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The resonating block localize wave function (RBLW) method is introduced, a resonating modification of the
block localized wave functions introduced by Mo et al. [Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998,
109, 1687].This approach allows the evaluation of resonance energies following Pauling’s recipe. The method
is tested on two model molecules, hexagonal H6 and benzene. Calculations have been done with (local) and
without local restrictions (delocal). Resonance energies for both molecules have been obtained for each type
of calculation, in agreement with Pauling’s concept. From a comparison of the resonance energies obtained
from RBLW and standard valence bond calculations, the resonating block localize wave functions prove to
yield resonance energies close to standard valence bond delocal calculations.

1. Introduction

In the early years of quantum mechanics and its applications
in chemistry, scientists concluded that the resonance between
two Kekulé structures of benzene leads to it is hexagonal
symmetry and great stability. This was deemed to be an
indisputable fact. The past decades have shown however, that
tremendous work has been done to undermine that belief. For
example, in a series of a papers,2-8 Shaik et al. stated, that the
π system of benzene favors in fact a distorted geometry with
localized bonds, with the σ system forcing the molecule to be
symmetrical. Since the XIX-th century, when Kekulé derived
his famous benzene structures9 (Figure 1), until now, the
resonance theory and the electronic delocalization of aromatic
species has been a source of great confusion among chemists.
Even after all these years, with basic concepts like delocalization
and resonance energy (RE) deeply rooted in the minds of
everyone, chemists still seek an improvement to the resonance
picture.10-15 In order to understand where this confusion might
come from, we first have to understand the basic concept of
Pauling’s resonance energy (PRE) introduced in the 1930s of
20th century,16 which was a basis for all future development in
this area. In this memorable paper, Pauling sets up the benzene
problem in essentially the same way as Hückel did in his
approach.17,18 With all of the assumptions and simplifications
coming from the Hückel approach, he was able to treat the
benzene molecule with the relatively simple Slater method20

for formulating secular equation, combined with Rumer’s
diagrammatic method21 and rules following from that22 for
finding the matrix elements. The fundamental historical inter-
pretation of the resonance energy (PRE) was then defined by
Pauling as the difference between the energy of the benzene
molecule described with five, resonating Kekulé and Dewar
structures and the energy of a single Kekulé structure (Fig-
ure 2)

EPRE ) E5res.struc. - E1Kekule (1)

Based on those calculations, he estimated the resonance
energy and predicted quite accurately the contributions of the

Kekulé and Dewar structures to the overall energy. Since no
orbital optimization was performed, all energies were calculated
with the same set of orbitals.

The introduction of the principal concept of resonance energy
by Pauling was not the only important feature of that paper.
By application of Rumer’s diagrammatic method, the calcula-
tions became more feasible, to such an extent that they were
not restricted anymore to just benzene and a few other simple
aromatic compounds but could be easily applied to naphthalene
and bigger conjugated aromatic systems. Moreover, the utiliza-
tion of Rumer’s method had very important impact on how a
single bond has been described within valence bond theory. In
the general case, a single bond in a molecule, is described by
two orbitals, φ1 of atom 1 and φ2 of atom 2, coupled to a singlet,
which can be written in the functional form:

Ψ12 ) N(|�1�2|- |�1�2|) (2)

where �i represents orbital φi multiplied by an R spin function
and �j j an orbital φj multiplied by a � spin function. Extending
this idea to the description of a molecule with more than one
bond, for example the π-bonds in a single benzene Kekulé
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Figure 1. Two possible resonating structures of benzene proposed by
Kekulé.

Figure 2. Pauling’s resonance enegy definition showed on benzene
example.
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structure (Figure 3), we find that the resulting Ψ12, 34, 56 function
is simply a product of the three functions in (2):

Ψ12,34,56 ) N(|�1�2|- |�1�2|)(|�3�4|- |�3�4|)(|�5�6|-
|�5�6|) (3)

The spin-coupling scheme arising from function (3) is of
special importance in the valence bond (VB) method, since one
can describe the whole molecule and its covalent bonds, by
generating all possible functions of the form (3). Because we
are interested only in an independent set of those functions,
special noncrossing rules are available21 that can ensure the
selection of a proper subset of functions. In all VB methods,
which have been developed over the years, like generalized
valence bond (GVB),23,24 valence bond self consistent field
VBSCF),25,26 spin-coupled valence bond (SCVB),27 or complete
active space valence bond (CASVB),28-30 spin-coupling is a,
sometimes implicit,31,32 inseparable part.

1.1. Other Resonance Energy Definitions. Moving from
the early Heitler-London approach,33 in which the PRE was
defined, to the modern VB approach, we are facing difficulties
arising from orbital optimization.41,53,54 Since orbital opti-
mization is required to ensure a consistent answer which does
not depend on the start, the original concept is no longer
valid, because we would obtain different orbitals for resonat-
ing benzene and for one the Kekulé benzene structure. Many
inconsistencies arose around this, which might be the cause
of all of the confusion. Thus, many different resonance energy
definitions were introduced over the years. In the modern
VB approach, PRE can be defined as the difference between
total energy and an energy of the most stable structure, from
the same calculations. We emphasize here the concept “same
calculations”, which implies that both energies have to be
obtained with the same set of orbitals, like in the original
idea of Pauling. If one does allow the orbitals to adapt, one
obtains the vertical resonance energy (VRE),10,34 which is
the energy difference between the molecule lacking reso-
nance, i.e., one Kekulé benzene structure, and that same
molecule described by resonating structures, i.e., resonating
benzene (Figure 4a). The orbitals are optimized but the
geometry is kept the same. Perhaps the limit of this approach
is reached by employing “breathing orbitals”.13,14 Finally also
the geometry may be adapted yielding the theoretical
resonance energy (TRE)11,40 Now the geometries of the

molecule lacking resonance (1,3,5-cyclohexatriene) and of
the molecule with resonance (resonating benzene) are
optimized without any constrains, thus giving, for example,
different bondlenghts for single and double bonds for the
former41 (Figure 4b)). In all of the models discussed so-far,
the spincoupling defines the bond as in eq 2.

1.2. Block Localize Wave Function Approach. Resonance
energy is in general an energy difference between the real
system described by all possible resonating structures and
its most stable structure. One would thus expect problems
defining this concept within the molecular orbital (MO)
framework, since usually in MO calculations all molecular
orbitals are delocalized over the whole system. The first who
tried to overcome this problem were Mulliken and Parr.34

They evaluated the energy of a single Kekulé benzene
structure, simply by replacing the three delocalized π MOs
in benzene with three nonresonating ethylene-like π MOs.
Later a similar approach has been used by Daudey et al.35

and Kollmar,36 who also considered the electronic relaxation
of the σ frame, and by Glendening et al.37 The delocalized
nature of MO’s still made those developments impractical,
even though the post-SCF analyses such as the natural bond
order (NBO)38,39 method by Weinhold et al. was able to
estimate the delocalization energy. Trying to combine the
best of both VB and MO worlds, Mo et al.1 introduced the
block localized wave function method (BLW).1,42 The BLW
approach divides all basis functions into subgroups. All MOs
then are expanded in terms of the basis functions in only
one of the subgroups. Full orthogonality of orbitals within
given subgroup is imposed, while those belonging to different
subgroups are obviously nonorthogonal to each other. The
implication of such an approach is that each bond is described
now by one, doubly occupied orbital, and the whole molecular
wave function is only one, close shell determinant. This leads
to the situation where no explicit spin-coupling between
singly occupied orbitals is in use anymore. Considering now
the single Kekulé benzene structure from Figure 3 and its π
bonds only, each ellipse around the π bond represents a given
subgroup, a doubly occupied hybrid-like orbital. From the
standard hybrid definition43 we know, that a hybrid is an
orbital, localized on one atom, and defined as a linear
combination of atomic orbitals belonging to that atom. Now
in the case of the BLW approach, each π bond from the
considered example in Figure 3 is a doubly occupied orbital
or, in fact, a doubly occupied hybrid, but localized over two
atomic centers, so it is a linear combination of atomic orbitals
belonging to both atoms. Now, assuming that Θij represents
a hybrid localized over carbon atom i and j, the whole π
system from Figure 3 can be described as

Ψ ) |Θ12Θ12Θ34Θ34Θ56Θ56| (4)

where Θij is a linear combination of atomic orbitals, �i

belonging to atom i and �j belonging to atom j

Θij ) b1�i + b2�j (5)

and Θj ij represents the same hybrid with opposite spin.
Mo et al. have defined the resonance energy within BLW

approach as a difference between the total Hartree-Fock energy
of a given molecule and an energy of molecule described within
the block localized wave function approach (Figure 5a)

Eres-blw ) EHF - EBLW (6)

Apart from the mentioned resonance energy definitions, which
are the most important, and widely used, ones, there are many

Figure 3. π-bond description with highlighted hybrid-like subgroups
in the case of benzene Kekulé structure.

Figure 4. Vertical (a) and theoretical (b) resonance energy definitions
in the case of benzene.
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others, which we have not mentioned because this publication
is not meant to be an exhaustive literature overview on resonance
energy definitions.

2. Method

Looking at valence bond theory, one can conclude that, from
its very beginning, VB is based on two major aspects:
nonorthogonality and spin-coupling. Since removing the non-
orthogonality of orbitals would cause a lack of interaction
between the atoms, and removing spin-coupling of the singly
occupied orbitals, as another crucial ingredient in valence bond
calculations, is readily possible, we felt inclined to expand the
BLW idea even further.

We believe that Mo’s definition of resonance energy, based
on block localized wave functions, is heavily basis set
dependent,44 vide infra, and no explicit resonance is actually
present in the wave functions considered. Since the omission
of spin-coupling of the singly occupied orbitals in VB
calculations seems interesting, we decided to expand the
BLW idea into the resonating block localize wave function
approach (RBLW), where we’re letting two, or possibly more,
block localized wave functions resonate with each other, just
like different structures in standard valence bond calculations
resonate. By considering two resonating block localize wave
functions, we can define the resonance energy in agreement
with Pauling’s concept, just like we define it in standard
valence bond with spin-coupling. The resonance energy
definition, in the case of benzene, in the RBLW approach is
defined then as the energy difference between benzene
described with both resonating Kekulé-like block localized
wave functions ERBLW and one, most stable block localized
wave function E1BLW, where both energies come from the
same calculations with the same orbitals (Figure 5b)

Eres-rblw ) ERBLW - E1BLW (7)

A consequence of this is that our standard VB approach is
affected. As previously mentioned, a bond in BLW approach
is described by one, doubly occupied orbital which, in fact,
is a doubly occupied hybrid-like block, localized over two
atomic centers. Each hybrid-like block is expanded as a linear
combination of atomic orbitals belonging to atoms over which
given block is localized. By allowing two Kekulé-like block
localized wave functions from Figure 6a to resonate, a
situation is created where two hybrids of the two block
localized wave functions share the same atomic orbitals, a
situation not intended in an original hybrid definition. This
means that the system is severely overdetermined, and new
orbital schemes had be devised.

Consider a standard valence bond calculation including spin-
coupling and an arbitrary wave function Ψ0 ) |φ1φj1φ2φj2φ3|.
Then, in the orbital optimization, orbital φ1 can be changed by
adding infinitesimal small (δ14) part of orbital φ4

φ1 f φ1 + δ14φ4

Such an orbital change has an impact on Ψ0

Ψ0 ) |(φ1 + δ14φ4)(φ1 + δ14φ4)φ̄2φ̄2φ3|

which after simple mathematical operations leads to

Ψ0 ) |φ1φ̄1φ2φ̄2φ3|+δ14C1f4|φ1φ̄1φ2φ̄2φ3|

Operator C1f4 is the unnormalized excitation operator which,
in this case, replaces orbital φ1 with orbital φ4, once for R spin
and once for � spin per Slater determinant. In general, each
Cifj operator generates a singly excited Brillouin state Ψij, and
each of those Brillouin states corresponds to an orbital change.
When all possible singly excited Brillouin states Ψij are
generated, a Super CI wave function can be created:

Figure 5. Resonance energy definitions within block localize wave
function (a) and resonating BLW approach (b).

Figure 6. Resonating block localize wave functions in the case of
benzene (a) and hexagonal H6 (b).

TABLE 1: Geometries of Considered Molecules (Legths in
Å)

molecule CC1 CC2 HC molecule HH1 HH2

benzene 1.397 1.397 1.087 H6 cycled 0.740 0.740

TABLE 2: Hexagonal H6 Total Energies (au)

basis
set method EHF ERBLW

ERBLW

struc EVB

EVB

struc

6-31G local -3.068967 -2.956032 -2.764622 -2.906863 -2.774565
6-31G delocal -3.068967 -3.071512 -3.025661 -3.106965 -3.052446
tzvp local -3.097497 -2.986240 -2.812897 -2.977412 -2.865810
tzvp delocal -3.097497 -3.099904a -3.054957a -3.133662 -3.081974

a Generalized Brillouin theorem converged at 10-4.

TABLE 3: Hexagonal H6 Resonance Energies (kcal/mol)

basis set method ERBLW res EVB res

6-31G local 120.11 83.02
6-31G delocal 28.77 34.21
tzvp local 108.78 70.03
tzvp delocal 28.21a 32.44

a Generalized Brillouin theorem converged at 10-4.
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ΨSuperCI ) b0Ψ0 + ∑
i

n

∑
j

m

bijΨij (8)

where i runs over n occupied orbitals and j runs over m virtual
orbitals. If hybrid restrictions are imposed on orbitals, only
excitations within given local subgroups are treated, and all other
are being discarded. The variational coefficients bij from eq 8
are being obtained by solving the secular equation

(H - ES)b ) 0 (9)

and are subsequently used to make improved orbitals. In (9),
H and S are the Hamiltonian and metric matrices in the basis
of singly excited states, E is the lowest eigenvalue and b is the
corresponding eigenvector. Upon successful convergence, when
the orbitals are optimal, and Ψ0 coincides with ΨSuper CI, the
coefficients bij are equal to zero and the generalized Brillouin
theorem is satisfied

〈Ψ0|Ĥ - E0|Ψij〉 ) 0. (10)

In practice, molecular orbitals are being mixed with virtual
orbitals. The latter are generated from the doubly occupied
orbitals, as an orthogonal complement to them

1 - c · c†

where c is a matrix containing vectors of occupied orbitals, and
c · c† is a projection operator. In this set the (partial) singly
occupied are included. For standard valence bond calculations
we’re generating one set of virtual orbitals, common for all
structures. But now, since different hybrids in the two different
block localized wave functions share part of their basis functions,
we had to generate separate virtuals for each hybrid-like block,
and perform excitations only within the blocks.46 Of course, in
the cases considered, the occupied orbitals are completely
equivalent. However due to the overlap of the orbitals and the
extreme linear dependency in the optimization process, even a
slight numerical discrepancy can result in the loss of this
equivalence. Thus we applied equivalence restrictions45 to ensure
that the orbitals stay equivalent. Setting up those conditions
means, in fact, adding all equivalent Brillouin states Ψij, and
using the resulting mixing coefficient bij from (8) for all the
excitations concerned.

An interesting feature of the general hybrid definition, we
introduced, is that there are no restrictions on the number of
atomic centers over which a given hybrid-like block can be
localized. This can be used to aid convergence. In the calcula-
tions without local restrictions for hexagonal H6 and benzene
molecules, multicenter hybrid-like blocks, localized over the
whole molecule were used to ensure the equivalence of the
orbitals.

3. Calculations

All VB calculations were performed using the ab-initio
programTURTLE,46 whichhasbeenintegrated into theGAMESS-
UK47 package. Geometries of the model molecules considered
in this paper were optimized in GAMESS-UK using density
functional theory48 with the B3LYP49 functional in a 6-31G**50

basis set and are presented in Table 1. All VB and RBLW
calculations were performed with 6-31G51 and TZVP(Ahl-
richs),52 basis sets. Throughout all calculations, only Kekulé-
like structures were included in the description of hexagonal
H6 and benzene, since the three Dewar structures contribute only
about 6-7%53,54 each in the case of benzene and they would
obscure the view of the resonance of the former structures. For
the benzene calculations, the σ orbitals were included in
optimization and the 1s orbitals of the carbons were kept as
frozen core.

3.1. Results and Discussion. 3.1.1. Hexagonal H6. In the
case of H6, a hexagonal arrangement with a fixed H-H bond
length of 0.74 Å has been used. The total energies from the
resonating block localized wave function (ERBLW), standard
valence bond (EVB) calculations, and the energies of the most
stable structures from RBLW (ERBLW struc), VB (EVB struc)
calculations and Hartree-Fock energies (EHF) for 6-31G51 and
tzvp52basis sets are presented in Table 2. Both types of VB
calculation have been done with (local) and without any local
restrictions on the orbitals (delocal). We have to emphasize
here that local restrictions differ when considering RBLW
or VB calculations. In the case of the RBLW method with
local restrictions, we’re dealing with hybrid-like blocks,
localized over two atomic centers. In case of the standard
VB calculations, the well-known hybrid definition is used,
where each hybrid is localized only on one atom.43 In the
delocal calculations, we start from the end-result of the local
calculations and no restrictions are used. The orbitals are
free to delocalize over the whole molecule. In the case of
the RBLW calculations, special care was taken to ensure the
equivalence of the orbitals.

Resonance energies according to Pauling from RBLW (ERBLW res)
and VB (EVB res) calculations are presented in Table 3. As
expected, both Kekulé-like structures (Figure 6b), have the same
weight, after convergence. Considering the total energies from
Hartree-Fock, RBLW and standard VB calculations in the
6-31G51 basis set with local restrictions (cf. Table 3), we can
conclude that all “VB” energies are higher than Hartee-Fock
energy. The delocalization of the orbitals in the MO calculation
provides a better description, due to the complete delocalization,
whereas the local restrictions imposed on orbitals in both types
of VB calculations, stop them from tailing onto neighboring
atoms. We can observe the same effect when moving to bigger
basis sets. The total energies obtained from local RBLW
calculations are always lower than total energies obtained from
local VB calculations, which is due to hybrid-like blocks being
localized over two atomic centers in the case of RBLW method
as opposed to one atomic center hybrids in the local VB
approach.

Considering now proper RBLW and VB calculations, without
any local restrictions (delocal), and comparing their total
energies with the Hartree-Fock energy, in the 6-31G51 basis
set (cf. Table 2), we see that both VB calculations give lower
energies than the Hartree-Fock calculations. The RBLW
calculations were checked that the generalized Brillouin theorem
was satisfied without any restrictions after convergence to ensure

TABLE 4: Benzene Total Energies (au)

basis set method EHF ERBLW ERBLW struc EVB EVB struc

6-31G local -230.623206 -230.564082 -230.486581 -230.542991 -230.499684
6-31G delocal -230.623206 -230.626666 -230.597931 -230.692657 -230.660998
tzvp local -230.769906 -230.696877 -230.620422 -230.672199 -230. 627816
tzvp delocal -230.769906 -230.834378 -230.803434
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that the equivalence restrictions did not actually constrain our
calculations. The RBLW delocal calculations result in higher
energies than standard delocal VB calculations, due to the fact
that the BLW functions are Hartree-Fock like, whereas the VB
includes electron correlation. Unfortunately, for the RBLW
delocal calculations in the tzvp52 basis set, the generalize
Brillouin theorem has converged only to 10-4.

Comparing resonance energies obtained from delocal calcula-
tions with the RBLW method (28.77 kcal/mol) and the standard
VB method (34.21 kcal/mol) in the 6-31G51 basis set, and in a
bigger basis set, 28.21 and 32.44 kcal/mol for RBLW and VB,
respectively, we notice that the resonance energies from both
calculations behave and are quite similar and rather basis set
independent. In contrast to this, the behavior of resonance
energies from calculations with local restrictions suggest a heavy
basis set dependency.41

From the definition of hybrids in RBLW method, where two
neighboring hybrid-like blocks (each coming from two separate
block localize wave functions) overlap, we can expect much big-
ger overlaps than between two hybrids in standard valence bond
calculations. That is indeed the case, as the overlap between
the RBLW orbitals H1H2 and H6H1 (Figure 6b) is ap-
proximately 0.84, compared to 0.59 between the orbitals on H1
and H2, both in delocal calculations.

3.1.2. Benzene. We can follow the same reasoning when
considering the benzene molecule. From the calculations we
obtained the same weights for both Kekulé-like block localize
wave functions (Figure 6a), as expected. Comparing the total
energies of Hartree-Fock, RBLW and VB delocal calcula-
tions in the 6-31G51 basis set (cf. Table 4), again shows that
delocal calculations of both VB types give lower total
energies than Hartree-Fock calculations. Unfortunately the
total energy for RBLW delocal calculations in the tzvp52 basis
set is not available yet, due to program restrictions. Looking
at the total energies from RBLW and VB local calculations
in the 6-31G51 basis set and comparing them to the
Hartree-Fock energy (cf. Table 4) also confirms that local
calculations of both VB types give higher total energies than
Hartree-Fock calculations. The resonance energies obtained
within RBLW (18.03 kcal/mol) and VB (19.87 kcal/mol)
(delocal,6-31G)51 are almost equal, as was also observed in
the case of hexagonal H6. As RBLW calculations utilize
separate sets of orbitals for hybrid-like blocks per resonating
block localize wave function, we might expect resonance
energy obtained from RBLW delocal calculations to be close
to the one obtained from breathing orbital valence bond
(BOVB) method (-44.13 kcal/mol41). However, resonance
energies from RBLW delocal calculations are close to those
of delocal VB, which might be due to fact that the “breathing”
effect in RBLW is compensated for by the extra correlation
in normal VB. Resonance energies obtained for RBLW (48.63
kcal/mol) and VB (27.18 kcal/mol) local calculations in the
6-31G51 basis set, again show big differences between those
two types of calculations. Performing these calculations in a
tzvp52 basis set confirms the results from H6, that the
resonance energy obtained from both types of VB calculations
with local restrictions, is rather basis set dependent.

The overlap of the RBLW orbitals C1C2 (cf. Figure 6a) is
0.68, substantially bigger than that of the VB orbitals C1 and
C2 at 0.53, suggesting that the RBLW orbitals do resemble
breathing orbitals.41

4. Conclusions

Our calculations for the resonating block localize wave
function method show, that removing spin-coupling between
singly occupied orbitals, as one of the two crucial ingredients
for valence bond calculations, is possible and yields perfectly
consistent results. Resonance energies obtained from RBLW
delocal calculations converge to values obtained by standard
VB. Thus by removing spin-coupling and having only resonating
closed shell determinants, normal resonance is obtained.
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