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We present a first-principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics
in heavy water without using any empirical model potentials. The calculations are based on ab initio molecular
dynamics simulations for trajectory generation and a time series analysis using the wavelet method for frequency
calculations. It is found that, in deuterated water, although a one-to-one relation does not exist between the
instantaneous frequency of an OD bond and the distance of its associated hydrogen bond, such a relation
does hold on average. The dynamics of spectral diffusion is investigated by means of frequency-time
correlation and spectral hole dynamics calculations. Both of these functions are found to have a short-time
decay with a time scale of ∼100 fs corresponding to dynamics of intact hydrogen bonds and a slower long-
time decay with a time constant of ∼2 ps corresponding to lifetimes of hydrogen bonds. The connection of
the slower time scale to the dynamics of local structural relaxation is also discussed. The dynamics of hydrogen
bond making is shown to have a rather fast time scale of ∼100 fs; hence, it can also contribute to the short-
time dynamics of spectral diffusion. A damped oscillation is also found at around 150-200 fs, which is
shown to have come from underdamped intermolecular vibrations of a hydrogen-bonded water pair. Such
assignments are confirmed by independent calculations of power spectra of intermolecular motion and hydrogen
bond kinetics using the population correlation function formalism. The details of the time constants of frequency
correlations and spectral shifts are found to depend on the frequencies of chosen OD bonds and are analyzed
in terms of the dynamics of hydrogen bonds of varying strengths and also of free non-hydrogen-bonded OD
groups.

1. Introduction

Studies of vibrational spectral diffusion within the stretch
band of normal or deuterated water using ultrafast time-resolved
infrared spectroscopy have provided a very powerful experi-
mental means of investigating water dynamics at the molecular
level.1–3 The vibrational frequencies of a water molecule are
sensitive to its local solvation environment, and as the sur-
rounding environment fluctuates due to molecular motion, the
vibrational frequencies also fluctuate. The time dependence of
these frequency fluctuations, known as vibrational spectral
diffusion, captures the dynamics of the liquid at the molecular
level such as the temporal evolution of hydrogen bonds in water.
Many of the vibrational spectral diffusion experiments on normal
or heavy water have employed nonlinear infrared pump-probe
techniques such as transient hole-burning experiments, where
a narrow band pump laser selectively excites a subset of OH or
OD stretch modes from an inhomogeneous distribution of their
frequencies, that is, a hole is created at the instant of laser
excitation. When the system is subsequently probed by recording
its transient absorption spectra at later times, the temporal
evolution of the hole due to molecular motion and associated
change in the average spectral frequency are observed. Although
the analysis of these experiments is complicated by the presence
of a number of other processes that also occur on similar time
scales, mathematical models have been developed to extract the
ground-state contribution to the pump-probe signal and also
the time correlation function of fluctuating frequencies. Earlier

studies involving such transient hole-burning experiments on
liquid water reported a time scale of 0.5-1.0 ps at room
temperature.3–11 More recent experiments involving more sophis-
ticated techniques, such as vibrational echos and two-dimensional
infrared methods, which provide a better time resolution of spectral
diffusion, have also revealed a shorter time scale of ∼100 fs in
addition to a longer time scale of about 1-2 ps.12–21

On the theoretical side, all of the existing calculations of
vibrational spectral diffusion are based on empirical potential
models of liquid water. A majority of these studies consider a
solute water immersed in a bath of classical water characterized
by one of the existing potential models. The vibrational
frequencies of the solute water are calculated by treating its
nuclear motion quantum mechanically in the potential field of
the surrounding classical water.22–28 There are also approaches
that empirically relate the vibrational frequencies of the solute
to instantaneous geometric configurations of the solvent.28–31

Very recently, Skinner and co-workers32–35 calculated the solute
vibrational frequencies by first finding an empirical relationship
between the frequency and electric field from a set of ab initio
calculations of small solute-solvent clusters. Although these
studies have provided important insight into various delicate
issues of spectral diffusion, the spectral shifts as well as their
dynamics can depend significantly on the details of the model
potentials employed in the calculations. For example, the
average OH frequency shift induced by the liquid water was
calculated to be 212 cm-1 in ref 26, whereas only about half of
that value was found in ref 27, the only difference between the
two calculations being the use of different models for water
intra- and intermolecular potentials. In addition to the average
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frequency shifts, the width and height of the frequency distribu-
tion have also been found to differ from one model to the other.34

Considerable variation in the dynamics of spectral diffusion has
also been found for various water models,32–34 consistent with
the previously known variability in other dynamical properties,
like diffusion and orientational relaxation, calculated for different
potential models of liquid water.36,37 For example, polarizable
fluctuating charge models38 of water predicted the longer-time
slower decay of frequency correlations reasonably well but failed
to reproduce the oscillations in the short-time dynamics, whereas
nonpolarizable SPC/E39 or TIP4P models,40 although they could
reproduce the short-time oscillations, predicted a significantly
faster dynamics for the long-time part when compared with the
corresponding experimental results.12–15,20,34 Hence, by changing
the set of empirical water potentials, a significant variation in
the frequency results can occur. Thus, it is desirable to calculate
these equilibrium and dynamical aspects of vibrational spectral
shifts from first principles without involving any empirical
model potentials. Such a study is presented here for the first
time. Although the focus of the present work is to present a
finite-temperature ab initio computational method to calculate
the dynamics of spectral diffusion and to aid in molecular-level
interpretation of the observed results for liquid water, the same
method can also be applied to other systems as well at the level
of first principles.

In the present work, we perform a first-principles theoretical
study of the vibrational spectral diffusion and hydrogen bond
dynamics in deuterated liquid water by employing the methods
of ab initio molecular dynamics41,42 for trajectory generation
and wavelet analysis43–45 for frequency calculation. In ab initio
molecular dynamics simulations, the quantum many-body
potentials and forces are obtained directly from on-the-fly
quantum electronic structure calculations, and thus, no empirical
pair potentials are used. First, we investigated the equilibrium
aspects of frequency-structure correlations in heavy water,
especially the relations between the fluctuating stretch frequen-
cies of OD modes and associated hydrogen bonds, and then,
the dynamics of spectral diffusion was investigated by means
of frequency-time correlation and spectral hole dynamics
calculations. The dynamical results are analyzed in terms of
the motion of an intact hydrogen-bonded pair and lifetimes
of free and hydrogen-bonded states of OD bonds. The details
of the time constants of frequency correlations and spectral
shifts are found to depend on the frequencies of chosen OD
bonds and are analyzed in terms of the dynamics of hydrogen
bonds of varying strengths and also of free non-hydrogen-
bonded OD groups. A first-principles calculation of the kinetics
of local structural relaxation of hydrogen bonds is also presented
using the population time correlation function formalism, and
possible relations of such local structural relaxation to the
observed dynamics of spectral diffusion are discussed.

The organization of the rest of the paper is as follows. In
section 2, we present the details of ab initio molecular dynamics
simulations, and in section 3, we discuss the wavelet analysis
for frequency calculations. The results of frequency-structure
correlations are discussed in section 4, and those of spectral
diffusion and hydrogen bond dynamics are presented in section
5. Our conclusions are briefly summarized in section 6.

2. Ab Initio Molecular Dynamics Simulations

The ab initio molecular dynamics simulations were carried
out by employing the Car-Parrinello method42 and the CPMD
code.46 Our simulation system contained 32 D2O molecules in
a cubic box of length 9.865 Å. We note that the size of the

simulation box used in the present simulations corresponds to
the experimental density of liquid water at 300 K. The box was
periodically replicated in three dimensions, and the electronic
structure of the extended system was represented by the
Kohn-Sham (KS) formulation47 of density functional theory
within a plane wave basis. The core electrons were treated via
the norm-conserving atomic pseudopotentials of Troullier-
Martins,48 and the plane wave expansion of the KS orbitals was
truncated at a kinetic energy of 80 Ry. A fictitious mass of µ )
800 au was assigned to the electronic degrees of freedom, and
the coupled equations of motion describing the system dynamics
were integrated by using a time step of 5 au. We used the
BLYP49 functional in the present simulations because it has been
shown to provide a good description of hydrogen-bonded liquids
such as water,50,51 methanol,52 and also ammonia.53 The initial
configuration of the water molecules was generated by carrying
out a classical molecular dynamics simulation using the empiri-
cal multisite SPC/E39 interaction potential. Then, we equilibrated
the system through ab initio molecular dynamics for 10 ps in a
canonical ensemble at 300 K, and thereafter, we continued the
run in the microcanonical ensemble for another 50 ps for
calculations of various equilibrium and dynamical quantities.

Although the experiments in vibrational spectral diffusion
have been performed on dilute mixtures of HOD in liquid H2O
or D2O,1–21 our present simulations have been carried out for
neat D2O to make our calculations computationally more
efficient. We note that one necessarily needs to either make a
very long run of a system of one HOD in water or consider a
very large system with several HODs in water at low concentra-
tion in order to obtain statistically meaningful results, but both
these are not viable options for ab initio molecular dynamics.
Instead, in the spirit of previous work,33,34 we simulated a neat
liquid and considered, for the purpose of frequency calculations,
that every OD bond of the neat liquid was an independent local
vibration of interest. Thus, we calculated two OD vibrations of
each water in the simulation system, giving a total of 64 local
OD vibrations at every time instant, instead of only one, which
would have been the case if we had considered just one HOD
dissolved in 31 waters. We expected that the effects of this
presumption that every bond in the system is a local oscillator
of interest would not significantly affect our calculated results
of spectral diffusion because experimental complications of
excited-state vibrational energy relaxation through intermolecu-
lar resonant channels are not present in our simulation system.
Besides, as discussed in the next section, the instantaneous
frequencies were calculated directly from the simulated time
dependence of OD oscillations, and thus, any effects of
intermode coupling on the vibration of an OD group were
implicitly taken into account in our calculations. Also, the
analysis of spectral diffusion in terms of normal modes is
complicated by the fact that the frequency perturbations of such
modes come from two donor hydrogen bonds as compared to
only one when the analysis is made within local mode
approximation. Finally, while the equilibrium distribution of
solute vibrational frequencies depends on solute mass and
solute-solvent interactions, the normalized dynamics of the
spectral diffusion is primarily sensitive to the molecular
dynamics of the solvent. Thus, our calculated normalized
dynamics can be compared with that obtained for OH modes
in liquid D2O under experimental situations. We note, however,
that the experimental results of spectral diffusion in liquid H2O
and D2O are rather similar, especially for the slower long-time
part of the dynamics,2,15,17,20 and thus, our calculated results
can be used to understand the basic aspects of spectral diffusion
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in either of the two isotopic liquids. Also, the present calcula-
tions, as described in the following two sections, are of very
general nature and can be straightforwardly extended to
investigate spectral diffusion and related properties in other
systems of experimental and theoretical interest such as ionic
solutions54–61 including those containing acids and bases,62–67

interfaces,68–70 confined water,71–75 peptides and polypeptides
in aqueous medium,76–80 and also nonaqueous systems.81–83

3. Frequency Calculations: Time Series Analysis

A quantitative calculation of the time-dependent vibrational
frequencies of OD bonds can be carried out through the so-
called time series analysis of ab initio molecular dynamics
trajectories. There are primarily two such approaches available
in the literature to calculate the time-dependent frequencies
associated with classical trajectories. The method of Laskar84,85

divides an entire trajectory into a series of short disjoint time
intervals and uses windowed Fourier transforms in each of the
short time intervals to obtain the instantaneous frequencies. The
method of Arevalo and Wiggins,44 on the other hand, obtains
the time-dependent frequencies through a continuous wavelet
transform of the trajectories. In the present work, we have
followed this latter approach because it adjusts the size of the
time window automatically according to the frequency of
oscillations and thus provides a better localization in time
of the spectral information of a trajectory than the approach of
windowed Fourier transforms. The basic idea of the wavelet
analysis is to express a time-dependent function f(t) in terms of
basis functions which are constructed as translations and
dilations of a mother wavelet φ44

ψa,b(t)) a-1/2ψ(t- b
a ) (1)

where the mother wavelet has to have compact support for it to
be useful, that is, it should decay to zero rapidly for t f (∞.
The coefficients of this expansion are given by the wavelet
transform of f(t), which is defined as

Lψ f (a, b)) a-1/2∫-∞

∞
f(t)ψj (t- b

a )dt (2)

for a > 0 and b real. For the mother wavelet, we have used the
Morlet-Grossman wavelet86

ψ(t)) 1

σ√2π
e2πiλte-t2/2σ2

(3)

with λ ) 1 and σ ) 2. The inverse of the scale factor a is
proportional to the frequency, and thus, the wavelet transform
of eq 2 at each b gives the frequency content of f(t) over a time
window about b. The width of the time window depends on a;
it automatically narrows for small a (high frequency) and widens
for large a (low frequency). Since we are interested in the OD
stretch frequencies, the time-dependent function f(t) for a given
OD bond is constructed to be a complex function with its real
and imaginary parts corresponding to the instantaneous OD
distance and the corresponding momentum along the OD bond.
The value of the instantaneous stretch frequency at a given time
t ) b is then determined from the scale a that maximizes the
modulus of the corresponding wavelet transform at b, and the
process is repeated for the entire 50 ps trajectory and for all of
the 64 OD bonds which are there in the present simulation
system.

4. Frequency-Structure Correlations: Equilibrium
Aspects

Since the interpretation of the time-dependent vibrational
spectral shifts is based on the key idea that the OD frequency

is strongly correlated with the length of the hydrogen bond
between the D atom and the nearest oxygen of a neighboring
water, it is important to critically analyze from first principles
the presence of any such frequency-structure correlations in
the liquid phase of normal or heavy water. In Figure 1a, we
have shown the time-dependent frequencies of a given OD bond
as found from the wavelet method of time series analysis. In
order to investigate the effects of nearest water on these
fluctuating frequencies, in Figure 1b, we have shown the
instantaneous distance of the nearest oxygen atom from the D
atom of the OD mode. A correlation between the two fluctuating
quantities is evident. In particular, when the D · · ·O distance is
large, for example, in the segment of 7.8-9.6 ps, the frequency
is also found to be significantly higher than its average value.

The results shown above are for a particular OD bond. We
now make a more detailed analysis of the relation between
the frequency of an OD bond and the intermolecular D · · ·O
distance by averaging over all of the OD groups. In Figure 2a,
we have shown the distribution of D · · ·O distances for three
fixed values of the OD frequency (within (5 cm-1). For this
figure, and also for Figures 5 and 6 shown later, we have used
the MATLAB package to smooth the raw simulation data using
the loess method with a span of about 5-15%.87 It is seen that
as the frequency increases, the corresponding distribution of
D · · ·O distances is also shifted toward its larger values.
However, the distributions are fairly wide with significant
overlaps, which means a single instantaneous frequency cannot

Figure 1. The fluctuating (a) frequency of a chosen OD bond and (b)
distance of the D atom of this bond from its nearest oxygen of a
neighboring molecule along the simulation trajectory.

Figure 2. (a) The distribution of the D · · ·O distance for fixed values
of the OD frequency. The black solid, red dashed-dotted, and blue
dashed curves are for OD frequencies ∆ω ) 0 ( 5, -100 ( 5, and
100 ( 5 cm-1, respectively, where ∆ω represents the deviation from
the average frequency. (b) Joint probability distribution of the OD
frequency and D · · ·O distance. The contour levels of different fractions
of the maximum value are shown in different color codes.
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be assigned to a given D · · ·O distance. This is more clearly
shown in Figure 2b through the contour plots of the conditional
probability of observing a particular frequency for a given
D · · ·O distance. Clearly, there is substantial dispersion in the
probability distribution which rules out the possibility of
assigning a single instantaneous frequency to a given D · · ·O
distance. On average, however, the frequency is seen to be a
monotonic function of the D · · ·O distance, which means that a
frequency-structure correlation is indeed present on average
where the frequency of an OD bond decreases with the decrease
of the associated D · · ·O hydrogen bond distance. Although
similar banana-shaped frequency-distance probability distribu-
tions were found earlier through empirical potential-based

studies,24,26 a first-principles calculation of such a conditional
probability distribution is presented here for the first time.

The distribution of all of the frequencies is found to be rather
broad with a full width at half-maximum (fwhm) of 290 cm -1

and an average frequency (ωj ) of 2380 cm-1 (figure not shown).
A separate simulation of gas-phase D2O yields a frequency of
2560 cm-1 for the OD bonds; thus, the present calculations yield
a Stokes shift of 180 cm-1, which is to be compared with the
experimental value of about 220 cm-1 for the OD stretch in
liquid water.55,88 Apart from the frequency distribution, we also
calculated the infrared (IR) spectra of the present system from
dipole correlations within the high-temperature/harmonic ap-
proximation,89 and the fwhm of the IR stretch band was found
to be about 240 cm-1 (figure not shown), which is somewhat
smaller than the width of the frequency distribution. However,
we note that the IR band is expected to be somewhat narrower
than the frequency distribution due to motional narrowing
effects.26,90 Finally, we note that our calculated average stretch
frequency of 2380 cm-1 is somewhat red-shifted compared to
the corresponding experimental value of about 2500 cm-1,
which is likely due to the systematic errors introduced by the
density functional, electronic fictitious mass, and finite basis
set cutoff that are used in the electronic structure calculations91,92

and also may due to finite size of the simulation system. In
principle, we could have accounted for these systematic errors
by using a constant scaling factor, as was done in some of the
earlier work.32,35 However, the primary focus of the present work
is on the dynamics of spectral diffusion, and since the normal-
ized dynamics remains unaltered by such scaling factors, we
have preferred not to use any scaling factor in the present
calculations to bring the calculated frequencies closer to
experiments.

5. Spectral Diffusion and Hydrogen Bond Dynamics

5.1. Frequency-Time Correlation Function. The central
dynamical object of interest in the context of vibrational spectral
diffusion is the frequency-time correlation function defined by

Cω(t)) 〈δω(t)δω(0) 〉 /〈δω(0)2〉 (4)

where δω(t) is the fluctuation from the average frequency at
time t. The average of eq 4 is over the initial time and over all
of the OD groups of the system. The results of the frequency-
time correlation are shown in Figure 3. A fast decay and an
oscillation at around 200 fs are found in the short-time part of
the dynamics, and this is then followed by a slower monotonic
decay extending to a few ps. A biexponential fit to the entire

Figure 3. The time correlation function of OD fluctuating frequencies
averaged over all of the molecules of the system. The blue dashed and
solid grey curves correspond to the simulation data and fit by a function
as given by eq 5, respectively.

Figure 4. (a) The frequency dependence of the power spectra of O · · ·O
relative velocities of an initially hydrogen-bonded pair. (b) The time
dependence of the continuous (black solid) and intermittent (red dashed)
hydrogen bond time correlation functions.

Figure 5. The time variation of the distribution of (a) hole and (b)
remaining modes after excitation in the blue at time t ) 0. The black
solid, blue dashed, and red dashed-dotted curves are for times of 12
fs, 60 fs, and 1.5 ps, respectively.

Figure 6. The time variation of the distribution of (a) hole and (b)
remaining modes after excitation in the red at time t ) 0. The black
solid, blue dashed, and red dashed-dotted curves are for times of 12
fs, 60 fs, and 1.5 ps, respectively.
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decay yields two time scales of 100 fs and 1.85 ps with weights
of 0.68 and 0.32, respectively. However, this biexponential fit
does not reproduce the oscillation or bump that is found at
around 200 fs, and thus, a fit including a damped oscillatory
function is expected to reproduce better the simulation results.
Indeed, a much better representation of the frequency correlation
is found by using the fitting function26

f(t)) a0 cos ωste
-t/τ0 + a1e

-t/τ1 + (1- a0 - a1)e
-t/τ2 (5)

with the following values of the frequency and relaxation times:
ωs ) 136.1 cm-1, τ0 ≈ τ1 ≈ 100 fs and τ2 ≈ 2.0 ps. The details
of the fitting parameters including the weights are included in
Table 1. The oscillation in the short time is likely due to the
underdamped motion of intact hydrogen-bonded O · · ·O pairs.
To confirm the origin of this oscillation, we have done a separate
calculation of the power spectra of the relative velocity of an
initially hydrogen-bonded O · · ·O pair, which is shown in Figure
4a. Enhanced intensities are clearly visible at around 60 and
180 cm-1 in the power spectra arising from intermolecular
bending and stretching vibrations of the hydrogen-bonded water
pair. We note that these intermolecular vibrational frequencies
agree well with the corresponding experimental values of 60
and 170 cm-1 for liquid D2O.12 Thus, the oscillations of the
first term of eq 5 can be attributed to the fast intermolecular
vibrations of intact hydrogen-bonded pairs. The exponential time
constants of both the first and second terms are very similar,
and they likely correspond to the short-time relaxation of the
intact hydrogen bonds such as changes in the hydrogen bond
length and angle that modulate the OD frequencies.

In an attempt to understand the origin of the slower relaxation
component of the frequency-time correlation, we have calcu-
lated the dynamics of the breaking and making of hydrogen
bonds in the system by using the so-called population correlation
function approach. In this approach, we define two hydrogen
bond population variables, h(t) and H(t), where h(t) is unity
when a particular water-water pair is hydrogen bonded at time
t according to an adopted definition and zero otherwise and H(t)
) 1 if the water-water pair remains continuously hydrogen
bonded from t ) 0 to time t, and it is zero otherwise. By
constructing appropriate time correlations of these two popula-
tion variables,92–98 we calculate two probability functions SHB(t)
and CHB(t), where the first function describes the probability
that an initially hydrogen-bonded water-water pair remains
continuously bonded at all times up to t and the second function
describes the probability that a water-water hydrogen bond is
intact at time t, given that it was intact at time zero, independent
of possible breaking in the interim time. While the integral of
the continuous probability, τHB, can be interpreted as the average
lifetime of a hydrogen bond, the time dependence of the
intermittent probability describes the local structural relaxation
of hydrogen bonds. After a hydrogen bond is broken, the
water-water pair can remain as nearest neighbors for some time
before either the bond is re-formed or the molecules diffuse

away from each other. We define NHB(t) as the time-dependent
probability that a hydrogen bond is broken at time zero but the
two molecules remain in the vicinity of each other, that is, as
nearest neighbors, but are not hydrogen bonded at time t.
Following previous work,92,94,96–98 we write a simple rate
equation for the decay of CHB(t)

-dCHB(t)

dt
) kHBCHB(t)- kHB

′ NHB(t) (6)

where kHB and kHB
′ are the forward and backward rate constants

and the inverse of kHB can be interpreted as the average lifetime
of a hydrogen bond. The existence of a hydrogen bond between
the D (of OD) and the O of a neighboring water is found by
using a simple geometric criterion that the D · · ·O distance
should be less than 2.45 Å. On the other hand, two water
molecules are taken to be nearest neighbors when their O · · ·O
distance is less than 3.4 Å. Note that these distances correspond
to the first minimum of the intermolecular O · · ·O and D · · ·O
radial distribution functions (results not shown here). The results
of the continuous and intermittent correlation functions are
shown in Figure 4b. Integration of SHB(t) yields a value of 2.3
ps for τHB. We also applied a least-squares fit of the simulation
results of CHB(t) and NHB(t) to eq 6 in the short-time region of
0 < t < 4 ps to obtain the rate constants for the short-time part
of the relaxation and in the longer time region of 4 < t < 12 ps
to calculate these quantities for the slower, long-time part of
the relaxation. The inverses of the corresponding forward rate
constants, which correspond to the average hydrogen bond
lifetimes, are denoted as 1/kHB;short and 1/kHB;long, and their values
are found to be 2.0 and 13.0 ps, respectively. We note that the
values of 1/kHB;short are similar to τHB obtained from the route
of continuous correlation functions, which is expected
because both SHB(t) and the short-time part of the reactive flux
capture the hydrogen bond breaking dynamics due to librational,
rotational, and short-time translational motion, and henceforth,
this time constant of ∼2 ps will be referred to as the hydrogen
bond lifetime. A separate calculation of the residence dynamics
of water molecules by following the method of refs 59 and 60
reveals that the longer time scale of 1/kHB;long actually corre-
sponds to the residence time of a water molecule in the hydration
shell of a tagged water to which it was hydrogen bonded at
time t ) 0. Thus, this longer time scale actually corresponds to
escape dynamics or slow diffusion of a water molecule from
its initial solvation shell.

From the similarity of the time scales, one can conclude that
the slower relaxation time of the frequency correlation corre-
sponds to lifetimes of hydrogen bonds. It would be instructive
to investigate the dynamical contribution of the hydrogen bond
making events to the overall spectral dynamics. For this purpose,
we used a similar population-time correlation function formu-
lation to calculate the probability of an OD, which was non-
hydrogen-bonded (or free) at time t ) 0, to remain continuously
non-hydrogen-bonded up to time t. The integral of this time
constant was found to be about 100 fs, which can be interpreted
as the average time that an OD group remains free before it
makes a hydrogen bond with a neighboring water molecule,
and it is likely to contribute to the short-time part of the
relaxation of the frequency correlation function. We note that
our findings of a fast time scale of ∼100 fs and a slower time
scale of ∼2 ps agree well with the results of recent time-resolved
infrared spectroscopic experiments. For example, the long-time
decay of the frequency correlation was reported to be 1.8 and
2 ps in refs 2 and 5, respectively, for the HOD/H2O system. In
ref 15, the slower time scale was found to be 1.4 ps for HOD

TABLE 1: Values of Various Time Constants (ps),
Frequency (cm-1), and Weights of Frequency-Time
Correlation and Time-Dependent Frequency Shifts of Hole
and Remaining Modes for Blue and Red Excitations

quantity excitation τ0 τ1 τ2 ωs a0 a1

Cω(t) 0.10 0.12 2.0 136.1 0.19 0.50
∆ωj h(t) blue 0.11 0.12 1.50 90.2 0.20 0.50
∆ωj r(t) blue 0.13 0.13 3.60 112.6 0.17 0.54
∆ωj h(t) red 0.18 0.13 3.10 111.5 0.10 0.57
∆ωj r(t) red 0.16 0.11 1.4 92.0 0.15 0.50
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in D2O. We note in this context that earlier calculations using
nonpolarizable water models predicted a time scale of 0.5 ps
for TIP4P and 0.9 ps for SPC/E models24,32 for the long-time
dynamics, which are shorter than the experimental value. The
polarizable SPC-FQ model was found to give a time scale of
1.5 ps,33 but it failed to reproduce the short-time oscillations
found in experiments. To the best of our knowledge, none of
the existing empirical models could quantitatively reproduce
both the short-time oscillation and the slower long-time
relaxation. The present first-principles study, on the contrary,
is found to describe the dynamics of spectral diffusion quite
well in both short-time and long-time regions.

It may be noted that the time dependence of the intermittent
hydrogen bond correlation captures the dynamics of local
structural relaxation, and the average decay time of this function
is ∼10 ps, which is significantly longer than the observed slower
component of the dynamics of frequency correlation. Clearly,
the slower time scale of spectral diffusion correlates better with
the lifetime rather than the time scale of the much slower
structural relaxation of hydrogen bonds. The structural relax-
ation, which definitely modulates the OD frequencies, can be
viewed as a sequence of slow breaking and fast making
processes of hydrogen bonds. Since the longer time scale in
this composite relaxation process is that of the breaking of
hydrogen bonds, it shows up as the slower component in the
dynamics of spectral diffusion. In ref 15, the slower time scale
in spectral diffusion was assigned to the time scale of switching
of the partner through collective reorganization. Since the
lifetime of a non-hydrogen-bonded water is very small, as found
in the present calculations and also in earlier experiments,13 a
true hydrogen bond breaking, as opposed to rattling between
hydrogen-bonded and non-hydrogen-bonded states through
intermolecular vibration, would indeed involve a switching of
the hydrogen bond partner. In other words, given the very short
lifetime of non-hydrogen-bonded water, true breaking of a
hydrogen bond would occur only when a new partner has been
found; thus, the dynamics of true hydrogen bond breaking and
switching of the hydrogen bond partner are expected to occur
on similar time scales. It is interesting to note that the frequency
correlation function does not show a component corresponding
to the slow escape dynamics of water molecules from a given
solvation shell of another water. When a tagged D2O molecule
leaves its original first hydration shell centered on a D2O, it
simply enters the hydration shell of another D2O without any
noticeable changes in the frequency fluctuations (results not
shown). Consequently, the much slower escape dynamics of
water molecules is not captured in the time correlation of
frequency fluctuations in pure water. However, the dynamics
of such escape processes can give rise to a slow component in
the spectral diffusion if the escape events take water molecules
to different chemical environments, such as from ion solvation
shells to bulk water in ionic solutions or from interfaces to bulk
water for systems with liquid-liquid, liquid-vapor, or
liquid-solid interfaces.

5.2. Hole Dynamics at Different Frequencies. In this
section, we present a calculation of the dynamics of holes that
are created by the removal of a band of OD frequencies in
different frequency regions of the inhomogeneous equilibrium
distribution. As noted in ref 26, the time evolution of these
initially created nonequilibrium distributions is closely related
to the time evolution of the pump-probe signals of time-
dependent infrared spectroscopic experiments designed to
investigate vibrational spectral diffusion in liquid water. Suppose
at t ) 0 that the laser pump pulse, which is assumed to have a

Gaussian frequency profile, burns a hole in the ground-state
frequency distribution of the form

Ph(ω, 0))Peq(ω)e-(ω - ωp)2/2σ2
(7)

where ωp is the pulse center frequency and Peq(ω) denotes the
equilibrium distribution of all of the OD frequencies in the
system. Clearly, the initial distribution of the remaining OD
frequencies Pr(ω, 0), that is, the ones remaining in the ground
state in experimental situations, is equal to Peq(ω) - Ph(ω,0).
Following previous experimental and theoretical work,7–9,26 we
use a Gaussian pulse of width (2σ) 140 cm-1 and calculate the
time evolution of the nonequilibrium distributions Pr(ω,t) and
Ph(ω,t) from a large set of system trajectories reflecting the
initial distributions Pr(ω,0) and Ph(ω,0), respectively. The
average frequencies of the remaining and hole modes are then
calculated from the following relation

ωj k(t))
1
Nk
∫ dωω Pk(ω, t) (8)

where k ) r for remaining modes and k ) h for the hole modes
and Nk ) ∫dωPk(ω,0).

We have followed the dynamics of hole and remaining modes
by creating holes in two different frequency regions: one
centered in the red side at ωp ) ωj - 100 cm-1 and the other
centered in the blue side at ωp ) ωj + 100 cm-1 where, as
defined earlier, ωj is the average frequency of all of the OD
groups in the system. We employed a Metropolis Monte Carlo-
like algorithm99 to effect the creation of a chosen hole, red or
blue and at many different initial times, so as to satisfy the
distribution of eq . We first show the time evolution of the hole
and remaining distributions after the hole is created at t ) 0.
Since the hole is created instantly in our theoretical calculations,
unlike in true experimental situations where creation of a hole
of 140 cm-1 width requires about 100 fs, its dynamics can be
followed immediately after t ) 0 in the present study. Of course,
in experiments, one requires laser pulses of larger width to
meaningfully measure the dynamics within the first 100 fs. The
present theoretical results of the time evolution of hole and
remaining distributions for blue excitation are shown in Figure
5, and the corresponding results for red excitation are shown in
Figure 6. The frequency is expressed in terms of the shift (∆ω)
from its equilibrium value. When the hole is created in the blue,
its distribution gradually shifts toward red until it becomes
symmetric around the equilibrium frequency. The remaining
distribution shifts toward blue with time, the hole in the blue
region is gradually filled up, and finally, the distribution acquires
a symmetric shape around ωj , that is, around ∆ω ) 0. Opposite
shifts are found for the red excitation, as expected.

In Figure 7, we have shown the average frequencies of the
hole modes (∆ωj h) for both blue and red excitations, and the
corresponding results for the remaining modes (∆ωj r) are shown
in Figure 8. Overall, the decay patterns of the average frequen-
cies are found to be similar to that of the frequency time
correlation function shown in Figure 3. There is a fast decay
and an oscillation at short times followed by slower decay
extending to a few ps. Interestingly, the oscillation is more
pronounced in the dynamics of lower-frequency modes, such
as the hole modes for red excitation and remaining modes for
the blue excitation. Since the lower-frequency modes primarily
involve strongly hydrogen-bonded OD modes, this again shows
that the oscillations in the frequency evolution comes from
underdamped intermolecular vibration of a hydrogen-bonded
pair of molecules. Both bending and stretching modes of
intermolecular vibrations can modulate the OD frequencies and
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hence contribute to the short-time oscillation of the hole
dynamics. A fit of the type of eq 5 produces a fast time constant
around 100-150 fs and a slower time constant around 1.5-3.5
ps; the details are included in Table 1. The shorter time scale
corresponds to frequency modulation due to the dynamics of
an intact hydrogen bond and also due to hydrogen bond making,
especially for the high-frequency modes because many of them
might have been non-hydrogen-bonded at the initial time. The
longer time constant is again attributed to the lifetimes of
hydrogen bonds. It is interesting to note that this slower
relaxation has a longer time constant for the lower-frequency
modes. For example, it is about 3 ps for the hole modes and
1.5 ps for the remaining modes in the case of excitation in the
blue. This observation reaffirms the assignment of this slower
time scale to hydrogen bond lifetimes. The lower frequency
modes are characterized by stronger hydrogen bonds, on
average, which have a longer lifetime.

6. Summary and Conclusions

We have presented a first-principles theoretical study of
vibrational frequency-structure correlations and spectral dif-
fusion in heavy water without employing any empirical model
potentials. All D2O molecules in the present study are considered
on equal footing. They are allowed to interact with the full

many-body interaction potential obtained from quantum elec-
tronic structure calculations within the density functional
formalism, and the whole system is propagated on the multi-
dimensional electronic potential surface through the Car-
Parrinello method.42 A time series analysis of the ab initio
simulation trajectories using the wavelet transformation method
reveals that although a one-to-one relation does not exist
between the instantaneous frequency of an OD bond and the
associated hydrogen bond distance, such a relation does hold,
on average, where the frequency of an OD bond increases with
an increase of the associated hydrogen bond distance. On the
dynamical side of frequency fluctuations, it is found that the
frequency-time correlation function has a short-time decay
corresponding to the motion of intact hydrogen bonds and a
long-time decay corresponding to the average lifetime of
hydrogen bonds. The two time scales are around ∼100 fs and
∼2 ps, respectively. The possible role of local structural
relaxation in the slower long-time dynamics of spectral diffusion
is also discussed. The short-time dynamics of the frequency
correlation can also have some contributions from hydrogen
bond making events, which also occur on a time scale of ∼100
fs. An oscillation is seen in the shorter time part of the dynamics,
which arises from underdamped intermolecular vibrations of a
hydrogen-bonded water pair. We also performed theoretical
calculations of the time-dependent spectral shift by following
the hole dynamics subsequent to excitations in the red and blue,
and the results are analyzed in terms of the dynamics of intact
and broken hydrogen bonds and also in terms of hydrogen bond
lifetimes. The connections of the present first-principles results
to recent time-dependent infrared spectroscopic experiments are
also discussed.

The present study is based on a time-dependent frequency
analysis of all of the OD bonds of a neat D2O liquid from first-
principles dynamical simulations. This choice of the system,
where each OD mode is considered to be a local vibration of
interest, greatly enhances the computational efficiency of our
calculations. Also, use of the time series analysis of true
simulated trajectories ensures that the effects of any intermode
coupling of OD vibrations are implicitly taken into account in
the present frequency calculations. The degeneracy of the two
OD modes of an isolated water molecule is generally broken
in the liquid phase due to asymmetric solvation, and the resultant
frequency nondegeneracy is expected to provide some local
character to the OD vibrations. In fact, an analysis of the
calculated frequencies of the two OD modes of a given water
in the simulated liquid reveals that the two bonds can vibrate
at very different frequencies at a given time instance depending
on their instantaneous solvation environment (results not shown);
sometimes the difference can be as large as 400 cm-1 or even
more when one OD is strongly hydrogen bonded and the other
one is free. Clearly, the asymmetric solvation of the two OD
groups in liquid water can significantly break their gas-phase
vibrational degeneracy.

We would also like to address the issue of stability of the
present results with respect to the density functional employed
in ab initio molecular dynamics simulations. For this purpose,
we carried out a similar wavelet analysis of ab initio simulation
trajectories of liquid D2O obtained by using the HCTH/120
functional65,66,100 and calculated the frequency distribution and
spectral diffusion properties. The fwhm of the frequency
distribution and the average OD stretch frequency for this
functional are found to be 280 and 2377 cm-1, respectively,
and the frequency correlation function is found to decay with
times scales of 110 fs and 1.9 ps (figures not shown), which

Figure 7. The time variation of the (a) average frequency shifts of
the hole modes after excitations in the blue and in the red. The
corresponding results after normalization by the initial frequency shifts
are shown in (b). In both figures, the blue solid and red dashed curves
corresponds to excitations in the blue and red, respectively. The grey
solid curves in (b) represent the fits by a function of eq 5.

Figure 8. The time variation of the (a) average frequency shifts of
the remaining modes after excitations in the blue and in red. The
corresponding results after normalization by the initial frequency shifts
are shown in (b). In both figures, the blue solid and red dashed curves
corresponds to excitations in the blue and red, respectively. The grey
solid curves in (b) represent the fits by a function of eq 5.
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are very close to the BLYP results presented in the previous
sections. Thus, for pure D2O, these two functionals are found
to produce very similar results for vibrational spectral diffusion.
Another issue that we would like to comment upon is the purely
distance-based definition of a hydrogen bond that we have
employed in the present study. Our calculated hydrogen bond
lifetime (∼2 ps) is a bit longer than the results for some of the
empirical potentials where, in addition to the distance criteria,
an angular cutoff was also used in the hydrogen bond
definition.94–98,101 In fact, inclusion of angular cutoffs of 30 and
45° reduces our calculated hydrogen bond lifetimes to 1.25 and
1.65 ps, respectively, which are not very different from the
results of well-parametrized model potentials, such as SPC/E.101

However, the hydrogen bond lifetime calculated with only the
D · · ·O distance criterion is found to agree better with our
calculated spectral diffusion time for the same system, which
is not unexpected because the frequency of an OD bond is
primarily modulated by the fluctuations in the D · · ·O distance.

The normalized dynamics of spectral diffusion primarily
depends on the molecular dynamics of the solvent, and
experimentally, the dynamics of spectral diffusion in liquid H2O
and D2O have been found to be not very different from each
other.2,15,17,20 Thus, the results of the present work can be used
to understand the basic aspects of vibrational spectral diffusion
in either of the two isotopic liquids. It may be noted that, at the
qualitative level, the present first-principles study confirms many
of the earlier results of empirical simulation models, such as
the presence of primarily two time scales and a small oscillation
in the dynamics of spectral diffusion, frequency distributions
of hydrogen-bonded and non-hydrogen-bonded water molecules,
and a banana-shaped frequency-distance conditional probability
distribution. Hence, the present study provides support for using
these models for spectral diffusion studies at the qualitative level.
At the quantitative level, of course, some important differences
exist. For example, none of the existing empirical models have
been able to capture both the short- and the long-time dynamics
correctly. While the nonpolarizable models like SPC/E and
TIP4P describe the short-time oscillation reasonably well, they
predict a too fast relaxation for the long-time component,24,25,32,34

whereas polarizable models like SPC-FQ or TIP4P-FQ, while
predicting the long-time dynamics fairly well, fail to describe
the short-time oscillation.33,34 The present first-principles study,
on the other hand, describes both the short- and the long-time
dynamics quite well without involving any adjustable potential
parameters. We also note that empirical models alone, whether
polarizable or nonpolarizable, cannot produce the time-depend-
ent fluctuating frequencies along a simulation trajectory. Another
level of approximation, such as a perturbative approach25 or a
different approximate potential of the solute HOD,23,24 had to
be employed to extract the frequency fluctuations. On the
contrary, the present methodology allows calculations of
fluctuating frequencies directly from real-time ab initio simula-
tion trajectories, and hence, it can be easily extended to study
spectral diffusion in other related systems from first principles
without employing any empirical model potentials.
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