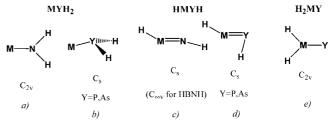
Theoretical Studies of $[MYR_2]_n$ Isomers (M = B, Al, Ga; Y = N, P, As; R = H, CH₃): Structures and Energetics of Monomeric and Dimeric Compounds (n = 1, 2)[†]

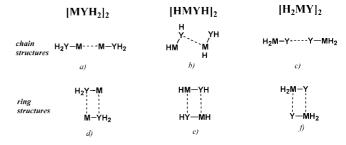
Alexey Y. Timoshkin*

Inorganic Chemistry Group, Department of Chemistry, St. Petersburg State University, University Pr. 26, Old Peterhof, 198504, Russia

Henry F. Schaefer, III


Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602 Received: February 29, 2008; Revised Manuscript Received: July 7, 2008

A series of group 13-15 compounds of the general formula $[MYR_2]_n$ (M = B, Al, Ga; Y = N, P, As; n = 1, 2; R = H, CH₃) have been theoretically studied at the B3LYP/TZVP level of theory. The stability of different isomer structures is discussed to reveal the competitiveness of group 13-13, group 13-15, and group 15-15 bonding. Preferential bonding patterns and trends in the stability with respect to M and Y are also discussed. For the dimeric compounds, $C_{2\nu}$ symmetric [HMYH]₂ rings are the lowest in energy, with the single exception of Ga₂N₂H₄, for which a somewhat unexpectedly $C_{2\nu}$ symmetric [GaNH₂]₂ ring is found to be the energy minimum, followed by the planar H₂NGaGaNH₂ chain. The higher stability of the GaNH₂ bonding pattern in oligomer compounds may be rationalized in terms of the increasing stability of the oxidation state I as compared to that for the boron and aluminum analogues. Methylation significantly reduces the energetic differences between monomeric MYMe₂ MeMYMe, and Me₂MY, isomers, especially for the AlP, AlAs, and GaAs systems, thus allowing a variety of structural types to be competitive in energy.


Introduction

In the past decade, group 13-15 imido compounds $[RMNR']_n$ and their heavier analogues have attracted considerable attention as precursors to 13-15 binary and composite materials.¹⁻³ Recently, 13-15 hydride compounds have been examined as candidates for the hydrogen storage materials.⁴ The majority of the experimentally known imido metallanes exist as oligomers that have coordination number four for all metal and pnictogen centers and form cage structures.⁵ In particular, tetramers adopt cubane type structures. Rare examples of monomeric imido metallanes have been synthesized using very bulky protective groups.^{6,7} In contrast to group 13 metals, the analogous boroncontaining compounds prefer ring structures with coordination number 3 on the boron and nitrogen centers.^{8,9} There is experimental evidence¹⁰⁻¹² for the existence of valence isomers of imido metallanes of MYH2 composition. The photoactivated reaction of Al, Ga, and In atoms condensed with ammonia¹⁰ and phosphine¹¹ in argon matrices results, among other products, in the identification of MNH2 monomers, while no MPH2 and HMYH species were observed. Matrix isolation IR spectra in solid argon showed that upon reaction of laser-ablated aluminum, gallium, and indium atoms with ammonia, major products formed are HAINH₂ and AINH₂; bent HAINH molecules were identified only as a minor product.¹² In contrast, the formation of CH₃BNCH₃, CH₃BNH, and HBNCH₃ following the reaction of boron atoms with methylamines was identified by matrix isolation IR spectra.¹³⁻¹⁵ Low valent element 13 species are believed to be important intermediates in CVD processes at high temperatures.¹⁶ According to the GaN MOCVD simulation model of Cavallotti,¹⁷ monomeric GaNH₂ contributes more than

SCHEME 1: Qualitative Structures of the Monomer Compounds Studied in the Present Work

50% to the overall GaN film growth rate from trimethylgallium and ammonia.

Theoretical studies indicate that monomeric imido HM=NH isomers are 178 (Al), 189 (Ga), and 258 (In) kJ mol⁻¹ less stable than the corresponding amides MNH₂.¹⁸ Imido MeGa=NMe (Ga in formal oxidation state III) lies 144 kJ mol⁻¹ higher in energy as compared to the GaNMe₂ isomer (Ga in formal oxidation state I).¹⁹ The first stable monomeric Ga¹ amide was

[†] Part of the "Sason S. Shaik Festschrift".

 $[\]ast$ To whom correspondence should be addressed. E-mail: alextim@ AT11692.spb.edu.

TABLE 1: Selected Structural Parameters for Monomer Compounds of MYH₂ Composition^a

	MYH ₂ ,	singlet		HMY	H, singlet		H ₂ MY, triplet	
М, Ү	C_{2v}	C_s	$C_{\infty v}$	C_s	∠HMY	∠MYH	C_{2v}	method
BN	1.376	$\rightarrow C_{2v}$	1.235	$\rightarrow C_{\infty v}$	180.0	180.0	1.449	B3LYP/TZVP
BN	1.380							BP86/TZP ³¹
BP	$(1.912)^{b}$	1.962	$(1.638)^{c}$	1.697	177.2	52.7	1.848	B3LYP/TZVP
BP			$(1.651)^{c}$	1.707	176.5	52.6		CCSD(T)/aug-cc-pVTZ46
BP		1.986		1.718	176.0	52.9		CCSD(T)/DZP ⁴⁸
BAs	$(2.015)^{b}$	2.096	$(1.718)^{c}$	1.800	179.5	46.6	2.015	B3LYP/TZVP
AlN	1.820	$\rightarrow C_{2v}$	$(1.624)^{c}$	1.637	166.8	159.7	1.801	B3LYP/TZVP
AlN			$(1.631)^{c}$	1.658	161.4	147.2		CCSD(T)/aug-cc-pVTZ46
AlN	1.803			1.633	165.2	154.5		CCSD/TZ2P ⁵⁰
AlN	1.80			1.66	161.9	147.5		MP2/D95*12
AlP	$(2.369)^{b}$	2.446	$(2.017)^{c}$	2.152	179.3	80.2	2.268	B3LYP/TZVP
AlP		2.424		2.149	177.0	76.4	2.346	CCSD/TZ2P ⁶¹
AlP			$(2.032)^{c}$	2.159	180.0	78.0		CCSD(T)/aug-cc-pVTZ46
AlAs	$(2.456)^{b}$	2.562	$(2.092)^{c}$	2.242	174.6	73.4	2.452	B3LYP/TZVP
GaN	1.893	$\rightarrow C_{2v}$	$(1.646)^{c}$	1.705	161.2	123.6	1.940	B3LYP/TZVP
GaP	$(2.406)^{b}$	2.483	$(2.014)^{c}$	2.149	177.8	85.0	2.284	B3LYP/TZVP
GaP	. /	2.479	. /	2.145	177.7	85.1	2.222	B3LYP/6-311++G(d,p)66
GaP		2.449		2.148	180.0	82.3	2.253	$MP2/6-311++G(d,p)^{66}$
GaAs	$(2.491)^{b}$	2.596	$(2.092)^{c}$	2.245	179.8	81.6	2.442	B3LYP/TZVP

^a MY bond distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory. ^b Transition state. ^c Stationary point of Hessian index 2.

TABLE 2: Selected Structural Parameters for Monomer Compounds of MYMe₂ Composition^a

	MYMe ₂ ,	singlet		MeMYMe, singlet		Me ₂ MY, triplet		
М, Ү	C_{2v}	C_s	C_{3v}	C_s	∠CMY	∠MYC	C_{2v}	method
BN	1.376	$\rightarrow C_{2v}$	1.241	$\rightarrow C_{3v}$	180.0	180.0	1.470	B3LYP/TZVP
BN	1.39		1.26		180.0	180.0		MP2/D95*13
BN							1.485	MP2/6-311+G(d,p) ^{37,38}
BP	$(1.888)^{b}$	1.945	$(1.643)^{c}$	1.735	173.4	99.9	1.941	B3LYP/TZVP
BAs	$(1.998)^{b}$	2.073	$(1.727)^{c}$	1.843	174.5	95.7	2.058	B3LYP/TZVP
AlN	1.829	$\rightarrow C_{2v}$	1.630	$\rightarrow C_{3v}$	180.0	180.0	1.811	B3LYP/TZVP
AlN							1.903	MP2/6-311+G(d,p) ^{37,38}
AlP	$(2.349)^{b}$	2.431	$(2.020)^{c}$	2.170	165.4	106.9	2.369	B3LYP/TZVP
AlAs	$(2.442)^{b}$	2.543	$(2.098)^{c}$	2.271	169.8	101.5	2.468	B3LYP/TZVP
GaN	1.904	$\rightarrow C_{2v}$	$(1.654)^{c}$	1.696	155.9	145.0	1.952	B3LYP/TZVP
GaN		20					1.974	MP2/6-311+G(d,p)37,38
GaP	$(2.387)^{b}$	2.474	$(2.020)^{c}$	2.166	168.5	104.2	2.365	B3LYP/TZVP
GaAs	$(2.477)^{b}$	2.575	$(2.101)^c$	2.265	171.9	100.0	2.462	B3LYP/TZVP

^a MY bond distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory. ^b Transition state. ^c Stationary point of Hessian index 2.

synthesized in 2006 by Power's group.¹⁹ There is also experimental evidence for the existence of oligomeric $[MYR_2]_n$ species.

The synthesis and structural characterization of aluminumnitrogen-bonded tetramer Al₄(N(SiMe₃)2, 6^{-i} Pr₂C₆H₃)₄ (1) was reported in 2003 by Roesky.²⁰ The structure consists of a tetrahedral (with almost perfect 60° angles) Al₄ core with four amino groups N(SiMe₃)2,6-^{*i*}Pr₂C₆H₃ coordinated to aluminum as terminal ligands. From one perspective, this compound is an analogue of the well-known group 13 M(I) species²¹ Al₄L₄, such as (AlCp*)₄, where the substituent L is the NRR' group. Alternatively, (1) may be considered as an isomer of the imido $[RAINR']_4$ cubic tetramer cages $[(2,6^{-i}Pr_2C_6H_3)AIN(SiMe_3)]_4$ or $[(SiMe_3)AlN(2,6-iPr_2C_6H_3)]_4$, analogues of which are wellknown experimentally.⁵ Earlier, the compound Al₄(Cp*)₃-(NRR'), with only one Cp* ligand substituted for the amino group, was reported.²² A similar attachment of the NRR' ligands to the aluminum cluster core was demonstrated for the Al₇₇(NR₂)₂₀²⁻ cluster by Schnöckel.²³ It is also noteworthy that the molecular peak of Roesky's compound (1) was observed in electron ionization mass spectra, while under similar conditions the analogous Al₄Cp*₄ compound is monomeric.

The above experimental observations point to a higher stability for the metal-metal core in NRR' substituted compounds. Complexes containing direct group 13-13 element donor-acceptor bonds have been prepared in the laboratory and structurally characterized.²⁴ It was theoretically predicted²⁵ with Frenking that the donor-acceptor bond dissociation energy of Cl₃B-BCp* (224 kJ mol⁻¹) is even greater than the dissociation energy of Cl₃Al-NMe₃ (199 \pm 8 kJ mol⁻¹), which has been considered to be the most stable experimentally synthesized donor-acceptor complex of main group elements.²⁶ Therefore, it appears that donor-acceptor bonds formed by group 13-13 elements may be energetically comparable to those of group 13-15 elements. Knowledge of the preferential bonding patterns is of fundamental importance for the construction of the precursors for 13-15 CVD and for designing new materials for hydrogen storage.

Although some of the possible monomeric, dimeric, or tetrameric structures for B–N, ${}^{9,13,27-45}$ B–P, ${}^{46-48}$ Al–N, ${}^{12,35,37,38,46,49-60}$ Al–P, 11,46,49,57,61,62 Al–As, 49,57 Ga–N, ${}^{37,38,49,54-58,63-65}$ Ga–P, 11,49,57,66,67 and Ga–As 49,57,68 systems have been studied before theoretically, there are no systematic theoretical studies on the concurrence between 13 and 15 and 13-13 bonded oligomers. To address this problem in a systematic way, a theoretical study of the series of compounds with formal composition [MYR₂]_n (M = B, Al, Ga; Y = N, P, As; R = H, CH₃), which can be considered as built up from the *n* MYR₂ monomer units, has

TABLE 3:	Relative Energies E	kJ mol ⁻¹ .	0 K.	without ZPI	E Corrections) of the	e Different MYH ₂ Isomers ^a

MYH ₂ , singlet		HMYH,	singlet	H ₂ MY, triplet			
М, Ү	C_{2v}	C_s	$C_{\infty v}$	C_s	C_{2v}	method	
BN	173.5	$\rightarrow C_{2v}$	0.0	$\rightarrow C_{\infty v}$	355.0	B3LYP/TZVP	
BP	$(265.7)^{b}$	219.3	$(117.3)^{c}$	0.0	211.5	B3LYP/TZVP	
BP		218.4		0.0	57.2	MP4SDTQ/6-31G**//HF/6-31G*47	
BP		200.4		0.0		$CCSD(T)/DZP^{48}$	
			$(118.9)^{c}$	0.0		CBS [CCSD(T)/aug-ccpVTZ] ⁴⁶	
BAs	$(290.7)^{b}$	234.4	$(149.5)^{c}$	0.0	40.9	B3LYP/TZVP	
AlN	0.0	$\rightarrow C_{2v}$	$(183.1)^{c}$	183.0	462.2	B3LYP/TZVP	
AlN	0.0		$(185.5)^d$	184.7		CCSD/TZ2P ⁵⁰	
	0.0		. ,	247.7		MP2/D95*12	
			(0)	0.0		CBS [CCSD(T)/aug-ccpVTZ] ⁴⁶	
AlP	$(30.9)^{b}$	0.0	$(162.7)^{c}$	47.5	238.7	B3LYP/TZVP	
		0.0		54.4	92.0	CCSD/TZ2P ⁶¹	
			$(114.0)^{c}$	0.0		CBS [CCSD(T)/aug-ccpVTZ] ⁴⁶	
AlAs	$(42.3)^{b}$	0.0	$(165.8)^{c}$	23.5	68.6	B3LYP/TZVP	
GaN	0.0	$\rightarrow C_{2v}$	$(231.5)^{c}$	211.2	422.5	B3LYP/TZVP	
GaP	$(33.9)^{b}$	0.0	$(223.4)^{c}$	74.0	300.0	B3LYP/TZVP	
GaP		0.0		72.0	246.5	B3LYP/6-311++G(d,p) ⁶⁶	
GaP		0.0		59.6	260.0	$MP2/6-311++G(d,p)^{66}$	
GaAs	$(44.7)^{b}$	0.0	$(229.6)^{c}$	52.6	127.2	B3LYP/TZVP	

^{*a*} B3LYP/TZVP level of theory. Structures are minima on their potential energy surfaces, unless noted otherwise. ^{*b*} Transition state. ^{*c*} Stationary point of Hessian index 2. ^{*d*} Saddle point.

TABLE 4: Relative Energies E (kJ mol⁻¹, 0 K, without ZPE Corrections) of the Different MYMe₂ Isomers^a

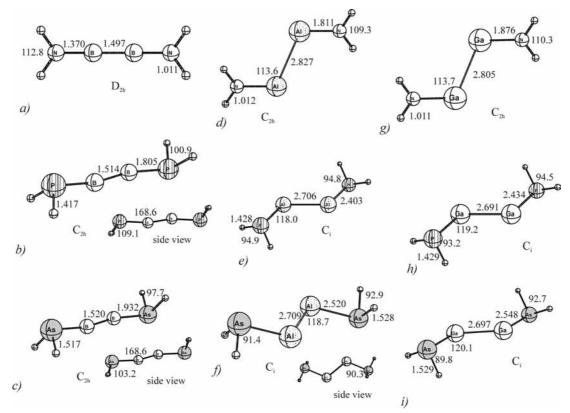
	MYMe ₂ , singlet		MeMYMe	e, singlet	Me ₂ MY, triplet		
М, Ү	C_{2v}	C_s	C_{3v}	C_s	C_{2v}	method	
BN	260.4	$\rightarrow C_{2v}$	0.0	$\rightarrow C_{3v}$	287.0	B3LYP/TZVP	
BN	228.8	$\rightarrow C_{2v}$	0.0	$\rightarrow C_{3v}$		MP2/D95*13	
BP	$(272.4)^{b}$	249.5	$(91.5)^{c}$	0.0	27.2	B3LYP/TZVP	
BAs	$(315.2)^{b}$	276.4	$(137.5)^{c}$	18.6	0.0	B3LYP/TZVP	
AlN	0.0	$\rightarrow C_{2v}$	92.6	$\rightarrow C_{3v}$	301.5	B3LYP/TZVP	
AlP	$(8.7)^{b}$	0.0	$(101.1)^{c}$	14.8	26.5	B3LYP/TZVP	
AlAs	$(48.3)^{b}$	24.4	$(129.9)^{c}$	14.4	0.0	B3LYP/TZVP	
GaN	0.0	$\rightarrow C_{2v}$	$(155.0)^{c}$	145.2	288.6	B3LYP/TZVP	
GaP	$(11.3)^{b}$	0.0	$(170.2)^{c}$	46.1	105.3	B3LYP/TZVP	
GaAs	$(24.6)^{b}$	0.0	$(175.7)^{c}$	22.0	54.2	B3LYP/TZVP	

^a B3LYP/TZVP level of theory. Structures are minima on PES, unless noted otherwise. ^b Transition state. ^c Stationary point of Hessian index 2.

been undertaken. In the present research, we address from a systematic theoretical perspective the relative stabilities of monomeric and group 13-13, 13-15, and 15-15 element bonded dimeric chain and ring compounds. A qualitative representation of the structures examined is given in Schemes 1 and 2.

Computational Details

All structures were fully optimized and verified with subsequent vibrational analyses to be minima on their respective potential energy surfaces (PES). Density functional theory in the form of the hybrid B3LYP functional^{69,70} was used together with the all-electron triple- ζ quality TZV basis set of Ahlrichs, augmented by d type polarization functions (TZVP).^{71,72} For H, the standard 6-311G** basis set was employed. The Gaussian 94 suite of programs⁷³ was used throughout. Previously, this level of theory was successfully used with Frenking to study "true inorganic heterocycles" and their dimers.⁴⁹ As shown in our 2004 report on [HAIYH]_n oligomers (Y = N, P; n = 1-4),⁵⁷ results from the B3LYP level of theory give quite satisfactory agreement with those obtained at the CCSD(T)/cc-pVTZ level.


Results and Discussion

Monomer Compounds. For the monomeric compounds, three structural types may be considered, with the group 13

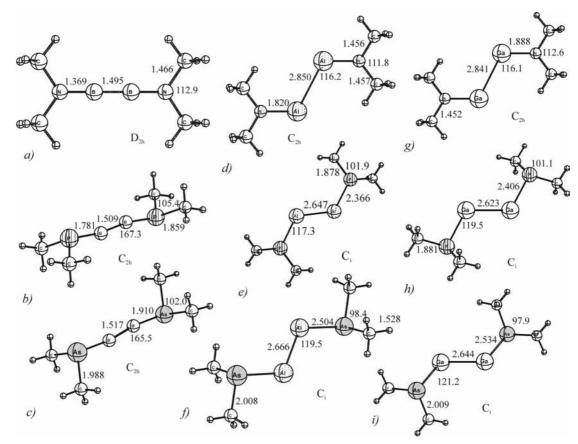
element having zero, one, or two nongroup 15 substituents: MYH_2 , HMYH, and H_2MY . The structures of these compounds are summarized in Scheme 1.

Experimental observations of the monomer compounds of MYR₂ composition (M = B, Al, Ga; Y = N, P, As; R = H, halogen, organic radical) are scarce. Most of the isolated and structurally characterized compounds have bulky protecting groups (for known examples, see reviews in refs 5 and 8). Reactions of laser-ablated boron atoms with ammonia and methylamines have been studied,^{13–15} and the formation of CH₃BNCH₃, CH₃BNH, and HBNCH₃ has been identified by matrix isolation IR spectra. The photoactivated reactions of Al, Ga, and In atoms condensed with ammonia¹⁰ and phosphine¹¹ in argon matrices resulted, among other products, in the identification of MNH₂ monomers, while no MPH₂ and HMYH species were observed. Bent HAlNH molecules were identified as a minor product by matrix isolation IR spectra in solid argon; the observed major products are HAlNH₂ and AlNH₂.¹²

There is some prior theoretical work on the monomer compounds. Enthalpies of formation of the linear monomers HBNH and MeBNMe were predicted by Sana, Leroy, and Wilante⁴² at the MP4(SDTQ)/6-311++G(3df,2p)//MP2(full)/ 6-31G(d,p) level of theory. For ${}^{1}\Sigma^{+}$ HBNH, their theoretical bond dissociation energy (BDE) is 778 kJ mol⁻¹, and for

Figure 1. Optimized structures for chain isomers of the H_2MYYMH_2 dimeric compounds. (a) H_2NBBNH_2 , (b) H_2PBBPH_2 , (c) $H_2AsBBAsH_2$, (d) $H_2NAIAINH_2$, (e) $H_2PAIAIPH_2$, (f) $H_2AsAIAIAsH_2$, (g) $H_2NGaGaNH_2$, (h) $H_2PGaGaPH_2$, and (i) $H_2AsGaGaAsH_2$. All distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

TABLE 5: Selected Bond Distances (in Angstroms) for the Chain $[R_2YMMYR_2]$ Isomers and Dissociation Energies into MYR₂ Monomers (kJ mol⁻¹)^{*a*}


compound	point group	MY	MM	$E^{\rm diss}$
H ₂ NBBNH ₂	D_{2h}	1.370	1.497	295.6
Me ₂ NBBNMe ₂	D_{2h}	1.369	1.495	292.8
H_2PBBPH_2	C_{2h}	1.805	1.514	447.3
Me ₂ PBBPMe ₂	C_{2h}	1.781	1.509	485.3
H ₂ AsBBAsH ₂	C_{2h}	1.932	1.520	424.1
Me ₂ AsBBAsMe ₂	C_{2h}	1.910	1.517	448.9
H ₂ NAlAlNH ₂	C_{2h}	1.811	2.872	29.5
Me ₂ NAlAlNMe ₂	C_{2h}	1.820	2.850	24.5
H ₂ PAlAlPH ₂	C_i	2.403	2.706	53.7
Me ₂ PAlAlPMe ₂	C_i	2.366	2.647	68.8
H ₂ AsAlAlAsH ₂	C_i	2.520	2.709	54.3
Me ₂ AsAlAlAsMe ₂	C_i	2.504	2.666	62.1
H ₂ NGaGaNH ₂	C_{2h}	1.876	2.805	20.4
Me ₂ NGaGaNMe ₂	C_{2h}	1.888	2.841	16.1
H ₂ PGaGaPH ₂	C_i	2.434	2.691	41.8
Me ₂ PGaGaPMe ₂	C_i	2.406	2.623	57.3
H ₂ AsGaGaAsH ₂	C_i	2.548	2.697	42.7
Me ₂ AsGaGaAsMe ₂	C_i	2.534	2.644	55.2

MeBNH, it is 929 kJ mol⁻¹. Singlet and triplet structures for $(CH_3)_2MN$ (M = B, Al, Ga) have been considered by Hayashi et al. at the MP2/6-311G+(d,p) level of theory.^{37,38} Open shell singlet $(CH_3)_2MN$ states were predicted to lie 43 (M = B) and 75 kJ mol⁻¹ (M = Al, Ga) higher in energy than the triplet global minima. Gilbert's NBO analysis³⁵ showed that both MeBNMe and MeAlNMe have M–N triple bonds composed of one σ bond and two π bonds. In each case, the σ bond is nearly an sp hybrid (sp^{1.3} B, sp^{0.7} N/sp^{1.2} Al, and sp^{0.9} N). The electronic structure of BNH₂ and BN(CH₃)₂ molecules and their

complexes with transition metal carbonyls was discussed by Ehlers, Baerends, Bickelhaup, and Radius. $^{\rm 38}$

The structures and energetics of BPH2 isomers were considered in a 1989 study at the MP4SDTQ/6-31G**2//HF/6-31G* level of theory by Kerins, Fitzpatrick, and Nguyen.⁴⁷ They found the singlet state of HBPH to be the global minimum and H₂BP to be the lowest lying isomer on the triplet potential energy surface. A reinvestigation of these isomers at CCSD(T)/DZP level of theory was performed in 1996 by Watts and Zant.⁴⁸ No hydrogen-bridging structures were found as minima. Recently, Grant and Dixon studied HBPH, HAINH, and HAIPH at the CCSD(T)/aug-cc-pVTZ level.46 Both linear and nonlinear structures were considered. For HAINH, the bent and linear forms have essentially the same energies with the valence complete basis set (CBS) approach. This dovetails with the earlier results of Hamilton and Shaikh, who found HAINH to be linear at all levels of theory with except MP2, which predicts a trans-bent HAINH structure.52

Ab initio studies of the monomers AlPH₂, HAlPH, and H₂AlP have been performed at the CCSD/TZP level of theory⁶¹ and find AlPH₂ as the global minimum. Davy investigated bond orders in the different structures and concluded that nondative π interaction does occur in HAlPH (bond orders of 1.07, 1.95, and 1.05 for AlPH₂, HAlPH, and H₂AlP, respectively). The aluminum atom maintains planarity in all isomers. Different isomers of the H–Al–N⁵⁰ and H–Ga–P⁶⁶ systems have been thoroughly studied at the CCSD/TZ2P level of theory. The AlYH₂ isomer was found to be lower in energy than the HAlYH structure. A theoretical study of the HMYH and MYH₂ isomers (M = Al, Ga, In; Y = N, P) was carried out at the B3LYP/6-311G(d) level of theory.¹⁸ The latter isomers were found to be the global minima with either $C_{2\nu}$ symmetry (Y = N) or C_s symmetry (Y = P, As).

Figure 2. Optimized structures for chain isomers of the Me₂MYYMMe₂ dimeric compounds. (a) Me₂NBBNMe₂, (b) Me₂PBBPMe₂, (c) Me₂AsBBAsMe₂, (d) Me₂NAlAlNMe₂, (e) Me₂PAlAlPMe₂, (f) Me₂AsAlAlAsMe₂, (g) Me₂NGaGaNMe₂, (h) Me₂PGaGaPMe₂, and (i) Me₂AsGaGaAsMe₂. All distances in are angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

Let us now turn to the results of the present research. Scheme 1 represents the general structures of the monomer compounds considered in the present work. Critical structural parameters of the MYH₂, HMYH, and H₂MY isomers are summarized in Table 1, and those of their methyl substituted analogues are in Table 2. Relative energies of compounds are listed in Tables 3 and 4 for R = H and $R = CH_3$, respectively. In accord with previous theoretical findings, $^{18,46,47,61,\hat{66}}$ the $M-YH_2$ isomers are global minima for M = Al, Ga, while for M = B the HBYH isomers are much preferable. All nitrogen-containing compounds of this type are planar. Linear HMYH coordination represents a true minimum only for HBNH, while all other HMYH isomers possess distorted geometries but remain planar (C_s point group). Note the very small energy differences between the linear and the bent structures for HAINH and HGaNH, 0.1 and 20 kJ mol⁻¹, respectively. Himmel, Downs, Green, and Greene note that the "potential well is extremely shallow with respect to the bending coordinates".¹⁸ This may explain the differences between bond angles predicted for the HMYH structures at different levels of theory (Table 1).

Considering the trends in M–Y bonds, one observes substantial MY bond shortening on going from M–YH₂ to HMYH isomers for all pairs M, Y. This is in accord with previous findings of Himmel and co-workers¹⁸ that the M–Y bond length decreases in the order: M–YH₃ > H₃MYH₃ > MYH₂ > HMYH₂ ≥ H₂MYH₂ > HMYH.

Note that despite the significant M-Y bond shortening in all HMYH structures (10–14% with respect to MYH₂), only for the boron compounds are the HBYH isomers lower in energy. Note also that both "planarization" of the $M-YH_2$ isomer or "linearization" of the HMYH isomer lead to MY bond

length shortening. Despite this fact, all P and As compounds are found to be either pyramidal (M-YH₂) or nonlinear (HMYH). The linear HMYH structures (stationary points of Hessian index 2 for Y = P, As) lie 115–177 kJ mol⁻¹ higher in energy with respect to the C_s symmetric HMYH minima. This finding agrees well with the high pyramidalization energies of phosphine and arsine molecules reported by Jemmis (30, 149, and 192 kJ mol⁻¹ for NH₃, PH₃, and AsH₃, respectively).⁷⁴ In contrast, planarization of the M-YH₂ species is much less demanding (34–56 kJ mol⁻¹). Very similar values for $R-YH_2$ planarization have been obtained for H2M-YH2 compounds (39-63 kJ mol⁻¹).⁵⁷ Thus, substitution of a H atom in YH₃ both by an MH2 group and by a "naked" M atom results in significant reductions of the planarization energies. It is argued that π interactions can contribute to the significant stabilization of the planar structure. For a detailed discussion of π and σ bonding in different H_2MYH_2 conformers (M = B, Al; Y = N, P), see the recent study of Grant and Dixon.⁷⁵

Methyl substitution slightly shortens the M–Y distances for MYMe₂ isomers (as compared to MYH₂); on the contrary, the M–Y bond distances for MeMYMe and Me₂MY are slightly longer as compared to respective hydrogen analogues. For MeBNMe, the structure with staggered orientation of the methyl groups was found to be a minimum on the PES. The conformer with eclipsed orientation of the methyl groups is a transition state and lies only by 0.05 kJ mol⁻¹ higher in energy. For the triplet state of Me₂BN, the $C_{2\nu}$ symmetric conformer was found to be a stationary point of Hessian index 2, lying only 1.8 kJ mol⁻¹ higher in energy differences point out the essentially free rotation of the Me groups in such monomeric compounds.

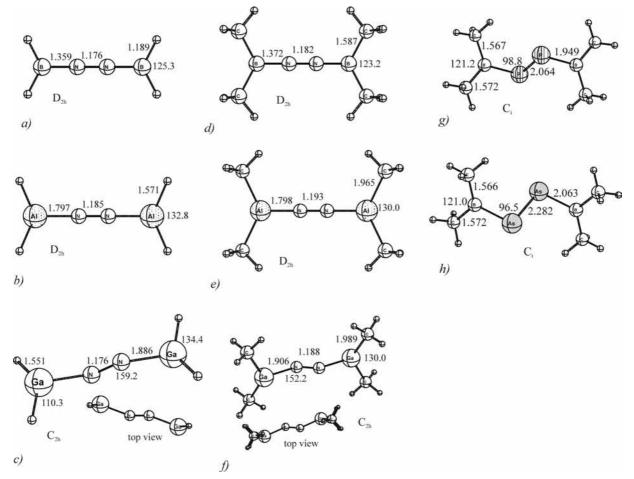
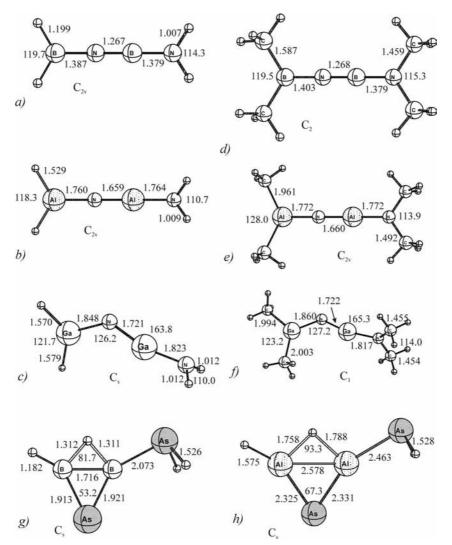


Figure 3. Optimized structures for chain isomers of the H_2MYYMH_2 dimeric compounds and their methyl derivatives $Me_2MYYMMe_2$. (a) H_2BNNBH_2 , (b) $H_2AINNAIH_2$, (c) $H_2GaNNGaH_2$, (d) $Me_2BNNBMe_2$, (e) $Me_2AINNAIMe_2$, (f) $Me_2GaNNGaMe_2$, (g) $Me_2BPPBMe_2$, and (h) $Me_2BAsAsBMe_2$. All distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

TABLE 6: Bond Distances (in Angstroms) for the Chain [R_2MNNMR_2] Isomers and Energies of Dissociation into Triplet R_2MN Monomers^{*a*} (E^{diss} , kJ mol⁻¹) and Nitrogen Elimination Energies^{*b*} (E^{elim} , kJ mol⁻¹)^{*c*}


compound	point group	MY	YY	$E^{\rm diss}$	E^{elim}
H ₂ BNNBH ₂	D_{2h}	1.395	1.176	623.3	40.9
Me ₂ BNNBMe ₂	D_{2h}	1.372	1.182	560.0	15.3
H ₂ AlNNAlH ₂	D_{2h}	1.797	1.185	722.2	-68.4
Me ₂ AlNNAlMe ₂	D_{2h}	1.798	1.193	696.6	-67.1
H ₂ GaNNGaH ₂	C_{2h}	1.886	1.176	535.4	-180.6
Me ₂ GaNNGaMe ₂	C_{2h}	1.906	1.188	510.8	-182.6
Me ₂ BPPBMe ₂	C_i	1.949	2.064	310.3	
Me ₂ BAsAsBMe ₂	C_i	2.063	2.282	268.0	

 a Process R_2MNNMR_2 = 2 R_2MN b Process R_2MNNMR_2 = R_2MMR_2 + $N_2.\ ^c$ B3LYP/TZVP level of theory.

While structural changes upon methylation are minor in all series, the energetic effect of the methyl groups is much more pronounced. Methyl substitution dramatically (by $60-200 \text{ kJ} \text{ mol}^{-1}$) lowers the relative energy of the triplet Me₂MY state. This leads to the triplet structures Me₂BAs and Me₂AlAs as global minima, reflecting the greater stability of As⁺¹ species as compared to the lighter analogues of arsenic. Interestingly, Me₂GaAs does not follow the same pattern, being 54 kJ mol⁻¹ higher in energy than the GaAsMe₂ minimum. This shows that the the Ga¹As¹¹¹ combination is preferred to Ga¹¹¹As¹, which correlates well with a large number of known Ga¹ compounds, reflecting the greater stability of Ga in oxidation state I.

The major effect of methyl substitution is the fact that the concurrence between different bonding patterns becomes much more pronounced. If for the hydrogen species the lowest energy difference between the most stable isomer and the next stable is 41 kJ mol⁻¹ for the BAs system (HBAsH being by 41 kJ mol^{-1} lower than H₂BAs), for methyl analogues, the situation becomes really competitive. Thus, MeBPMe lies only 27 kJ mol⁻¹ below Me₂BP, while MeBAsMe is only 19 kJ mol⁻¹ higher in energy than Me₂BAs. For the Al-P and Al-As systems, the competing isomers are very close in energy. Note that the trends in the stability of P and As compounds are totally different. While AlPMe₂ lies only 15 and 27 kJ mol⁻¹ below MeAlPMe and Me₂AlP, respectively, AlAsMe₂ and MeAlAsMe are predicted to lie 24 and 14 kJ mol⁻¹ above Me₂AlAs. For the Ga-As system, GaAsMe₂ is predicted to lie 22 kJ mol⁻¹ below MeGaAsMe. Thus, methylation significantly reduces energy differences between isomers.

We conclude that while for boron compounds the RBYR structures are lowest in energy (with the exception of Me₂BAs), for aluminum compounds, the AlYR₂ structures are the lowest in energy (with the exception of Me₂AlAs), and for gallium compounds, the GaYR₂ structures lie the lowest in energy. Our conclusions are in accord with the experimentally observed formation of MYH₂ species^{10–12} as major products of reactions of laser-ablated Al and Ga atoms with ammonia and phosphine and RBNR species in reactions of laser-ablated B atoms with ammonia and methylamines.^{13–15} Our prediction of the greater

Figure 4. Optimized structures for chain isomers of the "mixed type" H_2MYMYH_2 dimeric compounds and their methyl derivatives $Me_2MYMYMe_2$. (a) H_2BNBNH_2 , (b) $H_2AINAINH_2$, (c) $H_2GaNGaNH_2$, (d) $Me_2BNBNMe_2$, (e) $Me_2AINAINMe_2$, (f) $Me_2GaNGaNMe_2$, (g) optimized structure starting from $H_2BASBASH_2$, and (h) optimized structure starting from $H_2AIASAIASH_2$. All distances in are angstroms, and angles are in degrees. B3LYP/ TZVP level of theory.

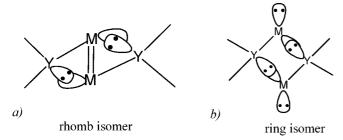
TABLE 7: Bond Distances (in Angstroms) for the Chain $[R_2MN^1MN^2R_2]$ Isomers and Dissociation Energies into R_2MN and MNR_2 Monomers $(kJ mol^{-1})^a$

compound	point group	MN^1	N^1M	MN^2	$E^{\rm diss}$
H ₂ BNBNH ₂	C_{2v}	1.387	1.267	1.379	708.4
Me ₂ BNBNMe ₂	C_2	1.403	1.268	1.379	680.1
H ₂ AlNAlNH ₂	C_{2v}	1.760	1.659	1.764	450.4
Me ₂ AlNAlNMe ₂	C_{2v}	1.772	1.660	1.772	310.1
H ₂ GaNGaNH ₂	C_1	1.849	1.722	1.822	258.9
Me ₂ GaNGaNMe ₂	C_1	1.860	1.722	1.817	243.2

stability of the Me₂BAs and Me₂AlAs isomers awaits experimental confirmation.

Dimer Compounds. Early ab initio and semiempirical studies of [HBNH]₂ were reported by Baird⁴¹ (SCF/STO-2G) and by Haddon (D_{2h} symmetric minimum at SCF/STO-3G).²⁷ The dimers [HBNH]₂ and [MeBNMe]₂ were investigated by Paetzold⁴³ with the MNDO method. [HBNH]₂ was earlier studied by Dewar and McKee⁴⁷ with MNDO, where nonplanar structure with equal B–N distances and the pyramidal environment of the N atoms was noted. Bonacic-Koutecky and co-workers³⁹ studied the rhombic and C_s symmetry structures of [HBNH]₂ at the RHF and CASSCF levels of theory with the 4-31G basis

 TABLE 8: Bond Dissociation Energies for the


 Fragmentation of Nitrogen-Containing Chains into

 Respective Monomers (k,J mol⁻¹)^a

nespect	(k) mor)									
М	13-13 H ₂ NM-MNH ₂	13-15 H ₂ NM-NMH ₂	15-15 H ₂ MN-NMH ₂							
В	296	708	623							
Al	30	450	722							
Ga	20	259	535							

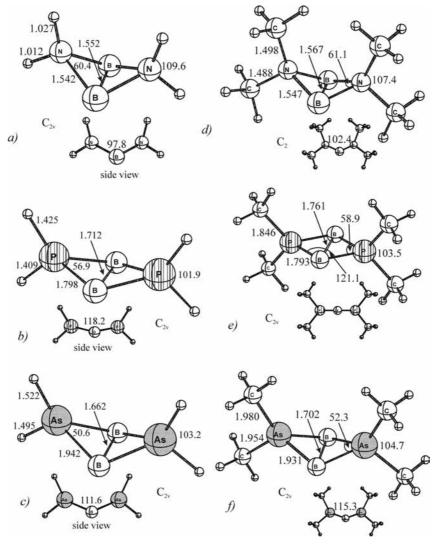
^{*a*} B3LYP/TZVP level of theory.

set. Triplet states were found to be $335-418 \text{ kJ mol}^{-1}$ higher in energy. Suresh and Koga³² reported that planar B₂N₂H₄ is a stationary point of Hessian index 2 lying 5.4 kJ mol⁻¹ above the puckered minimum with pyramidalized nitrogen atoms, at the B3LYP/6-31G(d) level of theory (B–N distance, 1.45 Å). Liang and Allen²⁹ found that planar [HBNH]₂ is the true global minimum at the MP2 and RHF/3-21G levels. At the MP2 level, the B–N distances were found to be inequivalent. The aromaticity of [HBNH]_{2,3,4} has been recently analyzed by Soncini et al.³⁴ and re-evaluated by Rehaman et al.⁷⁶ At the B3LYP/6-311G++(d,p) level of theory Rehaman found that the B₂N₂H₄ ring has rhombohedral geometry, with equal bond lengths and unequal diagonal distances, puckering 17.3° from planarity. The

equivalence of the B–N distances suggest that lone pairs are localized on the N atoms and not transferred to the nearby B atom. A degree of resonance similar to that exhibited by C_4H_4 is not found; therefore, $B_2N_2H_4$ was concluded to be aromatic, in opposition to the well-studied cyclobutadiene. The planar well-studied structure is a TS, which lies only 4 kJ mol⁻¹ higher in energy. The dissociation into two BNH₂ units was found to require 205 kJ mol⁻¹. Dimeric and tetrameric [HAlNH]_{2,4} were studied theoretically by Hamilton and Shaikh.⁵² The dimerization energy of HAlNH was computed to be 586 kJ mol⁻¹ and that of [HAlNH]₂ was 276 kJ mol⁻¹.

Jouany, Barthelat, and Daudey theoretically studied H₂NBBNH₂ at the SCF/4-31G(d) level.³⁰ They found a D_{2h} symmetric ¹A_g ground state, with a triplet ³B₂ (D_{2d} symmetry) electronic state lying 34.3 kJ mol⁻¹ higher. Thus, in contrast to HBBH, where ³ Σ^- is the electronic ground state, the existence of a singlet ground state of the molecule H₂NBBNH₂ with a B–B π bond was predicted.

Gilbert theoretically considered the dimerization of RBNR' iminoboranes and the 4 + 2 Diels-Alder reactions at the B3LYP/6-31+G* level of theory.³⁶ Dimerization of HBNH proceeds via an early, rather asymmetric, puckered TS, where two B and two N atoms are not coplanar. This mimics the symmetry-forbidden dimerization of ethyne, where, at the transition state, the alkynes are nearly at right angles to each other. The TS for the dimerization of MeBNMe is puckered and lies early on the reaction coordinate, but it is symmetric $(C_2 \text{ point group})$, in contrast to HBNH. The energetic parameters are similar, and Gilbert concluded that methylation does not create significant steric congestion, that is, the energetics are not significantly affected. For F3CBNMe3, a significantly lower barrier and greater exothermicity are reported, due to the increased Lewis acidity at the boron atom. A far more asymmetric TS was found for C₆F₅BN'Bu (incipient formation of only one B-N bond). Steric bulk raises the TS barrier there by about 42 kJ mol⁻¹, despite the increased basicity on N. For ^{*i*}F₉C₄BN^{*i*}Bu, the dimerization process should be viewed as stepwise, with the second B-N bond formation well after the first, resulting in a very large barrier and low exothermicity. Thus, electron-withdrawing fluorinated groups on boron lower the barrier and increase the reaction exothermicity. On the other hand, attachment of bulky substituents to the boron and nitrogen atoms raises the reaction barrier and lowers the exothermicity.


Lets us turn now our attention to the dimeric compounds studied in the present research. As we start with three types of monomeric structures, which differ in the placement of the hydrogen substituents MYH₂, HMYH, and H₂MY (Scheme 1), we end up with dimers of the following kind: $[MYH_2]_2$, $[HMYH]_2$, and $[H_2MY]_2$. We considered formation of chain structures with one M-Y bond (Scheme 2a-c) and ring structures with two M-Y bonds (Scheme 2d-f). In addition, we will discuss chain compounds of mixed types, resulting from interactions between MYH₂ and H₂MY.

Chain Isomers. H₂YMMYH₂ Chain Isomers (Scheme 2a). Optimized structures for the H₂YMMYH₂ chain isomers (singlet states) are presented in Figure 1. Only for H₂NBBNH₂ does the highly symmetric structure of D_{2h} point group (Figure 1a) correspond to a minimum on the PES. For other 13-15 pairs, such a structure is either a transition state (AlN, GaN) or a high order stationary point (Table 5). Lowering the symmetry to C_{2h} point group results in perfectly planar (Figure 1d,g) structures for (AlN, GaN), with distorted N-M-M-N bond arrangements (N-M-N angles of 113.6 and 113.7 for Al and Ga, respectively). Note that for the BP and BAs species, the C_{2h} symmetric structures are also minima on PES, but in these cases, the hydrogen atoms lie above and below the plane due to pyramidalization of the P and As centers (Figure 1b,c). Note also that the YBY angles are 168.6° for both P and As, indicating relatively small deviations from the linear YBBY arrangement. For the remaining 13-15 compounds, C_i symmetric structures were found to be true minima on their PES (Figure 2e,f,h,i). In this case, the YMMY atoms are still coplanar, but the YMY angles are 118-120°, indicating much higher distortions from the linear YMMY arrangement.

There are interesting structural trends for the group 13-13 bond distances. While for boron compounds the B-B distances increase in the order $NH_2 > PH_2 \approx AsH_2$, the trend is the opposite for the Al and Ga compounds: $NH_2 < PH_2 \approx AsH_2$. The weaker interactions between two AlNH₂ molecules as compared to those for AlPH₂ can be explained by stronger π interactions in monomeric AlNH₂. Very long Al-Al and Ga-Ga distances in H₂YMMYH₂ suggest that these dimers are only weakly bound. In fact, the dissociation energies of chain H₂YMMYH₂ into MYH₂ monomers are only 20-54 kJ mol⁻¹ for the Al-Al and Ga-Ga bonded species, as compared to 300-450 kJ mol⁻¹ for B-B bonded compounds (Table 5). This trend is a general one for 13-13 species, and B-B compounds are much more strongly bound than the heavier group 13 analogues.²⁵ Structures of methyl derivatives are given in Figure 2. With the exception of Me₂NAlAlNMe₂ and Me₂NGaGaNMe₂, the 13-13 distances only slightly shorten upon methylation. Dissociation energies are also only slightly affected (Table 5).

HYMH...*HYMH Chain Isomers (Scheme 2,b).* Our attempts to optimize such chain isomers were unsuccessful, with the guessed structures collapsing to the [HMYH]₂ ring structures for all 13-15 pairs.

 H_2MYYMH_2 Chain Isomers (Scheme 2,c). D_{2h} point group optimizations revealed that only for the BN and AlN systems are such high symmetry structures minima on their PES (Figure 3a,b). Upon decreasing the symmetry to C_{2h} , a minimum structure with the chain MYYM bond arrangement is obtained for H₂GaNNGaH₂ (Figure 3c). Optimization of the P and As chain structures in the framework of C_{2h} symmetry results in rhombic ring structures (Figure 11, vide infra). Similar results have been obtained for the methylated analogues, with the exception of boron compounds, which resulted in C_i symmetric Me₂BPPBMe₂ and Me₂BAsAsBMe₂ chain isomers (Figure 3g,h). For the nitrogen-containing species, geometries of the respective Me derivatives are given in Figure 3d-f and are similar to those predicted for the hydrogen analogues. Methylation slightly increases both N-N (by 0.006-0.012 Å) and M-N (by 0.001-0.020 Å) bond distances. Nitrogen-nitrogen bond distances are very short in all compounds (1.176-1.193 Å), being intermediate between the nitrogen-nitrogen distance in N_2 (1.093 Å) and in HNNH (1.237 Å). As a consequence, the dissociation energies of H₂MNNMH₂ into two H₂MN monomers in their triplet state are quite large: 623, 722, and

Figure 5. Optimized structures for rhombic isomers of the [BYH₂]₂ dimeric compounds and their methylated derivatives [BYMe₂]₂. (a) rhomb-[BNH₂]₂, (b) rhomb-[BPH₂]₂, (c) rhomb-[BAsH₂]₂, (d) rhomb-[BNMe₂]₂, (e) rhomb-[BPMe₂]₂, and (f) rhomb-[BAsMe₂]₂. All distances in are angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

535 kJ mol⁻¹ for B, Al, and Ga, respectively. For Me₂-MNNMMe₂ the dissociation energies into triplet Me₂MN are slightly lower: 560, 697, and 511 kJ mol⁻¹ for B, Al, and Ga, respectively. These results demonstrate the high stability of the nitrogen–nitrogen bond in the molecules considered. Despite this strong N–N bond, these chain isomers are predicted to be much higher in energy than other structures (Table 13, vide infra). Major structural parameters for the R₂MNNMR₂ chain dimers are summarized in Table 6.

Because the N–N bond in chain R_2MNNMR_2 isomers is quite strong, it is interesting to consider the stability with respect to dissociation into N₂ and R₂MMR₂. Optimized structures of the D_{2d} symmetric R₂MMR₂ compounds are given in Table 3S (Supporting Information). Computed values of the energetics of nitrogen elimination R₂MNNMR₂ = R₂MMR₂ + N₂ are given in the last column in Table 6. Nitrogen elimination from boron compounds is endothermic, while both aluminum and gallium analogues eliminate nitrogen exothermically.

 H_2MYMYH_2 Chain Isomers. Our attempts to identify chain structures composed of monomers of mixed types, that is, H_2MY and MYH_2 , have been successful only for nitrogen-containing compounds. Optimized structures of the C_{2v} symmetric H_2BNBNH_2 and $H_2AINAINH_2$ are given in Figure 4a,b. Both compounds feature linear arrangements of the heavy atoms. For

the gallium analogue, such a linear structure is a second order stationary point, while the asymmetric structure with nonlinear GaNGaN arrangement (Figure 4c) is a minimum on the PES. Methylated compounds feature similar structures (Figure 4d-f). For phosphorus and arsenic compounds, optimization procedures yielded hydrogen-bridged structures, examples of which are shown in Figure 4g,h for the B-As and Al-As systems. Because our primary goal was to address the MY bond preferences upon oligomerization of MYH₂ monomers, we will not discuss hydrogen-bridged structures in the present work. Major structural parameters for the R₂MYMYR₂ chain dimers are given in Table 7.

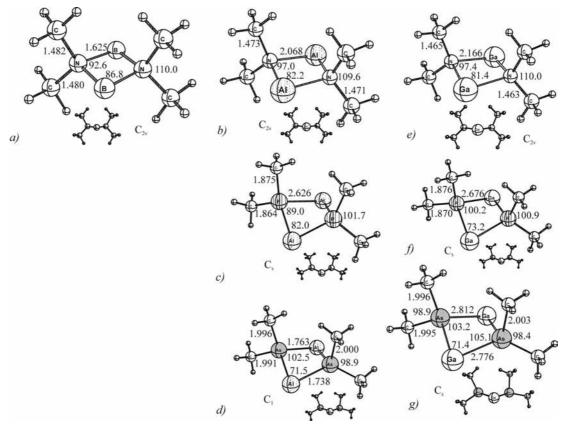
Summarizing our results for the chain isomers, we note that nitrogen- and boron-containing compounds form strongly bound chain structures, which make them kinetically stable with respect to dissociation. Comparison of 13-13, 13-15, and 15-15 bond energies is possible only for nitrogen compounds, and obtained results are summarized in Table 8. The order of bond dissociation energies is $N-N > MN \gg MM$. Chains with Al–Al and Ga–Ga bonds have very low dissociation energies.

Cyclic Isomers. [*MYH*₂]₂ *Dimers* (*Scheme* 2,*d*). The [MYH₂]₂ cyclic dimers may be constructed in two different ways, resulting in ring and rhombic isomers. The bonding pattern in these dimers is schematically presented in Scheme 3. Ring isomers

Figure 6. Optimized structures for ring isomers of the [MYH₂]₂ dimeric compounds. (a) ring-[BNH₂]₂, (b) ring-[AlNH₂]₂, (c) ring-[AlPH₂]₂, (d) ring-[AlAsH₂]₂, (e) ring-[GaNH₂]₂, (f) ring-[GaPH₂]₂, and (g) ring-[GaAsH₂]₂. All distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

TABLE 9: Selected Structural Parameters for the $[MYR_2]_2$ Rhombic Isomers (in Angstroms and Degrees) and Dissociation Energies into MYR_2 Monomers (kJ mol⁻¹)^{*a*}

compound	point group	MM	MY	M-Y-M	Y-M-Y	torsion	$E^{\rm diss}$
rhomb-[BNH2]2	C_{2v}	1.552	1.542	60.4	97.8	48.1	-68.7
rhomb-[BNMe2]2	C_2	1.567	1.547	61.1	102.4	43.0	-83.6
rhomb-[BPH ₂] ₂	C_{2v}	1.712	1.798	56.9	118.2	25.4	305.9
rhomb-[BPMe ₂] ₂	C_{2v}	1.761	1.793	58.9	121.1	0.1	419.2
rhomb-[BAsH ₂] ₂	C_{2v}	1.662	1.942	50.6	111.6	45.9	203.6
rhomb-[BAsMe2]2	C_{2v}	1.702	1.931	52.3	115.3	39.1	292.0


(Scheme 3a) feature lone pair electrons on the group 13 center (oxidation state I) and involve four MY bonds formed by both covalent DA interactions. The rhombic isomer (Scheme 3b) features a formally double MM bond and four MY single bonds.

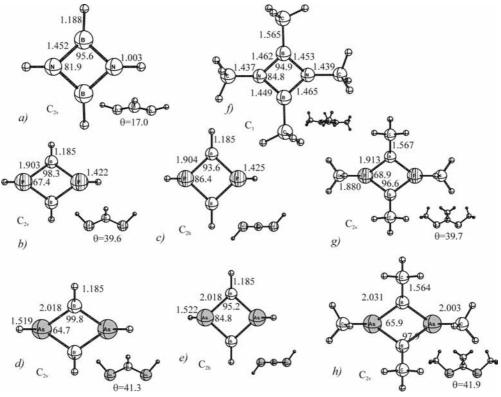
Rhombic Structures $M_2(YR_2)_2$. Rhombic structures $M_2(YR_2)_2$ are predicted to be minima only for the boron-containing compounds. Their optimized structures are presented in Figure 5 for both hydrogen (a-c) and methyl (d-f) substituents. Attempts to optimize rhombic isomers for Al and Ga resulted in the ring structures presented in Figure 6. The B-B distance in the rhombic compounds changes nonmonotonically in the series N-P-As: from 1.552 in $B_2(NH_2)_2$ to 1.712 in $B_2(PH_2)_2$ and 1.662 in $B_2(AsH_2)_2$. Thus, the shortest B-B distance is observed for the NH₂ compound, while the longest is formed for the PH₂ compound. Introduction of methyl substituents slightly increases the B-B distance, but the qualitative trend remains the same. Methylation reduces the torsion MYMY angle, and B₂(PMe₂)₂ has an almost planar PBBP ring (torsion angle, 0.1°). Boron-nitrogen rhombic structures B₂(NR₂)₂ are predicted to exothermically dissociate into monomers (Table 9); therefore, such compounds are only kinetically stable. In contrast, P- and As-containing compounds have substantial dissociation energies $(200-420 \text{ kJ mol}^{-1})$.

Another way of looking at the rhombic compounds involves an interaction of the triplet B_2 molecule with two YR₂ radicals. As compared to the B–B distance in free B₂ (1.613 Å), the formation of B₂(NH₂)₂ significantly decreases the B–B distance but increases it for B₂(PH₂)₂ and B₂(AsH₂)₂.

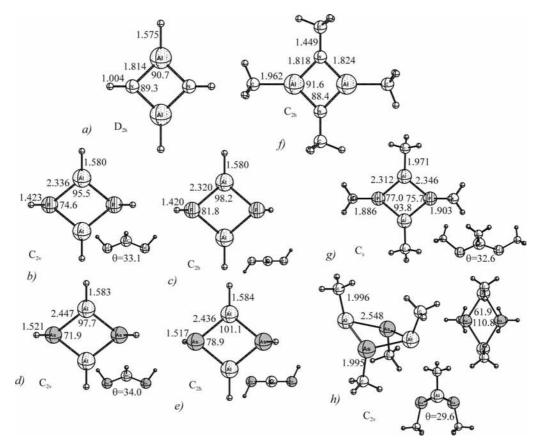
[*MYH*₂]₂ Ring Structures. The structure of D_{2h} symmetry is not a minimum on the PES for [MYH₂]₂ ring dimers for all 13-15 pairs. The minima on the PES are C_{2v} symmetric structures (Figure 6), with M₂Y₂ rings puckered by 25–46°. It is interesting that for the boron–nitrogen compound, the ring isomer (Figure 6a) has been predicted to be a minimum on its PES. In contrast, optimization attempts for the B–P and B–As ring structures lead to rhombic isomers (Figure 5) for both H and Me substituents. Substitution of hydrogens by methyl groups also result in minima, generally of C_{2v} symmetry (Figure 7).

Structural parameters for the $[MYH_2]_2$ ring structures are summarized in Table 10. An interesting feature of the boron-nitrogen-containing rings is that both ring and rhombic isomers are identified as minima on the PES. The rhombic

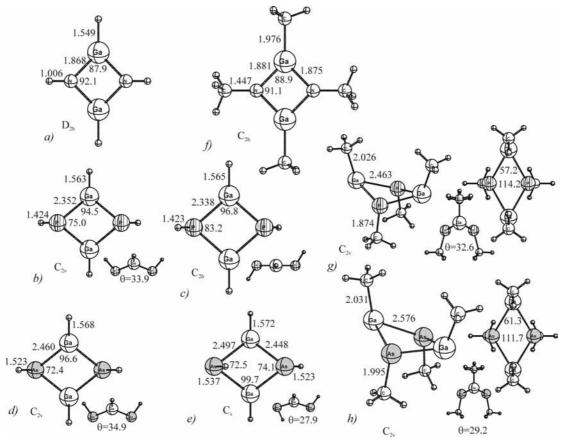
Figure 7. Optimized structures for ring isomers of the [MYMe₂]₂ dimeric compounds. (a) ring-[BNMe₂]₂, (b) ring-[AlNMe₂]₂, (c) ring-[AlPMe₂]₂, (d) ring-[AlAsMe₂]₂, (e) ring-[GaNMe₂]₂, (f) ring-[GaPNMe₂]₂, and (g) ring-[GaAsMe₂]₂. All distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory.


TABLE 10: Structural Parameters for the $[MYR_2]_2$ Ring Isomers (in Angstroms and Degrees) and Dissociation Energies into MYR₂ Monomers (kJ mol⁻¹)^{*a*}

compound	point group	MY	MM	YY	М-Ү-М	Ү-М-Ү	torsion	$E^{\rm diss}$
ring-[BNH ₂] ₂	C_{2v}	1.624	2.306	2.154	90.4	83.1	26.8	-104.9
ring-[BNMe ₂] ₂	C_{2v}	1.625	2.350	2.234	92.6	86.8	8.4	-110.9
ring-[AlNH ₂] ₂	C_{2v}	2.062	3.081	2.563	96.7	76.9	26.8	80.1
ring-[AlNMe ₂] ₂	C_{2v}	2.068	3.098	2.719	97.0	82.2	9.4	54.8
ring-[AlPH ₂] ₂	C_{2v}	2.653	4.126	3.002	102.1	68.9	32.0	81.0
ring-[AlPMe ₂] ₂	C_s	2.626,2.467	3.570	3.235	89.0	76.0, 82.0	35.1	126.0
ring-[AlAsH ₂] ₂	C_{2v}	2.776	4.383	3.136	104.3	68.8	28.3	65.0
ring-[AlAsMe ₂] ₂	C_1	2.738, 2.736	4.311	3.215	102.5, 103.8	71.5	24.9	98.0
ring-[GaNH ₂] ₂	C_{2v}	2.158	3.221	2.644	96.5	75.6	29.6	78.8
ring-[GaNMe ₂] ₂	C_{2v}	2.166	3.253	2.823	97.4	81.4	12.0	53.8
ring-[GaPH ₂] ₂	$C_{2\nu}$	2.701	4.212	3.068	102.5	69.2	30.7	76.7
ring-[GaPMe ₂] ₂	C_s	2.676	4.107	3.192	100.2	73.2	27.3	111.8
ring-[GaAsH ₂] ₂	C_{2v}	2.813	4.454	3.188	104.7	69.0	26.9	63.6
ring-[GaAsMe ₂] ₂	C_s	2.776, 2.812	4.408	3.260	103.2, 105.1	71.4	23.0	95.2


B₂(NH₂)₂ isomer is only 36 kJ mol⁻¹ more stable than the [BNH₂]₂ ring. Interestingly, both structures are only kinetically stable (exothermic dissociation into monomers). Boron-containing ring and rhombic structures are significantly higher in energy as compared to the H₂YBBYH₂ chains, while for the Al and Ga compounds, the ring structures are much lower in energy than the Al–Al and Ga–Ga bonded chains (Table 13). This is in large part due to substantially reduced Al–Al and Ga–Ga bonding in the chain compounds (16–69 kJ mol⁻¹) as compared to that for the B–B (293–485 kJ mol⁻¹) structures. Thus, formation of multiple ($\sigma + \pi$) bonds in chain structures is favored for B but unfavored for Al and Ga.

 $[HMYH]_2$ Ring Dimers. Structures of the $[HMYH]_2$ isomers (M = Al, Ga, In; Y = N, P, As) have been previously studied


at the B3LYP/LANL2DZ(d,p) level of theory.⁵⁷ It was found that nitrogen-containing rings are planar with D_{2h} symmetry, while the phosphorus and arsenic centers adopt pyramidal geometries, with the C_{2v} symmetry structures being the lowest in energy. Alternative C_{2h} isomers with planar M_2Y_2 core were found to be higher in energy. Our results obtained with the all-electron TZVP basis set are in agreement with the earlier findings. Optimized structures for the ring compounds are presented in Figures 8, 9, and 10 for the boron, aluminum, and gallium compounds, respectively. For the H compounds, both C_{2v} and C_{2h} symmetric isomers were found. In all cases, C_{2h} symmetric isomers with planar M_2Y_2 core are less stable than puckered structures of C_{2v} symmetry, but the energy

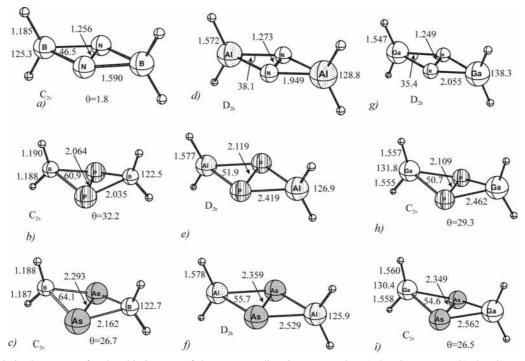

Figure 8. Optimized structures for ring isomers of the [HBYH]₂ dimeric compounds. (a) [HBNH]₂, (b) [HBPH]₂, (c) [HBPH]₂, (d) [HBAsH]₂, (e) [HBAsH]₂, (f) [MeBNMe]₂, (g) [MeBPMe]₂, and (h) [MeBAsMe]₂. All distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

Figure 9. Optimized structures for ring isomers of the [HAIYH]₂ dimeric compounds. (a) [HAINH]₂, (b) [HAIPH]₂, (c) [HAIPH]₂, (d) [HAIASH]₂, (e) [HAIASH]₂, (f) [MeAINMe]₂, (g) [MeAIPMe]₂, and (h) [MeAIASMe]₂. All distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

Figure 10. Optimized structures for ring isomers of the [HGaYH]₂ dimeric compounds. (a) [HGaNH]₂, (b) [HGaPH]₂, (c) [HGaPH]₂, (d) [HGaAsH]₂, (e) [HGaAsH]₂, (f) [MeGaNMe]₂, (g) [MeGaPMe]₂, and (h) [MeGaAsMe]₂. All distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

Figure 11. Optimized structures for rhombic isomers of the $[H_2MY]_2$ dimeric compounds. (a) rhomb- $[H_2BN]_2$, (b) rhomb- $[H_2BP]_2$, (c) rhomb- $[H_2ABP]_2$, (d) rhomb- $[H_2AIN]_2$, (e) rhomb- $[H_2AIP]_2$, (f) rhomb- $[H_2AIAS]_2$, (g) rhomb- $[H_2GaN]_2$, (h) rhomb- $[H_2GaP]_2$, and (i) rhomb- $[H_2GaAS]_2$. All distances in are angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

difference is relatively small $(10-35 \text{ kJ mol}^{-1})$. For the Mesubstituted species, only the puckered isomers have been optimized. Major structural parameters and dissociation energies are presented in Table 11. In agreement with previous studies, 32,29,76 we predict the puckered [RBNR]₂ structures to be minima on their PES.

TABLE 11: Structural Parameters for the [RMYR]2 Ring Isomers (in Angstroms and Degrees) and Dissociation Energies into
RMYR Monomers $(kJ mol^{-1})^a$

compound	point group	MY	MM	YY	М-Ү-М	Ү-М-Ү	tors.	$E^{\rm diss}$
[HBNH] ₂	C_{2v}	1.452	1.902	2.151	81.9	95.6	17.0	225.0
[MeBNMe] ₂	C_1	1.451; 1.463	1.962	2.148	84.8	94.9	7.2	185.7
[HBPH] ₂	C_{2v}	1.903	2.110	2.878	64.7	98.3	39.6	254.3
[MeBPMe] ₂	C_{2v}	1.913	2.165	2.856	68.9	96.9	39.7	268.7
[HBPH] ₂	C_{2h}	1.904	2.607	2.777	86.4	93.6	0	219.5
[HBAsH] ₂	C_{2v}	2.017	2.159	3.086	64.7	99.8	41.3	209.0
[MeBAsMe] ₂	C_{2v}	2.031	2.210	3.064	65.9	97.9	41.9	238.9
[HBAsH] ₂	C_{2h}	2.017	2.720	2.980	84.8	95.2	0	174.5
[HAINH] ₂	D_{2h}	1.814	2.549	2.581	89.3	90.7	0	565.5
[MeAlNMe] ₂	C_{2h}	1.818; 1.824	2.539	2.611	88.4	91.6	0	512.4
[HAlPH] ₂	C_{2v}	2.336	2.830	3.457	74.6	95.5	33.1	333.3
[MeAlPMe] ₂	C_s	2.312; 2.346	2.879	3.401	75.7; 77.0	93.8	32.6	356.1
[HAlPH] ₂	C_{2h}	2.320	3.037	3.508	81.8	98.2	0	323.5
[HAlAsH] ₂	C_{2v}	2.447	2.873	3.684	71.9	97.7	34.0	301.4
[MeAlAsMe] ₂	C_{2v}	2.548	4.194	2.622	110.8	61.9	29.6	139.3
[HAlAsH] ₂	C_{2h}	2.436	3.094	3.763	78.9	101.1	0	286.0
[HGaNH] ₂	D_{2h}	1.868	2.690	2.594	92.1	87.9	0	412.0
[MeGaNMe] ₂	C_{2h}	1.881; 1.875	2.682	2.630	91.1	88.9	0	387.1
[HGaPH] ₂	C_{2v}	2.352	2.862	3.454	75.0	94.5	33.9	253.8
[MeGaPMe] ₂	C_{2v}	2.463	4.135	2.359	114.2	57.2	32.6	120.9
[HGaPH] ₂	C_{2h}	2.338	3.105	3.496	83.2	97.8	0	241.7
[HGaAsH] ₂	C_{2v}	2.460	2.906	3.673	72.4	96.6	34.8	234.6
[MeGaAsMe] ₂	C_{2v}	2.576	4.263	2.627	117.7	61.3	29.2	103.2
[HGaAsH] ₂	C_s	2.448; 2.479	2.951	3.781	72.5; 74.1	99.7	27.9	224.6

TABLE 12: Structural Parameters for the rhomb- $[R_2MY]_2$ Isomers (in Angstroms and Degrees) and Dissociation Energies intoTriplet R_2MY Monomers (kJ mol⁻¹)^a

compound	point group	MY	YY	MM	М-Ү-М	Ү-М-Ү	tors.	$E^{\rm diss}$
$[H_2BN]_2$	C_{2v}	1.590	1.256	2.921	133.4	46.5	1.8	473.5
$[H_2BP]_2$	C_{2v}	2.035	2.064	3.342	110.4	60.9	32.2	592.7
$[H_2BAs]_2$	C_{2v}	2.162	2.293	3.541	110.0	64.1	26.7	278.8
$[H_2AIN]_2$	D_{2h}	1.949	1.273	3.683	141.9	38.1	0	776.5
$[Me_2AlN]_2$	D_{2h}	1.954	1.278	3.692	141.8	38.2	0	758.6
$[H_2AlP]_2$	D_{2h}	2.419	2.119	4.349	128.1	51.9	0	608.4
[Me ₂ AlP] ₂	D_{2h}	2.436	2.119	4.387	128.4	51.6	0	365.0
[H ₂ AlAs] ₂	D_{2h}	2.529	2.359	4.463	124.3	55.7	0	324.0
[Me ₂ AlAs] ₂	C_{2h}	2.543	2.356	4.508	124.8	55.2	0	315.0
$[H_2GaN]_2$	D_{2h}	2.055	1.248	3.915	144.6	35.4	0	546.4
[Me ₂ GaN] ₂	D_{2h}	2.063	1.257	3.931	144.5	35.5	0	528.9
[H ₂ GaP] ₂	C_{2v}	2.462	2.109	4.324	123.0	50.7	29.3	570.8
[Me ₂ GaP] ₂	C_{2v}	2.488	2.113	4.427	126.1	50.4	22.5	319.2
[H ₂ GaAs] ₂	C_{2v}	2.562	2.349	4.440	120.1	54.6	26.5	285.3
[Me ₂ GaAs] ₂	C_1	2.580;2.586	2.352	4.544	123.2	54.2	19.1	274.8

^a B3LYP/TZVP level of theory.

TABLE 13: Relative Energies E (kJ mol⁻¹, 0 K, without ZPE Corrections) of the Different [M₂Y₂H₄] Isomers with Respect to the Analogous [HMYH]₂ Structures^{*a*}

	$[MYH_2]_2$		[$[H_2YMMYH_2]$		[HMYH] ₂			$[H_2MY]_2$	
М, Ү	D_{2h}	C_{2v}	D_{2h}	C_{2h}	C_i	D_{2h}	C_{2v}	C_{2h}	D_{2h}	C_{2v}
BN	(693.8) ^b	676.9	276.4			$(3.8)^{b}$	0.0		$(461.5)^{b}$	461.5
BP	$(388.2)^{b}$	387.0	$(278.6)^{c}$	245.6		$(128.6)^{c}$	0.0	34.9	$(98.8)^{b}$	84.5
BAs	$(495.7)^{b}$	474.2	$(325.2)^{c}$	253.7		$(160.8)^{c}$	0.0	34.6	$(18.3)^{b}$	12.1
AlN	$(124.6)^{b}$	119.5	$(350.0)^{b}$	170.0		0.0			347.4	
AlP	$(177.0)^{c}$	157.2	$(392.0)^d$	$(298.8)^{b}$	184.5	$(73.4)^{c}$	0.0	9.8	107.3	
AlAs	$(205.1)^{c}$	189.5	$(448.4)^d$	$(312.1)^{b}$	200.2	$(107.4)^{c}$	0.0	15.4	67.6	
GaN	$(-81.8)^{b}$	-89.2	$(201.0)^{b}$	-30.8		0.0			288.3	
GaP	$(47.2)^{c}$	29.1	$(330.3)^d$	$(212.0)^{b}$	64.1	$(92.8)^{c}$	0.0	12.1	$(138.2)^{b}$	135.1
GaAs	$(80.6)^{c}$	65.8	$(400.0)^d$	$(194.4)^{b}$	86.8	$(130.1)^{c}$	0.0	10.0^{e}	$(101.1)^{b}$	98.6

^{*a*} B3LYP/TZVP level of theory. Structures are minima on the PES, unless noted otherwise. ^{*b*} Transition state. ^{*c*} Stationary point of Hessian index 2. ^{*d*} Stationary point of Hessian index 3. ^{*e*} C_s point group.

Methylation results in significant structural changes for the P, As containing rings. In contrast to [HMYH]₂, where threecoordinated Al and Ga atoms keep their planar environment, in [MeMYMe]₂, the aluminum and gallium centers adopt pyramidal geometries (Figures 9h and 10g,h). This is accompanied by significant shortening of P-P and As-As distances in the ring, making these structures nearly rhombic.

All [RMYR]₂ compounds have substantial dissociation energies into RMYR monomers, ranging from 103 kJ mol⁻¹ for [MeGaAsMe]₂ to 566 kJ mol⁻¹ for [HAlNH[₂. Methylation

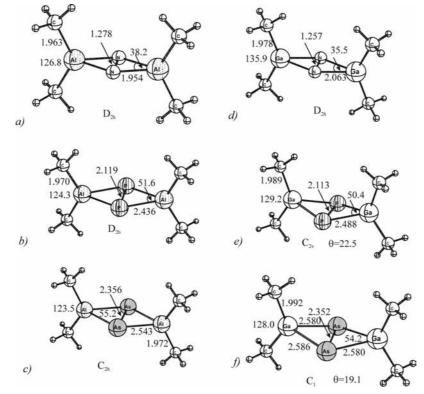


Figure 12. Optimized structures for rhombic isomers of the $[Me_2MY]_2$ dimeric compounds. (a) rhomb- $[Me_2AIN]_2$, (b) rhomb- $[Me_2AIP]_2$, (c) rhomb- $[Me_2GaN]_2$, (d) rhomb- $[Me_2GaN]_2$, (e) rhomb- $[Me_2GaP]_2$, and (f) rhomb- $[Me_2GaAs]_2$. All distances are in angstroms, and angles are in degrees. B3LYP/TZVP level of theory.

TABLE 14: Relative Eenergies E (kJ mol⁻¹, 0 K, without ZPE Corrections) of the Different [M₂Y₂Me₄] Isomers with Respect to [MeMYMe]₂ Structures^{*a*}

М, Ү	[MeMYMe] ₂	rhomb-[MYMe ₂] ₂	ring-[MYMe ₂] ₂	[Me ₂ YMMYMe ₂]	[Me ₂ MYMYMe ₂]	[Me ₂ MYYMMe ₂]	rhomb-[Me ₂ MY] ₂
BN	0	790.2	817.4	413.7	53.0	199.7	
BP	0	348.5		282.5		12.9	
BAs	0	462.5		305.6		-66.2	
AlN	0		272.5	302.7	318.6	233.6	171.6
AlP	0		200.4	257.6			14.4
AlAs	0		61.3	97.2			-204.5
GaN	0		42.9	80.6	142.1	163.0	144.9
GaP	0		-83.0	-28.6			-80.0
GaAs	0		-36.1	3.9			-107.3

^a B3LYP/TZVP level of theory. Structures are minima on the PES.

dramatically lowers the dissociation enethalpies (by as much as 160 kJ mol⁻¹ for [RAIPR]₂).

The dissociation energies of $[HMYH]_2$ decrease in the order: AlN > GaN > AlP > AlAs > GaP \approx BP > GaAs \geq BN > BAs. Aluminum-nitrogen rings are found to be the most strongly bound. Note that BN rings have very moderate dissociation energies, due to both the destabilization of the dimer and the high stability of the linear monomers RBNR.

 $[H_2MY]_2$ Rhombic Dimers. Optimization of the ring dimers resulted in the rhomboidal structures presented in Figure 11, and the dissociation energies to H₂MY monomers in the triplet state are reported in Table 12. The AlN, AlP, AlAs, and GaN species are perfectly planar (D_{2h} point group), while for others C_{2v} symmetric puckered structures were found as minima on PES. The N–N distances (1.249–1.256 Å) are larger than in the chain isomers (1.176–1.193 Å, Figure 3). Dissociation into triplet H₂MY is endothermic by 285–776 kJ mol⁻¹. Again, the AlN structure is the most strongly bound.

Optimization attempt of the ring structures of the methylated analogues of boron compounds [Me₂BY]₂ does not lead to the rhombic structures. Optimization of $[Me_2BN]_2$ converges to the D_{2h} symmetric chain isomer Me₂BNNBMe₂ (shown in Figure 3d), while in case of P and As C_i symmetric chains are obtained (Figure 3g,h). Optimization of aluminum and gallium analogues leads to the rhombic minima, which feature planar M₂Y₂ ring, with exception of puckered $[Me_2GaP]_2$ and $[Me_2GaAs]_2$.

Relative Stability of the Dimers. Relative energies of the dimeric compounds considered here are summarized in Table 13, and those for the methylated derivatives are in Table 14. For the hydrogen-containing species in Table 13, we report not only true minima but also high order stationary points located in the present research. The C_{2v} symmetry [HMYH]₂ rings lie lowest in energy, with the single exception of Ga₂N₂H₄, for which the somewhat unexpectedly C_{2v} symmetric [GaNH₂]₂ ring is found to be an energy minimum, followed by the planar H₂NGaGaNH₂ chain (Table 13). The higher stability of the GaNH₂ bonding pattern in oligomer compounds in the case of gallium may be rationalized in terms of the increasing stability of oxidation step I as compared to that for boron and aluminum. The formation of such Ga–Ga bonded species may be a starting

point toward formation of Ga metal in MOCVD processes. Although neither dimer is strongly bound (dissociation energies are 79 kJ mol⁻¹ for the ring and only 20 kJ mol⁻¹ for the chain dimer), they are the lowest lying isomers on the PES.

For methylated analogues, the Ga-N system does not show exceptional behavior. The [MeGaNMe]₂ dimer is the lowest in energy. However, for Ga-P and Ga-As systems, the ring-[GaYMe₂]₂ is by 83 and 36 kJ mol⁻¹ lower in energy, as compared to the respective [MeGaYMe]₂ structures. With the exception of Me₂PGaGaPMe₂, all chain isomers are higher in energy as compared to their imido dimers [MeMYMe]₂. Note the very small energetic differences between [MeGaAsMe]₂, ring-[GaAsMe2]2, and chain Me2AsGaGaAsMe2 structures; they all lie in a range of 36 kJ mol⁻¹. Thus, a variety of GaAs structures with different bonding patterns are expected to be viable. It is interesting to note that for As-containing compounds the chain Me₂BAsAsBMe₂ and rhombic [Me₂MAs]₂ structures (M = Al, Ga) become the lowest in energy.

Conclusions

A series of group 13-15 compounds of the general formula $[MYR_2]_n$ (M = B, Al, Ga; Y = N, P, As; n = 1, 2; R = H, CH₃) have been theoretically studied at the B3LYP/TZVP level of theory. For the dimeric compounds, the $C_{2\nu}$ symmetric [HMYH]₂ rings are the lowest in energy, with the single exception of $Ga_2N_2H_4$, for which a somewhat unexpected C_{2v} symmetric [GaNH₂]₂ ring is found to be a minimum, followed by the planar H₂NGaGaNH₂ chain. The higher stability of the GaNH₂ bonding pattern in these oligomer compounds may be rationalized in terms of the increasing stability of oxidation state I as compared to that for the boron and aluminum analogues. Thus, the possibility of formation of Ga^I species under GaN CVD conditions should be taken into account. Methylation significantly reduces the energetic differences between the monomeric MYMe₂, MeMYMe, and Me₂MY isomers, especially for the AIP, AlAs, and GaAs systems, allowing a variety of structural types to be competitive energetically. This trend also holds for the weakly bound dimeric compounds in the GaAs system. For the methyl-substituted compounds, the $C_{2\nu}$ symmetric [MeMYMe]₂ rings are the lowest in energy, with the exception of Al₂As₂Me₄, Ga₂P₂Me₄, and Ga₂As₂Me₄, for which [Me₂MY]₂ rhombic structure is found as an energetic minimum. It is the gallium compounds in both cases that behave differently from the rest. In this regard, it would be interesting to see if such trends will continue for larger $[MYR_2]_n$ species. Theoretical studies of tetramers are expected to shed more light on the competition between 13 and 13, 13-15, and 15-15 bonded structures.

Acknowledgment. A.Y.T. is grateful to the Educational Ministry of Russian Federation and the St. Petersburg Administration for partial financial support of this work. Work at the University of Georgia was supported by the NSF Grant CHE-0749868.

Supporting Information Available: Table 1S with total energies, zero-point vibrational energies, sum of electronic and thermal enthalpies, and standard entropies, Table 2S with computed harmonic vibrational frequencies and IR intensities, and Table 3S with optimized structural parameters for the R₂MMR₂ compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

J. Phys. Chem. A, Vol. 112, No. 50, 2008 13195

Sugahara, Y.; Kuroda, K. Chem. Lett. 1998, 191. (d) Cheng, F.; Sugahara, Y.; Kuroda, K. Appl. Organomet. Chem. 2001, 15, 710. (e) Nakashima, H.; Koyama, S.; Kuroda, K.; Sugahara, Y. J. Am. Ceram. Soc. 2002, 85, 59.

(2) Jouet, R. J.; Purdy, A. P.; Wells, R. L.; Janik, J. F. J. Cluster Sci. 2002, 13, 469.

(3) (a) Cowley, A. H.; Jones, R. A.; Mardones, M. A.; Ruiz, J.; Atwood, J. L.; Bott, S. G. Angew. Chem., Int. Ed. Engl. 1990, 29, 1150. (b) Atwood, D. A.; Cowley, A. H.; Jones, R. A.; Mardones, M. A. J. Organomet. Chem.

1993, 449, C1. (c) Cowley, A. H.; Jones, R. A. Polyhedron 1994, 13, 1149. (4) (a) Marder, T. B. Angew. Chem., Int. Ed. 2007, 46, 8116. (b) Clark,

T. J.; Lee, K.; Manners, I. Chem. Eur. J. 2006, 12, 8634. (c) Langmi, H. W.; McGrady, G. S. Coord. Chem. Rev. 2007, 251, 925.

(5) Timoshkin, A. Y. Coord. Chem. Rev. 2005, 249, 2094.

(6) Hardman, N. J.; Cui, C. M.; Roesky, H. W.; Fink, W. H.; Power,

P. P. Angew. Chem., Int. Ed. 2001, 40, 2172. (7) Wright, R. J.; Phillips, A. D.; Allen, T. L.; Fink, W. H.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 1694.

(8) Paetzold, P. Adv. Inorg. Chem. 1987, 31, 123.

(9) Gilbert, T. M.; Gailbreath, B. D. Organometallics 2001, 20, 4727.

(10) Himmel, H. J.; Downs, A. J.; Greene, T. M. Chem. Commun. 2000,

871

(11) Himmel, H. J.; Downs, A. J.; Greene, T. M. Inorg. Chem. 2001, 40, 396.

(12) Lanzisera, D. V.; Andrews, L. J. Phys. Chem. A 1997, 101, 5082.

(13) Lanzisera, D. V.; Andrews, L. J. Phys. Chem. A 1997, 101, 824.

(14) Thompson, C. A.; Andrews, L. J. Am. Chem. Soc. 1995, 117, 10125.

(15) Thompson, C. A.; Andrews, L.; Martin, J. M. L.; Elyazal, J. J. Phys. Chem. 1995, 99, 13839.

(16) (a) Tafipolsky, M.; Schmid, R. Chem. Vap. Deposition 2007, 13, 84. (b) Wolbank, B.; Schmid, R. Chem. Vap. Deposition 2003, 9, 272

(17) Moscatelli, D.; Caccioppoli, P.; Cavallotti, C. Appl. Phys. Lett. 2005, 86. 091106.

(18) Himmel, H.-J.; Downs, A. J.; Green, J. C.; Greene, T. M. J. Chem. Soc. Dalton Trans. 2001, 535.

(19) Wright, R. J.; Brynda, M.; Fettinger, J. C.; Betzer, A. R.; Power, P. P. J. Am. Chem. Soc. 2006, 128, 12498.

(20) Schiefer, M.; Reddy, N. D.; Roesky, H. W.; Vidovic, D. Organometallics 2003, 22, 3637.

(21) (a) Cowley, A. H. Chem. Commun. 2004, 2369. (b) Gemel, C.; Steinke, T.; Cokoja, M.; Kempter, A.; Fischer, R. A. Eur. J. Inorg. Chem. 2004, 4161. (c) Linti, G.; Schnockel, H. Coord. Chem. Rev. 2000, 206, 285.

(22) Sitzmann, H.; Lappert, M. F.; Dohmeier, C.; Uffing, C.; Schnöckel, H. J. Organomet. Chem. 1998, 561, 203.

(23) Ecker, A.; Weckert, E.; Schnockel, H. Nature 1997, 387, 379.

(24) (a) Frazer, A.; Hodge, P.; Piggott, B. Chem. Commun. 1996, 1727. (b) Kuchta, M. C.; Bonanno, J. B.; Parkin, G. J. Am. Chem. Soc. 1996, 118, 10914. (c) Gorden, J. D.; Voigt, A.; Macdonald, C. L. B.; Silverman, J. S.; Cowley, A. H. J. Am. Chem. Soc. 2000, 122, 950. (d) Gorden, J. D.; Macdonald, C. L. B.; Cowley, A. H. Chem. Commun. 2001, 75. (e) Jutzi, P.; Neumann, B.; Reumann, G.; Schebaum, L. O.; Stammler, H. G. Organometallics 2001, 20, 2854. (f) Greiwe, P.; Bethauser, A.; Pritzkow, H.; Kuhler, T.; Jutzi, P.; Siebert, A. Eur. J. Inorg. Chem. 2000, 1927. (g) Schulz, S.; Kuczkowski, A.; Schuchmann, D.; Flörke, U.; Nieger, M. Organometallics 2006, 25, 5487. (h) Cowley, A. H. J. Chem. Soc. Chem. Commun. 2004, 2369.

(25) Timoshkin, A. Y.; Frenking, G. J. Am. Chem. Soc. 2002, 124, 7240.

- (26) Haaland, A. Angew. Chem., Int. Ed. Engl. 1989, 28, 992.
- (27) Haddon, R. C. Pure Appl. Chem. 1982, 54, 1129.
- (28) Baird, N. C.; Datta, R. K. Inorg. Chem. 1972, 11, 17.
- (29) Liang, C. X.; Allen, L. C. J. Am. Chem. Soc. 1991, 113, 1878.
- (30) Jouany, C.; Barthelat, J. C.; Daudey, J. P. Chem. Phys. Lett. 1987, 136, 52.

(31) Ehlers, A. W.; Baerends, E. J.; Bickelhaupt, F. M.; Radius, U. Chem. Eur. J. 1998, 4, 210.

(32) Suresh, C. H.; Koga, N. Inorg. Chem. 2000, 39, 3718.

(33) McKee, M. L. Inorg. Chem. 1999, 38, 321.

(34) Soncini, A.; Domene, C.; Engelberts, J. J.; Fowler, P. W.; Rassat, A.; vanLenthe, J. H.; Havenith, R. W. A.; Jenneskens, L. W. Chem. Eur.

J. 2005, 11, 1257.

(35) Gilbert, T. M. Organometallics 2000, 19, 1160.

(36) Gilbert, T. M. Organometallics 2003, 22, 2298.

(37) Hayashi, K.; Kanayama, T.; Kojima, H.; Shimizu, T. Comput. Mater. Sci. 2003, 27, 50.

(38) Hayashi, K.; Kanayama, T.; Shimizu, T.; Kawamura, Y.; Kameko, K.; Kawakita, S. J. Vac. Sci. Technol., A 2002, 20, 995

(39) Bonacic-Koutecky, V.; Schoffel, K.; Michl, J. J. Am. Chem. Soc. 1989, 111, 6140.

(40) Dewar, M. J. S.; McKee, M. L. J. Mol. Struct. 1980, 68, 105.

(41) Baird, N. C. Inorg. Chem. 1973, 12, 473.

(42) Sana, M.; Leroy, G.; Wilante, C. Organometallics 1992, 11, 781.

(1) (a) Sugahara, Y.; Koyama, S.; Kuroda, K. Novel Synth. Process. Ceram. 1999, 159-1, 77. (b) Saito, Y.; Koyama, S.; Sugahara, Y.; Kuroda, (43) Paetzold, P.; Vonplotho, C.; Schmid, G.; Boese, R.; Schrader, B.; Bougeard, D.; Pfeiffer, U.; Gleiter, R.; Schafer, W. *Chem. Ber.* **1984**, *117*, 1089.

- (44) Kiran, B.; Phukan, A. K.; Jemmis, E. D. Inorg. Chem. 2001, 40, 3615.
- (45) Bridgeman, A. J.; Rothery, J. Inorg. Chim. Acta 1999, 288, 17.
- (46) Grant, D. J.; Dixon, D. A. J. Phys. Chem. A 2005, 109, 10138.
- (47) Kerins, M. C.; Fitzpatrick, N. J.; Nguyen, M. T. Polyhedron 1989, 8, 969.
- (48) Watts, J. D.; VanZant, L. C. Chem. Phys. Lett. 1996, 251, 119.
- (49) Timoshkin, A. Y.; Frenking, G. Inorg. Chem. 2003, 42, 60.
- (50) Davy, R. D.; Jaffrey, K. L. J. Phys. Chem. 1994, 98, 8930.
- (51) Guo, L.; Wu, H. S.; Jin, Z. H. Appl. Surf. Sci. 2005, 242, 88.
- (52) Hamilton, T. P.; Shaikh, A. W. Inorg. Chem. 1997, 36, 754.
- (53) Davy, R. D.; Schaefer, H. F. Inorg. Chem. 1998, 37, 2291.
- (54) Downs, A. J.; Himmel, H. J.; Manceron, L. Polyhedron 2002, 21, 473.
- (55) Himmel, H. J.; Schnockel, H. Chem. Eur. J. 2002, 8, 2397.
- (56) Himmel, H. J.; Downs, A. J.; Green, J. C.; Greene, T. M. J. Phys. Chem. A 2000, 104, 3642.
- (57) Timoshkin, A. Y.; Schaefer, H. F. *Inorg. Chem.* 2004, 43, 3080.
 (58) Timoshkin, A. Y.; Schaefer, H. F. J. Am. Chem. Soc. 2003, 125, 9998
- (59) Wu, H. S.; Zhang, C. J.; Xu, X. H.; Zhang, F. Q.; Zhang, Q. Chin. Sci. Bull. 2001, 46, 1507.
- (60) Xu, X. H.; Wu, H. S.; Zhang, F. Q.; Zhang, C. J.; Jin, Z. H. J. Mol. Struct. 2001, 542, 239.
 - (61) Davy, R. D.; Schaefer, H. F. J. Phys. Chem. A **1997**, 101, 3135.
 - (62) Davy, R. D.; Schaefer, H. F. J. Phys. Chem. A 1997, 101, 5707.
 (63) Kovacs, A. Inorg. Chem. 2002, 41, 3067.
- (64) Timoshkin, A. Y.; Bettinger, H. F.; Schaefer, H. F. J. Phys. Chem. A 2001, 105, 3240.
- (65) Timoshkin, A. Y.; Bettinger, H. F.; Schaefer, H. F. J. Phys. Chem. A 2001, 105, 3249.

- (67) Weinrich, S.; Piotrowski, H.; Vogt, M.; Schulz, A.; Westerhausen, M. *Inorg. Chem.* **2004**, *43*, 3756.
- (68) Bock, C. W.; Dobbs, K. D.; Mains, G. J.; Trachtman, M. J. Phys. Chem. 1991, 95, 7668.
- (69) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (70) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- (71) Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.

(72) Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.

(73) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgome, J. A.; Raghavachari, K.; AlLaham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. *GAUSSIAN 94*, Revision C.3; Gaussian, Inc.: Pittsburgh, PA, 1995.

(74) Jemmis, E. D.; Kiran, B. Inorg. Chem. 1998, 37, 2110.

- (75) Grant, D. J.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 12955.
- (76) Rehaman, A.; Datta, A.; Mallajosyula, S. S.; Pati, S. K. J. Chem. Theory Comput. **2006**, 2, 30.

JP801799F

⁽⁶⁶⁾ Dudley, T. J.; Brown, W. W.; Hoffmann, M. R. J. Phys. Chem. A 1999, 103, 5152.