordinate system for the manifold under some circumstances,
but that does not appear to be the case for the systems studied
here. For the manifolds studied here, the following are used
for the manifold coordinates:

1D manifolds: z1 ) y16 ≡ T

2D manifolds: z1 ) y16 ≡ T, z2 ) y15 ≡ GH2O (2.2b)

Subtraction of the left- and right-hand sides of eq 2.2a leads to
the following form of the manifold equations that is used for
numerical solutions:

Fm({y}, {z})-∑
j)1

M ∂ym

∂zj
Fj({y}, {z})) 0 (2.2c)

In this Article, one-dimensional manifolds are generated with
temperature as z for the chemical-kinetic systems. For two-
dimensional manifolds, the z’s are T and YH2O for the chemical-
kinetic systems (eq 2.1a in ref 1).

Fraser’s algorithm is used because it is more accurate for
two-dimensional manifolds in the flame system than the less
computationally intensive algorithm of Maas and Pope,6 a
situation encountered previously for two-dimensional manifolds
in large systems in ref 23b, where significant error analysis was
undertaken. References 10, 15, 18, and 26 also have error
analysis of the Maas-Pope algorithm. A significant modification
is made to the version of Fraser’s algorithm developed in ref
15, which is now described.

The algorithm starts with an initial guess and allows the
system to relax to a slow manifold. In previous work using
numerical techniques,15,17 the initial guess was the Maas-Pope
ILDM. In the present Article, the initial guesses are linear
manifolds emanating from the equilibrium point of the
chemical-kinetic systems or the submanifolds of the stable
manifold of the saddlepoint of the flame systems.

Equation 2.2c is solved on a discrete grid as in ref 15. For
one-dimensional manifolds, the grid is labeled with a single
index and uses the independent variable z1. If the grid points
are labeled with the index k and there are N points on the grid,
the following set of (n - 1) × N coupled equations result:

Skm )∆zk1Fkm -∆ykmFkj ) 0, m) 1f n,k) 1fN,m* j

(2.3)

where the grid is not necessarily defined with even increments
in z1, the independent coordinate along the manifold, which is
assumed to be yj in eq 2.3, as defined in eqs 2.1b and 2.2b.

Two-dimensional manifolds are defined on an N × M grid
with indices k and r. The function S is defined at each grid
point for each species in the following discrete form of eq 2.2c:

Skrm )∆zkr1∆zkr2Fkrm -∆ykpm∆zkr2Fkrj -∆yrjm∆zkr1Fkrp ) 0,

m) 1f n, m* j,p, k) 1fN, r) 1fM (2.4)

The grid in eq 2.4 is not necessarily defined with even
increments in z1 and z2, the independent coordinates that are

defined in eq 2.2b. Equation 2.4 describes (n - 2) × N × M
coupled equations.

Equations 2.3 and 2.4 describe the general equations, which
are solved for one-dimensional and two-dimensional manifolds.
Equation 2.2b defines the independent coordinates z1 and z2,
and eq 2.1b defines all of the coordinates (y’s) in terms of their
original designations.

Reference 15 described a relaxation procedure to converge
eqs 2.3 and 2.4, but it was used only for one-dimensional
manifolds. The method was modified in ref 17 and extended to
the calculation of two-dimensional manifolds. A new version
of the algorithm of ref 15 is developed here that involves two
relaxation procedures and is different from the algorithms in
refs 15 and 17.

As in ref 15, the relaxation procedure starts with a
Newton-Raphson approach to solving for the y’s in eqs 2.3
and 2.4. In the usual manner,34 a Jacobian is defined for the S’s
in terms of the y’s. This Jacobian leads to a system of linear
equations:

JS
P(y-y′)) Skr (2.5)

The superscript “P” in eq 2.5 indicates that Js
P is evaluated

pointwise on the grid. This means that Js
P is an (n - 1) × (n

- 1) matrix for one-dimensional manifolds and an (n - 2) ×
(n - 2) matrix for two-dimensional manifolds. The vectors y,
y′, and Skr have length n - 1 for one-dimensional manifolds
and n - 2 for two-dimensional manifolds. The vectors y, y′
are the old guess and the new guess, respectively. Equation 2.5
is solved with the Lapack routines dgetrf and dgetrs.35 Following
ref 15, a pseudotime step is defined, and the following set of
equations is solved with a fourth-order Runge-Kutta algorithm:

dy
dτ

) y-y′ (2.6)

The Runge-Kutta vector on the right-hand side of eq 2.6
has length that reflects the size of the grid and the number
of species. For example, for one-dimensional manifolds, its
length is (n - 1) × N, where n refers to the number of species
(including temperature) and N refers to the number of points
along the one-dimensional grid. The relaxation procedure
requires the solutions to a series of linear equations as
outlined in eq 2.5. For example, a one-dimensional manifold
solved on a grid of 50 points along the temperature variable
requires 50 solutions to eq 2.5 with length (n - 1), and a 50
× 50 2-D grid requires the solution of 2500 linear systems
of length (n - 2). This relaxation procedure is terminated
under two conditions, a minimum tolerance is reached for
the maximum value of ∆yk ) yk - y′k or the procedure does
not converge evenly:

|(yk - y′k)|(τ+∆τ) > |(yk - y′k)|(τ) (2.7)

The results of the initial relaxation procedure are then used
as input to a second relaxation procedure that depends on the
full extent of the manifold. A damped Newton-Raphson34

method is used in this case. Equation 2.5 has the same form:

Js
f(y- y′)) Skr (2.8)

Js
P is a matrix generated by varying all points on the grid for

all species. A damped version of eq 2.8 signifies that the updated
version of y on the kth iteration is not y′ but a vector that lies
between the (k - 1)th iterate of y and y′:

7786 J. Phys. Chem. A, Vol. 112, No. 34, 2008 Davis and Tomlin



y(k) ) y(k-1) +∆τ(y′ - y(k-1)) (2.9)
The vectors y, y′, and Skr have length (n - 1) × N for one-

dimensional manifolds and (n - 2) × N × M for two-
dimensional manifolds defined on an NxM grid. Because of the
larger number of points, the solution of eq 2.8 is much more
computationally difficult than the initial relaxation procedure.
However, the Jacobian matrix in eq 2.8 is sparse for two-
dimensional manifolds, and sparse linear algebra techniques can
be used36 to reduce the computational effort. The sparse system
solver “super LU”37 is used to solve eq 2.8 for two-dimensional
manifolds. Once again, as in the case of the first relaxation
procedure, convergence is assumed when the maximum com-
ponent of S in eqs 2.2a and 2.3 is less than a given tolerance.
It is assumed that the procedure is not converged if convergence
is not uniform in the sense of eq 2.7.

These methods have been tested for a large number of
chemical-kinetic and flame systems, over the range of param-
eters plotted in Figure 12 and Figure 13 of ref 1. These tests
are now summarized for the flame of ref 1 (see Figure 16 there).

C. One-Dimensional Manifolds. A result for the relaxation
procedure outlined above is presented for the standard flame
system of ref 1 presented in Figures 16-19 there. In this
way, a manifold is generated that includes full transport. An
analogous calculation has also been done for the chemical-
kinetic version of this system, with similar results obtained,
but not presented in this Article. The results presented in
Figure 2 are representative of a series of results generated
for the set of systems illustrated in Figure 13 of ref 1 and
sampled in section V.

The independent variable (z above) is always chosen to be
temperature. The top panel of Figure 2 shows a series of

calculations that start relatively close to the saddlepoint and work
away from it. The saddle is at T ) 2048 K, and a linear segment
is extended to T ) 1600 K. This initial segment is converged
with the double relaxation method described above. There are
a total of 50 points used to estimate the manifold. This segment
is then extended 20 K by adding a point at the end that is
estimated by extrapolation. The additional 49 points along the
manifold are chosen to lie along the previous manifold estimate
by interpolating from the 50 points used in the previous segment.

The procedure is extended out to 1000 K if possible, as it is
for the calculation here. We have found many situations where
convergence out to 1000 K cannot be achieved in the uniform
manner described above and the calculation is stopped at the
temperature where uniform convergence cannot be achieved.
All calculations for the parameter ranges shown in Figure 13
of ref 1 can be converged down to at least 1200 K.

The top panel of Figure 2 shows a series of seven of these
calculations with end points at 1600 to 1000 K in 100 K
increments. The figure caption describes how each of these
calculations is plotted. This panel demonstrates that the manifold
is converged out to approximately 1200 K, because all manifolds
down to 1000 K are the same through 1200 K. It demonstrates
that the manifolds diverge after that. These results are typical
for a wide range of stoichiometries and asymptotic enthalpies,
and it is assumed in the rest of this Article that one-dimensional
manifolds can be converged to 1200 K, but not necessarily
lower.

This Article compares manifolds. One set of comparisons is
between chemical-kinetic manifolds and flame manifolds, and
another is between manifolds generated with two different
algorithms. So it is desirable to have portions of the manifold
for which convergence is not in doubt. As demonstrated in the
top panel of Figure 2, it is possible to use the algorithm below
1200 K, but it is not clear that algorithm is properly converged,
for the reasons discussed above. In addition, ref 1 has several
figures showing the manner in which the flame and chemical-
kinetic systems relax, and it is clear that any portion of the one-
dimensional manifold that extends below 1200 K is highly
unattractive. Because of this discussion, we chose a convergence
procedure that provides conservative estimates of the extent of
the one-dimensional manifolds to make sure that any differences
observed in the comparisons were accurate.

The middle panel of Figure 2 compares the incremental
calculation of the top panel with the direct calculation of the
manifold from a linear segment extended all the way out to T
) 1200 K. The solid line shows the results of the incremental
calculation from the top panel, and the dots show the results of
the convergence of the algorithm for an initial linear segment
extended out to 1200 K. This plot demonstrates that the direct
calculation is sufficiently accurate and will allow for a simpler
comparison between the chemical-kinetic and flame manifolds
discussed below.

The bottom panel of Figure 2 repeats the one-dimensional
manifold from the middle panel and also includes trajectories
drawn as dashed lines. The plot demonstrates that trajectories
are attracted to the one-dimensional manifold. As discussed in
ref 1, these trajectories are on the stable manifold, and such
trajectories cannot generally be propagated directly with nu-
merical integration, because any error in their initial conditions
causes them to be propagated to infinity along the unstable
manifold. Reference 1 presented an algorithm for generating
such trajectories, and this is what was used to calculate the
trajectories in the bottom panel of Figure 2.

Figure 2. A series of one-dimensional manifolds are estimated in the
top panel as described in the text. Large dots show the estimate out to
1600 K, small dots to 1500 K, the segment out to 1400 K is a thick
dashed line, the segment to 1300 K is a thick solid line, the one to
1200 K is a dashed-dotted line, the segment to 1100 K is a thick dashed
line, and the one to 1000 K is a thin dotted line. The middle panel
compares the incremental convergence of the manifold out to 1200 K
from the top panel as a solid line, and a series of dots show the direct
calculation of the manifold. The bottom panel demonstrates that
trajectories are attracted to the manifold.
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D. Two-Dimensional Manifolds. The finite extent observed
for one-dimensional manifolds in the previous subsection also
causes difficulties in estimating two-dimensional manifolds (it
is the same issue but in a different part of phase space). The
two coordinates used to describe the manifold for the flame
systems are temperature and the mass flux fraction of water,
GH2O (eqs 2.2a-c). It was found that two-dimensional manifolds
in the flame systems get narrower in the coordinate GH2O as
they approach the saddlepoint. Because of this, various tech-
niques were explored to change the boundary of the manifold
as it approached the saddlepoint. These techniques are still under
development, and instead it was decided to generate the manifold
in three overlapping sections whose width in GH2O was constant
along each piece, but got narrower as the sections got closer to
the saddlepoint. On the basis of a comparison with trajectories,
it was found that these provided good estimates of the manifold,
provided that the portions had at least a length of 100 K in
temperature. The overlap of the pieces provides a check for
convergence of each of the pieces.

Because the manifolds are so narrow near the saddlepoint, it
was decided that the manifolds would only be generated to T
) 1700 K or T ) 1800 K. The one-dimensional manifold is
highly attractive above this temperature, making analysis of the
two-dimensional manifold of less relevance. It was also found
that the two-dimensional manifolds rarely could be converged
below 800 K, and this led to the following ranges of temper-
atures used in the calculations: 800(850)-1250, 1200-1500,
and 1450-1700(1800) K. There are two ranges listed for the
lowest temperature portion, because the two-dimensional mani-
folds for lean flames generally did not extend below about 850
K. For stoichiometric and rich flame systems, they can generally
be extended down to 800 K. Convergence was achieved in the
manner described in section II.A by changing the boundary in
the coordinate GH2O for the temperature ranges designated. All
of the results presented in the Article were generated for
manifolds calculated from three pieces converged on an 11 ×
11 grid. Grid size was increased for all of the manifolds
presented here, and the results did not change in a significant
way.

Figure 3 shows a two-dimensional manifold generated with
the algorithm discussed in this subsection and section II.A. Note
how the manifold gets narrow for each of the three pieces as
the temperature increases along the manifold. Note also how
the pieces fit smoothly together, which is an indication of the
convergence. The solid lines drawn on the manifold provide

another indication of the convergence of the algorithm. These
are trajectories that were started on the manifold and stay on
the manifold throughout their propagation, an indication of the
invariance of the manifold.

III. Manifold Examples

A. A Chemical-Kinetic Example. The accuracy of the
algorithms for one- and two-dimensional manifolds can be
ascertained by observing how trajectories are attracted to the
manifolds generated by them. A subset of the trajectories plotted
in Figure 5 of ref 1 for the adiabatic, isobaric chemical-kinetic
system is shown in the two panels of Figure 4. Once again, the
chemical-kinetic system is fixed by a constant mixture enthalpy
that matches the asymptotic enthalpy of the standard flame
system with the elemental constants chosen in the same manner
(eq 2.2 in ref 1).

The one-dimensional manifold is plotted in Figure 4 with a
thick solid line along with the set of trajectories plotted with
thinner, red lines. The top panel of Figure 4 demonstrates that
the trajectories are attracted to the one-dimensional manifold,
which starts at approximately T ) 1200 K. The value of R1 is
576.0 (eq 4.1a of ref 1), which is the ratio of the two least
negative eigenvalues at the equilibrium point (all of the
eigenvalues are negative at equilibrium). This value indicates
that near equilibrium the manifold has strong attractive proper-
ties, with this highly attractive behavior evident away from
equilibrium, down to approximately T ) 1200 K, as trajectories
appear to be strongly attracted to the manifold.

The bottom panel compares the same set of trajectories with
the 2-D manifold generated as described above with three
overlapping pieces spanning the temperature ranges: 850-1250,
1200-1500, and 1450-1800 K. This system has a value of R2

) 30.3 (eq 4.1b of ref 1), which is the ratio of the second and
third least negative eigenvalue at equilibrium. Such a value of
R2 demonstrates that the manifold has strong attractive properties

Figure 3. An example of a two-dimensional manifold is shown. It is
constructed from three pieces, as described in the text. Eight trajectories
were generated with initial conditions on the manifold, and the plot
demonstrates that they stay on the manifold. The temperature ranges
of the three overlapping pieces used to construct the manifold are
800-1200, 1250-1500, and 1450-1700 K.

Figure 4. A subset of the trajectories generated for Figure 5 of ref 1
are plotted along with the one-dimensional manifold in the top panel
and the two-dimensional manifold in the bottom panel. These plots
show how the trajectories are attracted to the manifolds for the chemical-
kinetic system.
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near equilibrium, and the plot in the bottom panel makes it clear
that the manifold is still attractive away from equilibrium.

The manifolds change as the chemical-kinetic system changes
with the constants that are the mixture enthalpy and the
elemental constants defined in eqs 2.2a-c of ref 1. The top
panel of Figure 5 shows five 1-D manifolds for five systems.
These systems all have the same elemental constants, which
are chosen on the basis of the values at the saddlepoint of the
standard flame system in Figure 2. The values of the enthalpy
of the systems are chosen over the range of enthalpies along
the one-dimensional flame manifold shown in Figure 2. The
range is from approximately -7 × 108 ergs/g to the asymptotic
value for the flame, -1.755 × 108 ergs/g (thick black line).

The two-dimensional manifolds also change as the chemical-
kinetic systems change with their constants. Two two-
dimensional manifolds are shown in the bottom panel of Figure
5 that nearly span the range of enthalpy of the two-dimensional
manifold for the standard flame system (Figure 3). The upper
green surface is at H ) 3 × 109 ergs/g, and the lower blue
surface is at H ) -7 × 108 ergs/g. Once again, the other
constants are the same as the asymptotic values for the standard
flame system.

B. Flame Examples. Figure 6 demonstrates that the steady
flame of ref 1 is first attracted to the two-dimensional manifold
in the bottom panel (see Figure 3), then to the one-dimensional
manifold in the top panel (see Figure 2). These plots demonstrate
that the qualitative features demonstrated in several figures of
ref 1 indeed correspond to motion on low-dimensional manifolds.

The analysis of the way trajectories are attracted to the
manifolds is completed by examining a subset of the trajectories
from Figure 17 of ref 1. The top panel of Figure 7 shows how
the trajectories are attracted to the one-dimensional manifold

of Figure 2, and the bottom panel of Figure 7 shows how the
trajectories are attracted to the two-dimensional manifold of
Figure 3.

C. Comparison with ILDMs. The manifolds generated
above via Fraser’s algorithm are now compared to ones
generated with the ILDM algorithm of Maas and Pope,6 which
is a more approximate,15,26 but common, algorithm. The ILDM
algorithm is also generally a much faster algorithm, as is true
for the calculations in this Article. The version of the ILDM

Figure 5. The top plot shows a series of five one-dimensional
manifolds for five systems with the same elemental constants but with
different enthalpies. The thick black line is for a system whose constant
enthalpy is equal to the asymptotic enthalpy of the standard flame
example. The bottom panel shows two-dimensional manifolds for
systems with two different enthalpies.

Figure 6. The one-dimensional manifold from Figure 2 is plotted in
the top panel along with the steady flame from the standard flame
system. In the bottom panel is plotted the same steady flame along
with the two-dimensional manifold from Figure 3.

Figure 7. Trajectories of the standard flame system are compared to
the one-dimensional manifold in the top panel (thick, dark line) and
the two-dimensional manifold in the bottom panel.

Spatial Dynamics of Steady Flames 2 J. Phys. Chem. A, Vol. 112, No. 34, 2008 7789



algorithm used here is a modification of the one in ref 23b, in
that analytical eigenvector derivatives are not used here. In the
rest of the Article, we refer to a manifold estimated from the
algorithm described in ref 23b and below as an “ILDM”. A
manifold estimated from Fraser’s algorithm is referred to as a
“manifold”, “iterated manifold”, or “relaxed manifold”. From
past experience (see, for example, ref 15), Fraser’s algorithm
provides a very accurate estimate of the true manifold.

For the chemical-kinetic systems, one-dimensional ILDMs
are estimated from the zeros of the following set of n - 1
equations:

Rn1(z1)Fk(z1) -Rk1(z1)Fn(z1)) 0, k) 1f n,k*m (3.1)

where n is 6. As with the manifolds calculated with Fraser’s
algorithm in section II.B, the ILDM is defined along a progress
variable (z1) taken to be the temperature in this paper (eq 2.2a).
All of the quantities in eq 3.1 have all of the other dependencies
enumerated in section II.B, also. Rn1(z1) and Rk1(z1) refer to the
nth and kth component of the right eigenvector whose eigenvalue
is least negative along z1. This eigenvalue is negative and real
at equilibrium and generally is negative away from equilibrium
(T less than the equilibrium temperature), but can become
positive sufficiently far from equilibrium. The eigenvalue with
lowest magnitude can also become part of a complex conjugate
pair. At points where this happens, it is assumed there is not a
good one-dimensional ILDM. Such a condition is common for
general dynamical systems where trajectories spiral into equi-
librium,38 but for chemical-kinetic systems such behavior does
not generally occur at equilibrium. Because we have taken a
conervative approach to the convergence of the manifolds, as
outlined above, we do not observe this behavior when generating
one-dimensional manifolds. We do observe the behavior away
from the one-dimensional manifolds, when two-dimensional
manifolds are estimated.

For two-dimensional manifolds, the following n - 2 equations
are solved for the chemical-kinetic system:

QmpFk -QkpFm +QkmFp ) 0 (3.2a)

with

Qmp )Rm1(z1, z2)Rp2(z1, z2)-Rp1(z1, z2)Rm2(z1, z2)

(3.2b)

where Rm2 and Rp2 refer to the mth and pth components of the
right eigenvector whose eigenvalue is second largest. As in
section II.B, the ILDMs are characterized by two progress
variables, z1 and z2, along their extent. The coordinate z1 is once
again taken as T for both the chemical-kinetic and the flame
systems, and z2 is once again YH2O for chemical-kinetic systems
and GH2O for flame systems.

The 1-D manifold of the chemical-kinetic system of Figure
4 is compared to the corresponding ILDM in the top panel of
Figure 8, and the 2-D manifold is compared to the ILDM in
the bottom panel. The 2-D manifold estimates are once again
generated on overlapping grids. For the iterated manifolds, the
grid is connected with solid lines. The ILDM grids are plotted
on top of the grids for the iterated manifolds and are represented
as a set of dots, which generally lie right on top of the iterated
manifold grids. Therefore, these plots demonstrate that ILDMs
are very good approximations to the more accurate iterated
estimates for this chemical-kinetic system. The solid black line
in the bottom panel repeats the iterated 1-D manifold from the
top panel.

The calculation of ILDMs for flame systems requires extra
care, as noted in ref 19. Generally, when ILDMs are estimated

for stable systems, positive eigenvalues are considered to lie
on the ILDM, as was done above for the chemical-kinetic
system. It is clear from the analysis in ref 1 that this is not a
proper way to estimate manifolds within the ILDM formulation
because the flame systems are dominated by a saddlepoint and
the low-dimensional manifolds that are estimated are submani-
folds of only the stable manifold of the system. So the following
prescription is used, which is a modification of that in ref 19.
Because the stable manifold at the saddlepoint is six-
dimensional, it is assumed that the stable manifold is six-
dimensional throughout the phase space. For a significant
fraction of the phase space studied here, this is equivalent to
ignoring the positive eigenvalues when calculating an ILDM,
because in these regions there are exactly six negative eigen-
values. However, away from the fixed point, particularly for
the 2-D manifolds, there are less than six negative eigenvalues,
and then it is assumed that the eigenvectors associated with the
other positive ones lie along the ILDM. These positive eigen-
values (some complex) arise when the smallest negative
eigenvalues become positive; thus we view this prescription as
consistent.

Figure 9 compares the low-dimensional manifolds for the
flame with the ILDMs. The top panel shows a comparison
between the 1-D manifold estimates, with the dots showing the
ILDM. As in the chemical-kinetic case, there is excellent
agreement between the ILDM and the iterated estimate. The
bottom two panels show comparisons between the two-
dimensional ILDMs and the relaxed manifolds. The lines show
constant temperature isoclines of both surfaces. The iterated
manifolds are drawn as solid lines, and the ILDM estimates
are drawn as dashed lines. The middle panel shows isoclines
for the temperature range 800-1250 K, and the bottom panel
shows the range 1200-1500 K, the two pieces of the manifold

Figure 8. The 1-D ILDM is compared to a one-dimensional manifold
generated via Fraser’s algorithm for the chemical-kinetic system in the
top panel, and the 2-D ILDM is compared to the 2-D manifold from
Fraser’s algorithm in the bottom panel. The iterated manifold is plotted
with solid lines in both panels and the ILDM as a series of dots. Once
again the 2-D manifold was generated in three pieces: 850-1250,
1200-1500, and 1450-1800 K.
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presented in Figure 3 and Figure 7. In both sets of panels, the
ILDMs differ significantly from the more accurate iterated
manifold. At the lowest temperatures in the middle panel, the
ILDM conditions are not always met, and the ILDM estimates
have shorter isoclines than the iterated manifold. The bottom
two panels demonstrate that, unlike for the chemical-kinetic
system, the flame system has a considerable difference between
the iterated manifold and the ILDM.

The relative accuracy of the ILDMs as compared to the
iterated manifolds can be gauged by investigating the approach
of trajectories to them. The comparison is most straightforward
using the mass flux fractions rather than the mass fractions. The
top panel of Figure 10 shows such a projection for the T )
1250 K isoclines of the iterated manifold (solid lines) and the
ILDM (dashed lines) along with trajectories from Figure 7. The
bottom panel repeats the trajectories along with the T ) 1440
K isoclines for the iterated manifold (solid line) and ILDM
estimates (dashed line). These panels demonstrate that the
iterated 2-D manifold is a much better representation of the
asymptotic behavior of trajectories than the 2-D manifold
estimated from the ILDM algorithm.

IV. Relationship between Chemical Kinetics and
Steady-State Flame Dynamics

In this section, comparisons are made between the manifolds
of the flame systems and the manifolds of the chemical-kinetic
systems. Because ILDMs may not be accurate estimates of two-
dimensional manifolds for the flame systems (for example,
Figures 9 and 10), the initial set of comparisons of the manifolds
in this section are made only with the algorithms described in
section II.B. We expect that the manifolds generated with this
algorithm are essentially exact for both the flame systems and
the chemical-kinetic systems, allowing for the best possible

comparison between the manifolds of the two types of systems.
However, it proved interesting to compare the two-dimensional
flame manifolds generated with the more accurate algorithm to
chemical-kinetic manifolds generated from the ILDM algorithm,
and this is done in the latter plots in this section (Figures 15–17).

A. One-Dimensional Manifold Comparisons. To make
comparisons between the chemical-kinetic manifolds and the
flame manifold, the following is done. The elemental chemical-
kinetic constants (eq 2.2 in ref 1) and mixture enthalpy are
calculated along the 50 points that are used to define the flame
manifold in Figure 2. For each of these points, the constants
define a different adiabatic, isobaric chemical-kinetic system.
The equilibrium point of each of these systems is found, and
then the manifold method of section II.B is used to calculate a
one-dimensional manifold for the chemical-kinetic system. The
series of dots in the top panel of Figure 11 show the results of
this calculation plotted on top of the one-dimensional flame
manifold for the standard flame system. The dots in the top
panel are a composite of a series of one-dimensional manifolds
for a set of chemical-kinetic systems.

The bottom panel of Figure 11 shows an expanded view of
the information from the top panel with an additional series of
curves. These curves, plotted as dashed lines, show a small
portion of the chemical-kinetic manifolds generated at every
fifth point along the flame manifold. This information, along
with the top plot, indicates that the composite of the chemical-
kinetic manifolds is an excellent representation of the one-
dimensional flame manifold, despite the difference in the two
types of manifolds, as comparison between the solid line and
the dashed lines of the bottom panel demonstrates.

B. Two-Dimensional Manifold Comparisons. Comparisons
between the two-dimensional manifold of Figure 3 and chemi-
cal-kinetic composites are made in Figure 12. The three panels
show the three pieces of the manifold plotted originally in Figure
3 in order from low temperature (top) to high temperature
(bottom). The solid lines show the isoclines of the flame
manifold, and the dashed curves show the chemical-kinetic
composites. The isoclines are similar, but differences arise for

Figure 9. The top panel compares the 1-D manifold for the ILDM
(dots) with the iterated version (solid line). The bottom two panels
compare isoclines of the 2-D manifolds. The solid lines show the
iterated manifold, and the dashed lines show the ILDM. The middle
panel shows the low temperature piece (800-1200 K) and the bottom
the middle piece (1250-1500 K) from the manifold of Figure 3.

Figure 10. Trajectories (dotted lines) are compared to isoclines of
the iterated surface (solid red lines) and ILDM (dashed lines) in the
two plots. The top plot shows the T ) 1250 K isocline, and the bottom
panel shows the T ) 1440 K isocline.
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the YO/YH2O projection as the one-dimensional manifold is
approached for higher values of YH2O.

Additional information concerning the comparison is pre-
sented in Figure 13, which shows all of the other projections
of Yk/YH2O for the low-temperature isoclines. Once again, the
solid lines show the flame isoclines, and the dashed lines show
the chemical-kinetic composites. These projections demonstrate
that the YO/YH2O projection in Figure 12 has the poorest
agreement between the chemical-kinetic composites and the
flame manifold.

The comparison of the composite 2-D chemical-kinetic
manifold and the 2-D flame manifold is completed in Figure
14, which shows how a single composite temperature isocline
is formed from 2-D chemical-kinetic manifolds. The top left
panel compares the flame manifold along the T ) 890 K isocline
of the 2-D manifold. It is shown projected in two ways in the
panel. The upper curve plotted as a solid line shows a YO/YH2O

projection, and the bottom curve shows a YOH/YH2O projection.
The dotted line on top with dots shows the composite chemical-
kinetic isocline, and the dashed line in the lower part of the
panel shows the chemical-kinetic composite. The chemical-
kinetic and flame projections are very close. The YO/YH2O

projections differ by a small amount at the largest values of
YH2O, and the YOH/YH2O projections lie on top of each other. This
panel re-emphasizes what Figure 12 and Figure 13 have shown
previously.

The rest of the panels in Figure 14 compare the surface for
the 2-D chemical-kinetic manifolds (solid lines) used to generate
the composite surface with the 2-D flame manifold (dotted lines).
These panels correspond to points 2, 4, 6, 8, and 10 (the dots,
left to right) in the top left panel. The chemical-kinetic surfaces
are generated at a set of chemical-kinetic constants fixed at the

point on the flame manifold where the comparison is made.
The point of comparison is plotted as a large dot on each flame
manifold and as an “x” on each chemical-kinetic manifold.
While not as accurate as the analogous one-dimensional case
in Figure 11, the chemical-kinetic composites are much more
accurate than what may appear by comparing the full surfaces
in Figure 14, which can look quite different away from the point
of comparison.

Two-dimensional flame manifolds generated from the ILDM
algorithm do not agree with the more accurate iterated mani-
folds, as demonstrated in Figure 9. However, Figure 8 in section
III.C demonstrated that for adiabatic, isobaric chemical kinetics,
two-dimensional manifolds generated with the ILDM algorithm
do agree with the more accurate iterated manifolds generated
for the same chemical-kinetic system. Because of this agreement,
we thought it would be interesting to compare chemical-kinetic
composites generated from ILDMs with the accurate iterated
flame manifolds, as was done in Figures 12–14 where com-
parisons were made between flame manifolds and chemical-
kinetic manifolds both generated from the more accurate
iteration algorithm. The comparisons between the iterated flame
manifolds and the chemical-kinetic composites generated from
the ILDM algorithm are presented in Figure 15. Figure 15
repeats the two-dimensional iterated manifold from Figure 3 in
the three pieces it was generated and compares the three pieces
to the appropriate chemical-kinetic ILDM composites. The two-
dimensional flame manifold is plotted with dashed lines, and
the chemical-kinetic ILDM-estimated composite manifolds are
plotted as a series of dots. Once again, these points are generated
at the values of the chemical-kinetic constants and enthalpy that

Figure 11. The flame manifold is compared to a composite of the
chemical-kinetic manifolds. The top panel compares the flame manifold
(solid line) with the chemical-kinetic composites (dots). An expanded
view is shown in the bottom panel along with portions of the chemical-
kinetic manifolds used to generate the composite.

Figure 12. Comparisons are made between the chemical-kinetic
composites and the flame manifold of Figure 3. These panels show
isoclines for the low temperature (top), mid temperature (middle), and
high temperature portions of the manifold of Figure 3. The solid lines
show isoclines of the flame manifold, and the dashed lines show
chemical-kinetic composites. The ranges of the manifold sections are
described in section II.C and are the same as in Figure 3: 800-1250
K (top), 1200-1500 K (middle), and 1450-1700 K (bottom).
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correspond to the equivalent point on the flame manifold.
Generally, the comparisons are similar to what is observed in
Figure 12.

The relatively good accuracy of the ILDM for the chemical-
kinetic manifolds allows a more detailed comparison that
bolsters the view given in Figure 12. Figure 16a and b shows
all of the temperature isoclines of the two-dimensional flame
manifold from the top and middle panels of Figure 12. These
are plotted as solid lines along with dotted lines showing the
composite chemical-kinetic manifolds. The flame manifold and
the chemical-kinetic composites are iterated manifolds. These
are compared to the ILDM estimates of the composite chemical-
kinetic manifolds plotted as a dotted line. The curves in Figure
16a, especially those in the bottom row, give additional support
for the difference between the chemical-kinetic composites and
the two-dimensional flame manifolds, because the iterated
chemical-kinetic manifold composites and the equivalent ILDM
composites lie on top of each other and are noticeably different
than the isoclines for the two-dimensional flame manifold.

Previous results in section III.C demonstrated that the ILDM
approximation was very accurate for the chemical-kinetic system
for both one- and two-dimensional manifolds and for one-

dimensional manifolds of the flame system. However, the ILDM
approximation was inaccurate for the two-dimensional manifolds
of the flame system. A comparison of all of these results is
made for a two-dimensional manifold in Figure 17.

Two isoclines are plotted as solid lines in Figure 17. The top
panel shows an isocline at T ) 890 K, and the bottom panel
shows an isocline at T ) 1380 K. The lines plotted with dashes
are the ILDM for the flame and are very different from the
isocline of the iterated surface. This inaccuracy was made clear
in Figure 9 above. The two other curves on both plots are the
composite chemical-kinetic isocline plotted as a dotted line as
generated for Figures 13 and 14. The curves plotted with thicker
dashes are composite isoclines generated within the ILDM
approximation. Figure 17 demonstrates that the worst ap-
proximation to the two-dimensional manifold is generally an
ILDM approximation of the flame manifold and that this is
worse than a composite ILDM generated from chemical-kinetic
systems. This result disagrees with ref 19, which found that
flame ILDM manifolds were better for the system they studied.
It is not clear why this is true. Further investigation of this
discrepancy would be interesting.

Figure 13. These plots are different projections of the top panel of Figure 12.

Figure 14. These plots demonstrate how the composite isoclines of Figure 12 are generated. The top left panel repeats two projections of the
isocline, and the surfaces presented in the rest of the panels show the chemical-kinetic manifold generated at that point and repeats the flame
manifold as a surface plotted with dotted lines. The relevant point along the isocline is shown as a dot for the chemical-kinetic manifold and an “×”
for the flame manifold.
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V. Trends

Figures 12 and 13 of ref 1 presented results for a range of
systems that changed with stoichiometry and enthalpy. In this
section, many of the calculations in the present Article are
applied for nine systems chosen over the range of parameters
presented in those figures. This range is narrower in stoichi-
ometry than the systems in Figures 12 and 13 in ref 1, but has
nearly the same range of enthalpy.

Table 1 summarizes the nine systems. The first column lists
a stoichiometric factor defined implicitly in eq 4.2 of ref 1, which
in turn defines the set of constants described in eq 3.2 of ref 1.
These constants, along with the asymptotic enthalpy, define the
flame systems, with the second column giving the asymptotic
enthalpy for the nine flame systems. Table 1 also defines a set
of nine chemical-kinetic systems. These systems have constant
enthalpy, and this is taken to be the asymptotic enthalpy of the
flames listed in the second column. The additional constants
for the chemical-kinetic systems are listed in columns 3 and 4
and defined in eq 2.2 of ref 1. These constants are the asymptotic
values of these quantities for the flame systems.

Figures 12 and 13 of ref 1 laid out the way in which the
attractivity of manifolds changed with stoichiometry and en-
thalpy based on the ratio of the negative eigenvalues of the
Jacobian at the saddlepoint, and the results presented in Table
1 are consistent with the results of Figures 12 and 13. The first
column groups the systems into lean (�s ) 0.5), stoichiometric
(�s ) 1.0), and rich (�s ) 1.5). For each of these mixtures, a
low enthalpy (0.0 ergs/g), medium enthalpy (3 × 109 ergs/g),
and high enthalpy case (6 × 109 ergs/g) is considered. The final
four columns list the attractivity of the one- and two-dimensional
manifolds at the fixed points of the chemical-kinetic (columns
5 and 6) and flame (columns 7 and 8) systems. These numbers

demonstrate that all systems have highly attractive one-
dimensional manifolds near the equilibrium/saddlepoint, but
many of them do not have very attractive two-dimensional
manifolds, suggesting once again that the ILDM approximation
may not be accurate for these cases, based on past experience.15,26

The subsequent subsections of this Article examine results
for these nine systems.

A. Low-Dimensional Manifolds for the Flame Systems.
In Figure 18, the calculations from the top panel of Figure 2
are repeated for the nine systems of Table 1. Manifolds were
generated from a set of calculations from the saddlepoint to a
minimum temperature where convergence could be achieved
between 1200 and 1000 K. However, more information is
presented in Figure 18 than in Figure 2, because plots include
all of the manifolds generated with end points between 1600 K
and the minimum temperature where convergence can be
achieved, between 1200 and 1000 K at 20 K increments,
whereas Figure 2 used only those at 100 K increments. Most
of the manifolds in Figure 18 are plotted with thin solid lines,
but 6 of them have special line types. The manifold out to 1600
K is plotted with large dots, the segment out to 1500 K as small
dots, the segment out to 1400 K as a thick dashed line, the
segment to 1300 K is a thick solid line, the one to 1200 K is a
dashed-dotted line, the one to 1100 K is a short dashed line,
and the final one to 1000 K is a dotted line. It is possible to
converge the manifolds of lean flames in the top row out to
only about 1200 K, while the stoichiometric flames in the middle
row could be converged to approximately 1120 K (the highest
enthalpy case) down to below 1100 K for the lower two enthalpy
cases. In the bottom row, the lowest and highest enthalpy cases
could be converged to 1000 K and the middle enthalpy case to
below 1100 K.

Although the algorithm converges below 1200 K for many
of the cases in Figure 18, the plots in Figure 18 indicate that
most of these cases do not show strong convergence below 1200
K, because manifolds generated out to lower temperatures do
not lie on top of the ones generated out to higher temperatures.
This is most obvious in the high enthalpy case for the rich flame
in the bottom right, where the manifold is perhaps not even
converged to 1200 K. It is results such as these that led us to
make the estimate, stated in section II, that one-dimensional
submanifolds of the stable manifold were attractive from the
saddlepoint down to about 1200 K, and all of the comparisons
made in previous sections of the Article involved a one-
dimensional manifold that extended from 1200 K to a saddle-
point temperature of 2050 K.

The analysis of the one-dimensional manifolds is completed
in Figure 19, with a set of calculations that are the same as
those of the middle panel of Figure 2. The manifolds generated
in Figure 18 via 20 K extensions of the one-dimensional
manifolds are compared to manifolds generated directly from
the relaxation of a linear segment from the saddlepoint out to
1200 K. The manifolds out to 1200 K from Figure 18 are plotted
as solid lines in Figure 19 and compared to the direct method
drawn as a series of dots. Figure 19 demonstrates that the direct
calculation is as accurate as the incremental method.

The analysis of the two-dimensional manifolds for the nine
systems is presented in Figure 20, where calculations of two-
dimensional manifolds are presented. These are calculated in
the manner of section II.C as shown for the standard flame
system in Figure 3. Once again, these manifolds are generated
in three overlapping pieces. It was possible to converge the lean
flames in the top row out to 850 K. The stoichiometric flame
systems in the middle row and the rich flame systems in the

Figure 15. A comparison is made here between the temperature
isoclines of the two-dimensional flame manifolds and the chemical-
kinetic composites estimated from the chemical-kinetic ILDMs. The
three panels repeat the temperature ranges of the manifold in Figure 3,
from top to bottom: 800-1250 K, 1200-1500 K (middle), and
1450-1700 K (bottom).
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bottom row were converged out to 800 K, and the high
temperature pieces are converged to 1800 K. So the full range
of the manifolds for all three pieces is 850-1800 K for the
lean flames in the top row and 800-1800 K for the stoichio-
metric and rich flames in the bottom two rows. The lowest
enthalpy lean flame had a two-dimensional manifold that was
very narrow for the highest temperature portion and is not
included in the manifold on the top left of Figure 20.

Figure 20, like Figure 3 in section II, includes several
trajectories started on the two-dimensional manifolds. These
trajectories stay on the calculated manifold as they move to the
saddlepoint, demonstrating that the two-dimensional manifolds
are invariant surfaces for all of the flame systems.

B. Comparison to ILDMs. 1. Chemical Kinetics. Table 1
indicates that the one-dimensional manifolds for the chemical-
kinetic systems are strongly attractive near equilibrium. Gener-

Figure 16. (a) A comparison of the isoclines for the low-temperature portion of the two-dimensional manifold from Figure 12 (solid line) as
compared to the iterated composite chemical-kinetic isocline (dots) and the ILDM version of this curve (dotted line). (b) This is a continuation of
(a), showing isoclines for the middle temperature range of 1200-1500 K.
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ally, for one-dimensional manifolds, there is good agreement
between the ILDM estimates6 and accurate manifolds when the
manifolds are very attractive.15,26 This was the situation for the
standard flame example in the top panel of Figure 8, and an
analysis of the one-dimensional manifolds indicates it is true
for the nine systems of Table 1. There is generally near perfect
agreement between the iterated manifolds and the ILDMs.

A comparison of the iterated two-dimensional manifolds with
their ILDM counterparts for the chemical-kinetic systems has
also been made, as defined above. The stoichiometric and rich
cases have the same excellent agreement as the one-dimensional
manifolds and the two-dimensional manifold in the bottom panel
of Figure 8. However, there are some small discrepancies in

the lean cases near T ) 1000 K and the highest values of YH2O.
These systems have the least attractive manifolds and so are
most likely to have inaccurate ILDM estimates.15,26

2. Flames. The top panel of Figure 9 demonstrated that there
was good agreement between the ILDM and the more accurate
relaxed one-dimensional flame manifold. This agreement ex-
tends to the flame systems in Table 1 as Figure 21 demonstrates.
Based on the eigenvalue ratios in Table 1, this result is not
unexpected. However, Figure 18 indicated that some of the
manifolds appear to be relatively unattractive near T ) 1200
K, particularly the rich, high enthalpy case in the bottom right
of Figure 18. This case still has good agreement between the
ILDM and the more accurate manifold as demonstrated on the
bottom right of Figure 21.

The good agreement between the relaxed manifolds and the
ILDM estimates for one-dimensional manifolds is not evident
for the two-dimensional manifolds, something previously dem-
onstrated for the standard flame system in Figure 9. The low-
temperature pieces (Figure 20) shown in Figure 22a have
particularly strong differences. Temperature isoclines of the
relaxed manifolds are plotted as solid lines in Figure 22a, and
the dots show the ILDM estimates, which often do not extend
across the full isocline, because the ILDM criterion of eq 3.2a
is not satisfied. This is most evident at the lower values of YH2O,
which are the furthest away from the one-dimensional manifold.

The comparison of the ILDMs with the iterated manifold is
continued in Figure 22b for the intermediate temperature
portions of the manifolds of Figure 20. In this temperature range,
one of the systems exhibits reasonably good agreement between
the ILDM and the relaxed manifold, the lean, low-enthalpy case
in the top left of Figure 22b.

Figure 22c continues the trend of Figure 22b. There is now
better agreement between the two types of manifolds, with very
good agreement for the lowest enthalpy case of the stoichio-
metric and rich flame systems in the left column and the
intermediate enthalpy case of the lean flame at the top of the
middle column in Figure 22c. The agreement, or lack of
agreement, shown in Figure 22a-c tracks reasonably well with
the eigenvalue ratios shown in the right-hand column of Table
1 at the saddlepoint. There is not completely a one-to-one
correspondence, although these cases are sufficiently far from
the saddlepoint that discrepancies are not surprising. A visual
inspection of the way trajectories approach the manifold in the
various temperature regions for all of the systems suggests that
these discrepancies are consistent with the dynamical behavior
of the systems. That is, the more attractive that the manifold
appears to be, the better is the agreement between the more
accurate manifold estimates and the ILDM estimates.

C. Flame Manifolds versus Chemical-Kinetic Manifolds.
Comparisons are now made between flame manifolds and
chemical-kinetic composites for the nine flame and chemical-
kinetic systems of Table 1. All comparisons are made between
manifolds generated with the iteration-relaxation algorithm of
section II.B.

1. One-Dimensional Manifolds. The chemical-kinetic one-
dimensional composite manifolds are generally in very good
agreement with the one-dimensional flame manifolds for the
systems of Table 1 as Figure 23 demonstrates. These results
are consistent with results for the standard flame system
presented in Figure 11 of section IV.A.

Figure 23 shows the flame manifolds as solid lines and the
chemical-kinetic composite manifolds as a series of dots. A piece
of each chemical-kinetic manifold is shown as a dotted line in
Figure 23 for every fifth point of the composite manifold. Figure

Figure 17. A comparison is made between isoclines for the two-
dimensional manifold of Figure 12. The solid lines show isoclines for
the accurate iterated two-dimensional flame manifold, and the dashed
line shows the inaccurate ILDM estimate. The dotted lines and the
thicker dashes show the iterated chemical-kinetic composites and their
ILDM approximates, which are very close and better approximations
to the accurate, iterated flame manifold than is the ILDM estimate.
The top panel shows the T ) 890 K isocline, and the bottom panel
shows the T ) 1380 K isocline.

TABLE 1: Summary of Fixed Point Properties of Nine
Systems

�s
a hj ∞

b cO
c cAr

c R1
d R2

d R1f
d R2f

d

0.5 0.0 0.012 0.80 824.6 3.59 200.4 2.52
0.5 3 × 109 0.012 0.80 947.8 2.53 150.7 2.13
0.5 6 × 109 0.012 0.80 953.6 2.22 120.4 1.97
1.0 0.0 0.0083 0.85 532.4 8.42 132.4 2.89
1.0 3 × 109 0.0083 0.85 560.9 6.43 109.6 2.43
1.0 6 × 109 0.0083 0.85 594.7 5.37 98.2 2.17
1.5 0.0 0.00645 0.88 552.0 27.8 319.4 7.59
1.5 3 × 109 0.00645 0.88 608.7 16.4 219.6 3.61
1.5 6 × 109 0.00645 0.88 636.8 9.4 164.9 2.57

a Stoichiometry defined in eq 4.2 in ref 1. b Asymptotic mixture
enthalpy of the flame and constant enthalpy of the adiabatic,
isobaric chemical-kinetic system. In units of ergs/g. c The constants
of the saddlepoint, where chemical-kinetic and flame constants are
equal. See, for example, eqs 4.2f and 4.2g in ref 1. d Ratios defined
in eqs 4.1a and 4.1b of ref 1. The subscript “f” refers to values for
the flame system.

7796 J. Phys. Chem. A, Vol. 112, No. 34, 2008 Davis and Tomlin



Figure 18. Calculations from the top panel of Figure 2 are repeated in these plots for the nine systems of Table 1. The various lines and symbols
have the same meaning as they did in Figure 2, as described in the text of this section. H refers to the asymptotic mixture enthalpy in 109 ergs/g,
as illustrated in column 2 of Table 1.

Figure 19. These plots repeat the calculation of the middle panel of Figure 2 for the nine systems of Table 1. Once again, the solid line plots the
one-dimensional manifold as calculated in increments, as in Figure 18, with the direct calculation from a linear segment out to 1200 K. These plots
show excellent agreement between these two methods.
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23 indicates that the composite manifolds are in excellent
agreement with the flame manifolds, with only small differences
near T ) 1200 K for all of the cases plotted. These plots show
YO/T projections, and the values of YO are generally the least
accurate in relative terms except for the very low trace species
such as H2O2 and HO2.

2. Two-Dimensional Manifolds. Two-dimensional manifolds
are harder to approximate than one-dimensional manifolds with
the chemical-kinetic composites, as previously indicated in
Figures 12–14. Isoclines for the lowest temperature portions
are shown in Figure 24a. The isoclines of the flame manifolds
are drawn with solid lines, and the chemical-kinetic composites

Figure 20. A series of two-dimensional manifolds for the nine systems of Table 1 are presented along with trajectories. The calculations reported
here are the same as those in Figure 3. All manifolds were generated in three portions as before. The plot in the top left does not include the highest
temperature portion, which is very narrow.

Figure 21. A set of comparisons between the one-dimensional flame manifolds for the nine systems of Table 1 (solid lines) and the ILDM
estimates for the same systems (dots).
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Figure 22. (a) A series of comparisons of the isoclines of the two-dimensional flame manifolds (solid lines) and the ILDM estimates for the nine
systems of Table 1 for the low-temperature portions of the two-dimensional manifolds of the flame systems of Figure 20 in the same order as they
appear there. (b) These plots repeat the calculations of (a) for the middle temperature portions of the 2-D manifolds of Figure 20. (c) The high-
temperature versions of the comparisons of (a) and (b) are shown in a series of plots for the manifolds of Figure 20.
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are drawn with dashed lines. Agreement is best for the rich
flames in the bottom row of Figure 24a, but is poor for the lean
cases in the top row. For the stoichiometric systems in the
middle row, the chemical-kinetic isoclines differ somewhat at
low values of YH2O, but agree very well at high values of YH2O,
as the two-dimensional manifold approaches the one-dimen-
sional manifold.

The intermediate temperature portions of the two-dimensional
manifolds presented in Figure 24b show worse agreement
between the chemical-kinetic composite manifolds and the flame
manifolds than do the lower temperature ones over most of the
extent of the isoclines. However, these cases show very good
agreement along the isoclines near the one-dimensional mani-
folds, as expected from Figure 23. The one-dimensional
manifolds are at the highest values of YH2O shown in Figure
24b. Unlike the lower temperature pieces of the two-dimensional
manifolds shown in Figure 24a, the one-dimensional manifolds,
which extend down to 1200 K, encompass the full temperature
range of Figure 24b.

The highest temperature portions of the isoclines for the flame
manifolds and the chemical-kinetic composites are shown in
Figure 24c. These portions of the manifolds extend over a
relatively small portion of phase space, as indicated by the
ranges on the axes. The manifolds are generally in better
agreement than the intermediate temperature cases of Figure
24b. However, the two highest enthalpy cases of the stoichio-
metric flame systems in the middle row of Figure 24b show
considerable disagreement between the chemical-kinetic com-
posites and the flame manifolds except near the one-dimensional
manifolds, which are at the highest values of YH2O pictured and
where the system is most attractive (it takes on characteristics
of the relatively strong attractive nature of the one-dimensional
manifold).

A better view of selected isoclines and the surfaces that
were used to generate them are presented in a series of plots

in Figures 25–27. These figures are analogous to Figure 14
that was generated for the standard flame system. Figures
25–27 also provide more expanded views of the comparisons
of the isoclines in the upper leftmost panels.

The top left panel of Figure 25 shows two projections of a T
)1050 K isocline for the lowest enthalpy, lean system. The
thicker solid line and the dotted line with the large dots on it
show YH2O/YO projections, and the dashed line and thinner solid
lines show YH2O/YOH projections. The flame isoclines are plotted
with solid lines, and the others show the chemical-kinetic
composites. Because T is below 1200 K, there is no converged
one-dimensional manifold at this temperature.

The rest of the panels in Figure 25 show the surfaces used
to generate the composite isoclines plotted as solid lines, and
each of the panels shows the flame manifold as a grid made
up of dotted lines. The points along the isocline where the
composite was made are explicitly shown in each panel. The
point along the flame manifold is shown as a solid dot, and
the chemical-kinetic point is shown as an “×”.

The analysis of the low-temperature isoclines is continued
for the stoichiometric flame systems in Figure 26. The isocline
studied in this figure is T ) 1025 K. This an intermediate
enthalpy case as noted in Table 1. The plots in this figure are
analogous to those in Figure 25 in terms of line types and other
features.

The plots in Figure 26 demonstrate that the agreement
between the chemical-kinetic composites and the flame mani-
folds for the YH2O/YOH projections is generally very good, while
the YO is often quite different.

The comparison of the two-dimensional manifolds is com-
pleted in Figure 27 for the T ) 1025 K isocline of the rich
flame systems at the highest enthalpy. In these plots, there is
excellent agreement for YOH and reasonably good agreement
for YO.

Figure 23. A comparison is made between composite chemical-kinetic manifolds and the flame manifolds in these plots for the nine systems. The
description of these plots can be found in Figure 11.
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Figure 24. (a) A comparison is made between the two-dimensional flame manifolds (solid lines) and the chemical-kinetic composite manifolds
(dashed lines) for the two-dimensional manifolds of the nine systems of Table 1 for the lowest temperature portions of the manifolds of Figure 20.
(b) These plots are a continuation of those in (a) for the middle temperature range for the manifolds of Figure 20. (c) These plots complete the
comparison of the flame manifolds and the chemical-kinetic composites started in (a) and (b). These plots are for the highest temperature ranges
of the manifolds of Figure 20.
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D. Analysis. The main concern of this Article has been the
numerical investigation of low-dimensional manifolds for H2/
O2 flames and the comparisons of these manifolds to composite
manifolds generated from the equivalent adiabatic, isobaric
chemical-kinetic system without transport. Because the H2/O2

system with multicomponent transport is a fairly complex
system, the analysis of the sources of any disparities between
the two systems was necessarily qualitative. Future publications
will study simpler systems, where detailed analysis is more
straightforward to carry out.39 However, results for one-

Figure 25. The top left plot shows two projections of a T ) 1050 K isocline and makes comparisons with the chemical-kinetic composites as
described in the text. The other plots show all of the surfaces used to generate the isoclines. The description of these surfaces can be found in the
caption to Figure 14.

Figure 26. The intermediate-enthalpy stoichiometric flame system is shown here with the plots that are analogous to those in Figure 25.
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dimensional manifolds of simple systems can provide some
information about situations that lead to the differences, or lack
of differences, noticed in section V.C.

Consider the model reaction-diffusion system:

∂y1

∂t
)-y1 +D1

∂
2y1

∂x2
(5.1a)

∂y2

∂t
)-γy2 + ay1

2 +D2

∂
2y2

∂x2
(5.1b)

The steady distribution of this reaction-diffusion system is the
solution of the following:

0)-y1 +D1

∂
2y1

∂x2
(5.2a)

0)-γy2 + ay1
2 +D2

∂
2y2

∂x2
(5.2b)

This pair of equations can be converted to a four-dimensional
dynamical system, as was done in section III.A of ref 1 for
one-dimensional flames. The dynamical system has a two-
dimensional stable manifold and a two-dimensional unstable
manifold. There is a one-dimensional submanifold of this stable
manifold that has the following analytical form:

y2 )
aD1y1

2

γD1 - 4D2
(5.3)

The reaction-diffusion manifold can be compared to the one-
dimensional manifold of the original system in eq 5.1a without
transport:

dy1

dt
) - y1 (5.4a)

dy2

dt
)-γy2+ay1

2 (5.4b)

This system has the following one-dimensional manifold:

y2 )
a

γ - 2
y1

2 (5.5)

Taking the difference between eqs 5.3 and 5.5 gives the error
between estimates based on the manifold without diffusion and
the actual manifold:

∆y2 ) y2
r - y2

c ) a
γ - 2

y1
2( γ - 2

γ- 4�
- 1), �)

D2

D1
(5.6)

The relative error is defined as:

Erel ≡
∆y2

y2
c
) 4�- 2

γ- 4�
(5.7)

Equation 5.6 demonstrates that the absolute error depends on
three factors: (1) the curvature, “a”, (2) the attractivity of the
manifold, “γ”, and (3) the relative values of the diffusivities,
“φ”. Equation 5.7 demonstrates that the relative error depends
on the last two of these. The effect of differential diffusion and
curvature has been studied previously. For example, ref 22
shows they contribute to changes in a manifold when diffusion
is added to chemical reaction in transient reaction-diffusion
systems. However, ref 22 did not discuss the role of the degree
of attraction of a manifold on the differences between chemical-
kinetic manifolds with and without transport. It will be interest-
ing to observe if the effect of attraction observed for the steady
problem in this section is also present in the transient case.

Figure 27. These plots are for a T ) 1025 K isocline in a rich flame with the highest enthalpy studied (Table 1). The plots are analogous to those
in Figures 25 and 26.
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A detailed analysis of the differences between the chemical-
kinetic composite manifolds and the flame manifolds based on
the information gleaned from eqs 5.6 and 5.7, including the
role of the differences in transport properties, is left for future
work. However, one feature of eqs 5.6 and 5.7 can be directly
related to the results in section V.C, and we focus on that here.
These equations show that the error is very small if the manifold
is “stiff” enough, that is, γ is large enough. The quantities R1

and R2 in Table 1 are directly analogous to γ. Table 1
demonstrated that the one-dimensional manifolds were very
attractive for all of the systems studied there based on R1, and
the results in section V.C showed that the chemical-kinetic
composites were generally in very good agreement with the
flame manifolds, consistent with this analysis. On the other hand,
Table 1 demonstrated that the two-dimensional manifolds are
not very attractive based on R2. This is consistent with the
significant disagreements between the flame versions of the two-
dimensional manifold and the chemical-kinetic composites. The
cases with the closest values were the rich flames, whose two-
dimensional manifolds are the most attractive, also in agreement
with this qualitative analysis.

VI. Conclusion

This Article has presented a numerical investigation of the
nature of one- and two-dimensional manifolds for one-
dimensional premixed flame systems whose dynamics were
studied in part 1 (our previous Article).1 These dynamical
systems are based on the work of refs 2 and 3 and treat the
flames as initial value problems, rather than the more common
approach of boundary value treatments.33

Reference 1 demonstrated that steady one-dimensional flames
are trajectories on the stable manifold of a saddle fixed point.
The saddle fixed point is an equilibrium point of an adiabatic
isobaric chemical-kinetic system, but becomes a saddlepoint due
to transport processes. In almost all situations studied in ref 1,
the dimension of the stable manifold was the same as the
dimension of the chemical kinetics system, six. Numerical
evidence was presented in ref 1 that there were lower dimen-
sional submanifolds on the stable manifolds that tended to attract
trajectories on the stable manifold as they approach the
saddlepoint. The current Article has extended these results by
explicitly generating one- and two-dimensional manifolds for
the flame system.

The primary method of generating the manifolds was a
modification of the method proposed in ref 15 (see also ref 17),
which is a modification of the method developed by Fraser,
Roussel, and co-workers.7–10 The main modifications to the
method were the use of linear systems to make first guesses
and a double relaxation method to ensure convergence. For one-
dimensional manifolds, a careful examination of the convergence
of the manifolds was undertaken. For two-dimensional mani-
folds, a flexible algorithm for changing the extent of the
manifolds was used. Sparse direct linear techniques36,37 were
implemented for two-dimensional manifolds to speed up the
relaxation process.

Numerical tests of these low-dimensional manifolds showed
that trajectories on the higher dimensional stable manifold were
attracted to them (Figure 2) and trajectories started on them
remained on them (Figure 3), establishing their invariance. The
relaxed manifolds were compared to manifolds generated via
an ILDM6 algorithm. For one-dimensional manifolds, there was
good agreement between the ILDM estimates and the relaxed
one-dimensional manifolds, but for two-dimensional manifolds
there were some significant disagreements. The disagreements

are consistent with the fact that two-dimensional manifolds are
much less attractive than their one-dimensional counterparts,
and it has been found that under these circumstances there can
be errors in the ILDM estimates.15,26

Section IV of the Article developed prescriptions for compar-
ing the flame manifolds with a collection of appropriate
chemical-kinetic manifolds. These comparisons are presented
in Figures 11–14 and were made between flame manifolds
calculated with the accurate relaxation-iteration algorithm of
section II.B and the chemical-kinetic composites calculated in
the same manner. It was demonstrated that for one-dimensional
manifolds there was excellent agreement between the flame
manifold and the chemical-kinetic composites. However, for
two-dimensional manifolds, there were some significant dis-
agreements between the flame manifold and the chemical-kinetic
composite. Section IV also made some interesting comparisons
between composite manifolds generated from the ILDM algo-
rithm and the iterated-relaxed flame manifolds. It was found
that while the ILDMs did not accurately model the flame
manifolds, chemical-kinetic composites generated with ILDM
algorithm were much more accurate (Figures 15–17).

All of the results generated in sections II-IV were for a
specific flame system. This was broadened out in section V to
the study of nine systems that span a range of stoichiometries
and enthalpies. It was demonstrated that these systems possessed
attractive one- and two-dimensional manifolds. It was also
demonstrated that the one-dimensional manifolds converged
down to about 1200 K for all flames studied. It was also shown
that two-dimensional manifolds had boundaries that varied
considerably among the systems and in general tended to get
narrow as the saddlepoint was approached.

In section V, it was also found for these cases that there was
good agreement between the ILDM manifolds and the more
exact relaxed manifolds for one-dimensional manifolds. How-
ever, for two-dimensional manifolds, ILDM estimates were
significantly different from those of the relaxed manifolds. These
differences can be understood qualitatively by the fact that,
unlike the one-dimensional manifolds, the two-dimensional
manifolds are not very attractive, and it has been found in the
past that these are most likely to show errors in the ILDM
estimates of the manifold.15,26

Section V.C also had further comparisons between the iterated
flame manifolds and composite chemical-kinetic manifolds
generated in the same manner. The results in this subsection
were consistent with the experience of section IV. For one-
dimensional manifolds, there was good agreement between
flame manifolds and chemical-kinetic composite manifolds, with
some small differences near the low-temperature end of the
manifolds. For two-dimensional manifolds, the agreement was
worse, with the lean flame examples showing the greatest
discrepancies.

Some additional analysis of the reasons for the observations
comparing the flame manifolds and chemical-kinetic composites
was made at the end of section V, where results for an analytical
model were presented. This model suggested that those cases
that were most stiff (attractive) were most likely to have
chemical-kinetic composites that matched flame manifolds.
Because the one-dimensional manifolds are much stiffer than
the two-dimensional manifolds, it was suggested in section V
that this was the reason that two-dimensional manifolds had
the disparities observed. The stiffest case of two-dimensional
manifolds studied was the lean flame of Table 1 at low enthalpy,
and this case had the best agreement between chemical-kinetic
composites and the flame manifolds.
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It would be interesting to study the relationship between the
chemical-kinetic composites and the flame manifolds with a
more detailed examination of transport properties, which the
analysis of section V.D suggested would be illuminating.
Reference 39 will study smaller systems and will develop further
tools for studying the manifolds of flames and their relationship
to chemical-kinetic manifolds. It is expected that some of these
techniques will be adapted to the study of flame systems such
as the ones investigated here and in ref 1.
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A. S.; Turányi, T.; Pilling, M. J. Comput. Chem. Kinet. 1997, 35, 293. Okino,
M. S.; Mavrovouniotis, M. L. Chem. ReV. 1998, 98, 243.

(6) Maas, U.; Pope, S. B. Combust. Flame 1992, 88, 239; Proc.
Combust. Inst. 1992, 28, 103.

(7) Fraser, S. J. J. Chem. Phys. 1988, 88, 4732.
(8) Roussel, M. R.; Fraser, S. J. J. Chem. Phys. 1990, 93, 1072. Roussel,

M. R.; Fraser, S. J. J. Chem. Phys. 1991, 94, 7106. Roussel, M. R.; Fraser,
S. J. J. Phys. Chem. 1991, 95, 8762. Roussel, M. R.; Fraser, S. J. J. Phys.
Chem. 1993, 97, 8316; 1994, 98, 5174 (E). Fraser, S. J.; Roussel, M. R.
Can. J. Chem. 1994, 72, 800. Fraser, S. J. J. Chem. Phys. 1998, 109, 411.

(9) Nguyen, A. H.; Fraser, S. J. J. Chem. Phys. 1989, 91, 186. Roussel,
M. R. J. Math. Chem. 1997, 21, 385. Roussel, M. R.; Fraser, S. J. Chaos
2001, 11, 196.

(10) Roussel, M. R. A Rigorous Approach to Steady-State Kinetics
Applied to Simple Enzyme Mechanisms. Ph.D. Thesis, University of
Toronto, 1994.

(11) Lam, S. H.; Goussis, D. A. Int. J. Chem. Kinet. 1994, 26, 461. For
recent developments and important applications, see, for example: Valorani,
M.; Najm, H. N.; Goussis, D. A. Combust. Flame 2003, 134, 35, and
references cited therein.

(12) Maas, U.; Pope, S. B. Proc. Combust. Inst. 1994, 25, 1349.
(13) Yannacopoulos, A. N.; Tomlin, A. S.; Brindley, J.; Merkin, J. H.;

Pilling, M. J. Physica D 1994, 83, 421.
(14) Hadjinicolaou, M.; Goussis, D. A. SIAM J. Sci. Comput. 1999, 20,

781.
(15) Davis, M. J.; Skodje, R. T. J. Chem. Phys. 1999, 111, 859.
(16) Skodje, R. T.; Davis, M. J. J. Phys. Chem. A 2001, 105, 10356.
(17) Nafe, J.; Maas, U. Combust. Theory Modell. 2002, 6, 697.
(18) Singh, S.; Powers, J. M.; Paolucci, S. J. Chem. Phys. 2002, 117,

1482.
(19) Bongers, H.; Van Oijen, J. A.; De Goey, L. P. H. Proc. Combust.

Inst. 2002, 29, 1371.
(20) Ren, Z. Y.; Pope, S. B.; Vladimirsky, A.; Guckenheimer, J. M.

J. Chem. Phys. 2006, 124, 11411.
(21) Goussis, D. A.; Valorani, M.; Creta, F.; Najm, H. N. Prog. Comp.

Fluid Dyn. 2005, 5, 316.
(22) Ren, Z. Y.; Pope, S. B. Combust. Flame 2006, 147, 243.
(23) (a) Davis, M. J. J. Phys. Chem. A 2006, 110, 5235. (b) Davis, M. J.

J. Phys. Chem. A 2006, 110, 5257.
(24) Roussel, M. R.; Tang, T. J. Chem. Phys. 2006, 125, 214103.
(25) Bykov, V.; Maas, U. Combust. Theory Modell. 2007, to be

published.
(26) Kaper, H. J.; Kaper, T. J. Physica D 2002, 165, 66.
(27) Zagaris, A.; Kaper, H. G.; Kaper, T. J. Multiscale Model. Simul.

2004, 2, 613; Math. Nach. 2005, 278, 1629.
(28) Gorban, A. N.; Karlin, I. V.; Zinovyev, A. Y. Physica A 2004,

333, 106; Phys. Rep. 2004, 396, 197.
(29) Lam, S. H. Combust. Sci. Technol. 2007, 179, 767.
(30) O Conaire, M.; Curran, H. J.; Simmie, J. M.; Pitz, W. J.; Westbrook,

C. K. Int. J. Chem. Kinet. 2004, 36, 603.
(31) See, for example: Seydel, R. From Equilibrium to Chaos: Practical

Bifurcation and Stability Analysis; Elsevier: New York, NY, 1988.
(32) Smooke, M. D. J. Comput. Phys. 1982, 48, 72.
(33) Kee, R. J.; Grcar, J. F.; Smooke, M. D.; Miller, J. A. A Fortran

Program for Modeling Steady Laminar One-Dimensional Flames, SAND85-
8240, Sandia National Laboratories, 1985.

(34) Kelley, C. T. SolVing Nonlinear Equations with Newton’s Method
(Fundamentals of Algorithms); SIAM: Philadelphia, PA, 1987.

(35) Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.;
Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, A.; McKerney,
A.; Sorensen, D. LAPACK Users’ Guide, 3rd ed.; SIAM: Philadelphia, PA,
1999.

(36) Duff, I. S.; Erisman, A. M.; Reid, J. K. Direct Methods for Sparse
Matrices; Clarendon: Oxford, 1986.

(37) Demmel, J. W.; Eisenstat, S. C.; Gilbert, J. R.; Li, X. S.; Liu,
J. W. H. SIAM J. Matrix Anal. Appl. 1999, 20, 720.

(38) Perko, L. Differential Equations and Dynamical Systems; Springer-
Verlag: New York, NY, 1996.

(39) Davis, M. J.; Zagaris, A.; Kaper, T. J.; Tomlin, A. S., to be
submitted.

JP801370P

Spatial Dynamics of Steady Flames 2 J. Phys. Chem. A, Vol. 112, No. 34, 2008 7805


